JP2010026576A - Flow rate control method - Google Patents

Flow rate control method Download PDF

Info

Publication number
JP2010026576A
JP2010026576A JP2008183752A JP2008183752A JP2010026576A JP 2010026576 A JP2010026576 A JP 2010026576A JP 2008183752 A JP2008183752 A JP 2008183752A JP 2008183752 A JP2008183752 A JP 2008183752A JP 2010026576 A JP2010026576 A JP 2010026576A
Authority
JP
Japan
Prior art keywords
flow rate
control valve
opening degree
control
normalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008183752A
Other languages
Japanese (ja)
Other versions
JP5037443B2 (en
JP2010026576A5 (en
Inventor
Yutaka Inada
豊 稲田
Satoshi Nakazato
敏 仲里
Takuya Hayashi
卓矢 林
Toru Fujii
徹 藤井
Li Cao
麗 曹
Tokukin Ko
徳▲金▼ 侯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Tokyo Keiso Co Ltd
Original Assignee
Tsinghua University
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Tokyo Keiso Co Ltd filed Critical Tsinghua University
Priority to JP2008183752A priority Critical patent/JP5037443B2/en
Publication of JP2010026576A publication Critical patent/JP2010026576A/en
Publication of JP2010026576A5 publication Critical patent/JP2010026576A5/ja
Application granted granted Critical
Publication of JP5037443B2 publication Critical patent/JP5037443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform satisfactory control by automatically updating a proportional gain when performing proportional control adaptive to a change in a state such as a pressure generated in piping. <P>SOLUTION: For offline, the inverse of a gradient obtained beforehand from a relationship between the opening degree and a flow rate of a control valve 2, the flow rate at the maximum opening degree detected by a rotary encoder 4 attached to the control valve 2, a normalized flow rate obtained by normalizing the flow rate at each opening degree by the flow rate of the maximum opening degree and a normalized proportional constant obtained by dividing the gradient by the flow rate at the maximum opening degree of the control valve 2 are preset. For online, the opening degree and flow rate of the control valve 2 are measured, the normalized flow rate corresponding to the measured opening degree is read from the stored data, and the measured flow rate is divided by the read normalized flow rate, and the flow rate at the maximum opening degree of the control valve 2 after fluctuation is obtained, and a new proportional gradient is calculated by multiplying the obtained flow rate by a preset normalized proportional constant Kz, and a proper proportional gain is obtained form the inverse of the new proportional gradient, and used for a control operation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、流体の流量を制御する流量制御方法に関するものである。   The present invention relates to a flow rate control method for controlling the flow rate of a fluid.

従来の流量制御システムでは、流体の流量を制御するために比例制御を利用する方法が数多く提案されている。これらの比例制御動作を使用した流量制御法では、流量制御システムを工場から出荷し、又は現場で配管設置する際に、最適と思われる比例ゲインを制御装置に固定的に設定し、流量計からの流量情報に基づいて、目標とする流量と流量計から得られる現実の流量との間に偏差が生じないようにフィードバックして制御弁を駆動する。   In the conventional flow rate control system, many methods using proportional control for controlling the flow rate of fluid have been proposed. In the flow control method using these proportional control operations, when the flow control system is shipped from the factory or installed in the field, a proportional gain that seems to be optimal is fixedly set in the control device, and Based on the flow rate information, the control valve is driven with feedback so that no deviation occurs between the target flow rate and the actual flow rate obtained from the flow meter.

しかし、上述の比例ゲインは制御システムに使われる制御弁の入口側の圧力が一定の状態において、制御システムに使われる制御弁の開度と流量との関係から最適化されるもので、制御弁の入口側の圧力が変動した場合には最適化の条件が満たされなくなる結果、初期に固定設定された比例ゲインによる最適な制御は保証されなくなり、応答の速い流量制御の実施が困難になる虞れがある。   However, the proportional gain described above is optimized from the relationship between the opening and flow rate of the control valve used in the control system when the pressure on the inlet side of the control valve used in the control system is constant. If the pressure on the inlet side of the engine fluctuates, the optimization condition will not be satisfied. As a result, optimal control with the proportional gain set at the initial stage cannot be guaranteed, and it may be difficult to implement fast response flow control. There is.

また、制御弁を使う流量制御方法においては、ステッピングモータの回転運動がスライド運動に変換されてダイヤフラムやニードル等の流量調節部を駆動し、流体が制御弁を通過するときの通過断面積を調整することが行われる。即ち、流体の通過断面積はニードル等がスライドする距離に比例するため、制御弁の開度もパルスで入力するステップの数によって調整可能と考えられている。   In addition, in the flow control method using a control valve, the rotary motion of the stepping motor is converted into a slide motion to drive a flow control section such as a diaphragm or a needle to adjust the cross-sectional area through which the fluid passes through the control valve. To be done. That is, it is considered that the opening of the control valve can be adjusted by the number of steps input in pulses because the passage cross-sectional area of the fluid is proportional to the distance that the needle or the like slides.

しかし、現実に駆動パルスと制御弁の動きを連動させようとすると、特に高速で作動させる場合には、制御弁が駆動パルス通りに駆動しない脱調現象が屡々生じ、与えたパルスの数に応じた制御弁の開度が得られなくなって、制御弁の最適な開度を一義的に決められない不具合が生ずる。   However, when the drive pulse and the control valve movement are actually linked, a step-out phenomenon in which the control valve does not drive according to the drive pulse often occurs, especially when operating at a high speed, depending on the number of pulses applied. As a result, the opening of the control valve cannot be obtained, and the optimum opening of the control valve cannot be determined uniquely.

