JP2010027582A - Manufacturing method of reformer for fuel cell - Google Patents

Manufacturing method of reformer for fuel cell Download PDF

Info

Publication number
JP2010027582A
JP2010027582A JP2008191369A JP2008191369A JP2010027582A JP 2010027582 A JP2010027582 A JP 2010027582A JP 2008191369 A JP2008191369 A JP 2008191369A JP 2008191369 A JP2008191369 A JP 2008191369A JP 2010027582 A JP2010027582 A JP 2010027582A
Authority
JP
Japan
Prior art keywords
reformer
fuel cell
connecting pipe
flat dish
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008191369A
Other languages
Japanese (ja)
Inventor
Isamu Takenaga
勇 武長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chofu Seisakusho Co Ltd
Original Assignee
Chofu Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chofu Seisakusho Co Ltd filed Critical Chofu Seisakusho Co Ltd
Priority to JP2008191369A priority Critical patent/JP2010027582A/en
Publication of JP2010027582A publication Critical patent/JP2010027582A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Laser Beam Processing (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a reformer for fuel cell of stable quality capable of economically manufacturing the reformer with good workability. <P>SOLUTION: The reformer for the fuel cell is composed of a plurality of casings 10 arranged in a column each of which is constructed by superposing the flange parts 15, 16 formed on the peripheral edge portions of a first and a second tray-shaped flat containers 11, 12 rectangular in front view, through a partition plate 17. Reforming material is arranged in the casing 10, and the reformer for the fuel cell is manufactured by connecting coupling pipes 44-47 to connecting pipes 22-25 installed on inclination parts 18-21 of the first and second tray-shaped flat containers 11, 12. At the one end portions of the connecting pipes 22-25 and the coupling pipes 44-47, flanges 28, 48 are formed respectively, and the respective flanges 28, 48 are contacted for adjusting positions at their side ends, then the positioned side ends of the flanges 28, 48 are welded without using a melting metal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の改質器の製造方法に関する。 The present invention relates to a method for manufacturing a reformer for a fuel cell.

従来、都市ガス又はLPガスの原料ガスから生成させた水素を空気と反応させることにより発電する燃料電池が使用されている。ここで、原料ガスから水素を生成させる装置としては、原料ガスと水を触媒の存在下で反応させて水素を生成させる燃料電池用改質器(以下、単に改質器ともいう)が使用されている。
この燃料電池用改質器には、例えば、特許文献1、2のように、水素を生成させる触媒等を収納する円筒型のケーシングを使用した改質器と、特許文献3、4のように、触媒等を収納した平板型のケーシングを複数並べて配置した改質器がある。なお、本願発明は、後者に関するものであるため、以下、平板型のケーシングを使用した燃料電池用改質器について説明する。
Conventionally, a fuel cell that generates electricity by reacting hydrogen generated from a source gas of city gas or LP gas with air has been used. Here, as a device for generating hydrogen from a raw material gas, a fuel cell reformer (hereinafter also simply referred to as a reformer) that generates hydrogen by reacting the raw material gas with water in the presence of a catalyst is used. ing.
In this reformer for fuel cells, for example, as in Patent Documents 1 and 2, a reformer using a cylindrical casing containing a catalyst for generating hydrogen and the like, and Patent Documents 3 and 4 are used. There is a reformer in which a plurality of flat-plate casings containing catalysts and the like are arranged side by side. Since the present invention relates to the latter, a fuel cell reformer using a flat casing will be described below.

図3(A)に示すように、燃料電池用改質器50は、改質触媒や酸化触媒が充填された複数のケーシング51〜60と、図示しない断熱材、排熱回収用熱交換器、及びヒータとを有している。この複数のケーシング51〜60は、隣り合うケーシング51〜60の側壁の広面を当接させて一体としており、しかもケーシング51〜60は、原料ガス、空気、水、又は変成処理ガスが流れる連結用配管61〜69等により、それぞれ接続されている。
このように構成することで、原料ガスを水と触媒下で反応させ、原料ガスを改質して、水素リッチな変成処理ガスを生成できる。なお、変成処理ガスの生成の詳細内容については、前記した特許文献3、4に開示されているため、ここでは省略する。
As shown in FIG. 3A, the fuel cell reformer 50 includes a plurality of casings 51 to 60 filled with a reforming catalyst and an oxidation catalyst, a heat insulating material (not shown), a heat exchanger for exhaust heat recovery, And a heater. The plurality of casings 51 to 60 are integrated by bringing the wide surfaces of the side walls of the adjacent casings 51 to 60 into contact with each other, and the casings 51 to 60 are for connection through which raw material gas, air, water, or metamorphic processing gas flows. The pipes 61 to 69 are connected to each other.
By comprising in this way, raw material gas can be made to react with water under a catalyst, the raw material gas can be reformed, and a hydrogen-rich modified gas can be generated. In addition, since the detailed content of generation | occurrence | production of metamorphic processing gas is disclosed by above-mentioned patent document 3, 4, it abbreviate | omits here.

図3(B)、図4、図5に示すように、燃料電池用改質器50を構成する1つのケーシング、例えば、ケーシング58は、仕切り板70を中心としてその両側に、周囲に鍔部71、72がそれぞれ形成された2つの扁平皿形容器73、74が、それぞれの開口部75、76を仕切り板70の表面に向け、鍔部71、72を仕切り板70に当接させた状態で取付けられたものである。この仕切り板70と各扁平皿形容器73、74とで形成される第1、第2の空間部77、78の原料ガスの入側と出側には、触媒79を保持すると共に、この触媒79を通過する原料ガスの流れを整流化する通気用保持板80〜83が設けられている。また、2つの扁平皿形容器73、74の上部と下部の傾斜部には、それぞれ連結用配管65等を接続するための接続用配管84〜87が取付けられている。 As shown in FIGS. 3B, 4, and 5, one casing constituting the fuel cell reformer 50, for example, the casing 58, has a partition plate 70 as a center, on both sides thereof, and a flange portion around the periphery. Two flat dish-shaped containers 73 and 74 in which 71 and 72 are formed are in a state in which the respective openings 75 and 76 are directed to the surface of the partition plate 70 and the flange portions 71 and 72 are brought into contact with the partition plate 70. It was attached with. A catalyst 79 is held on the inlet and outlet sides of the source gas in the first and second space portions 77 and 78 formed by the partition plate 70 and the flat dish-shaped containers 73 and 74, and the catalyst Ventilation holding plates 80 to 83 for rectifying the flow of the source gas passing through 79 are provided. Further, connecting pipes 84 to 87 for connecting the connecting pipe 65 and the like are respectively attached to the upper and lower inclined parts of the two flat dish-shaped containers 73 and 74.

