JP2010025630A - Non resonance type knocking sensor - Google Patents

Non resonance type knocking sensor Download PDF

Info

Publication number
JP2010025630A
JP2010025630A JP2008185029A JP2008185029A JP2010025630A JP 2010025630 A JP2010025630 A JP 2010025630A JP 2008185029 A JP2008185029 A JP 2008185029A JP 2008185029 A JP2008185029 A JP 2008185029A JP 2010025630 A JP2010025630 A JP 2010025630A
Authority
JP
Japan
Prior art keywords
piezoelectric element
piezoelectric
sensor
knocking sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008185029A
Other languages
Japanese (ja)
Other versions
JP5062759B2 (en
Inventor
Ryotaro Tawara
良太郎 俵
Tomohiro Hirata
智大 平田
Masato Yamazaki
正人 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008185029A priority Critical patent/JP5062759B2/en
Priority to EP09003122.0A priority patent/EP2099082B1/en
Priority to US12/397,956 priority patent/US8040024B2/en
Priority to CN2009101183969A priority patent/CN101525233B/en
Publication of JP2010025630A publication Critical patent/JP2010025630A/en
Application granted granted Critical
Publication of JP5062759B2 publication Critical patent/JP5062759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor of non resonance type knocking including a piezoelectric element comprising piezoelectric ceramic superior in piezoelectric characteristics and temperature characteristics, having a larger sensor output and smaller variation in sensor output with respect to temperature change in sensor use environment than that in the prior art. <P>SOLUTION: The non resonance type knocking sensor 100 includes a piezoelectric element 150, a support member 120 including a support body part 122 supporting the piezoelectric element 150, and a weight member 170 disposed on the piezoelectric element 150 and pressing the piezoelectric element 150 toward the support body part 122 side. The piezoelectric element 150 includes the piezoelectric ceramic expressed by Pb<SB>m</SB>äZr<SB>1-x-y-z</SB>Ti<SB>x</SB>Sn<SB>y</SB>(Sb<SB>1-n</SB>Nb<SB>n</SB>)<SB>z</SB>}O<SB>3</SB>(where 1.000≤m≤1.075, 0.470≤x<0.490, 0.020≤y≤0.040, 0<n<1.000, and 0<z≤0.025 are satisfied), wherein the crystallite size is 30 to 39 nm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関のエンジンブロック等に取り付けられ、内燃機関で発生するノッキングを検知する非共振型ノッキングセンサに関し、特に、圧電素子と、これを支持する支持部材と、圧電素子に所定の押圧力を加えるための錘部材とを備える非共振型ノッキングセンサに関する。   The present invention relates to a non-resonant type knocking sensor that is attached to an engine block or the like of an internal combustion engine and detects knocking that occurs in the internal combustion engine. The present invention relates to a non-resonant knock sensor including a weight member for applying pressure.

従来より、内燃機関のエンジンブロック等に取り付けられ、内燃機関で発生するノッキングを検知する非共振型ノッキングセンサ(以下、単に「ノッキングセンサ」ともいう)が知られている(特許文献1参照)。このようなノッキングセンサは、筒状部とこの基端側に設けられたフランジ状の支持本体部とからなる支持部材を備える。筒状部の外周には、圧電素子や錘部材等の部材が配置され、これらの部材が支持本体部に支持されている。そして、圧電素子等は、モールド成形された樹脂被覆体により覆われてシールされている。   Conventionally, a non-resonant type knocking sensor (hereinafter also simply referred to as “knocking sensor”) that is attached to an engine block or the like of an internal combustion engine and detects knocking that occurs in the internal combustion engine is known (see Patent Document 1). Such a knocking sensor includes a support member including a cylindrical portion and a flange-shaped support main body portion provided on the base end side. Members such as a piezoelectric element and a weight member are disposed on the outer periphery of the cylindrical portion, and these members are supported by the support main body portion. The piezoelectric element or the like is covered and sealed with a molded resin coating.

ところで、内燃機関に取り付けられて使用に供されるノッキングセンサは、内燃機関が始動直後で冷えている冷間始動時から、高負荷で運転している高温時まで、幅広い温度範囲でも安定したセンサ出力(出力電圧)が得られる仕様が求められる。従って、ノッキングセンサを構成する部品の1つである圧電素子にも同様の仕様が求められる。   By the way, the knocking sensor attached to the internal combustion engine and used for use is a sensor that is stable even in a wide temperature range from the cold start when the internal combustion engine is cooled immediately after the start to the high temperature when the engine is operating at a high load. Specifications that can provide output (output voltage) are required. Therefore, the same specification is required for the piezoelectric element which is one of the components constituting the knocking sensor.

しかし、圧電素子を構成する圧電セラミックとしては、チタン酸ジルコン酸鉛(以下、単に「PZT」ともいう)が主流として用いられているが、この圧電素子を有するノッキングセンサでは、温度変化に対する出力変化が比較的大きい(換言すると、温度特性のばらつきが比較的大きい)傾向にある。そのため、幅広い温度範囲で温度特性のばらつきが小さい圧電素子が望まれている。   However, lead zirconate titanate (hereinafter also simply referred to as “PZT”) is mainly used as the piezoelectric ceramic constituting the piezoelectric element. However, in the knocking sensor having this piezoelectric element, the output change with temperature change Tends to be relatively large (in other words, variations in temperature characteristics are relatively large). Therefore, a piezoelectric element having a small variation in temperature characteristics over a wide temperature range is desired.

こういった状況において、PZT(チタン酸ジルコン酸鉛)にSnを添加して熱的安定性を向上させ、さらにNb及びSbを添加してソフト化(結晶ひずみを大きくして圧電特性を向上させること)と低温焼結を可能とした圧電磁器組成物が知られている(特許文献2〜4)。   Under these circumstances, Sn is added to PZT (lead zirconate titanate) to improve thermal stability, and Nb and Sb are added to soften it (increasing crystal distortion to improve piezoelectric characteristics). And piezoelectric ceramic compositions that enable low-temperature sintering (Patent Documents 2 to 4).

