JP2010027427A - Cable for movement - Google Patents

Cable for movement Download PDF

Info

Publication number
JP2010027427A
JP2010027427A JP2008188346A JP2008188346A JP2010027427A JP 2010027427 A JP2010027427 A JP 2010027427A JP 2008188346 A JP2008188346 A JP 2008188346A JP 2008188346 A JP2008188346 A JP 2008188346A JP 2010027427 A JP2010027427 A JP 2010027427A
Authority
JP
Japan
Prior art keywords
cable
twisted
sheath
moving
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008188346A
Other languages
Japanese (ja)
Inventor
Tatsuya Hara
達也 原
Masaaki Yamamoto
正明 山本
Keisuke Mizuno
敬祐 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Wire Industries Co Ltd
Original Assignee
Fuji Electric Wire Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Wire Industries Co Ltd filed Critical Fuji Electric Wire Industries Co Ltd
Priority to JP2008188346A priority Critical patent/JP2010027427A/en
Publication of JP2010027427A publication Critical patent/JP2010027427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cable for movement which ensures that the cable never snakes from linear shape to wave shape along the axially extending direction, even when the cable is used over a long period under a severe condition where flexure and stretching of the cable are repeated. <P>SOLUTION: A cable 11 for movement is fabricated using a child twisted wire assembly 16 which is twisted while circularly arranging multiple wire cores 14 with a conductor 12 coated with an insulator 13 at a peripheral portion around a reinforcing string 15 as well as a parent twisted wire assembly 18 which is twisted while circularly arranging multiple child twisted wire assembly 16 at a peripheral portion around a reinforcing wire material 17, and the peripheral portion of the parent twisted wire assembly 18 is directly coated and fixed with a sheath 19 of thermoplastic resin. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば消防車の昇降装置に備えられるような移動用ケーブルに関し、さらに詳しくは屈曲、伸張を繰返す過酷な条件で使用されるケーブルの形状劣化を防止する移動用ケーブルに関する。   The present invention relates to a moving cable that is provided, for example, in a lifting device of a fire engine, and more particularly to a moving cable that prevents deterioration of the shape of a cable that is used under severe conditions of repeated bending and stretching.

一般に、はしご付消防車、クレーン車等の給電及び通信方式には、リール巻方式やカーテン方式の配線方式があり、用途に応じたキャブタイヤケーブル(以下ケーブルと称す)が使用されている。かかるケーブルとしては、図6に示すように、導体61と、この導体61の外周を絶縁して被覆する絶縁体62とで構成される線心63と、補強用の介在物64を介在させて複数の線心63を断面中心とする同心円上の2重の環状に配置し、その外周囲を外装するシース65とを備えたものがある。このようなケーブル66を、はしご付消防車の昇降装置に用いた場合、昇降動作に応じて屈曲、伸張を繰返すので長期使用によっては変形や断線が生じるおそれがある。よって、高耐久性のケーブル特性が求められている。   In general, power supply and communication methods for a fire truck with a ladder, a crane vehicle, and the like include a reel winding method and a curtain method, and a cabtire cable (hereinafter referred to as a cable) according to the application is used. As such a cable, as shown in FIG. 6, a wire core 63 composed of a conductor 61 and an insulator 62 that insulates and covers the outer periphery of the conductor 61, and a reinforcing inclusion 64 are interposed. Some have a sheath 65 which is arranged in a double annular shape on a concentric circle with a plurality of wire cores 63 as the center of the cross section, and sheathes the outer periphery. When such a cable 66 is used in a lifting device for a fire truck with a ladder, the cable 66 is repeatedly bent and stretched in accordance with the lifting operation, so that there is a risk of deformation or disconnection depending on long-term use. Therefore, highly durable cable characteristics are required.

しかしながら、ケーブルは長期使用に伴い次第に歪んで変形癖が付きやすい傾向がある。例えば、図7に示すように、ケーブル66が軸線方向に沿って直線状から波形状に変形した波形状態、いわゆる蛇行67が生じると、ケーブル66内部で撚りピッチが崩れてケーブル本来の屈曲性が損なわれ、この結果、ケーブル66を支持するプーリ68などから外れやすくなり、ケーブル66の円滑な進退移動を確保できなくなり、ひいては蛇行67が原因してケーブル66が破損し、断線等を誘起するおそれがあった。   However, cables tend to be distorted gradually and become prone to deformation with long-term use. For example, as shown in FIG. 7, when a corrugated state in which the cable 66 is deformed from a straight shape to a wave shape along the axial direction, a so-called meander 67 is generated, the twist pitch is broken inside the cable 66 and the inherent flexibility of the cable is lost. As a result, the cable 66 is likely to come off from the pulley 68 or the like supporting the cable 66, and the cable 66 cannot be smoothly moved forward and backward. As a result, the cable 66 is damaged due to the meandering 67 and may cause disconnection or the like. was there.

特に、はしご付消防車のケーブルにあっては使用環境が厳しく、ケーブルが酷使されているのが現状である。このはしご付消防車のケーブルは、ケーブルが昇降装置の非常に長い昇降距離に追従する電源線や信号線であり、張力、捩れ、しごき等による悪影響に耐える必要がある。さらに、はしご付消防車に適用されるケーブルは、人命に係わる作業でも解るように、断線は絶対に許されず、高信頼性のケーブル特性を備えたものが求められる。近年、はしごの高さが例えば30m級から50m級などの高いものが求められ、これに伴いケーブルも同様に高信頼性のケーブル特性を有することの必要性が生じ、悪影響に対処できる高性能のケーブルが求められている。   In particular, the use environment is severe in the cable of a fire truck with a ladder, and the cable is being overused. The cable of the fire truck with a ladder is a power line or a signal line that follows a very long lifting distance of the lifting device, and needs to withstand adverse effects due to tension, twisting, ironing, and the like. Furthermore, the cable applied to the fire truck with a ladder is required to have a highly reliable cable characteristic without being allowed to break, as can be understood from work related to human life. In recent years, ladders having a high height of, for example, 30m to 50m have been demanded, and accordingly, the need for cables to have highly reliable cable characteristics has arisen, and high performance capable of coping with adverse effects. Cable is sought.