特開2003−151607号公報JP 2003-151607 A 特開平9−309702号公報JP-A-9-309702 特開2004−59359号公報JP 2004-59359 A 特開2007−326764号公報JP 2007-326664 A

しかしながら、前記従来の燃料電池用改質器50には、未だ解決すべき以下のような問題があった。
燃料電池用改質器50の扁平皿形容器73(扁平皿形容器74も同様)に取付けられた接続用配管84と連結用配管65は、同一の内径と外径を有するものである。このため、接続用配管84と連結用配管65を接続する場合、図6(A)に示すように、接続用配管84としてその端部の内径が拡幅したものを使用し、この部分に連結用配管65を嵌入させ、更にその接続部分88にフィラー(溶加金属:filler metal)を供給しながらTIG溶接していた。
このようにして、接続部分88を溶接する場合、溶接箇所は、連結用配管65の側面と接続用配管84の先端とで直角状態となり、三次元的な形状となるため、溶接時の作業性が悪く、またフィラーを使用する必要もあり経済的でなかった。
However, the conventional fuel cell reformer 50 still has the following problems to be solved.
The connecting pipe 84 and the connecting pipe 65 attached to the flat dish container 73 (similarly to the flat dish container 74) of the fuel cell reformer 50 have the same inner diameter and outer diameter. For this reason, when connecting the connecting pipe 84 and the connecting pipe 65, as shown in FIG. 6 (A), the connecting pipe 84 having an enlarged inner diameter at the end thereof is used. The pipe 65 was fitted, and TIG welding was performed while supplying a filler (filler metal) to the connecting portion 88.
Thus, when the connection part 88 is welded, the welded portion is in a right-angle state between the side surface of the connecting pipe 65 and the tip of the connecting pipe 84 and has a three-dimensional shape. However, it was not economical because it was necessary to use a filler.

また、上記したように、溶接時にフィラーを使用する場合、溶接箇所が高入熱となるため、例えば、溶接箇所の組織変化に伴って溶接箇所とその周辺部との間に硬度差が発生すると共に、連結用配管65の内面側が酸化する。このため、接続用配管84又は連結用配管65にクラックが発生する恐れがあり、これに伴う手直しも必要となって、安定した品質の燃料電池用改質器50を製造できない問題もある。
更に、図6(B)に示すように、扁平皿形容器73(扁平皿形容器74についても同様)と接続用配管84、85の接続についても、扁平皿形容器73の傾斜部に貫通孔89を形成した後、この貫通孔89に接続用配管84を挿通し、その接続部分90を、扁平皿形容器73の内側からフィラーを供給しながらTIG溶接していた。このため、上記した場合と同様の問題が生じていた。
Further, as described above, when a filler is used during welding, the welded portion has a high heat input, and therefore, for example, a hardness difference occurs between the welded portion and its peripheral portion with a change in the structure of the welded portion. At the same time, the inner surface side of the connecting pipe 65 is oxidized. For this reason, there is a possibility that cracks may occur in the connecting pipe 84 or the connecting pipe 65, and a rework accompanying this is necessary, and there is a problem that the fuel cell reformer 50 of stable quality cannot be manufactured.
Further, as shown in FIG. 6 (B), the flat dish-shaped container 73 (the same applies to the flat dish-shaped container 74) and the connection pipes 84 and 85 are also connected to the inclined portion of the flat dish-shaped container 73 through holes. After forming 89, the connecting pipe 84 was inserted into the through-hole 89, and the connecting portion 90 was TIG welded while supplying filler from the inside of the flat dish-shaped container 73. For this reason, the same problem as described above has occurred.

本発明はかかる事情に鑑みてなされたもので、安定した品質の燃料電池用改質器を、作業性よく経済的に製造可能な燃料電池用改質器の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing a reformer for a fuel cell that can economically produce a reformer for a fuel cell having a stable quality with good workability. To do.

前記目的に沿う本発明に係る燃料電池用改質器の製造方法は、それぞれ正面視して長方形状の第1、第2の扁平皿形容器(偏平皿形容器)の周縁に設けられた鍔部を仕切り板を介して重ね合わせたケーシングが複数並べられ、該ケーシング内には改質材が配置され、しかも前記第1、第2の扁平皿形容器の傾斜部に設けられた接続用配管に連結用配管を接続した燃料電池用改質器の製造方法において、
前記接続用配管の一端部と前記連結用配管の一端部には、それぞれフランジが設けられ、該各フランジを当接させてその各側端の位置を合わせ、該位置合わせしたフランジの側端を溶加金属無しで溶接する。
The manufacturing method of the reformer for a fuel cell according to the present invention that meets the above-mentioned object is provided on the periphery of the rectangular first and second flat dish containers (flat dish containers) as viewed from the front. A plurality of casings, which are overlapped with a partition plate, are arranged in the casing, and a modifying material is disposed in the casing, and the connecting pipe provided in the inclined portion of the first and second flat dish-shaped containers In the manufacturing method of the reformer for the fuel cell in which the connecting pipe is connected to
One end of the connecting pipe and one end of the connecting pipe are provided with flanges, and the flanges are brought into contact with each other to align the side ends thereof. Welding without filler metal.

本発明に係る燃料電池用改質器の製造方法において、前記第1、第2の扁平皿形容器への前記接続用配管の取付けは、前記第1、第2の扁平皿形容器の傾斜部にバーリング加工を行って、該傾斜部の内面側に前記接続用配管の他端部が嵌入する大きさの筒状部を立設するA工程と、
前記筒状部の傾斜に応じて曲げられた前記接続用配管の他端部を前記筒状部に入れて、前記接続用配管の他端部と前記筒状部の先端部の位置を合わせ、該位置合わせした接続用配管の他端部と筒状部の先端部を、溶加金属無しで溶接するB工程とを有することが好ましい。
In the method for manufacturing a reformer for a fuel cell according to the present invention, the connection pipe is attached to the first and second flat dish-shaped containers by the inclined portions of the first and second flat dish-shaped containers. A burring process is performed, and an A step is provided to erect a cylindrical portion having a size into which the other end of the connecting pipe is fitted on the inner surface side of the inclined portion.
Put the other end of the connecting pipe bent according to the inclination of the cylindrical part into the cylindrical part, align the other end of the connecting pipe and the tip of the cylindrical part, It is preferable to have B process which welds the other end part of this pipe for connection and the front-end | tip part of a cylindrical part which were aligned without a filler metal.