このように従来の流量制御方法では、配管内の圧力や流量、温度などの環境条件、特に前述した制御弁2の入口側の圧力が大きく変化すると、最初に設定した比例ゲインが必ずしも最適ではなくなる。従って、 制御弁の開度を調整しようとしても、特に少量の流体制御の場合にはオーバーシュートやアンダシュート等の問題が生じて応答性が低下し、安定した流量制御が不可能になる。また、環境条件に的確に対応するには、きめ細かな圧力測定が必要になって制御システムが複雑になる。   As described above, in the conventional flow rate control method, when the environmental conditions such as the pressure, flow rate, and temperature in the pipe, particularly the pressure on the inlet side of the control valve 2 described above changes greatly, the initially set proportional gain is not necessarily optimal. . Therefore, even if the opening degree of the control valve is to be adjusted, problems such as overshoot and undershoot occur particularly in the case of a small amount of fluid control, and the responsiveness is lowered, and stable flow rate control becomes impossible. In addition, in order to accurately respond to environmental conditions, fine pressure measurement is required, and the control system becomes complicated.

本発明の目的は、上述した問題点を解消し、配管内における圧力等の状態変化に対応できるように、比例制御動作を行うに際して、最適な比例ゲインに自動的に更新し、良好な制御を行う流量制御方法を提供することにある。   An object of the present invention is to automatically update to an optimal proportional gain when performing a proportional control operation so as to solve the above-described problems and cope with a change in state of pressure or the like in the pipe. It is to provide a flow rate control method.

上記目的を達成するための本発明に係る流量制御方法は、流量計により流体の流量を計測し、比例ゲインを用いた比例制御動作により制御弁を駆動して流量制御を行う場合に、予めオフラインにおいて制御プロセスの条件を求めておき、オンラインにおいてこれらの条件を使用して前記比例ゲインを更新し、更新した前記比例ゲインを用いて流体制御を行う流量制御方法において、前記オフラインにおいては、前記制御弁の入口側の圧力を一定にして、前記制御弁を全閉状態と最大開度の間で駆動して、前記制御弁の開度と前記流量計から得た流量との対応関係から求めた勾配の逆数と、前記勾配を前記制御弁の最大開度時の流量で除して得られる正規化比例定数と、前記制御弁の各開度に対応する前記流量計から得た各流量を前記制御弁の最大開度時の流量で除して求めた正規化流量を前記制御弁の開度と対応させたデータとを演算制御装置に予め入力する予備工程を有し、前記オンラインにおいては、前記制御弁の運転中の開度とそれに対応する流量を計測する第1の工程と、前記制御弁の運転中の開度に対応すべき正規化流量を、予め入力しておいた前記データから読み出す第2の工程と、前記制御弁の運転中の開度に対応する実流量を流量計で計測して、得られた実流量を前記第2の工程で読み出した前記正規化流量で除して、運転中の環境に対応する前記制御弁の最大開度時の流量を演算によって求める第3の工程と、該第3の工程で求めた前記制御弁の最大開度での流量と前記オフラインで設定した前記正規化比例定数とを基に前記制御弁の開度と流量の関係から得られる前記勾配を算出し、その逆数から新たな前記比例ゲインを求めて前記演算制御装置に設定する第4の工程と、前記流量計により流量を測定しながら前記比例ゲインを使う比例制御動作により前記制御弁を駆動して、前記流量をフィードバック制御する第5の工程とから成り、前記第1〜第5の工程を繰り返すことを特徴とする。   In order to achieve the above object, the flow control method according to the present invention measures the flow rate of a fluid with a flow meter and drives the control valve by a proportional control operation using a proportional gain to perform flow control beforehand. In the flow control method in which the control process conditions are obtained in advance, the proportional gain is updated online using these conditions, and the fluid control is performed using the updated proportional gain. The pressure on the inlet side of the valve was fixed, and the control valve was driven between the fully closed state and the maximum opening, and was obtained from the correspondence between the opening of the control valve and the flow rate obtained from the flow meter. The reciprocal of the gradient, the normalized proportionality constant obtained by dividing the gradient by the flow rate at the maximum opening of the control valve, and each flow rate obtained from the flow meter corresponding to each opening of the control valve Control valve There is a preliminary step of preliminarily inputting the normalized flow rate obtained by dividing by the flow rate at the time of large opening to the control valve opening to the arithmetic control device. A first step of measuring an opening degree during operation and a flow rate corresponding thereto; and a second step of reading out a normalized flow rate that should correspond to the opening degree during operation of the control valve from the previously input data. Measure the actual flow rate corresponding to the operation and the opening of the control valve during operation with a flow meter, and divide the obtained actual flow rate by the normalized flow rate read out in the second step. A third step of calculating the flow rate at the maximum opening of the control valve corresponding to the environment of the control, the flow rate at the maximum opening of the control valve determined in the third step and the offline set Obtained from the relationship between the opening and flow rate of the control valve based on the normalized proportional constant The gradient is calculated, a new proportional gain is obtained from the reciprocal thereof and set in the arithmetic and control unit, and the proportional control operation using the proportional gain while measuring the flow rate with the flow meter. And a fifth step of feedback-controlling the flow rate by driving a control valve, wherein the first to fifth steps are repeated.

本発明に係る流量制御方法は、簡素な制御システムを用いて、最適な比例ゲインを自動的に得て、良好な流量制御を行う。   The flow control method according to the present invention automatically obtains an optimal proportional gain using a simple control system and performs good flow control.