ここで、ケーブルが蛇行する発生原因について考察してみると、次のことが考えられる。
(1)ケーブルを構成するシースと線心(絶縁体)との密着性が悪いためケーブル内部においてズレが生じ、このズレが原因して蛇行に至ってしまう。
(2)ケーブルに加わる張力の影響により、ケーブル内部において絶縁体とシースがズレて蛇行に至ってしまう。
(3)ケーブルの内部で拠られている線心の撚りピッチの詰り、若しくは撚りピッチの緩みによりシースと線心とがズレて蛇行に至ってしまう。
(4)ムリ撚りで撚り線した場合、撚り線が撚り方向と逆の方向に反発して戻ろうとするため、撚り方向と逆方向に捩れの力が加わり、これが原因して蛇行に至ってしまう。
ことが主な蛇行発生原因である。
Here, considering the cause of the meandering of the cable, the following can be considered.
(1) Since the adhesiveness between the sheath constituting the cable and the wire core (insulator) is poor, a shift occurs inside the cable, and this shift causes meandering.
(2) Due to the influence of the tension applied to the cable, the insulator and the sheath are displaced inside the cable, resulting in meandering.
(3) The sheath and the wire core are displaced due to clogging of the twisted pitch of the wire core provided inside the cable or loosening of the twisted pitch, resulting in meandering.
(4) When twisted by twisted twisting, the twisted wire tries to repel and return in the direction opposite to the twisting direction, so that a twisting force is applied in the direction opposite to the twisting direction, resulting in meandering.
This is the main cause of meandering.

さらに、撚り線してシースで被覆固定すると、各線心が補強されてケーブルの耐久性が増大するが、蛇行を防止するには至らず、未だ十分なケーブル特性が得られていないのが現状である。   In addition, when twisted wires are covered and fixed with a sheath, the cable cores are reinforced and the durability of the cable is increased. However, meandering is not prevented, and sufficient cable characteristics are not yet obtained. is there.

このため、ケーブルの捩れ、及び曲げ剛性を、該ケーブルに寄与させようとする役目を有する巻きぐせ用線体を、ケーブルの径方向中心から偏心した位置に埋設させた昇降装置用キャブタイヤケーブルが知られている(下記特許文献1参照)。
特開平7−220532号
For this reason, there is a cabtyre cable for a lifting device in which a winding wire body having a function of contributing to the twisting and bending rigidity of the cable is embedded at a position eccentric from the radial center of the cable. It is known (see Patent Document 1 below).
JP-A-7-220532

しかし、この種のケーブルは巻きぐせ用線体により、ケーブルに巻きぐせが付くため、引き延ばした際に直線状にはなり難く、昇降装置の限られた空間でケーブルをプーリ間に掛け渡して張設支持するには不適であった。さらに、線心とは別に巻きぐせ用線体をケーブルに埋設する必要があるため、部品点数及び製作工数等の増大に伴い大径化やコスト高を誘引してしまう。   However, since this type of cable is wound by the winding wire, it is difficult to form a straight line when it is stretched, and the cable is stretched between pulleys in a limited space of the lifting device. It was unsuitable for installation. Furthermore, since it is necessary to embed a winding wire body separately from the wire core, the increase in the number of parts, the number of manufacturing steps, and the like invites an increase in diameter and cost.

そこでこの発明は、ケーブルが屈曲、伸張を繰返す過酷な条件で長期使用されても形状が劣化することがない移動用ケーブルを提供することを目的とする。   Therefore, an object of the present invention is to provide a moving cable that does not deteriorate in shape even when used for a long time under severe conditions in which the cable is repeatedly bent and stretched.

この発明は、導体を絶縁体により被覆した複数本の線心を、補強糸を中心とする外周囲に環状配置して撚り合わせた子撚り合わせ体を設け、前記子撚り合わせ体の複数本を、補強線材を中心とする外周囲に環状配置して撚り合わせた親撚り合わせ体を設け、前記親撚り合わせ体の外周囲を熱可塑性樹脂のシースにより直接被覆固定した移動用ケーブルであることを特徴とする。   The present invention provides a child twisted body in which a plurality of wire cores whose conductors are covered with an insulator are annularly arranged and twisted around an outer periphery centering on a reinforcing yarn, and a plurality of the above-mentioned twisted bodies are arranged. The cable is a moving cable in which a parent twisted body is provided in a circular arrangement around the outer periphery around the reinforcing wire, and the outer periphery of the parent twisted body is directly covered and fixed with a thermoplastic resin sheath. Features.

この構成によると、撚り合わせ体の各線心を一層のシースで直接被覆固定できるため、被覆時にシースが撚り合わせられた線心部分の隅々まで行き渡り、各々の線心とシースとの間での接触面積が多くなり、線心に対するシースとの密着性が高まる。この結果、移動用ケーブルの内部では一体感の高い結合となり、ケーブル内部でのズレが生じ難くなる。よって、移動用ケーブルが捩れても、その動きにケーブル内部の線心が追従するのでズレが生じず、長期使用されても蛇行が生じなくなる。   According to this configuration, since each core of the twisted body can be directly covered and fixed with a single sheath, the sheath extends to every corner of the core where the sheath is twisted at the time of covering, and between each core and the sheath. The contact area increases, and the adhesion between the sheath and the core increases. As a result, the movement cable has a high unity connection and is less likely to be displaced inside the cable. Therefore, even if the moving cable is twisted, the wire core inside the cable follows the movement, so that no deviation occurs, and no meandering occurs even if it is used for a long time.

この発明の態様として、前記絶縁体は、線心別に色分けされた地色と、該地色と異なる異色を付加して構成することができる。   As an aspect of the present invention, the insulator can be configured by adding a ground color that is color-coded for each line core and a different color different from the ground color.

さらに、この移動用ケーブルに備えられた複数本の線心を機器と配線接続する際に、各線心毎に色分けされているため、一目で配線対応先の接続線を特定して配線接続することができる。   In addition, when connecting the multiple wire cores provided in this moving cable to the equipment, each wire core is color-coded, so it is possible to identify and connect the wiring connection destination connection line at a glance. Can do.