本発明に係る燃料電池用改質器の製造方法において、前記溶接は、TIG溶接、レーザー溶接、又はプラズマ溶接であることが好ましい。 In the fuel cell reformer manufacturing method according to the present invention, the welding is preferably TIG welding, laser welding, or plasma welding.

請求項1〜3記載の燃料電池用改質器の製造方法は、接続用配管と連結用配管の各一端部に設けられたフランジを当接させ、位置合わせしたフランジの側端を溶加金属無しで溶接するので、従来のように、三次元的に溶接することなく、二次元的に溶接できる。このため、溶接時の作業性が良好になると共に、フィラーを使用することなく溶接できるため経済的である。なお、溶接は、フランジの側端から行うので、溶接時の溶け込みが、接続用配管と連結用配管の配管自体に及ぼす影響を低減できる。
また、上記したように、溶接時にはフィラーを使用する必要がないので、溶接時に高入熱とならず、溶接箇所とその周辺部との間の硬度差の発生や、酸化の発生を抑制できる。これにより、接続用配管又は連結用配管でのクラックの発生を防止できるので、これに伴う手直しも不要となり、安定した品質の燃料電池用改質器を製造できる。
The method for manufacturing a reformer for a fuel cell according to any one of claims 1 to 3, wherein a flange provided at each end of the connection pipe and the connection pipe is brought into contact with the side end of the flange that has been aligned. Since the welding is performed without using the three-dimensional welding, the two-dimensional welding can be performed without the three-dimensional welding. For this reason, while workability | operativity at the time of welding becomes favorable, since it can weld without using a filler, it is economical. In addition, since welding is performed from the side end of the flange, it is possible to reduce the influence of the penetration during welding on the pipes of the connection pipe and the connection pipe.
Moreover, since it is not necessary to use a filler at the time of welding as mentioned above, it does not become high heat input at the time of welding, and generation | occurrence | production of the hardness difference between a welding location and its peripheral part and generation | occurrence | production of oxidation can be suppressed. Thereby, since generation | occurrence | production of the crack in piping for connection or piping for connection can be prevented, the repair which accompanies this becomes unnecessary, and the reformer for fuel cells of stable quality can be manufactured.

特に、請求項2記載の燃料電池用改質器の製造方法は、扁平皿形容器の傾斜部にバーリング加工を行って、傾斜部の内面側に接続用配管の他端部が嵌入する大きさの筒状部を立設するA工程を有するので、筒状部の先端部(先端面)を同一平面上に配置し、しかも接続用配管の外径に対応した内径を有する円形状に形成できる。
また、筒状部の傾斜に応じて曲げられた接続用配管の他端部を筒状部に入れて、位置合わせした接続用配管の他端部と筒状部の先端部を、溶加金属無しで溶接するB工程とを有するので、二次元的に溶接できる。
従って、上記したように、安定した品質の燃料電池用改質器を、作業性よく経済的に製造できる。
In particular, in the method for manufacturing a reformer for a fuel cell according to claim 2, the burring process is performed on the inclined portion of the flat dish container, and the other end portion of the connection pipe is fitted into the inner surface side of the inclined portion. Since the A step of standing the cylindrical portion is provided, the tip portion (tip surface) of the cylindrical portion can be arranged on the same plane and can be formed in a circular shape having an inner diameter corresponding to the outer diameter of the connecting pipe. .
In addition, the other end of the connecting pipe bent according to the inclination of the cylindrical part is put into the cylindrical part, and the other end of the aligned connecting pipe and the tip of the cylindrical part are connected to the filler metal. Since it has B process without welding, it can weld two-dimensionally.
Therefore, as described above, a stable reformer for a fuel cell can be economically manufactured with good workability.

請求項3記載の燃料電池用改質器の製造方法は、溶接が、TIG溶接、レーザー溶接、又はプラズマ溶接であるので、特別な方法を使用することなく、容易かつ簡易的に溶接できる。 Since the welding is TIG welding, laser welding, or plasma welding, the fuel cell reformer manufacturing method according to claim 3 can be easily and simply welded without using a special method.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1(A)〜(C)はそれぞれ本発明の一実施の形態に係る燃料電池用改質器の製造方法で製造した燃料電池用改質器のケーシングの正面図、部分側断面図、背面図、図2(A)は同ケーシングの接続用配管と連結用配管の接続部分の側断面図、(B)は同ケーシングの扁平皿形容器と接続用配管の接続部分の側断面図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIGS. 1A to 1C are respectively a front view and a partial side cross-section of a casing of a fuel cell reformer manufactured by the method of manufacturing a fuel cell reformer according to an embodiment of the present invention. 2A is a side cross-sectional view of the connecting portion of the casing connecting pipe and connecting pipe, and FIG. 2B is a side cross-sectional view of the connecting portion of the flat dish-shaped container and connecting pipe of the casing. FIG.

まず、本発明の一実施の形態に係る燃料電池用改質器の製造方法により製造した燃料電池用改質器について説明した後、本発明の一実施の形態に係る燃料電池用改質器の製造方法について説明する。
図1(A)〜(C)、図2(A)、(B)に示すように、本発明の一実施の形態に係る燃料電池用改質器の製造方法により製造する燃料電池用改質器(以下、単に改質器ともいう)は、改質材の一例である触媒(改質触媒又は酸化触媒)が充填されたケーシング10が複数(例えば、2〜20個程度)並べられて構成され、原料ガスと水を触媒の存在下で反応させて水素を生成するものである。なお、図1(B)においては、上記した触媒の図示を省略している。
First, a fuel cell reformer manufactured by a method for manufacturing a fuel cell reformer according to an embodiment of the present invention will be described, and then a fuel cell reformer according to an embodiment of the present invention will be described. A manufacturing method will be described.
As shown in FIGS. 1 (A) to 1 (C), 2 (A), and 2 (B), reforming for a fuel cell manufactured by a method for manufacturing a reformer for a fuel cell according to an embodiment of the present invention. The apparatus (hereinafter also simply referred to as a reformer) is configured by arranging a plurality of (for example, about 2 to 20) casings 10 filled with a catalyst (reforming catalyst or oxidation catalyst) which is an example of a reforming material. The raw material gas and water are reacted in the presence of a catalyst to generate hydrogen. In FIG. 1B, the above-described catalyst is not shown.