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

図1は流量制御システムの構成図である。流体が流れる配管1に、開度を調整する例えばニードルを備えた制御弁2、流量計3が直列的に配置されている。制御弁2には開度を検出するロータリエンコーダ4が配置され、流量計3の出力、ロータリエンコーダ4の出力は演算制御装置5に接続され、演算制御装置5の出力は制御弁2に接続されている。   FIG. 1 is a configuration diagram of a flow rate control system. For example, a control valve 2 having a needle and a flow meter 3 for adjusting the opening degree are arranged in series in the pipe 1 through which the fluid flows. The control valve 2 is provided with a rotary encoder 4 for detecting the opening, the output of the flow meter 3 and the output of the rotary encoder 4 are connected to the arithmetic control device 5, and the output of the arithmetic control device 5 is connected to the control valve 2. ing.

流体は配管1の配管入口6から流入し、制御弁2によって流量を調節され、流量計3により流量が測定されて配管出口7に至る。   The fluid flows from the pipe inlet 6 of the pipe 1, the flow rate is adjusted by the control valve 2, the flow rate is measured by the flow meter 3, and reaches the pipe outlet 7.

流量計3が測定した流量値は逐次に演算制御装置5に送られ、制御弁2の開度を測定するロータリエンコーダ4からの情報も演算制御装置5に送られて逐次に演算処理される。   The flow value measured by the flow meter 3 is sequentially sent to the arithmetic and control unit 5, and information from the rotary encoder 4 that measures the opening degree of the control valve 2 is also sent to the arithmetic and control unit 5 and sequentially processed.

流量制御用の制御弁には、様々な種類が使用可能であるが、本実施例ではニードル弁が使われている。流量計についても種々の形式が使用可能であるが、本実施例においては超音波流量計が用いられている。   Various types of control valves for controlling the flow rate can be used. In this embodiment, a needle valve is used. Various types of flowmeters can be used, but an ultrasonic flowmeter is used in this embodiment.

本実施例の眼目は、配管入口6の圧力変化によって最適値からずれるに至った比例制御動作(P動作)の比例ゲインを、オンラインで適切に更新してゆくことにある。比例制御動作に当たっては、制御弁2の開度をロータリエンコーダ4によって正確に把握し、予め入力しておいた開度に対する正規化流量を読み出して、環境変化後に推定される制御弁2の最大開度での流量を算出し、その結果を基に更新した比例ゲインを用いてフィードバック制御する。   The eye of this embodiment is to appropriately update the proportional gain of the proportional control operation (P operation) that has deviated from the optimum value due to the pressure change at the pipe inlet 6 online. In the proportional control operation, the opening degree of the control valve 2 is accurately grasped by the rotary encoder 4, the normalized flow rate with respect to the opening degree inputted in advance is read, and the maximum opening of the control valve 2 estimated after the environmental change is read. The flow rate in degrees is calculated, and feedback control is performed using the proportional gain updated based on the result.

図2は配管入口6での圧力Pの下で制御弁2の開度dを変えて、得られた流量Fをグラフ化したものである。これにより、初期の立ち上がり部分から勾配Kと、制御弁2の最大開度dpまで開いた時の最大流量Fpが定義される。   FIG. 2 is a graph showing the flow rate F obtained by changing the opening degree d of the control valve 2 under the pressure P at the pipe inlet 6. Accordingly, the gradient K and the maximum flow rate Fp when the control valve 2 is opened from the initial rising portion to the maximum opening degree dp are defined.

図3は配管入口6での圧力をPa〜Pdまで変えた場合のグラフ図である。図3から各圧力における勾配Ka、Kb、Kc、Kdと最大開度での流量Fap、Fbp、Fcp、Fdpがそれぞれ求められる。   FIG. 3 is a graph when the pressure at the pipe inlet 6 is changed from Pa to Pd. From FIG. 3, the gradients Ka, Kb, Kc, Kd at the respective pressures and the flow rates Fap, Fbp, Fcp, Fdp at the maximum opening are obtained.

図4は入口6での圧力が変化した場合に、各開度において得られた流量値Fa、Fb、Fc、Fdを、その時々の開度に対応して求まる制御弁2の最大開度での流量Fap、Fbp、Fcp、Fdpで除して正規化した正規化流量をグラフ化したものである。図4は配管入口6の圧力が変化しても、各開度に対する流量は正規化によって一定になることを示しており、このことから(1)式が成立することが分かる。
Fa/Fap=Fb/Fbp=Fc/Fcp=Fd/Fdp ・・・(1)
FIG. 4 shows the flow rate values Fa, Fb, Fc, and Fd obtained at each opening when the pressure at the inlet 6 changes, with the maximum opening of the control valve 2 determined corresponding to the opening at that time. The normalized flow rates obtained by dividing the flow rates Fap, Fbp, Fcp, and Fdp are graphed. FIG. 4 shows that even if the pressure at the pipe inlet 6 changes, the flow rate with respect to each opening degree becomes constant by normalization. From this, it can be seen that equation (1) holds.
Fa / Fap = Fb / Fbp = Fc / Fcp = Fd / Fdp (1)

従って、運転中の流量がFeであるならば、それに対応する制御弁2の最大開度での流量Fepは(1)式を変換した(2)式から求められることになる。
Fep=Fe/(Fa/Fap) ・・・(2)
Therefore, if the flow rate during operation is Fe, the flow rate Fep at the maximum opening of the control valve 2 corresponding thereto is obtained from the equation (2) obtained by converting the equation (1).
Fep = Fe / (Fa / Fap) (2)

即ち、(2)式は制御弁2の開度が固定されていても、環境変化によって配管入口6の圧力が変動して流量がFaからFeに変動した場合に、制御弁2の最大開度での流量もFapからFepに変動し、その値は正規化流量(Fa/Fap)が既知であれば、現実の流量Feと合わせて演算により推定可能であることを示している。   That is, equation (2) shows that the maximum opening of the control valve 2 when the pressure at the pipe inlet 6 fluctuates due to environmental changes and the flow rate fluctuates from Fa to Fe even if the opening of the control valve 2 is fixed. The flow rate at V f also varies from Fap to Fep, and this value indicates that if the normalized flow rate (Fa / Fap) is known, it can be estimated by calculation together with the actual flow rate Fe.