この発明によれば、線心とシースとの間での接触面積が多くなり、双方の密着性が高まる。この結果、線心とシースとの一体感が高められる。よって、移動用ケーブルが捩れても、その動きにケーブル内部の線心が追従するのでズレが生じ難くなり、移動用ケーブルは長期使用されても蛇行が生じなくなる。さらに、移動用ケーブルは内シースを省略できるため、小径化及び軽量化することができ、コンパクトに構成できる。   According to this invention, the contact area between the wire core and the sheath increases, and the adhesion between the two increases. As a result, the sense of unity between the wire core and the sheath is enhanced. Therefore, even if the moving cable is twisted, the wire core inside the cable follows the movement, so that it is difficult for deviation to occur, and the moving cable does not meander even if it is used for a long time. Furthermore, since the moving cable can omit the inner sheath, it can be reduced in diameter and weight, and can be configured compactly.

この発明の一実施例を以下図面に基づいて説明する。   An embodiment of the present invention will be described below with reference to the drawings.

図面は移動用ケーブルの一例として、はしご付き消防車の昇降装置に使用される場合を示し、図1は移動用ケーブルの線心の撚り合わせ状態を示した要部拡大側面図、図2(A)は子撚り合わせ体の要部拡大断面図、図2(B)は親撚り合わせ体の要部拡大断面図、図2(C)は移動用ケーブルの拡大断面図である。移動用ケーブル11は、図2(A)に示すように、導体12の外周囲を絶縁体13により被覆した線心14の複数本を、ポリエステル糸等の補強糸15を中心とする外周囲に環状配置して撚り合わせた小径の子撚り合わせ体16を作成しておき、該子撚り合わせ体16の複数本を、図2(B)に示すように、補強線材17を中心とする外周囲に環状配置して撚り合わせてなる大径の親撚り合わせ体18を作成し、この親撚り合わせ体18の外周囲を、図2(C)に示すように、シース19により断面円形に直接被覆固定して作成することにより構成される。   Drawing shows the case where it uses for the raising / lowering apparatus of the fire truck with a ladder as an example of the cable for a movement, FIG. 1 is the principal part expanded side view which showed the twisted state of the wire core of the cable for a movement, FIG. ) Is an enlarged cross-sectional view of the main part of the twisted body, FIG. 2 (B) is an enlarged cross-sectional view of the main part of the parent twisted body, and FIG. 2 (C) is an enlarged cross-sectional view of the moving cable. As shown in FIG. 2 (A), the moving cable 11 has a plurality of wire cores 14 in which the outer periphery of the conductor 12 is covered with an insulator 13 on the outer periphery around a reinforcing yarn 15 such as a polyester yarn. A small-diameter child twisted body 16 is formed by twisting in an annular arrangement, and a plurality of the child twisted bodies 16 are arranged around the reinforcing wire 17 as shown in FIG. 2 (B). A large-diameter parent twisted body 18 formed by twisting in an annular arrangement is prepared, and the outer periphery of the parent twisted body 18 is directly covered with a sheath 19 in a circular shape as shown in FIG. Constructed by creating fixed.

前記導体12の素線構成は、ピッチの細かい軟銅集合撚り線を使用し、撚り方としては撚り合わせ時に撚りが加わらないチューブラー撚りが適している。また、絶縁体13は、小径の導体12の外周囲を薄く絶縁被覆することができ、しかも外力を受けてもあまり伸びず、割れ難い特性を有している熱可塑性の樹脂材質を使用する。例えば、0.25mm程度の薄い被覆を容易にする高密度ポリエチレンを使用するとよい。   The strand structure of the conductor 12 uses an annealed copper aggregate stranded wire with a fine pitch, and a tubular twist that does not add a twist at the time of twisting is suitable as a twisting method. Further, the insulator 13 is made of a thermoplastic resin material that can thinly coat the outer periphery of the small-diameter conductor 12 and that does not stretch so much even when subjected to an external force and has a characteristic that is difficult to break. For example, high density polyethylene that facilitates thin coating of about 0.25 mm may be used.

撚り合わせに際して、まず、線心14を例えば4本撚り合わせて一括りとした子撚り合わせ体(4本の線心)16を構成し、該子撚り合わせ体16の例えば5ユニットを、さらに撚り合わせて一括りとした親撚り合わせ体(20本の線心)18を構成する。この場合も、撚り合わせ時に撚りが加わらないチューブラー撚りを実行し、ムリ撚りを回避して作成する。なお、撚りピッチ及び撚り外径は、線心数やユニット数に適した撚り合わせの条件に設定する。   At the time of twisting, first, a core twisted body (four cores) 16 is formed by twisting, for example, four wire cores 14 together, and for example, 5 units of the core twisted body 16 are further twisted. A master-twisted body (20 wire cores) 18 that is collectively formed is formed. Also in this case, the tubular twisting that does not add twist at the time of twisting is performed to avoid the twisting twist. In addition, the twist pitch and the twist outer diameter are set to the conditions for twisting suitable for the number of wire cores and the number of units.

シース19は移動用ケーブル11の被覆保護材として備えられ、その材質には親撚り合わせ体18を絶縁被覆して、捩れによる移動用ケーブル11の蛇行を抑制するのに適している高硬度の熱可塑性樹脂材質、例えば高硬度塩化ビニルを使用する。また、シース19は、子撚り合わせ体16及び親撚り合わせ体18のそれぞれを該シース19で直接被覆固定することで、シース19が、撚り合わせられた合計20本の線心14の外周囲の隅々まで行き渡り、各々の線心14とシース19との間での接触面積が多くなり、線心14に対するシース19との密着性が高まる。このため、移動用ケーブル11の内部では一体感が高められてケーブル内部でのズレが生じ難くなる。よって、移動用ケーブル11が捩れても、その動きに内部の撚り合わせ体16,18の線心14が追従するのでズレが生じず、この結果、長期使用されても蛇行が生じなくなる。   The sheath 19 is provided as a covering protecting material for the moving cable 11, and the material of the sheath 19 is a high-hardness heat suitable for insulating the parent twisted body 18 to suppress meandering of the moving cable 11 due to twisting. A plastic resin material such as high hardness vinyl chloride is used. The sheath 19 is formed by directly covering and fixing each of the child twisted body 16 and the parent twisted body 18 with the sheath 19, so that the sheath 19 is wound around the outer circumference of a total of 20 wire cores 14 twisted together. It reaches every corner, the contact area between each core 14 and the sheath 19 increases, and the adhesion between the core 19 and the sheath 19 increases. For this reason, a sense of unity is enhanced inside the moving cable 11 and it is difficult for deviation inside the cable to occur. Therefore, even if the moving cable 11 is twisted, the wire core 14 of the internal twisted bodies 16 and 18 follows the movement, so that no deviation occurs, and as a result, no meandering occurs even when used for a long time.