特開2001−4476号公報Japanese Patent Laid-Open No. 2001-4476 特許第2789374号公報Japanese Patent No. 2789374 特許第2964265号公報Japanese Patent No. 2964265 特許第2957002号公報Japanese Patent No. 2957002

しかしながら、特許文献2〜4の圧電磁器組成物では、圧電特性や温度特性の改善の点で不充分である。例えば、ノッキングセンサでは、圧電特性(感度)の指標である圧電定数d33としては340以上であるものが望ましいが、このような高い圧電定数を有する圧電磁器組成物は報告されていない。また、ノッキングセンサでは、エンジンブロック等に取り付けられて使用されるが故に、最高温度が170℃程度に達する場合があり、耐熱性の指標であるキュリー温度が340℃以上であることが望ましいがこのような高いキュリー温度が得られる圧電磁器組成物は報告されていない。   However, the piezoelectric ceramic compositions of Patent Documents 2 to 4 are insufficient in terms of improving piezoelectric characteristics and temperature characteristics. For example, in a knocking sensor, a piezoelectric constant d33 that is an index of piezoelectric characteristics (sensitivity) is desirably 340 or more, but no piezoelectric ceramic composition having such a high piezoelectric constant has been reported. In addition, since the knocking sensor is used by being attached to an engine block or the like, the maximum temperature may reach about 170 ° C., and the Curie temperature, which is an index of heat resistance, is preferably 340 ° C. or higher. A piezoelectric ceramic composition capable of obtaining such a high Curie temperature has not been reported.

そこで、本発明は、圧電特性及び温度特性に優れた圧電セラミックからなる圧電素子を備えた非共振型ノッキングであって、センサ出力が従来よりも大きく、センサ使用環境の温度変化に対するセンサ出力の変化が小さい非共振型ノッキングセンサを提供することを目的とする。   Therefore, the present invention is a non-resonant type knocking provided with a piezoelectric element made of a piezoelectric ceramic having excellent piezoelectric characteristics and temperature characteristics, wherein the sensor output is larger than the conventional one, and the change of the sensor output with respect to the temperature change of the sensor operating environment. An object of the present invention is to provide a non-resonant type knocking sensor having a small value.

本発明者は、Pb−Zr−Ti−Sn−Sb−Nb系酸化物の組成、及び、その結晶子径を制御することにより、耐熱性が高く、高い圧電特性を有する圧電セラミックとなることを見出し、さらにこの圧電セラミックからなる圧電素子が非共振型ノッキングセンサとして最適な圧電素子であることを見出した。   The present inventor has determined that a piezoelectric ceramic having high heat resistance and high piezoelectric characteristics can be obtained by controlling the composition of the Pb—Zr—Ti—Sn—Sb—Nb-based oxide and the crystallite diameter thereof. Further, the inventors have found that a piezoelectric element made of this piezoelectric ceramic is an optimum piezoelectric element as a non-resonant type knocking sensor.

即ち、本発明の非共振型ノッキングセンサは、圧電素子と、前記圧電素子を支持する支持本体部を有する支持部材と、前記圧電素子上に配置され、該圧電素子を前記支持本体部側に向けて押圧する錘部材と、を備える非共振型ノッキングセンサであって、前記圧電素子は、Pb{Zr1−x−y−zTiSn(Sb1−nNb}O(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表され、結晶子径が30〜39nmである圧電セラミックからなることを特徴とする。 That is, the non-resonant type knocking sensor of the present invention is disposed on the piezoelectric element, a support member having a support body part that supports the piezoelectric element, and the piezoelectric element is directed to the support body part side. A non-resonant type knocking sensor including a weight member that presses the piezoelectric element, wherein the piezoelectric element is Pb m {Zr 1−x−yz Ti x Sn y (Sb 1−n Nb n ) z } O 3. (In the formula, 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025. It is made of a piezoelectric ceramic having a crystallite diameter of 30 to 39 nm.

また、本発明の非共振型ノッキングセンサは、圧電素子と、前記圧電素子を支持する支持本体部を有する支持部材と、前記圧電素子上に配置され、該圧電素子を前記支持本体部側に向けて押圧する錘部材と、を備える非共振型ノッキングセンサであって、前記圧電素子は、Pb{Zr1−x−y−zTiSn(Sb1−nNb}O(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表され、圧電定数d33が340pC/N以上である圧電セラミックからなることを特徴とする。 The non-resonant type knocking sensor of the present invention is arranged on the piezoelectric element, a support member having a support main body part that supports the piezoelectric element, and facing the support main body part side. A non-resonant type knocking sensor including a weight member that presses the piezoelectric element, wherein the piezoelectric element is Pb m {Zr 1−x−yz Ti x Sn y (Sb 1−n Nb n ) z } O 3. (In the formula, 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025. And a piezoelectric constant d33 of 340 pC / N or more.

本発明の圧電素子を構成する圧電セラミックは、PbTiO−PbZrO系(チタン酸ジルコン酸鉛)を基本組成としている。PbTiOは正方晶系に属する強誘電体であり、結晶構造内のTiをZrで置換固溶すると、Zr固溶量が約53mol%で菱面体晶相へ変化する。このように組成により結晶系が変わる相境界をモルフォトロピック相境界(MPB)と呼び、この近傍で圧電性が極大を示すことが知られている。一方、モルフォトロピック相境界の近傍では結晶の安定性が低下し、正殿容量Cpの温度に対する変動が大きくなる。 The piezoelectric ceramic constituting the piezoelectric element of the present invention has a basic composition of PbTiO 3 —PbZrO 3 system (lead zirconate titanate). PbTiO 3 is a ferroelectric substance belonging to the tetragonal system, and when Ti in the crystal structure is substituted and dissolved with Zr, the amount of Zr solid solution is changed to a rhombohedral phase at about 53 mol%. Such a phase boundary where the crystal system changes depending on the composition is called a morphotropic phase boundary (MPB), and it is known that the piezoelectricity exhibits a maximum in this vicinity. On the other hand, in the vicinity of the morphotropic phase boundary, the stability of the crystal is lowered, and the variation of the corrugated capacitance Cp with respect to temperature increases.

そこで、本発明の圧電素子を構成する圧電セラミックは、モルフォトロピック相境界領域から組成をずらし、さらに、Sn,Sb,Nbを含有(添加)した置換効果により、圧電性と静電容量Cpの温度に対する安定性を両立すべく、Pb{Zr1−x−y−zTiSn(Sb1−nNb}O(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表される組成を有するものとする。 Therefore, the piezoelectric ceramic constituting the piezoelectric element of the present invention shifts the composition from the morphotropic phase boundary region, and further, by the substitution effect containing (adding) Sn, Sb, Nb, the piezoelectricity and the temperature of the capacitance Cp. Pb m {Zr 1−x−yz Ti x Sn y (Sb 1−n Nb n ) z } O 3 (where 1.000 ≦ m ≦ 1.075, 0 .470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025).