また、図4に示した関係から流量は正規化されると、制御弁2の開度に対してはほぼ一致して概略1本の曲線で表されるため、正規化後の曲線の立ち上がり線形部分から、入口側圧力には依存しない正規化された比例定数Kzを定義することができる。この正規化比例定数Kzは図3に示す各入口側圧力に応じた勾配(Ka〜Kd)と、それぞれの制御弁2の最大開度での流量(Fap〜Fdp)との比に相当し、次の(3)式で表すことができる。
Kz=Ka/Fap=Kb/Fbp=Kc/Fcp=Kd/Fdp ・・・(3)
In addition, when the flow rate is normalized from the relationship shown in FIG. 4, the flow rate is almost coincident with the opening degree of the control valve 2 and is represented by a single curve. From the part, it is possible to define a normalized proportionality constant Kz that does not depend on the inlet pressure. This normalized proportional constant Kz corresponds to the ratio between the gradient (Ka to Kd) corresponding to each inlet side pressure shown in FIG. 3 and the flow rate (Fap to Fdp) at the maximum opening of each control valve 2. It can be expressed by the following equation (3).
Kz = Ka / Fap = Kb / Fbp = Kc / Fcp = Kd / Fdp (3)

図3から分かるように、いま流量制御時の環境条件が変化して、圧力が例えば図示しないPeになったとすると、そのときの勾配Ke及びその逆数である比例ゲイン(1/Ke)も変わるはずである。この際に、勾配Keは(3)式を変換した次の(4)式で表すことができる。
Ke=Kz×Fep ・・・(4)
As can be seen from FIG. 3, if the environmental conditions at the time of flow rate control change and the pressure becomes, for example, Pe (not shown), the gradient Ke at that time and the proportional gain (1 / Ke) that is the inverse thereof should also change. It is. At this time, the gradient Ke can be expressed by the following equation (4) obtained by converting the equation (3).
Ke = Kz × Fep (4)

(4)式から、求めるべき勾配Keは、正規化比例定数Kzに(2)式で求めた制御弁2の最大開度時の流量Fepを乗ずれば得られることが分る。このうち、正規化比例定数Kzは例えば一定圧力Pjの下に開度djと流量Fjの関係を得て、その勾配とその開度に対応する制御弁2の最大開度での流量Fjpから求めることができる。   From equation (4), it can be seen that the gradient Ke to be obtained can be obtained by multiplying the normalized proportionality constant Kz by the flow rate Fep at the maximum opening of the control valve 2 obtained by equation (2). Among these, the normalized proportionality constant Kz is obtained from, for example, the relationship between the opening degree dj and the flow rate Fj under a constant pressure Pj, and the gradient and the flow rate Fjp at the maximum opening degree of the control valve 2 corresponding to the opening degree. be able to.

しかし、制御弁2の最大開度での流量を制御動作中に毎回計測することは事実上不可能に近い。その課題を解決するために、本実施例ではロータリエンコーダ4を使って正確に求めた運転中の制御弁2の開度と、その開度の値に対応する流量と正規化流量を求めて演算制御装置に予め入力し、現実の流量と共に(2)式に代入して変動後の制御弁2の最大開度での流量を演算する。   However, it is virtually impossible to measure the flow rate at the maximum opening of the control valve 2 every time during the control operation. In order to solve the problem, in this embodiment, the opening degree of the control valve 2 during operation, which is accurately obtained using the rotary encoder 4, the flow rate corresponding to the opening value, and the normalized flow rate are obtained and calculated. The flow rate at the maximum opening of the control valve 2 after the fluctuation is calculated by inputting in advance to the control device and substituting it into the equation (2) together with the actual flow rate.

次いで、(4)式に従って得られた制御弁2の最大開度での流量に、これも予め入力しておいた正規化比例定数Kzを乗じて、環境が変化した後の勾配を求め、その逆数から新しい比例ゲイン(1/Ke)を算出する。   Next, the flow rate at the maximum opening of the control valve 2 obtained according to the equation (4) is multiplied by the normalized proportionality constant Kz that has also been input in advance to obtain the gradient after the environment has changed, A new proportional gain (1 / Ke) is calculated from the reciprocal.

これまでの記述では制御弁2の最大開度とそれに対応する流量を最大流量と定義したが、最大開度とは必ずしも制御弁2を全開した状態での開度とする必要はなく、制御弁2を通常に制御する開度範囲を規定し、その開度範囲内で最も開いた状態での開度としてもよい。   In the description so far, the maximum opening of the control valve 2 and the corresponding flow rate are defined as the maximum flow rate. However, the maximum opening does not necessarily have to be the opening when the control valve 2 is fully opened. An opening range in which 2 is normally controlled may be defined, and the opening in the most open state within the opening range may be used.