さらに、各撚り合わせ体16,18の外周囲は1シースで被覆するだけでよいので内シースが不要になる。この内シースの省略により、移動用ケーブル11の大きさも小径化及び軽量化してコンパクトになる。さらに、ケーブル内部に内シースが存在しないことで、外シース19と線心14との間での隔たりがなくなり、外シース19と線心14との直接的な接触を可能にして、ズレを発生させなくなり、蛇行の発生を防止するのに有効である。   Furthermore, since the outer periphery of each twisted body 16, 18 only needs to be covered with one sheath, an inner sheath is not required. By omitting the inner sheath, the size of the moving cable 11 is reduced in size and weight, and becomes compact. Furthermore, since there is no inner sheath inside the cable, there is no separation between the outer sheath 19 and the wire core 14, enabling direct contact between the outer sheath 19 and the wire core 14, and generating a deviation. This is effective in preventing the occurrence of meandering.

図3(A)は子撚り合わせ体を示す要部拡大側面図、図3(B)は線心の一部拡大側面図、図3(C)は線心の拡大断面図である。前記線心14については、絶縁体13を着色し、各色別に分けて識別できるようにしている。さらに、絶縁体13に対しては、線心14別に色分けされていることに加えて、地色31と異なる別の色を付加して構成している。この別の色の付加構成例として、例えば、図3(A)及び図3(B)に示すように、絶縁体13の周方向に対し、180度異なる両側の位置に地色31と異なる例えば黒色などの異色32を、軸線方向に沿ってストライプ状に細長く着色している。   FIG. 3A is an enlarged side view of the main part showing the twisted body, FIG. 3B is a partially enlarged side view of the wire core, and FIG. 3C is an enlarged sectional view of the wire core. About the said wire core 14, the insulator 13 is colored so that it can identify separately for each color. Furthermore, in addition to being color-coded according to the wire core 14, the insulator 13 is configured by adding another color different from the ground color 31. As another example of the additional color configuration, for example, as shown in FIGS. 3A and 3B, the ground color 31 is different from the ground color 31 at positions 180 degrees different from the circumferential direction of the insulator 13. Different colors 32 such as black are elongated in stripes along the axial direction.

この着色する割合は、一目で識別できる着色割合であればよく、図3(C)に示すように、周方向の面積比率が、例えば地色6:異色4、程度に設定すれば、線心14が小径であっても正確に識別できる。この異色32の着色の仕方は周方向に2ヶ所のストライプ状に限らず、1ヶ所あるいは複数のストライプ状であってもよく、また別の識別可能な任意の着色形態を採用してもよい。これにより、移動用ケーブル11に備えられた20本の線心14を図示しない機器と配線接続する際に、該移動用ケーブル11の端部において、各線心14が個々に色分けされているため、一目で配線対応先の線を特定して配線接続することができる。そして、移動用ケーブル11の製作後は、シース19の外表面に移動用ケーブルを特定する情報としてのマーキング印刷を施して完成する。   The coloring ratio may be a coloring ratio that can be identified at a glance. As shown in FIG. 3 (C), if the area ratio in the circumferential direction is set to, for example, ground color 6: different color 4 or so, the wire core Even if 14 has a small diameter, it can be accurately identified. The coloring method of the different color 32 is not limited to two stripes in the circumferential direction, but may be one or a plurality of stripes, or any other distinguishable coloring form may be adopted. Thereby, when the 20 wire cores 14 provided in the moving cable 11 are wired and connected to a device (not shown), each wire core 14 is individually color-coded at the end of the moving cable 11, It is possible to identify and connect the wire corresponding to the wiring at a glance. And after manufacture of the cable 11 for a movement, the marking printing as information which specifies the cable for a movement is given to the outer surface of the sheath 19, and it completes.

次に、このように構成された移動用ケーブル11のケーブル特性について説明する。図4(A)はケーブル移動屈曲試験機の正面図、図4(B)はケーブル移動屈曲試験機の要部平面図である。このケーブル移動屈曲試験機41は、移動用ケーブル11が実際に受ける外力と同様な外力を繰り返し与え続け、一定時間経過後の移動用ケーブル11の性能劣化度合いを調べるものである。   Next, the cable characteristics of the moving cable 11 configured as described above will be described. 4A is a front view of the cable movement bending tester, and FIG. 4B is a plan view of the main part of the cable movement bending tester. This cable movement bending test machine 41 repeatedly applies an external force similar to the external force that the movement cable 11 actually receives, and examines the degree of performance deterioration of the movement cable 11 after a predetermined time has elapsed.