圧電素子を構成する圧電セラミックの組成を上記範囲とすることで、圧電定数d33を340pC/N以上とすることができる。圧電定数d33は、圧電現象の正効果(圧力→電気)で応力を加え発生する電荷量で表される。圧電定数d33が大きいほど、負荷により発生する電荷量が大きくなり、その結果、ノッキングセンサのセンサ出力が大きくなる。   By setting the composition of the piezoelectric ceramic constituting the piezoelectric element within the above range, the piezoelectric constant d33 can be set to 340 pC / N or more. The piezoelectric constant d33 is represented by the amount of charge generated by applying stress due to the positive effect of the piezoelectric phenomenon (pressure → electricity). As the piezoelectric constant d33 increases, the amount of charge generated by the load increases, and as a result, the sensor output of the knocking sensor increases.

m<1の場合、PZTの組成からずれ、圧電定数d33が小さくなる。m>1.075の場合、圧電磁器組成物内部にPbOが生成され、圧電定数d33が小さくなる。
x<0.470の場合、Ti含有量が少ないために、ΔCp>2500ppm/Kとなるおそれがある。また、0.490≦xの場合、圧電定数d33が小さくなりがちで、熱に対するd33劣化率が大きくなる傾向がある。
y<0.020の場合、Sn含有量が少ないために、キュリー温度Tcが低下することがある。
n=0の場合、Nbを含まないために結晶の安定性が低下する。n=1.0000の場合、Sbを含まないために同様に結晶の安定性が低下する。
z=0の場合、NbとSbの両方を含まないために、焼結温度が高くなり、後述する結晶子径を所定範囲に規定することができない。また、熱に対するd33劣化率も低下する傾向にある。0.025≦zの場合、NbとSbの含有量が多くなり過ぎ、ΔCp>2500ppm/Kとなったり、キュリー温度Tcが低下したりすることがある。
When m <1, it deviates from the composition of PZT and the piezoelectric constant d33 becomes small. When m> 1.075, PbO is generated inside the piezoelectric ceramic composition, and the piezoelectric constant d33 decreases.
In the case of x <0.470, since Ti content is small, there is a possibility that ΔCp> 2500 ppm / K. In the case of 0.490 ≦ x, the piezoelectric constant d33 tends to be small, and the d33 deterioration rate with respect to heat tends to be large.
In the case of y <0.020, since the Sn content is small, the Curie temperature Tc may decrease.
When n = 0, since Nb is not included, the stability of the crystal is lowered. In the case of n = 1.0000, the stability of the crystal similarly decreases because Sb is not included.
When z = 0, since both Nb and Sb are not included, the sintering temperature becomes high, and the crystallite diameter described later cannot be defined within a predetermined range. Also, the d33 deterioration rate with respect to heat tends to decrease. In the case of 0.025 ≦ z, the contents of Nb and Sb are excessively increased, and ΔCp> 2500 ppm / K may be obtained, or the Curie temperature Tc may be lowered.

さらに、本発明の圧電素子の圧電セラミックは、結晶子径が30〜39nmである。結晶子径とは、単結晶とみなせる最大の領域をいい、結晶の完全性の指標となる。通常の物質は複数の結晶子から構成されている。   Furthermore, the piezoelectric ceramic of the piezoelectric element of the present invention has a crystallite diameter of 30 to 39 nm. The crystallite diameter is the maximum region that can be regarded as a single crystal and is an index of crystal perfection. A normal substance is composed of a plurality of crystallites.

結晶子径が30nm未満であると結晶が同じ向きに揃うドメイン(領域)が小さくなり、圧電特性が向上しにくくなる。理論的には、焼成温度を高くすることで結晶子径が大きくすることができ、圧電特性は向上するが、実際には組成物中の揮発元素(具体的には、Pb,Sn,Sb)が蒸発して組成が崩れ、かえって圧電特性が低下する。そのため、結晶子径が39nmを超えると圧電特性が低下することがある。
一方、圧電セラミックの結晶粒径は、必ずしも上記したドメインの大きさを反映するものではなく、組成物の結晶粒径を規定しても圧電特性を向上させることは難しい。但し、結晶粒径が大き過ぎると、粒間の隙間が大きくなり、負荷により発生する電荷量(センサ出力)が低下する傾向にある。
このようなことから、本発明においては、圧電素子の圧電セラミックを、結晶粒径で制御するのでなく、結晶子径で30〜39nmと定めている。
When the crystallite diameter is less than 30 nm, the domains (regions) in which the crystals are aligned in the same direction are small, and the piezoelectric characteristics are difficult to improve. Theoretically, by increasing the firing temperature, the crystallite diameter can be increased and the piezoelectric properties are improved, but in reality, the volatile elements in the composition (specifically, Pb, Sn, Sb) Evaporates and the composition collapses, and on the contrary, the piezoelectric properties deteriorate. Therefore, when the crystallite diameter exceeds 39 nm, the piezoelectric characteristics may be deteriorated.
On the other hand, the crystal grain size of the piezoelectric ceramic does not necessarily reflect the size of the domain, and it is difficult to improve the piezoelectric characteristics even if the crystal grain size of the composition is defined. However, if the crystal grain size is too large, the gap between grains tends to increase, and the amount of charge (sensor output) generated by the load tends to decrease.
For this reason, in the present invention, the piezoelectric ceramic of the piezoelectric element is determined not to be controlled by the crystal grain size but to a crystallite size of 30 to 39 nm.

この結晶子径は、焼成温度、仮焼条件、原料の粉砕径等を変えることによって制御することができる。なお結晶子径の測定は、試料のXRD(X線回折)を行い、入射X線の拡がりを表す半値幅(又は積分幅)をScherrerの式に代入して求めることができる。Scherrerの式によれば、D=Kλ/(βcosθ)で表される(D:結晶子径、K:Scherrer定数、λ:X線波長、β:反射X線の半値半幅、θ:回折角)。   This crystallite diameter can be controlled by changing the firing temperature, calcination conditions, the pulverized diameter of the raw material, and the like. The crystallite diameter can be measured by performing XRD (X-ray diffraction) of a sample and substituting the half width (or integral width) representing the spread of incident X-rays into the Scherrer equation. According to the Scherrer equation, D = Kλ / (βcos θ) (D: crystallite diameter, K: Scherrer constant, λ: X-ray wavelength, β: half-width of reflected X-ray, θ: diffraction angle) .