図5に示すフローチャート図に従って実施例1を説明する。図5のフローチャート図では、予めオフラインのステップS1において制御弁2の最大開度までの各開度dの値をロータリエンコーダ4を使って正確に求める。この開度に対応する流量Fjと、制御弁の最大開度における流量Fjpと、各流量を制御弁2の最大開度での流量Fjpで除して得た正規化流量(Fj/Fjp)を制御弁2の各開度に対応させたデータと、制御弁2の開度と流量の関係式における線形部分の勾配Kjとその逆数である比例ゲイン(1/Kj)と、制御弁2の開度と正規化流量の関係式の勾配である正規化比例定数Kzとを、予め定めて演算制御装置5に入力する。データの作成に当たっては、なるべくは多くの開度とそれに対応する流量を計測しておくことが望ましい。   The first embodiment will be described with reference to the flowchart shown in FIG. In the flowchart of FIG. 5, the value of each opening degree d up to the maximum opening degree of the control valve 2 is accurately obtained in advance in step S <b> 1 offline using the rotary encoder 4. The flow rate Fj corresponding to this opening, the flow rate Fjp at the maximum opening of the control valve, and the normalized flow rate (Fj / Fjp) obtained by dividing each flow rate by the flow rate Fjp at the maximum opening of the control valve 2 Data corresponding to each opening degree of the control valve 2, the gradient Kj of the linear part in the relational expression between the opening degree and the flow rate of the control valve 2 and the proportional gain (1 / Kj) which is the inverse thereof, and the opening of the control valve 2 A normalized proportionality constant Kz, which is the gradient of the relational expression between the degree and the normalized flow rate, is predetermined and input to the arithmetic and control unit 5. In creating the data, it is desirable to measure as many openings and corresponding flow rates as possible.

本実施例では制御弁2の開度は、ロータリエンコーダ4を使用して求めているが、制御弁2を駆動するパルスモータの駆動パルスを計数することによっても測定可能である。   In this embodiment, the opening degree of the control valve 2 is obtained by using the rotary encoder 4, but it can also be measured by counting the drive pulses of the pulse motor that drives the control valve 2.

オンラインにおいては、ステップS2において、運転中の制御弁2の開度dkをロータリエンコーダ4で計測し、流量計3によって流量Fkを求めてデータとして演算制御装置5に取り込む。次に、ステップS3に進んで運転中の制御弁2の開度dkに対応する実流量Fkに対応すべき正規化流量(Fj/Fjp)を、入力済みの正規化流量データから読み出す。   On-line, in step S2, the opening dk of the control valve 2 during operation is measured by the rotary encoder 4, the flow rate Fk is obtained by the flow meter 3, and is taken into the arithmetic and control unit 5 as data. Next, the process proceeds to step S3, and the normalized flow rate (Fj / Fjp) that should correspond to the actual flow rate Fk corresponding to the opening degree dk of the operating control valve 2 is read from the input normalized flow rate data.

ステップS4では、環境の変化によって変動した制御弁2の最大開度における流量Fkpを、流量計3で測定される実流量Fkとデータとして入力済みの正規化流量(Fj/Fjp)とから(2)式によって求める。このように算出された制御弁2の最大開度での流量を既知の正規化比例定数Kzと共に(4)式に代入すれば、ステップS5において更新されるべき比例勾配Kkが求まり、ステップS6において比例勾配Kkの逆数である比例ゲイン(1/Kk)が更新されることになる。   In step S4, the flow rate Fkp at the maximum opening of the control valve 2 that has fluctuated due to environmental changes is calculated from the actual flow rate Fk measured by the flow meter 3 and the normalized flow rate (Fj / Fjp) that has been input as data (2 ) Determined by the formula. If the flow rate at the maximum opening of the control valve 2 calculated in this way is substituted into the equation (4) together with a known normalized proportional constant Kz, the proportional gradient Kk to be updated in step S5 is obtained, and in step S6. The proportional gain (1 / Kk) that is the inverse of the proportional gradient Kk is updated.

このように、その時々の状況に応じた最適な比例ゲイン(1/Kk)を求めて、自動更新することを繰り返せば、継続して応答の速い流量制御が可能になる。   As described above, when the optimum proportional gain (1 / Kk) corresponding to the situation at that time is obtained and the automatic update is repeated, the flow rate control with a quick response can be continuously performed.

図6は図2と同様に制御弁2の開度と流量の関係を示したグラフ図である。図6には開度と流量の対応関係を示した曲線の上に、各開度に対応して演算された流量Fの微分係数F’が表示されている。流量の微分係数F’は制御弁2の開度と流量の関係を近似式に近似し、連続して測定された隣り合う各開度と流量の勾配から求める。しかし、流量の微分係数F’は制御弁2の開度と流量の関係を高次の方程式に近似して、そこから数学的な微分法によって求めてもよい。   FIG. 6 is a graph showing the relationship between the opening of the control valve 2 and the flow rate as in FIG. In FIG. 6, the differential coefficient F ′ of the flow rate F calculated corresponding to each opening degree is displayed on the curve showing the correspondence between the opening degree and the flow rate. The differential coefficient F ′ of the flow rate is obtained from the relationship between the opening degree of the control valve 2 and the flow rate, approximated by an approximate expression, and the adjacent opening degree and the gradient of the flow rate measured successively. However, the differential coefficient F 'of the flow rate may be obtained by approximating the relationship between the opening degree of the control valve 2 and the flow rate to a higher order equation and using a mathematical differential method therefrom.

実施例2に基づく制御方法では、実施例1が制御弁2の開度の情報を直接利用するのに対し、流量の微分係数F’を使用する。   In the control method based on the second embodiment, the first embodiment directly uses the information on the opening degree of the control valve 2, whereas the differential coefficient F ′ of the flow rate is used.

図7は実施例2の制御の流れを示したフローチャート図である。予め、オフラインのステップS1において、制御弁2の開度と流量のデータを測定し、それらの関係式における線形部の勾配Kjとその逆数である比例ゲイン(1/Kj)と、制御弁2の最大開度での流量を求めて各流量を正規化した正規化流量と、制御弁2の開度と正規化流量の関係式における直線部分の勾配である正規化比例定数Kzとを定める。入力した開度と流量のデータから近似式を求め、その近似式から各開度における流量の微分係数を算出して、それらと共に制御弁2の最大開度の流量で正規化した正規化微分係数とをデータにして演算制御装置5に入力する。   FIG. 7 is a flowchart showing the control flow of the second embodiment. In advance, in offline step S <b> 1, the opening degree and flow rate data of the control valve 2 are measured, and the linear portion gradient Kj and the proportional gain (1 / Kj) that is the reciprocal thereof in the relational expression thereof, A normalized flow rate obtained by normalizing each flow rate by obtaining a flow rate at the maximum opening degree, and a normalized proportional constant Kz that is a gradient of a linear portion in a relational expression between the opening degree of the control valve 2 and the normalized flow rate are determined. An approximate expression is obtained from the input opening degree and flow rate data, a differential coefficient of the flow rate at each opening degree is calculated from the approximate expression, and the normalized differential coefficient normalized with the maximum opening flow rate of the control valve 2 together with them. Are input to the arithmetic and control unit 5 as data.