各ケーシング10は、それぞれ正面視して角部が丸くなった長方形状の第1、第2の扁平皿形容器11、12を有している。
第1、第2の扁平皿形容器11、12は、それぞれ容器底部が広面となって上部に開口部13、14を有するものであり、開口側周縁には、鍔部15、16が設けられている。第1、第2の扁平皿形容器11、12に設けられた鍔部15、16は、それぞれ扁平皿形容器11、12の広面(底面)と平行となるように形成されている。
Each casing 10 includes first and second flat dish-shaped containers 11 and 12 having a rectangular shape with rounded corners when viewed from the front.
Each of the first and second flat dish-shaped containers 11 and 12 has a wide bottom surface and has openings 13 and 14 at the top, and flanges 15 and 16 are provided on the opening side periphery. ing. The flanges 15 and 16 provided in the first and second flat dish containers 11 and 12 are formed so as to be parallel to the wide surfaces (bottom surfaces) of the flat dish containers 11 and 12, respectively.

図1(A)〜(C)、図2(B)に示すように、各ケーシング10は、仕切り板17を介して、第1、第2の扁平皿形容器11、12の鍔部15、16を重ね合わせて形成されており、立設した状態の第1の扁平皿形容器11の上部及び下部には、それぞれ広面から鍔部15に渡って傾斜部18、19が形成され、また、第2の扁平皿形容器12の上部及び下部にも、それぞれ広面から鍔部16に渡って傾斜部20、21が形成されている。
傾斜部18〜21には、それぞれ接続用配管22〜25が取付けられている。この接続用配管22(他の接続用配管23〜25も同様)は、その一方側に設けられた第1の扁平皿形容器11への取付け部(基端部又は他端部)26が、傾斜部18の表面に対して直交するように、側面視して「く」字状に屈曲されている。
As shown in FIGS. 1 (A) to (C) and FIG. 2 (B), each casing 10 is provided with a flange 15 of the first and second flat dish-shaped containers 11 and 12 via a partition plate 17. 16 are formed on the upper and lower portions of the first flat dish-shaped container 11 in a standing state, and inclined portions 18 and 19 are formed from the wide surface to the flange portion 15, respectively. Inclined portions 20 and 21 are formed on the upper and lower portions of the second flat dish-shaped container 12 from the wide surface to the flange portion 16, respectively.
Connection pipes 22 to 25 are attached to the inclined portions 18 to 21, respectively. The connection pipe 22 (the same applies to the other connection pipes 23 to 25) has an attachment portion (base end portion or other end portion) 26 to the first flat dish-shaped container 11 provided on one side thereof. It is bent in a “<” shape when viewed from the side so as to be orthogonal to the surface of the inclined portion 18.

接続用配管22の取付け部26の軸心と、取付け部26以外の接続部27の軸心とのなす角θは、各傾斜部18〜21の各扁平皿形容器11、12の広面(底面)に対する傾斜角度に応じて、例えば、130〜170度の範囲に曲げられている。
これにより、接続用配管22の接続部27を、第1の扁平皿形容器11の広面と平行に配置できるので、例えば、複数のケーシング10を隣り合せて配置した場合でも、隣り合うケーシング10に取付けられた接続用配管同士を、互いに接触させることなく配置でき、燃料電池用改質器をコンパクトにできる。なお、接続用配管22(他の接続用配管23〜25も同様)の先端部(一端部)には、図1(A)〜(C)、図2(A)に示すように、フランジ28が設けられている。なお、改質器全体の大きさによっても変わるが、1kW程度用の改質器の場合、接続用配管22の外径は8〜12mm程度となり、この場合、フランジ28の外径は、接続用配管22の接続部27の外径よりも、例えば、2〜5mm程度大きくなっており、厚みは、例えば、0.6〜2mm程度である。
The angle θ formed by the axis of the attachment portion 26 of the connection pipe 22 and the axis of the connection portion 27 other than the attachment portion 26 is the wide surface (bottom surface) of the flat dish containers 11 and 12 of the inclined portions 18 to 21. ), For example, in a range of 130 to 170 degrees.
Thereby, since the connection part 27 of the piping 22 for connection can be arrange | positioned in parallel with the wide surface of the 1st flat dish-shaped container 11, for example, even when arrange | positioning the several casing 10 adjacently, The attached connecting pipes can be arranged without contacting each other, and the fuel cell reformer can be made compact. In addition, as shown to FIG. 1 (A)-(C) and FIG. 2 (A), the flange 28 is attached to the front-end | tip part (one end part) of the connection piping 22 (other connection piping 23-25 is also the same). Is provided. In addition, although it changes also with the magnitude | size of the whole reformer, in the case of the reformer for about 1 kW, the outer diameter of the connection piping 22 will be about 8-12 mm, In this case, the outer diameter of the flange 28 is for connection. The outer diameter of the connecting portion 27 of the pipe 22 is, for example, about 2 to 5 mm, and the thickness is, for example, about 0.6 to 2 mm.

接続用配管22の取付け部26は、第1の扁平皿形容器11の傾斜部18にバーリング加工を行って取付け部26が嵌入する大きさに形成した筒状部29に嵌入されている。この筒状部29は、傾斜部18の内面側に、傾斜部18の表面に対して直交状態で立設されている。なお、筒状部29の傾斜部18の内面側への突出高さHは、例えば、1.5〜3mm程度である(この突出高さHの数値は、バーリング径が8〜12mmの場合の値であり、突出高さHはバーリング径の大きさによって変わるものである。)。
これにより、筒状部29に嵌入させた接続用配管22の取付け部26の端面30と、筒状部29の先端部の端面31とが、同一平面上に配置されるように位置合わせできる。従って、各端面30、31側から平面的(二次元的)にTIG溶接を行うことで、第1の扁平皿形容器11に接続用配管22が取付けられる。なお、他の接続用配管23〜25についても同様である。
The attachment portion 26 of the connection pipe 22 is fitted into a cylindrical portion 29 that is sized to fit the attachment portion 26 by performing a burring process on the inclined portion 18 of the first flat dish-shaped container 11. The cylindrical portion 29 is erected on the inner surface side of the inclined portion 18 in a state orthogonal to the surface of the inclined portion 18. In addition, the protrusion height H to the inner surface side of the inclined portion 18 of the cylindrical portion 29 is, for example, about 1.5 to 3 mm (the value of the protrusion height H is a value when the burring diameter is 8 to 12 mm. And the protrusion height H varies depending on the size of the burring diameter.)
Thereby, it can align so that the end surface 30 of the attachment part 26 of the connection piping 22 inserted in the cylindrical part 29 and the end surface 31 of the front-end | tip part of the cylindrical part 29 may be arrange | positioned on the same plane. Accordingly, the connecting pipe 22 is attached to the first flat dish-shaped container 11 by performing TIG welding in a planar (two-dimensional) manner from the end faces 30 and 31 side. The same applies to the other connection pipes 23 to 25.