具体的には、図4(A)に示すように、該ケーブル移動屈曲試験機41の中央部に開口された横長の開口窓42に沿って横方向に往復する移動台車43を備え、この移動台車43の正面側に、上プーリ44と下プーリ45とを斜めの上下位置に突出させて配置している。そして、これらの上下プーリ44,45に移動用ケーブル11を掛け渡し、掛け渡した一端を正面視左側に配置された定位置プーリ46を介して本体固定部47に固定し、他端を正面視右側に配置された定位置プーリ48を介して錘49に接続させ、移動用ケーブル11に一定の負荷を与えている。このケーブル負荷状態で移動台車43を往復動作させることで、ケーブル移動屈曲試験機41は移動用ケーブル11をしごいて実際の使用状態と近似する条件に設定している。   Specifically, as shown in FIG. 4 (A), a movable carriage 43 that reciprocates in the horizontal direction along a horizontally long opening window 42 opened in the center of the cable moving bending test machine 41 is provided. On the front side of the carriage 43, an upper pulley 44 and a lower pulley 45 are disposed so as to protrude in an oblique vertical position. Then, the moving cable 11 is stretched over the upper and lower pulleys 44, 45, and one end of the stretched cable is fixed to the main body fixing portion 47 via a fixed position pulley 46 arranged on the left side when viewed from the front, and the other end is viewed from the front. A fixed load is applied to the moving cable 11 by being connected to a weight 49 via a fixed position pulley 48 arranged on the right side. By reciprocating the movable carriage 43 in this cable load state, the cable movement bending tester 41 sets the conditions to approximate the actual use state by rubbing the moving cable 11.

さらに、移動用ケーブル11は、図4(B)に示すように、上下プーリ44,45の前後方向の取付位置を共に試験機本体の前面41aから同じ突出長さに設定すると、移動用ケーブル11はしごきと荷重をかけている張力だけしか加わらない。実際は、はしご付き消防車での移動用ケーブル11の使用状態は、捩れ・しごき・張力の3つの力が加わるので、評価試験でも捩れを加えないと正確な評価は得られない。よって、捩れを加えながら移動屈曲を実行するため、上プーリ44と下プーリ45とが前後方向に段違いになるように突出量を異ならせている。このような段違い構造の上下プーリ44,45に移動用ケーブル11を掛け渡し、また捩れが逃げないように一方のケーブル端部を固定している。   Further, as shown in FIG. 4 (B), the moving cable 11 has the same protruding length from the front surface 41a of the tester main body when the mounting positions of the upper and lower pulleys 44 and 45 are set to the same protruding length. Only the tension applied by the ladder and the load is applied. Actually, in the use state of the moving cable 11 in the fire truck with a ladder, since three forces of torsion, ironing, and tension are applied, an accurate evaluation cannot be obtained unless the torsion is applied. Therefore, in order to perform the movement and bending while twisting, the protrusion amount is varied so that the upper pulley 44 and the lower pulley 45 are stepped in the front-rear direction. The moving cable 11 is stretched over the upper and lower pulleys 44 and 45 having such a step structure, and one end of the cable is fixed so that the twist does not escape.

表1は移動用ケーブル11の構造の一例を示したものである。   Table 1 shows an example of the structure of the moving cable 11.

Figure 2010027427
次に、この表1の移動用ケーブル11の完成品から約5mの試料を採り、これを直径120mmの上下プーリ44,45に掛け渡し、該ケーブル11の一方端を固定した状態で他方端に5kgの錘49を吊るし、移動台車43を毎秒0.33mの速さで1m以上の距離を左右同一場所において、10回/分の割合で往復させた試験条件で移動用ケーブル11に対する評価を行った。
Figure 2010027427
Next, a sample of about 5 m is taken from the finished product of the moving cable 11 shown in Table 1, and is passed over the upper and lower pulleys 44 and 45 having a diameter of 120 mm, and the one end of the cable 11 is fixed to the other end. The moving cable 43 is evaluated under the test conditions in which a 5 kg weight 49 is suspended and the moving carriage 43 is reciprocated at a rate of 0.33 m per second at a distance of 1 m or more at the same place on the left and right at a rate of 10 times / minute. It was.

この結果、移動用ケーブル11は移動台車43を、ケーブルの長期使用に相当する移動量である8万回往復(10回/分)させても蛇行は発生せず、最終的に移動台車43を20万回往復させても蛇行の発生は見られなかった。これにより、移動用ケーブル11は安定したケーブル性能を維持することが認められた。この際、連続して長時間の試験を継続したことにより、移動用ケーブル11の外表面に印刷されていたマーキングは、若干捩れた状態に表示変形していることが認められた。しかし、移動用ケーブル11の外形状は本来の直線状を維持し、外形状に変形癖が全く生じていない。このことは、移動用ケーブル11の外径が小さく、屈曲性に優れ、ケーブル内部での撚りピッチが崩れ難いことを表わしている。ことに、ケーブル内部において、撚り線された各線心14に対するシース19が隅々まで行き渡り、線心14とシース19とが十分に密着し、ズレの発生原因を的確に解消して蛇行が防止できたものと推測できる。   As a result, the moving cable 11 does not meander even if the moving carriage 43 is reciprocated 80,000 times (10 times / minute), which is a movement amount corresponding to long-term use of the cable, and finally the moving carriage 43 is No meandering was observed even after 200,000 reciprocations. Thereby, it was recognized that the moving cable 11 maintains stable cable performance. At this time, it was recognized that the marking printed on the outer surface of the moving cable 11 was deformed in a slightly twisted state by continuing the long-time test. However, the outer shape of the moving cable 11 maintains the original straight shape, and no deformation wrinkles occur in the outer shape. This indicates that the outer diameter of the moving cable 11 is small, the flexibility is excellent, and the twist pitch inside the cable is not easily broken. In particular, inside the cable, the sheath 19 with respect to each stranded wire core 14 spreads to every corner, the wire core 14 and the sheath 19 are sufficiently in close contact with each other, and the cause of the deviation can be accurately eliminated to prevent meandering. Can be guessed.

そして、この移動用ケーブル11と、比較される試験対象ケーブルの一例として、撚り線が同心円上の内側と外側に環状配置された2層構造の異方向拠りであるケーブル、例えば図6で示したケーブル66を用いて、同様に図4に示したケーブル移動屈曲試験機41で試験した結果、試験開始から早いもので移動台車43を約1万回、遅いもので2万回程度往復させた時点で、蛇行が発生し始めたことが認められた。このことは、ケーブル内部で線心63とシース65間にズレが発生したと考えられる。   As an example of the test cable to be compared with the moving cable 11, a cable having a two-layer structure in which twisted wires are circularly arranged on the inner side and the outer side on a concentric circle, for example, shown in FIG. 6. Similarly, as a result of the test using the cable moving / bending test machine 41 shown in FIG. 4 using the cable 66, when the moving carriage 43 is reciprocated about 10,000 times at the earliest time and about 20,000 times at the later time. It was confirmed that meandering began to occur. This is considered to be a deviation between the wire core 63 and the sheath 65 inside the cable.