次に、オンラインにおいてはステップS2において運転中の制御弁2の複数の開度dmをロータリエンコーダ4により正確に計測し、流量Fmを流量計3により計測する。更に、ステップ3において計測された制御弁2の開度dmに対応する流量Fmの正規化微分係数(Fj’/Fjp)を入力済みの正規化微分係数データから読み出す。   Next, in step S 2, the plurality of openings dm of the operating control valve 2 are accurately measured by the rotary encoder 4 and the flow rate Fm is measured by the flow meter 3 in step S 2. Further, the normalized differential coefficient (Fj ′ / Fjp) of the flow rate Fm corresponding to the opening degree dm of the control valve 2 measured in step 3 is read from the input normalized differential coefficient data.

微分係数を利用する場合には、制御弁2の開度dmに対する流量Fmのデータとして、連続した開度と流量の関係式における2点、例えば(d3、F3)と(d4、F4)が得られる。この環境下における制御弁2の最大開度での流量Fmpは、現開度において実際に計測された勾配(F4−F3)/(d4−d3)と、その開度に対応する正規化微分係数を予め保存しておいたデータから得て、次の(5)式から求める。
Fmp={(F4−F3)/(d4−d3)}/(Fj’/Fjp) ・・・(5)
When the differential coefficient is used, as data of the flow rate Fm with respect to the opening degree dm of the control valve 2, two points in the relational expression between the continuous opening degree and the flow rate, for example, (d3, F3) and (d4, F4) are obtained. It is done. The flow rate Fmp at the maximum opening of the control valve 2 under this environment is the gradient (F4-F3) / (d4-d3) actually measured at the current opening and the normalized differential coefficient corresponding to the opening. Is obtained from data stored in advance, and obtained from the following equation (5).
Fmp = {(F4-F3) / (d4-d3)} / (Fj ′ / Fjp) (5)

このように、図7のフローチャート図ではステップS4において計測したデータから得た勾配を正規化微分係数で除して、現実の制御弁2の開度に対応する最大開度時の流量Fmpを(5)式に従って推定する。制御弁2の最大開度時の流量Fmpが求まると、ステップS5に移って入力済みの正規化比例定数Kzと共に(4)式に代入して新しい勾配Kmが算出される。   Thus, in the flowchart of FIG. 7, the gradient obtained from the data measured in step S4 is divided by the normalized differential coefficient, and the flow rate Fmp at the maximum opening corresponding to the actual opening of the control valve 2 is expressed as ( 5) Estimate according to equation. When the flow rate Fmp at the time of the maximum opening of the control valve 2 is obtained, the process proceeds to step S5 and is substituted into the equation (4) together with the input normalized proportional constant Kz to calculate a new gradient Km.

ステップS6では求めた新しい勾配Kmの逆数から新しい比例ゲイン(1/Km)を算出し、求めた新しい比例ゲインによって制御弁2を制御する。   In step S6, a new proportional gain (1 / Km) is calculated from the reciprocal of the obtained new gradient Km, and the control valve 2 is controlled by the obtained new proportional gain.

これまで制御弁2の最大開度時の流量を求めるに当っては、実施例1では制御弁の開度と流量そのものを利用する方法を用い、実施例2では制御弁2の開度と流量の微分係数を利用する方法を示した。これらに対して、実施例3では制御弁2の開度と流量の関係から求めた最大開度時の流量と、制御弁2の開度と流量の微分係数の関係から求めた最大開度時の流量それぞれに重みを付けて平均化する(6)式を使うことによって制御を行う。
Fpav=(Fp1×ρ1+Fp2×ρ2)/(ρ1+ρ2) ・・・(6)
In order to obtain the flow rate at the maximum opening degree of the control valve 2 so far, the method of using the control valve opening degree and the flow rate itself is used in the first embodiment, and the opening degree and flow rate of the control valve 2 in the second embodiment. The method using the derivative of is shown. On the other hand, in Example 3, the flow rate at the maximum opening degree obtained from the relationship between the opening degree and the flow rate of the control valve 2 and the maximum opening degree obtained from the relationship between the opening degree of the control valve 2 and the differential coefficient of the flow rate. Control is performed by using the equation (6) that weights and averages each flow rate.
Fpav = (Fp1 × ρ1 + Fp2 × ρ2) / (ρ1 + ρ2) (6)

ここで、Fpavは重み付の平均化演算で求めた最大開度時の流量である。
Fp1は開度と流量から求めた制御弁2の最大開度時の流量である。
ρ1は開度と流量によって推定された最大開度時の流量に対する重み係数である。
Fp2は制御弁2の開度と流量の微分係数F’から求めた最大開度時の流量である。
ρ2は制御弁2の開度と流量の微分係数F’によって推定された最大開度時の流量に対する重み係数である。
Here, Fpav is the flow rate at the maximum opening obtained by weighted averaging calculation.
Fp1 is the flow rate at the maximum opening degree of the control valve 2 obtained from the opening degree and the flow rate.
ρ1 is a weight coefficient for the flow rate at the maximum opening degree estimated from the opening degree and the flow rate.
Fp2 is the flow rate at the maximum opening obtained from the opening degree of the control valve 2 and the differential coefficient F ′ of the flow rate.
ρ2 is a weighting factor for the flow rate at the maximum opening degree estimated by the differential coefficient F ′ of the opening degree and flow rate of the control valve 2.