上記した傾斜部に形成される筒状部は、接続用配管の取付け部の端面と、筒状部の先端部の端面とを位置合わせできるのであれば、傾斜部の表面に対して直交状態とする必要はなく、例えば、直交状態を基準として、−10度以上+10度以下の範囲内で立設させてもよい。
第1、第2の扁平皿形容器11、12の広面中央部には、改質触媒や酸化触媒の触媒を装入するための触媒充填口32、33が形成されている。
なお、第1の扁平皿形容器11と第2の扁平皿形容器12は、後述する細かい形状を除いては、同一形状となっている。
The cylindrical portion formed in the inclined portion described above is orthogonal to the surface of the inclined portion as long as the end surface of the attachment portion of the connecting pipe and the end surface of the distal end portion of the cylindrical portion can be aligned. For example, it may be erected within a range of −10 degrees to +10 degrees with respect to the orthogonal state as a reference.
Catalyst filling ports 32 and 33 for charging a reforming catalyst or an oxidation catalyst are formed at the center of the wide surfaces of the first and second flat dish-shaped containers 11 and 12.
In addition, the 1st flat dish-shaped container 11 and the 2nd flat dish-shaped container 12 are the same shapes except for the fine shape mentioned later.

第1、第2の扁平皿形容器11、12の鍔部15、16の間に、その周縁部34が挟持されている仕切り板17は、外周が、第1、第2の扁平皿形容器11、12の鍔部15、16の外周と同じ、又はそれより僅かに大きくなっており、各扁平皿形容器11、12の鍔部15、16と仕切り板17の周縁部34とが、例えば、溶接により溶着されている。なお、仕切り板17には、複数の補強用リブ35〜37が形成されている。
このように、第1、第2の扁平皿形容器11、12の鍔部15、16を、仕切り板17を介して重ね合わせることで、第1の扁平皿形容器11と仕切り板17で囲まれる第1の空間部38と、第2の扁平皿形容器12と仕切り板17で囲まれる第2の空間部39とが形成される。なお、仕切り板17は、第1、第2の空間部38、39間で、伝熱を行う機能も有している。
The partition plate 17 in which the peripheral edge 34 is sandwiched between the flanges 15 and 16 of the first and second flat dish-shaped containers 11 and 12 has an outer periphery that is the first and second flat dish-shaped containers. 11 and 12 are the same as or slightly larger than the outer peripheries of the flanges 15 and 16, and the flanges 15 and 16 of the flat dished containers 11 and 12 and the peripheral edge 34 of the partition plate 17 are, for example, It is welded by welding. A plurality of reinforcing ribs 35 to 37 are formed on the partition plate 17.
In this way, the first and second flat dish-shaped containers 11 and 12 are surrounded by the first flat dish-shaped container 11 and the partition plate 17 by overlapping the flanges 15 and 16 via the partition plate 17. The first space portion 38 and the second space portion 39 surrounded by the second flat dish-shaped container 12 and the partition plate 17 are formed. The partition plate 17 also has a function of transferring heat between the first and second space portions 38 and 39.

この第1、第2の空間部38、39の上部と下部には、それぞれ第1、第2の空間部38、39の幅方向に渡って通気用保持板40〜43が配置されている。
この各通気用保持板40〜43は、多数の小孔が形成された1枚の金属板、即ちパンチングメタルを折り曲げ成形したものであり、通常4mm程度の直径を有する球状又は円柱状の触媒を保持すると共に、原料ガスの流れを整流化するものである。
これにより、第1の空間部38内の仕切り板17、上下の通気用保持板40、41、及び第1の扁平皿形容器11の底部で囲まれる領域と、第2の空間部39内の仕切り板17、上下の通気用保持板42、43、及び第2の扁平皿形容器12の底部で囲まれる領域に、触媒を充填できると共に、接続用配管22〜25への触媒の流出を防ぐことができる。更に、通気用保持板40〜43の上下の外側部分は、ヘッダーとして働くので、原料ガスを触媒間に均等に流すことができる。
Ventilation holding plates 40 to 43 are arranged in the upper and lower portions of the first and second space portions 38 and 39 in the width direction of the first and second space portions 38 and 39, respectively.
Each of the ventilation holding plates 40 to 43 is formed by bending a single metal plate having a large number of small holes, that is, a punching metal, and usually has a spherical or cylindrical catalyst having a diameter of about 4 mm. While holding, the flow of the source gas is rectified.
Accordingly, the partition plate 17 in the first space 38, the upper and lower ventilation holding plates 40 and 41, and the region surrounded by the bottom of the first flat dish-shaped container 11, and the second space 39 The area surrounded by the partition plate 17, the upper and lower ventilation holding plates 42 and 43, and the bottom of the second flat dish-shaped container 12 can be filled with the catalyst, and the outflow of the catalyst to the connection pipes 22 to 25 can be prevented. be able to. Furthermore, since the upper and lower outer portions of the ventilation holding plates 40 to 43 serve as headers, the raw material gas can be evenly flowed between the catalysts.

燃料電池用改質器は、以上に示したケーシング10を複数有し、隣り合うケーシング10の側壁の広面を当接させて一体としており、しかも各ケーシング10間は、各ケーシング10に取付けられた接続用配管22〜25に連結用配管44〜47を取付けることにより、それぞれ接続されている。なお、各連結用配管44〜47の一端部には、接続用配管22〜25に設けられたフランジ28と同一外径のフランジ48が設けられているので、フランジ28とフランジ48の端面を当接させることで、その各側端の位置合わせができる。
従って、各フランジ28、48の側端側から平面的にTIG溶接を行うことで、各接続用配管22〜25にそれぞれ連結用配管44〜47を取付けることができる。
The fuel cell reformer has a plurality of casings 10 as described above, and is integrated by bringing the wide surfaces of the side walls of adjacent casings 10 into contact with each other, and each casing 10 is attached to each casing 10. By connecting the connecting pipes 44 to 47 to the connecting pipes 22 to 25, they are connected to each other. In addition, since the flange 48 of the same outer diameter as the flange 28 provided in the connection piping 22-25 is provided in the one end part of each connection piping 44-47, the end surface of the flange 28 and the flange 48 is contact | abutted. By making contact, each side end can be aligned.
Therefore, the connection pipes 44 to 47 can be attached to the respective connection pipes 22 to 25 by performing TIG welding in plan from the side end sides of the flanges 28 and 48.