本発明によれば、圧電特性及び温度特性に優れた圧電セラミックからなる圧電素子を備えた非共振型ノッキングが得られ、センサ出力が従来よりも大きく、センサ使用環境の温度変化に対するセンサ出力の変化が小さい非共振型ノッキングセンサが得られる。また、本発明の非共振ノッキングセンサによれば、センサ出力が従来よりも大きくなるが、センサ出力が従来と同じレベルで良い場合には、圧電素子を押圧する錘部材の重さを軽くすることができ、従来よりもノッキングセンサの軽量化、小型化を図りつつ、ノッキングセンサの周波数特性をフラット化することが可能となる。   According to the present invention, a non-resonant type knocking having a piezoelectric element made of a piezoelectric ceramic having excellent piezoelectric characteristics and temperature characteristics is obtained, the sensor output is larger than before, and the change of the sensor output with respect to the temperature change of the sensor usage environment Can be obtained. Further, according to the non-resonant knocking sensor of the present invention, the sensor output becomes larger than the conventional one, but when the sensor output is the same level as the conventional one, the weight of the weight member that presses the piezoelectric element is reduced. Therefore, it is possible to flatten the frequency characteristics of the knocking sensor while reducing the weight and size of the knocking sensor as compared with the prior art.

本発明の実施の形態を、図面を参照しつつ説明する。本実施形態の非共振型ノッキングセンサ100は、図1に断面図を示すように、中心部に取付孔120bを有する、いわゆるセンターホール式のノッキングセンサである。このノッキングセンサ100は、図2に分解斜視図に示すように、円筒状の筒状部121とこの基端121cに位置し、筒状部121の径方向外側に向かって突出する円環状の支持本体部122とからなる支持部材120を有する。なお、支持部材120は、炭素鋼からなる。   Embodiments of the present invention will be described with reference to the drawings. The non-resonant type knocking sensor 100 of the present embodiment is a so-called center hole type knocking sensor having a mounting hole 120b in the center as shown in a sectional view in FIG. As shown in the exploded perspective view of FIG. 2, the knocking sensor 100 is located at the cylindrical tubular portion 121 and the base end 121c, and has an annular support protruding toward the radially outer side of the tubular portion 121. A support member 120 including the main body portion 122 is included. The support member 120 is made of carbon steel.

この支持部材121の筒状部121の外周には、支持本体部122側から順に、円環状のPETからなる第1絶縁板130、円環状の黄銅からなる第1電極板140、円環状の圧電素子150、円環状の黄銅からなる第2電極板160、円環状のPETからなる第2絶縁板135、円環状の真鍮からなる錘部材170、及び皿バネ180が嵌め込まれている。さらに、内周面にネジ部185bが形成されたナット185が筒状部121の外周面に形成されたネジ部121bに螺合され、第1、第2絶縁板130、135、第1、第2電極板140、160、圧電素子150、錘部材170、及び皿バネ180が支持本体部122とナット185との間に挟まれて固定され、センサ本体190を形成している。これにより、錘部材171が所定の押圧力を圧電素子150に対して加え、この圧電素子150を支持本体部121側に向けて押圧することになる。   On the outer periphery of the cylindrical portion 121 of the support member 121, in order from the support main body portion 122 side, a first insulating plate 130 made of annular PET, a first electrode plate 140 made of annular brass, and an annular piezoelectric plate. The element 150, the second electrode plate 160 made of annular brass, the second insulating plate 135 made of annular PET, the weight member 170 made of annular brass, and the disc spring 180 are fitted. Further, a nut 185 having a screw portion 185b formed on the inner peripheral surface is screwed into a screw portion 121b formed on the outer peripheral surface of the cylindrical portion 121, and the first and second insulating plates 130, 135, first, first, The two-electrode plates 140 and 160, the piezoelectric element 150, the weight member 170, and the disc spring 180 are sandwiched and fixed between the support main body portion 122 and the nut 185 to form the sensor main body 190. Accordingly, the weight member 171 applies a predetermined pressing force to the piezoelectric element 150 and presses the piezoelectric element 150 toward the support main body 121 side.

圧電素子150は、図3に示すように、円環状に形成されると共に、中央部に、支持部材120の筒状部121を内挿するための貫通孔151を有する圧電セラミック153と、この圧電セラミック153の表裏面の各々に導電性ペーストを塗布し、焼き付けてなる導電層155、157とを備える。なお、導電層155、157を構成する導電成分としては、銀、金、パラジウム、白金等の貴金属成分の単体や合金が挙げられる。   As shown in FIG. 3, the piezoelectric element 150 is formed in an annular shape, and has a piezoelectric ceramic 153 having a through-hole 151 for inserting the cylindrical portion 121 of the support member 120 in the center, and the piezoelectric element 153. Conductive layers 155 and 157 are formed by applying and baking a conductive paste on each of the front and back surfaces of the ceramic 153. In addition, as a conductive component which comprises the conductive layers 155 and 157, the simple substance and alloy of noble metal components, such as silver, gold | metal | money, palladium, and platinum, are mentioned.

ここで、圧電素子150の圧電セラミック153は、Pb{Zr1−x−y−zTiSn(Sb1−nNb}O(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表される組成を有すると共に、結晶子径が30〜39nmの範囲にある。具体的に、本実施形態では、圧電セラミック153は、Pb1.025{Zr0.473Ti0.480Sn0.030(Sb0.400Nb0.6000.017}Oで表される組成を有しており、結晶子径が32.1nmとなっている。本実施形態の上記の圧電セラミック153は、圧電特性及び温度特性に優れ、その結果、この圧電セラミック153からなる圧電素子150を備えるノッキングセンサ100は、センサ出力が従来よりも大きく、センサ使用環境の温度変化に対するセンサ出力の変化が小さいものとなった。 Here, the piezoelectric ceramic 153 of the piezoelectric element 150 is Pb m {Zr 1−x−y−Z Ti x Sn y (Sb 1−n Nb n ) z } O 3 (where 1.000 ≦ m ≦ 1). 0.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025). The crystallite diameter is in the range of 30 to 39 nm. Specifically, in this embodiment, the piezoelectric ceramic 153 is represented by Pb 1.025 {Zr 0.473 Ti 0.480 Sn 0.030 (Sb 0.400 Nb 0.600) 0.017} O 3 The crystallite diameter is 32.1 nm. The piezoelectric ceramic 153 of the present embodiment is excellent in piezoelectric characteristics and temperature characteristics. As a result, the knocking sensor 100 including the piezoelectric element 150 made of the piezoelectric ceramic 153 has a sensor output larger than that of the conventional one, and the sensor use environment is Change in sensor output with respect to temperature change is small.