制御システムの構成図である。It is a block diagram of a control system. 一定圧力における制御弁の開度と流量の関係のグラフ図である。It is a graph of the relationship between the opening degree of the control valve and the flow rate at a constant pressure. 複数の入力圧力の基で、制御弁の開度と流量の関係のグラフ図である。It is a graph of the relationship between the opening degree of the control valve and the flow rate based on a plurality of input pressures. 正規化後の流量と制御弁の開度との関係のグラフ図である。It is a graph of the relationship between the flow volume after normalization and the opening degree of a control valve. 実施例1の制御の流れのフローチャート図である。FIG. 3 is a flowchart of a control flow according to the first embodiment. 一定圧力における開度と流量の近似式において各開度に対する流量の微分係数を表示したグラフ図である。It is the graph which displayed the differential coefficient of the flow volume with respect to each opening degree in the approximate expression of the opening degree and flow volume in a fixed pressure. 実施例2の制御の流れのフローチャート図である。It is a flowchart figure of the flow of control of Example 2.

符号の説明Explanation of symbols

1 配管
2 制御弁
3 流量計
4 ロータリエンコーダ
5 演算制御装置
6 配管入口
7 配管出口
1 Piping 2 Control valve 3 Flow meter 4 Rotary encoder 5 Arithmetic control device 6 Piping inlet 7 Piping outlet

Claims (5)

流量計により流体の流量を計測し、比例ゲインを用いた比例制御動作により制御弁を駆動して流量制御を行う場合に、予めオフラインにおいて制御プロセスの条件を求めておき、オンラインにおいてこれらの条件を使用して前記比例ゲインを更新し、更新した前記比例ゲインを用いて流体制御を行う流量制御方法において、
前記オフラインにおいては、前記制御弁の入口側の圧力を一定にして、前記制御弁を全閉状態と最大開度の間で駆動して、前記制御弁の開度と前記流量計から得た流量との対応関係から求めた勾配の逆数と、前記勾配を前記制御弁の最大開度時の流量で除して得られる正規化比例定数と、前記制御弁の各開度に対応する前記流量計から得た各流量を前記制御弁の最大開度時の流量で除して求めた正規化流量を前記制御弁の開度と対応させたデータとを演算制御装置に予め入力する予備工程を有し、
前記オンラインにおいては、前記制御弁の運転中の開度とそれに対応する流量を計測する第1の工程と、
前記制御弁の運転中の開度に対応すべき正規化流量を、予め入力しておいた前記データから読み出す第2の工程と、
前記制御弁の運転中の開度に対応する実流量を流量計で計測して、得られた実流量を前記第2の工程で読み出した前記正規化流量で除して、運転中の環境に対応する前記制御弁の最大開度時の流量を演算によって求める第3の工程と、
該第3の工程で求めた前記制御弁の最大開度での流量と前記オフラインで設定した前記正規化比例定数とを基に前記制御弁の開度と流量の関係から得られる前記勾配を算出し、その逆数から新たな前記比例ゲインを求めて前記演算制御装置に設定する第4の工程と、
前記流量計により流量を測定しながら前記比例ゲインを使う比例制御動作により前記制御弁を駆動して、前記流量をフィードバック制御する第5の工程とから成り、
前記第1〜第5の工程を繰り返すことを特徴とする流量制御方法。
When the flow rate of fluid is measured by a flow meter and the control valve is driven by proportional control operation using proportional gain to perform flow control, the control process conditions are obtained offline in advance, and these conditions are set online. In the flow rate control method in which the proportional gain is updated using and the fluid control is performed using the updated proportional gain.
In the offline mode, the pressure on the inlet side of the control valve is made constant, the control valve is driven between the fully closed state and the maximum opening, and the opening of the control valve and the flow rate obtained from the flow meter And the flow rate meter corresponding to each opening degree of the control valve, a reciprocal of the slope obtained from the correspondence relationship, a normalized proportionality constant obtained by dividing the slope by the flow rate at the maximum opening degree of the control valve, and There is a preliminary step of previously inputting into the arithmetic and control unit the data obtained by dividing each flow rate obtained from the above by the flow rate at the maximum opening degree of the control valve and the data corresponding to the opening degree of the control valve. And
In the online, a first step of measuring the opening degree of the control valve during operation and the corresponding flow rate;
A second step of reading out the normalized flow rate that should correspond to the opening during operation of the control valve from the previously input data;
The actual flow rate corresponding to the opening degree of the control valve during operation is measured with a flow meter, and the obtained actual flow rate is divided by the normalized flow rate read out in the second step, to the operating environment. A third step of calculating the flow rate at the maximum opening of the corresponding control valve by calculation;
The gradient obtained from the relationship between the opening degree and the flow rate of the control valve is calculated based on the flow rate at the maximum opening degree of the control valve obtained in the third step and the normalized proportionality constant set offline. A fourth step of obtaining a new proportional gain from the reciprocal and setting it in the arithmetic control device;
The control valve is driven by a proportional control operation using the proportional gain while measuring the flow rate with the flow meter, and includes a fifth step of feedback controlling the flow rate,
A flow rate control method characterized by repeating the first to fifth steps.
流量計により流体の流量を測定しながら前記比例ゲインを使う比例動作により流体の流量制御を行う場合に、前記制御弁の複数の開度に対応する流量の関係を近似式に近似し、運転中の前記開度に対応する流量の微分係数及び流量の正規化微分係数を求めて前記制御弁の最大開度時の流量を算出し、これを用いて比例ゲインを得ることを特徴とする請求項1に記載の流量制御方法。   When the flow rate of fluid is controlled by proportional action using the proportional gain while measuring the flow rate of fluid with a flow meter, the relationship between the flow rates corresponding to the multiple openings of the control valve is approximated by an approximate expression, The flow rate at the maximum opening degree of the control valve is calculated by obtaining the differential coefficient of the flow rate corresponding to the opening degree and the normalized differential coefficient of the flow rate, and using this, the proportional gain is obtained. The flow rate control method according to 1. 前記開度に対応する前記制御弁の最大開度時の流量は、前記流量を使って求めた最大開度時の流量と前記流量の前記微分係数を使って求めた最大開度時の流量のそれぞれに重み係数を乗じ、平均化して求めることを特徴とする請求項2に記載の流量制御方法。   The flow rate at the maximum opening of the control valve corresponding to the opening is the flow rate at the maximum opening obtained using the flow rate at the maximum opening obtained using the flow rate and the differential coefficient of the flow rate. The flow rate control method according to claim 2, wherein each is obtained by multiplying each by a weight coefficient and averaging. 前記制御弁の最大開度時の流量は前記制御弁を使用する開度範囲での最大開度における最大流量であることを特徴とする請求項1に記載の流量制御方法。   The flow rate control method according to claim 1, wherein the flow rate at the maximum opening of the control valve is a maximum flow rate at a maximum opening in an opening range in which the control valve is used. 前記制御弁の開度はロータリエンコーダにより求めることを特徴とする請求項1に記載の流量制御方法。   The flow rate control method according to claim 1, wherein the opening degree of the control valve is obtained by a rotary encoder.
JP2008183752A 2008-07-15 2008-07-15 Flow control method Active JP5037443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183752A JP5037443B2 (en) 2008-07-15 2008-07-15 Flow control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008183752A JP5037443B2 (en) 2008-07-15 2008-07-15 Flow control method