このように構成することで、水素を生成させるに際しては、連結用配管44から接続用配管22を介して第1の空間部38の上流側に原料ガスを流入させ、第1の空間部38内の触媒を通過させた後に、接続用配管23を介して連結用配管45へ流す。また、連結用配管47から接続用配管25を介して第2の空間部39の上流側に原料ガスを流入させ、第2の空間部39内の触媒を通過させた後に、接続用配管24を介して連結用配管46へ流す。
これにより、原料ガスから燃料電池に使用する水素を生成できる。
With this configuration, when hydrogen is generated, the source gas is caused to flow from the connection pipe 44 to the upstream side of the first space part 38 via the connection pipe 22, so that the inside of the first space part 38. After passing the catalyst, the catalyst flows through the connecting pipe 23 to the connecting pipe 45. Further, after the source gas is allowed to flow from the connecting pipe 47 to the upstream side of the second space 39 through the connecting pipe 25 and the catalyst in the second space 39 is passed, the connecting pipe 24 is connected to the connecting pipe 24. Through the connecting pipe 46.
Thereby, the hydrogen used for a fuel cell can be produced | generated from raw material gas.

続いて、本発明の一実施の形態に係る燃料電池用改質器の製造方法について説明する。
まず、第1、第2の扁平皿形容器11、12、仕切り板17、接続用配管22〜25、4つの通気用保持板40〜43、及び連結用配管44〜47を準備する。
次に、第1の扁平皿形容器11の傾斜部18、19には接続用配管22、23を、第2の扁平皿形容器12の傾斜部20、21には接続用配管24、25を、それぞれ取付ける。
ここで、各扁平皿形容器11、12への接続用配管22〜25の取付け方法を、図2(B)を参照しながら説明する。
Then, the manufacturing method of the reformer for fuel cells which concerns on one embodiment of this invention is demonstrated.
First, first and second flat dish-shaped containers 11 and 12, a partition plate 17, connection pipes 22 to 25, four ventilation holding plates 40 to 43, and connection pipes 44 to 47 are prepared.
Next, connecting pipes 22 and 23 are provided on the inclined portions 18 and 19 of the first flat dish-shaped container 11, and connecting pipes 24 and 25 are provided on the inclined parts 20 and 21 of the second flat dish-shaped container 12. , Install each.
Here, a method of attaching the connecting pipes 22 to 25 to the flat dish containers 11 and 12 will be described with reference to FIG.

第1の扁平皿形容器11(第2の扁平皿形容器12も同様)の傾斜部18(傾斜部19も同様)にバーリング加工を行って、傾斜部18の内面側に接続用配管22の取付け部26が嵌入する大きさの筒状部29を形成する。このとき、筒状部29を、傾斜部18の表面に対して直交状態に立設する(以上、A工程)。
次に、接続用配管22の取付け部26を、筒状部29の傾斜に応じて屈曲させ、この取付け部26を筒状部29に入れて、接続用配管26の取付け部26の端面30と、筒状部29の先端部の端面31の位置を、同一平面上に合わせる。そして、フィラー(溶加金属)を使用することなく、各端面30、31側から平面的にTIG溶接を行うことで、第1の扁平皿形容器11に接続用配管22を取付ける(以上、B工程)。
上記した方法で、各接続用配管22〜25が取付けられた第1、第2の扁平皿形容器11、12の広面の上部及び下部に、各通気用保持板40〜43を溶接によりそれぞれ取付ける。
Burring is performed on the inclined portion 18 (the same applies to the inclined portion 19) of the first flat dish-shaped container 11 (the same applies to the second flat dish-shaped container 12), and the connecting pipe 22 is provided on the inner surface side of the inclined portion 18. A cylindrical portion 29 having a size for fitting the attachment portion 26 is formed. At this time, the cylindrical part 29 is erected in an orthogonal state with respect to the surface of the inclined part 18 (step A).
Next, the attachment portion 26 of the connection pipe 22 is bent according to the inclination of the tubular portion 29, and this attachment portion 26 is inserted into the tubular portion 29, and the end surface 30 of the attachment portion 26 of the connection pipe 26 is The position of the end surface 31 at the tip of the cylindrical portion 29 is aligned on the same plane. Then, the connection pipe 22 is attached to the first flat dish-shaped container 11 by performing TIG welding planarly from the respective end faces 30 and 31 without using a filler (a filler metal) (B, above). Process).
The ventilation holding plates 40 to 43 are attached by welding to the upper and lower portions of the wide surfaces of the first and second flat dish-shaped containers 11 and 12 to which the respective connection pipes 22 to 25 are attached by the above-described method. .

次に、仕切り板17の両側から、第1、第2の扁平皿形容器11、12の開口部13、14を向かい合わせた(対向させた)状態で、鍔部15、16の表面を仕切り板37の周縁部34の表面に当接させる。
このように当接させた各扁平皿形容器11、12の鍔部15、16と仕切り板17の周縁部34とを、例えば、溶接により溶着した後、触媒充填口32、33を介して、第1、第2の空間部38、39内に、それぞれ触媒を充填し、この触媒充填口38、39を塞ぐ。
以上の方法で製造した複数のケーシング10を、その側壁の広面どうしを合わせて積み重ね、各ケーシング10間を連結用配管44〜47により接続する。
Next, the surfaces of the flanges 15 and 16 are partitioned from both sides of the partition plate 17 with the openings 13 and 14 of the first and second flat dish-shaped containers 11 and 12 facing each other (facing each other). The plate 37 is brought into contact with the surface of the peripheral edge 34.
After welding the flange portions 15 and 16 of the flat dish containers 11 and 12 and the peripheral edge portion 34 of the partition plate 17 brought into contact with each other in this way, for example, by welding, the catalyst filling ports 32 and 33 are used, The first and second spaces 38 and 39 are filled with a catalyst, respectively, and the catalyst filling ports 38 and 39 are closed.
The plurality of casings 10 manufactured by the above method are stacked together with the wide surfaces of the side walls thereof, and the casings 10 are connected by connecting pipes 44 to 47.