図1に戻り、筒状部121と第1、第2電極板140、160及び圧電素子150との間には、円筒状のPETからなる絶縁スリーブ131が介在しており、これらの絶縁を保っている。また、第1、第2電極板140、160には、両電極間に発生したセンサ出力(電圧)を外部に出力するための第1、第2端子141、161がそれぞれ延設されている。このようなセンサ本体190が、図1に示すように、樹脂被覆体150によって被覆され、ノッキングセンサ100を内燃機関のエンジンブロックへ取り付けるための取付孔120bについては、樹脂被覆体150によって被覆されないで露出している。なお、この樹脂被覆体150によってコネクタ部113が形成され、第1、第2電極板140、160の第1、第2端子141、161の一部がコネクタ部113の内側に突出する形態で配置されている。このコネクタ部113を介してノッキングセンサ100が外部装置(例えば、エンジン制御装置)と接続される。   Returning to FIG. 1, an insulating sleeve 131 made of cylindrical PET is interposed between the cylindrical portion 121, the first and second electrode plates 140 and 160, and the piezoelectric element 150, and these insulations are maintained. ing. The first and second electrode plates 140 and 160 are extended with first and second terminals 141 and 161 for outputting a sensor output (voltage) generated between both electrodes to the outside. As shown in FIG. 1, such a sensor main body 190 is covered with a resin cover 150, and the mounting hole 120 b for attaching the knocking sensor 100 to the engine block of the internal combustion engine is not covered with the resin cover 150. Exposed. In addition, the connector part 113 is formed by this resin coating 150, and a part of the first and second terminals 141 and 161 of the first and second electrode plates 140 and 160 is arranged so as to protrude inside the connector part 113. Has been. The knocking sensor 100 is connected to an external device (for example, an engine control device) via the connector portion 113.

このようなノッキングセンサ100は、以下のようにして製造する。
まず、圧電素子150の製造について説明する。酸化物、炭酸塩又は炭酸水素塩等からなる原料粉末を、Pb1.025{Zr0.473Ti0.480Sn0.030(Sb0.400Nb0.6000.017}Oで表される組成となるように適宜配合し、エタノール、水等の分散媒に添加した後、ボールミル等により湿式混合、粉砕を行い泥漿とする。得られた泥漿を、乾燥させ原料混合粉末とする。
Such a knocking sensor 100 is manufactured as follows.
First, the manufacture of the piezoelectric element 150 will be described. Oxide, a raw material powder consisting of carbonate or bicarbonate or the like, with Pb 1.025 {Zr 0.473 Ti 0.480 Sn 0.030 (Sb 0.400 Nb 0.600) 0.017} O 3 It mix | blends suitably so that it may become the composition represented, and after adding it to dispersion media, such as ethanol and water, wet-mix and grind | pulverize with a ball mill etc. to make a slurry. The obtained slurry is dried to obtain a raw material mixed powder.

次に、例えば大気雰囲気中、600℃〜1100℃、10分〜300分の間で原料混合粉末を仮焼し、仮焼物粉末とする。さらに、仮焼物粉末に対し、例えばポリビニルアルコール、ポリビニルブチラール等の有機バインダ、水溶性バインダ、及びアルコール類、エーテル類、水等の分散媒を加え、ボールミル等により湿式粉砕を行い泥漿とする。得られた泥漿を乾燥させて造粒粉末とする。さらに、この造粒粉末を円環状に成形して、成形体とする。この成形は、例えば30MPa程度で一軸成形した後、150MPa程度で冷間等方静水圧プレス(CIP)処理することで行える。このようにして得られた成形体を、例えば大気雰囲気下、1100℃、2時間〜4時間の範囲で焼成し、焼結体を得た。
そして、この焼結体に、例えば室温〜200℃程度のシリコーンオイル等の絶縁オイル中で、3kV/mm〜20kV/mm程度の直流電圧を10分間〜100分間程度印加して分極処理を行い、圧電セラミック153を得た。
Next, for example, the raw material mixed powder is calcined at 600 ° C. to 1100 ° C. for 10 minutes to 300 minutes in an air atmosphere to obtain a calcined powder. Further, for example, an organic binder such as polyvinyl alcohol and polyvinyl butyral, a water-soluble binder, and a dispersion medium such as alcohols, ethers, and water are added to the calcined powder, and wet milling is performed by a ball mill or the like to obtain a slurry. The obtained slurry is dried to obtain a granulated powder. Further, this granulated powder is formed into an annular shape to form a molded body. This molding can be performed, for example, by uniaxial molding at about 30 MPa and then by cold isostatic pressing (CIP) at about 150 MPa. The molded body thus obtained was fired, for example, in the air atmosphere at 1100 ° C. for 2 hours to 4 hours to obtain a sintered body.
Then, a polarization treatment is performed by applying a direct current voltage of about 3 kV / mm to 20 kV / mm for about 10 minutes to 100 minutes in an insulating oil such as silicone oil at room temperature to about 200 ° C., for example. A piezoelectric ceramic 153 was obtained.

次に、上記のようにして得た圧電セラミック153の表裏面を平面研磨して電極形成面を形成し、この電極形成面に導電性ペーストを塗布し、焼き付けて導電層155、157を形成する。このようにして圧電素子150を得た。   Next, the front and back surfaces of the piezoelectric ceramic 153 obtained as described above are polished to form an electrode formation surface, and a conductive paste is applied to the electrode formation surface and baked to form conductive layers 155 and 157. . In this way, a piezoelectric element 150 was obtained.

そして、所定の形状に形成された支持部材120の筒状部121の外周に、絶縁スリーブ131、第1絶縁板130、第1電極板140、圧電素子150、第2電極板160、第2絶縁板135、錘部材170、及び皿バネ180をこの順に嵌め込む。次いで、ナット185を筒状部121のネジ部121bに螺合し、圧電素子150に錘部材170の押圧によって所定の荷重が加わるまで締め付ける。このとき、センサ本体190が形成される。その後、ポリアミド樹脂を公知の樹脂モールド成形手法によって射出成形し、図1に示すような、コネクタ部113を有する樹脂被覆体110を形成する。このとき、センサ本体190が樹脂被覆体110によって被覆される。このようにして、図1に示すような非共振型ノッキングセンサ100が完成する。   An insulating sleeve 131, a first insulating plate 130, a first electrode plate 140, a piezoelectric element 150, a second electrode plate 160, and a second insulation are formed on the outer periphery of the cylindrical portion 121 of the support member 120 formed in a predetermined shape. The plate 135, the weight member 170, and the disc spring 180 are fitted in this order. Next, the nut 185 is screwed into the screw portion 121b of the cylindrical portion 121, and is tightened until a predetermined load is applied to the piezoelectric element 150 by pressing the weight member 170. At this time, the sensor body 190 is formed. Thereafter, the polyamide resin is injection-molded by a known resin molding method to form a resin cover 110 having a connector portion 113 as shown in FIG. At this time, the sensor main body 190 is covered with the resin cover 110. In this way, the non-resonant knock sensor 100 as shown in FIG. 1 is completed.