Publications (3)

Publication Number Publication Date
JP2010026576A true JP2010026576A (en) 2010-02-04
JP2010026576A5 JP2010026576A5 (en) 2011-04-07
JP5037443B2 JP5037443B2 (en) 2012-09-26

Family

ID=41732385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183752A Active JP5037443B2 (en) 2008-07-15 2008-07-15 Flow control method

Country Status (1)

Country Link
JP (1) JP5037443B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625900B2 (en) 2014-03-31 2017-04-18 General Electric Company System for data sampling of control valves using confidence scores
JP2018128757A (en) * 2017-02-07 2018-08-16 アズビル株式会社 Maintenance time predicting device, flow rate controller, and maintenance time predicting method
JP2018136842A (en) * 2017-02-23 2018-08-30 アズビル株式会社 Maintenance determination index estimation device, flow rate control device, and maintenance determination index estimation method
JP2020021176A (en) * 2018-07-30 2020-02-06 株式会社堀場エステック Flow controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151603A (en) * 1982-03-03 1983-09-08 Yokogawa Hokushin Electric Corp Control meter provided with valve characteristic compensation
JPS60144804A (en) * 1984-01-06 1985-07-31 Toshiba Corp Flow rate controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151603A (en) * 1982-03-03 1983-09-08 Yokogawa Hokushin Electric Corp Control meter provided with valve characteristic compensation
JPS60144804A (en) * 1984-01-06 1985-07-31 Toshiba Corp Flow rate controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625900B2 (en) 2014-03-31 2017-04-18 General Electric Company System for data sampling of control valves using confidence scores
JP2018128757A (en) * 2017-02-07 2018-08-16 アズビル株式会社 Maintenance time predicting device, flow rate controller, and maintenance time predicting method
JP2018136842A (en) * 2017-02-23 2018-08-30 アズビル株式会社 Maintenance determination index estimation device, flow rate control device, and maintenance determination index estimation method
JP2020021176A (en) * 2018-07-30 2020-02-06 株式会社堀場エステック Flow controller

Also Published As

Publication number Publication date
JP5037443B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
CN106774468B (en) Flow rate controlling method
US8146481B2 (en) Actuator, actuator control method, and actuator control program
JP6342665B2 (en) Control unit, control method and control valve device for control valve
JP5037443B2 (en) Flow control method
KR20150060788A (en) Method and apparatus for self verification of pressure based mass flow controllers
JP2008510147A (en) System and method for calibration of distribution devices
CN107194019B (en) Opening degree adjusting method and device of throttle valve
KR20080108105A (en) Pressure control system with optimized performance
CN104122795A (en) Novel extremal function index based intelligent self-turning PID (Proportion Integration Differentiation) indoor temperature control algorithm
JP2020021176A (en) Flow controller
US20110301724A1 (en) Modified proportional integral derivative controller
EP3819723B1 (en) Simulation method and system for the management of a pipeline network
JP2009282819A (en) Flow control method
US20130037121A1 (en) Decoupling of controlled variables in a fluid conveying system with dead time
CN107703761B (en) Estimation method for viscous characteristic parameter of pneumatic regulating valve
CN113625549A (en) PID parameter setting method and system based on optimized path
CN113156810A (en) Natural gas pressure regulating system based on fuzzy PID control
CN103674541A (en) Method for testing performance of differential pressure valve
JP3404847B2 (en) Flow control method
CN105745443A (en) Method for improving metering profiles of displacement pumps
JP2010026576A5 (en)
EP3879358B1 (en) Generalized hysteresis control
JP2010079464A (en) System and method for controlling plant
JP7294846B2 (en) Flow control valve, control device for flow control valve, method for controlling flow control valve, and control program for flow control valve
WO2019202959A1 (en) Flow control device, diagnostic method, and program for flow control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250