前記したように、各接続用配管22〜25の先端部にはフランジ28が設けられ、各連結用配管44〜47の一端部にはフランジ48が設けられているので、各フランジ28、48を当接させてその各側端の位置を合わせる。そして、フィラー(溶加金属)を使用することなく、位置合わせしたフランジ28、48の側端側から平面的にTIG溶接を行う。
これにより、各接続用配管22〜25に連結用配管44〜47を取付けることができるので、燃料電池用改質器として使用できる。
As described above, the flanges 28 are provided at the distal ends of the connection pipes 22 to 25, and the flanges 48 are provided at one ends of the connection pipes 44 to 47. The positions of the side edges are adjusted by abutting. Then, TIG welding is performed in a planar manner from the side end sides of the aligned flanges 28 and 48 without using a filler (a filler metal).
Thereby, since the connection piping 44-47 can be attached to each connection piping 22-25, it can be used as a fuel cell reformer.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の燃料電池用改質器の製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、接続用配管と連結用配管との溶接、及び扁平皿形容器と接続用配管との溶接を、TIG溶接で行った場合について説明したが、これに限定されるものではなく、例えば、プラズマ溶接やレーザー溶接で行ってもよい。
そして、前記実施の形態においては、第1、第2の扁平皿形容器に補強用リブを形成しなかったが、勿論形成してもよく、また、仕切り板に形成した補強用リブは、これに限定されるものではない。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the manufacturing method of the fuel cell reformer of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the welding of connection piping and connection piping and the welding of a flat dish container and connection piping were demonstrated by TIG welding, it is limited to this. For example, plasma welding or laser welding may be used.
In the embodiment described above, the reinforcing ribs are not formed on the first and second flat dish-shaped containers, but may be formed as a matter of course, and the reinforcing ribs formed on the partition plate It is not limited to.

(A)〜(C)はそれぞれ本発明の一実施の形態に係る燃料電池用改質器の製造方法で製造した燃料電池用改質器のケーシングの正面図、部分側断面図、背面図である。(A)-(C) are the front view of the casing of the fuel cell reformer manufactured with the manufacturing method of the reformer for fuel cells which concerns on one embodiment of this invention, a partial sectional side view, and a rear view, respectively. is there. (A)は同ケーシングの接続用配管と連結用配管の接続部分の側断面図、(B)は同ケーシングの扁平皿形容器と接続用配管の接続部分の側断面図である。(A) is a sectional side view of the connecting part of the connecting pipe and connecting pipe of the casing, and (B) is a sectional side view of the connecting part of the flat dish container and connecting pipe of the casing. (A)は従来例に係る燃料電池用改質器の斜視図、(B)は燃料電池用改質器を構成する1つのケーシングの斜視図である。(A) is a perspective view of a reformer for a fuel cell according to a conventional example, and (B) is a perspective view of one casing constituting the reformer for a fuel cell. 同ケーシングの分解斜視図である。It is a disassembled perspective view of the casing. 同ケーシングの使用状態の説明図である。It is explanatory drawing of the use condition of the casing. (A)は同ケーシングの接続用配管と連結用配管の接続部分の側断面図、(B)は同ケーシングの扁平皿形容器と接続用配管の接続部分の側断面図である。(A) is a sectional side view of the connecting part of the connecting pipe and connecting pipe of the casing, and (B) is a sectional side view of the connecting part of the flat dish container and connecting pipe of the casing.

符号の説明Explanation of symbols

10::ケーシング、11:第1の扁平皿形部材、12:第2の扁平皿形部材、13、14:開口部、15、16:鍔部、17:仕切り板、18〜21:傾斜部、22〜25:接続用配管、26:取付け部、27:接続部、28:フランジ、29:筒状部、30、31:端面、32、33:触媒充填口、34:周縁部、35〜37:補強用リブ、38:第1の空間部、39:第2の空間部、40〜43:通気用保持板、44〜47:連結用配管、48:フランジ 10 :: casing, 11: first flat dish-shaped member, 12: second flat dish-shaped member, 13, 14: opening, 15, 16: flange, 17: partition plate, 18-21: inclined portion 22 to 25: piping for connection, 26: attachment portion, 27: connection portion, 28: flange, 29: cylindrical portion, 30, 31: end face, 32, 33: catalyst filling port, 34: peripheral portion, 35- 37: Reinforcing rib, 38: First space, 39: Second space, 40-43: Ventilation holding plate, 44-47: Connection pipe, 48: Flange

Claims (3)

それぞれ正面視して長方形状の第1、第2の扁平皿形容器の周縁に設けられた鍔部を仕切り板を介して重ね合わせたケーシングが複数並べられ、該ケーシング内には改質材が配置され、しかも前記第1、第2の扁平皿形容器の傾斜部に設けられた接続用配管に連結用配管を接続した燃料電池用改質器の製造方法において、
前記接続用配管の一端部と前記連結用配管の一端部には、それぞれフランジが設けられ、該各フランジを当接させてその各側端の位置を合わせ、該位置合わせしたフランジの側端を溶加金属無しで溶接することを特徴とする燃料電池用改質器の製造方法。
A plurality of casings in which the flanges provided on the peripheral edges of the first and second flat dish-shaped containers having a rectangular shape when viewed from the front are overlapped with each other through a partition plate are arranged, and the modifying material is placed in the casings. In the method for producing a reformer for a fuel cell, wherein the connecting pipe is connected to the connecting pipe provided in the inclined portion of the first and second flat dish-shaped containers,
One end of the connecting pipe and one end of the connecting pipe are provided with flanges, and the flanges are brought into contact with each other to align the side ends thereof. A method for producing a reformer for a fuel cell, characterized by welding without a filler metal.
請求項1記載の燃料電池用改質器の製造方法において、前記第1、第2の扁平皿形容器への前記接続用配管の取付けは、前記第1、第2の扁平皿形容器の傾斜部にバーリング加工を行って、該傾斜部の内面側に前記接続用配管の他端部が嵌入する大きさの筒状部を立設するA工程と、
前記筒状部の傾斜に応じて曲げられた前記接続用配管の他端部を前記筒状部に入れて、前記接続用配管の他端部と前記筒状部の先端部の位置を合わせ、該位置合わせした接続用配管の他端部と筒状部の先端部を、溶加金属無しで溶接するB工程とを有することを特徴とする燃料電池用改質器の製造方法。
2. The method for manufacturing a reformer for a fuel cell according to claim 1, wherein the connection pipe is attached to the first and second flat dish-shaped containers by inclining the first and second flat dish-shaped containers. A burring process is performed on the part, and a cylindrical part having a size in which the other end of the connection pipe is fitted on the inner surface side of the inclined part,
Put the other end of the connecting pipe bent according to the inclination of the cylindrical part into the cylindrical part, align the other end of the connecting pipe and the tip of the cylindrical part, A method for producing a reformer for a fuel cell, comprising: a step B in which the other end of the aligned connecting pipe and the tip of the tubular portion are welded without a filler metal.
請求項1及び2のいずれか1項に記載の燃料電池用改質器の製造方法において、前記溶接は、TIG溶接、レーザー溶接、又はプラズマ溶接であることを特徴とする燃料電池用改質器の製造方法。 3. The fuel cell reformer according to claim 1, wherein the welding is TIG welding, laser welding, or plasma welding. 4. Manufacturing method.
JP2008191369A 2008-07-24 2008-07-24 Manufacturing method of reformer for fuel cell Pending JP2010027582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191369A JP2010027582A (en) 2008-07-24 2008-07-24 Manufacturing method of reformer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191369A JP2010027582A (en) 2008-07-24 2008-07-24 Manufacturing method of reformer for fuel cell