具体的には、撚り線が2層構造の異方向拠りであることから捩れが加わった場合、一方は拠りが緩み、他方は拠りが締まるためである。また、最外層の拠りは、拠り外径が大きいため、拠りピッチが崩れやすい。これにより、拠りが緩む方向に捩れ、拠りピッチの崩れによりシースと線心(絶縁体)がズレてしまい蛇行に至ったと考えられる。   Specifically, since the twisted wire has a two-layer structure with different directions, when twist is applied, one is loose and the other is tight. In addition, since the outermost layer is based on a large outer diameter, the ground pitch tends to collapse. As a result, it is considered that the sheath is twisted in the direction in which the ground is loosened, and the sheath and the wire core (insulator) are displaced due to the collapse of the ground pitch, resulting in meandering.

さらに、導体の構成を軟銅集合撚り線から軟銅複合撚り線(C&C複合撚り線)に変えてケーブル移動屈曲試験した場合にも、ケーブルを4万回往復させた時点で、ケーブルがややうねり、蛇行が発生したことを確認した。つまり、導体の改善は断線には強くなるが、蛇行防止効果は得られないことが判明した。   Furthermore, even when the cable configuration is changed from an annealed copper assembly strand to an annealed copper composite strand (C & C composite strand) and the cable moving and bending test is performed, when the cable is reciprocated 40,000 times, the cable slightly swells and snakes. Confirmed that occurred. In other words, it was found that the improvement of the conductor is strong against disconnection, but the effect of preventing meandering cannot be obtained.

さらに、シースの硬度を硬くしてケーブル移動屈曲試験を行った場合にも、試験開始から早いもので移動台車43を約4万回、遅いもので5万回程度往復させた時点で、ケーブルがややうねり、蛇行が発生したことを確認した。つまり、シースは硬いもので捩れはないが、撚り線の構造上、シース被覆での径方向中心への行き渡り深さ(落ち込み)が余りなく、シースが動かない割には、絶縁体に遊びがあるのでズレてしまい蛇行に至ったものと推測される。   Furthermore, even when the cable movement / bending test is performed with the sheath hardness increased, when the moving carriage 43 is reciprocated approximately 40,000 times at the earliest time from the start of the test and about 50,000 times at the later time, the cable is disconnected. Slight swells and meandering were confirmed. In other words, the sheath is hard and does not twist, but due to the structure of the stranded wire, there is not much spread depth (sag) to the center in the radial direction in the sheath coating, and the insulator does not play even though the sheath does not move. It is presumed that it was misaligned and led to meandering.

よって、この発明の移動用ケーブル11と従来例のケーブル(図6参照)とを比較すると、ケーブルの蛇行防止対策に関しては明らかに、その効果が異なることが認められた。   Therefore, when the moving cable 11 of the present invention and the conventional cable (see FIG. 6) are compared, it is clearly recognized that the effect is different with respect to the meandering prevention measures for the cable.

さらに、線心14とシース19との密着性の適否について考察した場合を、図5を参照して説明する。図5(A)はこの発明の試験結果後のシースの断面形状を示すシースの拡大断面図、図5(B)は図6のケーブルの試験結果後のシースの断面形状を示すシースの拡大断面図である。   Furthermore, the case where the suitability of the adhesiveness between the wire core 14 and the sheath 19 is considered will be described with reference to FIG. 5A is an enlarged cross-sectional view of the sheath showing the cross-sectional shape of the sheath after the test result of the present invention, and FIG. 5B is an enlarged cross-sectional view of the sheath showing the cross-sectional shape of the sheath after the test result of the cable of FIG. FIG.

この結果、図5(A)から分かるように、この発明のシース19はケーブル外周面から中心に向けて十分に食い込むように入り込み、撚り込まれた線心14の外周面14aをシース19が包み込むように被覆していることが認められる。このため、線心14の外表面に位置する絶縁体13とシース19との接触面積が増え、このことが両者間のズレの発生を制限して、ケーブルの蛇行を防止していると考えられる。   As a result, as can be seen from FIG. 5 (A), the sheath 19 of the present invention penetrates sufficiently from the outer peripheral surface of the cable toward the center, and the sheath 19 wraps the outer peripheral surface 14a of the twisted wire core 14. It is recognized that it is coated. For this reason, the contact area between the insulator 13 and the sheath 19 located on the outer surface of the wire core 14 is increased, and this is considered to limit the occurrence of deviation between the two and prevent the meandering of the cable. .

これに対し、図5(B)の従来例のシース65では、ケーブルの外周面から中心に向けて落ち込む割合が一定であり、線心63の外周面63aをシース65で十分に密着することができていないと認められる。   On the other hand, in the sheath 65 of the conventional example shown in FIG. 5B, the ratio of falling from the outer peripheral surface of the cable toward the center is constant, and the outer peripheral surface 63a of the wire core 63 can be sufficiently adhered by the sheath 65. It is recognized that it is not done.