以下、実施例を挙げて、本発明を具体的に説明するが、本発明は勿論これらの例に限定されるものではない。なお、以下では、非共振型ノッキングセンサを構成する圧電素子単体を用いて、その特性を評価した。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these examples of course. In the following, the characteristics were evaluated using a single piezoelectric element constituting the non-resonant knock sensor.

(実施例1)
それぞれ酸化鉛、酸化ジルコニウム、酸化チタン、酸化錫、酸化アンチモン、酸化ニオブの各原料粉末を準備し、焼結後の組成が表1の各発明例1〜9、比較例1〜15に示す割合となるように秤量し、混合粉末をエタノールに添加した後、ボールミルにより湿式混合、粉砕を行い、乾燥させて原料混合粉末を得た。
原料混合粉末を、大気雰囲気中、800℃、2〜3時間仮焼し、仮焼粉砕粒度約0.6〜1μmの仮焼物粉末とした。仮焼物粉末に有機バインダ、水溶性バインダおよびアルコール類を加え、ボールミルにより湿式粉砕を行い、乾燥させて造粒粉末とした。
さらに、この造粒粉末を19mm径、1.4mm厚の円環状に加圧成形した。成形は、30MPa程度で一軸成形した後、150MPa程度で冷間等方静水圧プレス(CIP)処理した。得られた成形体を、大気雰囲気中、1100℃または1300℃、2〜4時間焼成して焼結体とした。
焼結体の表裏面を平面研磨し、次いでこの表裏面の各々に銀ペーストをスクリーン印刷し、焼き付けて導電層を形成した。次いで、導電層が形成された焼結体(圧電セラミック)を、100〜150℃のシリコーンオイル中で、3〜5kV/mmの電界を与えて分極処理を行い、図3に示す形態の圧電素子を得た。
Example 1
Each raw material powder of lead oxide, zirconium oxide, titanium oxide, tin oxide, antimony oxide, and niobium oxide is prepared, and the composition after sintering is a ratio shown in each of inventive examples 1 to 9 and comparative examples 1 to 15 in Table 1. Then, the mixed powder was added to ethanol, then wet mixed and pulverized by a ball mill, and dried to obtain a raw material mixed powder.
The raw material mixed powder was calcined at 800 ° C. for 2 to 3 hours in an air atmosphere to obtain a calcined powder having a calcined and pulverized particle size of about 0.6 to 1 μm. An organic binder, a water-soluble binder, and alcohols were added to the calcined powder, wet pulverized by a ball mill, and dried to obtain a granulated powder.
Furthermore, this granulated powder was pressure-molded into an annular shape having a diameter of 19 mm and a thickness of 1.4 mm. The molding was uniaxially molded at about 30 MPa and then cold isostatically pressed (CIP) at about 150 MPa. The obtained molded body was fired in an air atmosphere at 1100 ° C. or 1300 ° C. for 2 to 4 hours to obtain a sintered body.
The front and back surfaces of the sintered body were flat-polished, and then a silver paste was screen printed on each of the front and back surfaces and baked to form a conductive layer. Next, the sintered body (piezoelectric ceramic) on which the conductive layer is formed is subjected to polarization treatment in silicone oil at 100 to 150 ° C. by applying an electric field of 3 to 5 kV / mm, and the piezoelectric element having the form shown in FIG. Got.

得られた圧電素子について、以下の項目を評価した。
(1)ΔCp(20℃〜150℃での静電容量(Cp)変化率)
インピーダンスアナライザ(型式:HP4194A、ヒューレットパッカード社製)を用い、20℃での静電容量Cp(20)と150℃での静電容量Cp(150)をそれぞれ測定した(単位:pF)。次式[[(Cp(150)−Cp(20))/Cp(20)]/[150−20]]*1000000により、ΔCpを求めた。ΔCpが2500ppm/K以下であれば、実用上問題がない。
(2)キュリー温度(Tc)
上記インピーダンスアナライザと電気炉を用いてTcを測定した。
(3)圧電定数d33
圧電定数d33の測定は、EMAS−6100に記載の共振反共振法に従い測定し、d33メーター(型式:ZJ−4B、中国科学院製)も併用して測定した。
(4)d33劣化率
初期のd33を測定した後、各試料を大気雰囲気下、250℃で10時間の耐熱試験を施し、同様にd33を測定した。次式
{(耐熱試験後の圧電定数d33)−(初期の圧電定数d33)}/(初期の圧電定数d33)により、d33劣化率を求めた。
The following items were evaluated for the obtained piezoelectric element.
(1) ΔCp (Capacitance (Cp) change rate at 20 ° C. to 150 ° C.)
Using an impedance analyzer (model: HP4194A, manufactured by Hewlett-Packard Company), the capacitance Cp (20) at 20 ° C. and the capacitance Cp (150) at 150 ° C. were measured (unit: pF). ΔCp was determined by the following equation [[(Cp (150) −Cp (20)) / Cp (20)] / [150-20]] * 1000000. If ΔCp is 2500 ppm / K or less, there is no practical problem.
(2) Curie temperature (Tc)
Tc was measured using the impedance analyzer and electric furnace.
(3) Piezoelectric constant d33
The piezoelectric constant d33 was measured according to the resonance anti-resonance method described in EMAS-6100, and was also used in combination with a d33 meter (model: ZJ-4B, manufactured by Chugaku Gakuin).
(4) d33 deterioration rate After measuring the initial d33, each sample was subjected to a heat resistance test at 250 ° C. for 10 hours in an air atmosphere, and d33 was measured in the same manner. The d33 deterioration rate was determined by the following equation {(piezoelectric constant d33 after heat test) − (initial piezoelectric constant d33)} / (initial piezoelectric constant d33).

得られた結果を表1に示す。
The obtained results are shown in Table 1.