Publications (1)

Publication Number Publication Date
JP2010027582A true JP2010027582A (en) 2010-02-04

Family

ID=41733192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191369A Pending JP2010027582A (en) 2008-07-24 2008-07-24 Manufacturing method of reformer for fuel cell

Country Status (1)

Country Link
JP (1) JP2010027582A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049601A (en) * 2010-10-30 2011-05-11 上海交通大学 Current-assisted fuel cell ultra-thin metal bipolar plate pressure welding device and method
JP2016132575A (en) * 2015-01-15 2016-07-25 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
JP2018156810A (en) * 2017-03-17 2018-10-04 Toto株式会社 Solid oxide fuel cell device
JP2018206543A (en) * 2017-05-31 2018-12-27 ダイニチ工業株式会社 Cell stack device, fuel battery module and fuel battery device
CN109434254A (en) * 2018-10-25 2019-03-08 苏州市东望医疗设备有限公司 The welding procedure of large scale equipment support end cover board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248534A (en) * 1975-10-16 1977-04-18 Toa Seiki Co Ltd Pipe butt welding method
JPS55123964A (en) * 1979-03-16 1980-09-24 Sanyo Electric Co Method and device for connecting pipes of refrigeration cycle
JPS6264353U (en) * 1985-10-14 1987-04-21
JPH08168881A (en) * 1994-12-19 1996-07-02 Sankei Giken Kogyo Kk Butt welding method for thin wall tube and the like
JP2004298964A (en) * 2003-03-19 2004-10-28 Nippon Steel Corp EDGE JOINT OF Sn- OR Pb-BASED GALVANIZED STEEL SHEET AND ITS LASER WELDING METHOD
JP2005201576A (en) * 2004-01-16 2005-07-28 T Rad Co Ltd Header plate connecting structure of heat exchanger
JP2007087740A (en) * 2005-09-21 2007-04-05 Mitsubishi Electric Corp Sheathed heater
JP2007314419A (en) * 2001-03-28 2007-12-06 Osaka Gas Co Ltd Operation control method for hydrogen-containing gas production apparatus
JP2007326764A (en) * 2006-06-09 2007-12-20 Chofu Seisakusho Co Ltd Element case of reformer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248534A (en) * 1975-10-16 1977-04-18 Toa Seiki Co Ltd Pipe butt welding method
JPS55123964A (en) * 1979-03-16 1980-09-24 Sanyo Electric Co Method and device for connecting pipes of refrigeration cycle
JPS6264353U (en) * 1985-10-14 1987-04-21
JPH08168881A (en) * 1994-12-19 1996-07-02 Sankei Giken Kogyo Kk Butt welding method for thin wall tube and the like
JP2007314419A (en) * 2001-03-28 2007-12-06 Osaka Gas Co Ltd Operation control method for hydrogen-containing gas production apparatus
JP2004298964A (en) * 2003-03-19 2004-10-28 Nippon Steel Corp EDGE JOINT OF Sn- OR Pb-BASED GALVANIZED STEEL SHEET AND ITS LASER WELDING METHOD
JP2005201576A (en) * 2004-01-16 2005-07-28 T Rad Co Ltd Header plate connecting structure of heat exchanger
JP2007087740A (en) * 2005-09-21 2007-04-05 Mitsubishi Electric Corp Sheathed heater
JP2007326764A (en) * 2006-06-09 2007-12-20 Chofu Seisakusho Co Ltd Element case of reformer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049601A (en) * 2010-10-30 2011-05-11 上海交通大学 Current-assisted fuel cell ultra-thin metal bipolar plate pressure welding device and method
CN102049601B (en) * 2010-10-30 2014-07-02 上海交通大学 Current-assisted fuel cell ultra-thin metal bipolar plate pressure welding device and method
JP2016132575A (en) * 2015-01-15 2016-07-25 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
JP2018156810A (en) * 2017-03-17 2018-10-04 Toto株式会社 Solid oxide fuel cell device
JP2018206543A (en) * 2017-05-31 2018-12-27 ダイニチ工業株式会社 Cell stack device, fuel battery module and fuel battery device
CN109434254A (en) * 2018-10-25 2019-03-08 苏州市东望医疗设备有限公司 The welding procedure of large scale equipment support end cover board
CN109434254B (en) * 2018-10-25 2021-05-11 苏州市东望医疗设备有限公司 Welding process for large-scale equipment supporting end cover plate

Similar Documents

Publication Publication Date Title
JP2010027582A (en) Manufacturing method of reformer for fuel cell
JP4863366B2 (en) Element case of reformer
JP2012527596A (en) Method of manufacturing a heat exchanger plate bundle
US8236070B2 (en) Heat exchanger, heat-exchange reformer, and methods of producing heat-exchanger and heat-exchange reformer
US11456473B2 (en) Reformer, cell stack apparatus, fuel cell module, and fuel cell apparatus
JP5809365B2 (en) Humidification heat exchanger for fuel cells
JP2001199703A (en) Reformer
JP5371013B2 (en) Multi-cylinder steam reformer
EP2522624A1 (en) Fuel treatment device
JP4990045B2 (en) Hydrogen production apparatus and fuel cell system
JP2014521576A (en) Fuel processor
JP2007090321A (en) Fluid treatment apparatus and manufacturing method thereof
JP5259327B2 (en) Fuel cell reformer and baffle plate manufacturing method used therefor
JP4720101B2 (en) Method for manufacturing honeycomb catalyst
JP2010116300A (en) Method for manufacturing reformer for fuel cell
KR101003191B1 (en) Tubes for a reformer for hydrogen production or a heat exchanger
JP4735393B2 (en) Heat exchanger and heat exchange type reformer
JP2010140727A (en) Reforming device for fuel cell
JP2018156810A (en) Solid oxide fuel cell device
JP2003314984A (en) Stacked heat exchanger
JP5551407B2 (en) Fuel cell reactor
KR20160128486A (en) hydrogen producing apparatus
JP2010140726A (en) Reforming device for fuel cell
JP2010083709A (en) Casing of reformer for fuel cell
KR101747516B1 (en) Heat exchanging device of hydrogen producing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611