このような試験結果から次のようなことが判明した。
(1)張力の影響だけで蛇行することは考え難く、張力としごきが加わった場合に捩れを誘起して、蛇行を発生させる。よって、シースの介在状態による張力対策が必要である。
(2)捩れによる撚り線のピッチ崩れは、蛇行や断線の発生を誘起させる一因である。よって、捩れ防止手段の一例として、シース19の硬度を高くすると、捩れ防止に有効であることが認められた。
(3)捩れによる撚り線のピッチ崩れを防止する手段として、被覆材の硬度を硬くするよりも、シース19の落ち込みを深くすることが効果的である。
(4)シースの落ち込み深さを十分深くできるようにすることで、線心14とシース19とのズレを発生し難くし、これにより蛇行を防止させることができると判明した。
(5)線心が同心円上の内側と外側とに環状配置される2層構造となる撚り線は、図6に示すように、外層の拠り外径が大きいためピッチが崩れやすい。よって、撚り外径が小さくなるように設計に変更する必要がある(図2(B)参照)。この結果、子撚り合わせ体16を集合撚りさせた親撚り合わせ体18を用いる。
From these test results, the following was found.
(1) It is difficult to think about meandering only by the influence of tension. When tension and ironing are applied, twisting is induced to cause meandering. Therefore, it is necessary to take measures against the tension due to the interposed state of the sheath.
(2) Pitch breakage of the stranded wire due to twisting is one factor that induces meandering and disconnection. Therefore, as an example of the twist preventing means, it was recognized that increasing the hardness of the sheath 19 is effective for preventing twist.
(3) As a means for preventing the twisted wire pitch from being twisted, it is more effective to deepen the sheath 19 than to increase the hardness of the covering material.
(4) It has been found that by making the depth of the sheath sufficiently deep, it is difficult to cause a deviation between the wire core 14 and the sheath 19, thereby preventing meandering.
(5) A twisted wire having a two-layer structure in which the wire cores are annularly arranged on the inner side and the outer side on a concentric circle has a large outer diameter due to the outer layer as shown in FIG. Therefore, it is necessary to change the design so that the twisted outer diameter becomes smaller (see FIG. 2B). As a result, the parent twisted body 18 in which the child twisted body 16 is collectively twisted is used.

次に、移動用ケーブル11の耐温度性能について試験した結果を示す。まず、低温試験として、移動用ケーブル11の完成品から500mmの試料を採取し、この採取した移動用ケーブル11を低温環境下で1時間放置させた後、90度折曲げてシースの折曲げ性能及び亀裂の有無状態を調べた。この結果、移動用ケーブル11は−10℃の低温環境下でも折曲げ可能であり、−30℃の低温環境下でも亀裂は発生せず、良好なケーブル特性を維持できることが認められた。   Next, the results of testing the temperature resistance performance of the moving cable 11 are shown. First, as a low-temperature test, a sample of 500 mm is taken from the finished product of the moving cable 11, the collected moving cable 11 is left in a low-temperature environment for 1 hour, and then bent 90 degrees to bend the sheath. And the presence or absence of cracks was examined. As a result, it was confirmed that the moving cable 11 can be bent even in a low temperature environment of −10 ° C., and cracks do not occur even in a low temperature environment of −30 ° C., thereby maintaining good cable characteristics.

一方、燃焼試験の一例として、60度傾斜燃焼試験(JIS、C、3005参照)を行った。この60度傾斜燃焼試験は、移動用ケーブル11の完成品から採取した長さ約300mmの試料を、水平に対して約60度傾斜させて支持し、還元炎の先端を試料の下端から約20mmの位置に30秒以内で燃焼するまで当て、炎を取り去った後、試料が60秒以内に自然に消えるか、否かを調査するものである。この結果、発火後、2秒程度で直ぐに消え、燃焼試験は問題ないことが認められた。   On the other hand, as an example of the combustion test, a 60-degree inclined combustion test (see JIS, C, 3005) was performed. In this 60-degree inclined combustion test, a sample having a length of about 300 mm collected from the finished product of the moving cable 11 is supported with an inclination of about 60 degrees with respect to the horizontal, and the tip of the reducing flame is about 20 mm from the lower end of the sample. It is investigated whether or not the sample naturally disappears within 60 seconds after the flame is taken out until it burns within 30 seconds. As a result, it disappeared immediately after ignition in about 2 seconds, and it was confirmed that there was no problem in the combustion test.

なお、難燃性などの耐温度特性を考慮してシースの材質を、耐燃性ポリエチレン等を使用すると、耐低温性と耐燃性を大幅に改善できるが、その反面、難燃剤として使用される水酸化物が被覆材中に多く含まれてしまい、この水酸化物が機械的強度の低下を引き起こし、シースに亀裂の発生を誘起させ、耐久性及を劣化させるので好ましくない。よって、ある程度の耐低温性と耐燃性を有しながら耐久性を劣化させない材質を選択したうえで、子撚り合わせ体と親撚り合わせ体との複数段階に撚り合わせて構成した耐蛇行形状の線心集合体を作り、その外周囲をシースで被覆することで、蛇行の発生を防止した移動用ケーブルを作成することができる。   In consideration of temperature resistance characteristics such as flame retardancy, the use of flame-resistant polyethylene can significantly improve low-temperature resistance and flame resistance, but on the other hand, water used as a flame retardant A large amount of oxide is contained in the coating material, and this hydroxide causes a decrease in mechanical strength, induces the generation of cracks in the sheath, and deteriorates durability and is not preferable. Therefore, after selecting a material that has a certain level of low temperature resistance and flame resistance but does not deteriorate durability, it is a meander-resistant wire formed by twisting in multiple stages of a child twisted body and a parent twisted body. By creating a core assembly and covering the outer periphery with a sheath, it is possible to create a moving cable that prevents meandering.

上述のように、撚り合わせられた線心のそれぞれをシースで直接被覆固定できるため、被覆時にシースが撚り合わせられた部分の隅々まで行き渡り、各々の線心とシースとの間での接触面積を増大させて密着性を高めることができる。これにより、移動用ケーブルの内部では一体感が高められてケーブル内部でのズレが生じ難くなる。この結果、移動用ケーブルが過酷な使用条件で捩れても、その動きにケーブル内部の線心が追従するのでケーブル内部でのズレは生じず、長期使用されても蛇行が生じない信頼性の高いケーブル特性を発揮する。   As described above, each of the twisted wire cores can be directly covered and fixed with the sheath, so that the sheath is spread to every corner of the twisted portion at the time of covering, and the contact area between each wire core and the sheath To increase the adhesion. As a result, the sense of unity is enhanced inside the moving cable, and displacement inside the cable is less likely to occur. As a result, even if the moving cable is twisted under severe usage conditions, the cable core inside the cable follows the movement, so there is no deviation inside the cable, and there is no meandering even if it is used for a long time. Demonstrate cable characteristics.