表1から明らかなように、Pb{Zr1−x−y−zTiSn(Sb1−nNb}Oで表され、当該式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす組成とした発明例1〜9の場合、ΔCpが2500ppm/K以下、d33が340pC/N以上、Tcが340℃以上、d33劣化率が−10%以下となり、圧電特性及び温度特性に優れたものとなった。 As is clear from Table 1, Pb m {Zr 1−x−y−Z Ti x Sn y (Sb 1−n Nb n ) z } O 3 , where 1.000 ≦ m ≦ 1 .075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025 ΔCp was 2500 ppm / K or less, d33 was 340 pC / N or more, Tc was 340 ° C. or more, and d33 deterioration rate was −10% or less, and the piezoelectric characteristics and temperature characteristics were excellent.

一方、上記式において0.490≦xである比較例10の場合、d33が340pC/N未満で、d33劣化率が−10%を超え、圧電特性が大幅に劣った。
上記式においてz=0である比較例11の場合、d33劣化率が−10%を超え、圧電特性が大幅に劣ると共に、焼結温度が1300℃と高温となり、結晶粒が粗大となった。焼結温度が1300℃以上になると、以下の実施例2に示すように、d33が向上しなくなるので好ましくない。
上記式においてそれぞれn=0,1である比較例12、13の場合、ΔCpが2500ppm/Kを超えた。これは、NbとSbのいずれか1種のみを含有するため、結晶の安定性が低下したためと考えられる。
上記式においてm>1.075である比較例14の場合、圧電セラミック内部にPbOが生成し、圧電定数d33が340pC/N未満となって圧電特性が大幅に劣った。
上記式においてm<1である比較例15の場合も、圧電定数d33が340pC/N未満となって圧電特性が大幅に劣った。
On the other hand, in the case of Comparative Example 10 where 0.490 ≦ x in the above formula, d33 was less than 340 pC / N, the d33 deterioration rate exceeded −10%, and the piezoelectric characteristics were significantly inferior.
In the case of Comparative Example 11 where z = 0 in the above formula, the d33 deterioration rate exceeded −10%, the piezoelectric characteristics were significantly inferior, the sintering temperature was as high as 1300 ° C., and the crystal grains became coarse. A sintering temperature of 1300 ° C. or higher is not preferable because d33 is not improved as shown in Example 2 below.
In the case of Comparative Examples 12 and 13 where n = 0 and 1 in the above formula, ΔCp exceeded 2500 ppm / K. This is presumably because the stability of the crystal was lowered because only one of Nb and Sb was contained.
In the case of Comparative Example 14 where m> 1.075 in the above formula, PbO was generated inside the piezoelectric ceramic, and the piezoelectric constant d33 was less than 340 pC / N, so that the piezoelectric characteristics were significantly inferior.
In the case of Comparative Example 15 where m <1 in the above formula, the piezoelectric constant d33 was less than 340 pC / N and the piezoelectric characteristics were significantly inferior.

(実施例2)
実施例1の発明例1の組成について、焼結温度を変化させて圧電素子を製造した。得られた圧電素子のd33を実施例1と同様にして測定した。又、圧電素子の電極を取り去った面のXRD(X線回折)測定を行い、Scherrerの式により結晶子径を求めた。
(Example 2)
About the composition of Invention Example 1 of Example 1, the sintering temperature was changed to produce a piezoelectric element. D33 of the obtained piezoelectric element was measured in the same manner as in Example 1. Further, XRD (X-ray diffraction) measurement was performed on the surface from which the electrode of the piezoelectric element was removed, and the crystallite diameter was determined by the Scherrer equation.

得られた結果を表2及び図4に示す。
The obtained results are shown in Table 2 and FIG.

表2及び図4から明らかなように、焼結温度が1050℃〜1250℃の間にある場合、圧電定数d33が340pC/N以上となり、このときの結晶子径は30〜39nmであった。一方、焼結温度が1050℃である場合、及び1250℃を超えた場合、圧電定数d33が340pC/N未満となり、このときの結晶子径は30nm未満、または39nmを超えた。このことより、結晶子径を30〜39nmに制御することが必要である。   As is apparent from Table 2 and FIG. 4, when the sintering temperature was between 1050 ° C. and 1250 ° C., the piezoelectric constant d33 was 340 pC / N or more, and the crystallite size at this time was 30 to 39 nm. On the other hand, when the sintering temperature was 1050 ° C. and exceeded 1250 ° C., the piezoelectric constant d33 was less than 340 pC / N, and the crystallite diameter at this time was less than 30 nm or more than 39 nm. For this reason, it is necessary to control the crystallite diameter to 30 to 39 nm.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。例えば、圧電素子150や錘部材170を支持する支持部材150は炭素鋼といった金属製のものに限らず、セラミックや樹脂にて形成しても良い。   In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. . For example, the support member 150 that supports the piezoelectric element 150 and the weight member 170 is not limited to a metal member such as carbon steel, and may be formed of ceramic or resin.

実施形態にかかる非共振型ノッキングセンサ100の断面図である。1 is a cross-sectional view of a non-resonant knock sensor 100 according to an embodiment. 実施形態にかかるノッキングセンサ100の組立部品の分解斜視図である。It is a disassembled perspective view of the assembly component of the knocking sensor 100 concerning embodiment. 実施形態にかかる非共振型ノッキングセンサ100を構成する圧電素子150の斜視図である。It is a perspective view of the piezoelectric element 150 which comprises the non-resonant type knocking sensor 100 concerning embodiment. 圧電磁器組成物の結晶子径と圧電定数d33の関係を示す図である。It is a figure which shows the relationship between the crystallite diameter of a piezoelectric ceramic composition, and the piezoelectric constant d33.