この発明の移動用ケーブル11は上述の実施例の構成のみに限定されるものではなく、請求項に記載される技術思想に基づいて応用することができる。例えば、実施例では移動用ケーブル11を、はしご付き消防車に適用したものを示したが、これに限らず、産業機器、放送機器などの移動用ケーブルとして他の用途に広く使用することができる。   The moving cable 11 of the present invention is not limited to the configuration of the above-described embodiment, and can be applied based on the technical idea described in the claims. For example, in the embodiment, the moving cable 11 is applied to a fire truck with a ladder. However, the moving cable 11 is not limited to this, and can be widely used for other purposes as a moving cable for industrial equipment, broadcasting equipment, and the like. .

移動用ケーブルの撚り合わせ状態を示した要部拡大側面図。The principal part expanded side view which showed the twisted state of the cable for a movement. (A)は子撚り合わせ体の要部拡大断面図、(B)は親撚り合わせ体の要部拡大断面図、(C)は移動用ケーブルの拡大断面図。(A) is the principal part expanded sectional view of a child twisted body, (B) is the principal part expanded sectional view of a parent twisted body, (C) is an expanded sectional view of a cable for movement. (A)は子撚り合わせ体を示す要部拡大側面図、(B)は線心の一部拡大側面図、(C)は線心の拡大断面図。(A) is a principal part expanded side view which shows a child twisted body, (B) is a partial expanded side view of a wire core, (C) is an expanded sectional view of a wire core. (A)はケーブル移動屈曲試験機の正面図、(B)はケーブル移動屈曲試験機の要部平面図。(A) is a front view of a cable movement bending test machine, (B) is a principal part top view of a cable movement bending test machine. (A)はこの発明の試験結果後のシースの断面形状を示すシースの拡大断面図、(B)は従来の試験結果後のシースの断面形状を示すシースの拡大断面図。(A) is an expanded sectional view of the sheath showing the sectional shape of the sheath after the test results of the present invention, and (B) is an enlarged sectional view of the sheath showing the sectional shape of the sheath after the conventional test results. 従来のキャブタイヤケーブルの縦断面図。The longitudinal cross-sectional view of the conventional cabtire cable. 蛇行が発生したケーブルを示す要部拡大斜視図。The principal part expansion perspective view which shows the cable with which meandering generate | occur | produced.

符号の説明Explanation of symbols

11…移動用ケーブル
12…導体
13…絶縁体
14…線心
15…補強糸
16…子撚り合わせ体
17…補強線材
18…親撚り合わせ体
19…シース
32…異色
DESCRIPTION OF SYMBOLS 11 ... Moving cable 12 ... Conductor 13 ... Insulator 14 ... Wire core 15 ... Reinforcement thread 16 ... Child twisted body 17 ... Reinforcement wire 18 ... Parent twisted body 19 ... Sheath 32 ... Different color

Claims (2)

導体を絶縁体により被覆した複数本の線心を、補強糸を中心とする外周囲に環状配置して撚り合わせた子撚り合わせ体を設け、
前記子撚り合わせ体の複数本を、補強線材を中心とする外周囲に環状配置して撚り合わせた親撚り合わせ体を設け、
前記親撚り合わせ体の外周囲を熱可塑性樹脂のシースにより直接被覆固定した
移動用ケーブル。
A plurality of wire cores whose conductors are covered with an insulator are annularly arranged around the outer periphery around the reinforcing yarn to provide a twisted body that is twisted together,
Providing a parent twisted body in which a plurality of the child twisted bodies are arranged in a ring around the outer periphery around the reinforcing wire and twisted together,
A moving cable in which the outer periphery of the parent twisted body is directly covered and fixed by a sheath of a thermoplastic resin.
前記絶縁体は、線心別に色分けされた地色と、該地色と異なる異色を付加して構成した
請求項1に記載の移動用ケーブル。
The moving cable according to claim 1, wherein the insulator is configured by adding a ground color that is color-coded for each wire core and a different color different from the ground color.
JP2008188346A 2008-07-22 2008-07-22 Cable for movement Pending JP2010027427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188346A JP2010027427A (en) 2008-07-22 2008-07-22 Cable for movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188346A JP2010027427A (en) 2008-07-22 2008-07-22 Cable for movement

Publications (1)

Publication Number Publication Date
JP2010027427A true JP2010027427A (en) 2010-02-04

Family

ID=41733058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188346A Pending JP2010027427A (en) 2008-07-22 2008-07-22 Cable for movement

Country Status (1)

Country Link
JP (1) JP2010027427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483016B2 (en) 2016-09-16 2019-11-19 Denso Corporation Cable, electric power steering device using the cable, and method of manufacturing the cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483016B2 (en) 2016-09-16 2019-11-19 Denso Corporation Cable, electric power steering device using the cable, and method of manufacturing the cable

Similar Documents

Publication Publication Date Title
CN101448890B (en) Cable and manufacture method thereof
US10340058B2 (en) Cable with braided shield
EP2517211B1 (en) Flexible electrical cable with resistance to external chemical agents
KR20120005569A (en) Expandable electric wire and its manufacturing method
JP2010257701A (en) Cable
JP2017507468A (en) Power cable filler and power cable with power cable charger
JP2008311111A (en) Cord-like heater
JP5128092B2 (en) Marking wire / cable
RU2749866C2 (en) High resolution top panel sonar cable
JP2018006181A (en) Cable
JP5821892B2 (en) Multi-core cable and manufacturing method thereof
JP2010027427A (en) Cable for movement
JP2001318286A (en) Optical fiber cable and electric power-light combined line
KR20150025720A (en) strength reinforcement layer for cable and cable including the same
JP5331310B2 (en) Electromagnetic shielding cable
JP5987962B2 (en) Multi-core cable and manufacturing method thereof
US20120233976A1 (en) Wire rope
CN218939280U (en) High-temperature-resistant wear-resistant oil-resistant flame-retardant drag chain power cable
CN205670445U (en) A kind of construction elevator cable
JP6781940B2 (en) Braided shielded cable
JP2006172788A (en) Communication cable
JP7486300B2 (en) Bend-resistant insulated wire
JP2013235704A (en) Mobile machine flat cable
KR100981239B1 (en) An Electric Power Cable For Windturbine And Method For Producing The Same
KR200389451Y1 (en) Electro luminescence cable