符号の説明Explanation of symbols

100 非共振型ノッキングセンサ
110 樹脂被覆体
120 支持部材
121 筒状部
122 支持本体部
150 圧電素子
170 錘部材
DESCRIPTION OF SYMBOLS 100 Non-resonance type knocking sensor 110 Resin coating body 120 Support member 121 Cylindrical part 122 Support main-body part 150 Piezoelectric element 170 Weight member

Claims (2)

圧電素子と、
前記圧電素子を支持する支持本体部を有する支持部材と、
前記圧電素子上に配置され、該圧電素子を前記支持本体部側に向けて押圧する錘部材と、
を備える非共振型ノッキングセンサであって、
前記圧電素子は、Pb{Zr1−x−y−zTiSn(Sb1−nNb}O(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表され、結晶子径が30〜39nmである圧電セラミックからなる
ことを特徴とする非共振型ノッキングセンサ。
A piezoelectric element;
A support member having a support main body for supporting the piezoelectric element;
A weight member disposed on the piezoelectric element and pressing the piezoelectric element toward the support body part; and
A non-resonant knock sensor comprising:
The piezoelectric element is Pb m {Zr 1−x−yz −Ti x Sn y (Sb 1−n Nb n ) z } O 3 (where 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025), and the crystallite diameter is 30 to 39 nm. A non-resonant type knocking sensor.
圧電素子と、
前記圧電素子を支持する支持本体部を有する支持部材と、
前記圧電素子上に配置され、該圧電素子を前記支持本体部側に向けて押圧する錘部材と、
を備える非共振型ノッキングセンサであって、
前記圧電素子は、Pb{Zr1−x−y−zTiSn(Sb1−nNb}O(式中、1.000≦m≦1.075、0.470≦x<0.490、0.020≦y≦0.040、0<n<1.000、0<z≦0.025を満たす)で表され、圧電定数d33が340pC/N以上である圧電セラミックからなる
ことを特徴とする非共振型ノッキングセンサ。
A piezoelectric element;
A support member having a support main body for supporting the piezoelectric element;
A weight member disposed on the piezoelectric element and pressing the piezoelectric element toward the support body part; and
A non-resonant knock sensor comprising:
The piezoelectric element is Pb m {Zr 1−x−yz −Ti x Sn y (Sb 1−n Nb n ) z } O 3 (where 1.000 ≦ m ≦ 1.075, 0.470 ≦ x <0.490, 0.020 ≦ y ≦ 0.040, 0 <n <1.000, 0 <z ≦ 0.025), and a piezoelectric constant d33 of 340 pC / N or more A non-resonant type knocking sensor comprising:
JP2008185029A 2008-03-05 2008-07-16 Non-resonant knock sensor Active JP5062759B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008185029A JP5062759B2 (en) 2008-07-16 2008-07-16 Non-resonant knock sensor
EP09003122.0A EP2099082B1 (en) 2008-03-05 2009-03-04 Piezoceramic material, piezoelectric element and non-resonance knock sensor
US12/397,956 US8040024B2 (en) 2008-03-05 2009-03-04 Piezoceramic material, piezoelectric element and non-resonance knock sensor
CN2009101183969A CN101525233B (en) 2008-03-05 2009-03-05 Piezoceramic material, piezoelectric element and non-resonance knock sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008185029A JP5062759B2 (en) 2008-07-16 2008-07-16 Non-resonant knock sensor

Publications (2)

Publication Number Publication Date
JP2010025630A true JP2010025630A (en) 2010-02-04
JP5062759B2 JP5062759B2 (en) 2012-10-31

Family

ID=41731616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008185029A Active JP5062759B2 (en) 2008-03-05 2008-07-16 Non-resonant knock sensor

Country Status (1)

Country Link
JP (1) JP5062759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234904A (en) * 2008-03-05 2009-10-15 Ngk Spark Plug Co Ltd Piezoceramic composition, piezoelectric element using the same and non-resonance knock sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181035A (en) * 1999-12-28 2001-07-03 Tdk Corp Piezoelectric ceramic composition
JP2003322580A (en) * 2002-04-26 2003-11-14 Ngk Spark Plug Co Ltd Knocking sensor
JP2004093197A (en) * 2002-08-29 2004-03-25 Ngk Spark Plug Co Ltd Non-resonant knocking sensor
JP2006105964A (en) * 2004-09-13 2006-04-20 Denso Corp Piezoelectric sensor
JP2006151796A (en) * 2004-10-29 2006-06-15 Nagoya Institute Of Technology Piezoelectric ceramic composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181035A (en) * 1999-12-28 2001-07-03 Tdk Corp Piezoelectric ceramic composition
JP2003322580A (en) * 2002-04-26 2003-11-14 Ngk Spark Plug Co Ltd Knocking sensor
JP2004093197A (en) * 2002-08-29 2004-03-25 Ngk Spark Plug Co Ltd Non-resonant knocking sensor
JP2006105964A (en) * 2004-09-13 2006-04-20 Denso Corp Piezoelectric sensor
JP2006151796A (en) * 2004-10-29 2006-06-15 Nagoya Institute Of Technology Piezoelectric ceramic composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234904A (en) * 2008-03-05 2009-10-15 Ngk Spark Plug Co Ltd Piezoceramic composition, piezoelectric element using the same and non-resonance knock sensor

Also Published As

Publication number Publication date
JP5062759B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
EP2099082B1 (en) Piezoceramic material, piezoelectric element and non-resonance knock sensor
KR101806589B1 (en) Lead-free piezoelectric material based on bismuth zinc titanate-bismuth potassium titanate-bismuth sodium titanate
KR101235434B1 (en) Piezoelectric ceramic composition and piezoelectric element made by using the same
JP2006105964A (en) Piezoelectric sensor
EP1895607A2 (en) Piezoelectric/electrostrictive body, manufacturing method of the same, and piezoelectronic/electrostrictive element
JP5537931B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4163068B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4995412B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP4927378B2 (en) Piezoelectric ceramic composition and piezoelectric element
CN104230333B (en) A kind of high temperature piezoceramics and preparation method thereof
US7808161B2 (en) Piezoelectric ceramic composition and piezoelectric device
JP4804449B2 (en) Piezoelectric ceramic and piezoelectric element
JP5062759B2 (en) Non-resonant knock sensor
JP5222120B2 (en) Piezoelectric ceramic composition, piezoelectric element using the same, and non-resonant knock sensor
JP5170905B2 (en) Non-resonant knock sensor
KR100824379B1 (en) Piezoelectric ceramics, Method of manufacturing the same and Piezoelectric device
JP2007284278A (en) Piezoelectric element material and production method therefor
JP2008169113A (en) Piezoelectric ceramic composition and piezoelectric element
Chaterjee et al. Electromechanical properties and electric field induced strain of BNT-BT piezoceramic material at the MPB region
JP4930753B2 (en) Piezoelectric ceramic and piezoelectric parts
JP6357180B2 (en) Porcelain composition, piezoelectric element, vibrator, and method for manufacturing piezoelectric element
JP2006169032A (en) Piezoelectric ceramic composition and piezoelectric element
JP2000154054A (en) Piezoelectric porcelain composition and piezoelectric element
JPH10158061A (en) Piezoelectric porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Ref document number: 5062759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250