JP2007284278A - Piezoelectric element material and production method therefor - Google Patents

Piezoelectric element material and production method therefor Download PDF

Info

Publication number
JP2007284278A
JP2007284278A JP2006111986A JP2006111986A JP2007284278A JP 2007284278 A JP2007284278 A JP 2007284278A JP 2006111986 A JP2006111986 A JP 2006111986A JP 2006111986 A JP2006111986 A JP 2006111986A JP 2007284278 A JP2007284278 A JP 2007284278A
Authority
JP
Japan
Prior art keywords
ceramic particles
particle size
piezoelectric element
particle diameter
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006111986A
Other languages
Japanese (ja)
Inventor
Yoshi Sukigara
宜 鋤柄
Kazuhiro Suma
和浩 須摩
Shuichi Watanabe
修一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006111986A priority Critical patent/JP2007284278A/en
Publication of JP2007284278A publication Critical patent/JP2007284278A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric element material which has strength nearly equal to that of a conventional one while having improved piezoelectric characteristics including quantity of distortion, to which various components and elements and wide compositions can be applied, and which can be produced at an approximately same cost as that of a normal ceramic. <P>SOLUTION: The piezoelectric element material is composed of a polycrystalline ceramic, and at least two peaks present in the particle size distribution of the ceramic particles. The maximum peak of the particle diameter is present within the range of 10-400 μm, and the number of the ceramic particles each having a particle diameter within half-value width of the maximum peak of the particle diameter is ≥10% of the number of total ceramic particles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アクチュエータやセンサ等の圧力と電力とのエネルギー変換を行うトランスデューサに適用される圧電素子材料に係り、特に、機械的強度を向上させつつ圧電特性を向上させる技術に関する。   The present invention relates to a piezoelectric element material applied to a transducer that performs energy conversion between pressure and electric power, such as an actuator or a sensor, and more particularly to a technique for improving piezoelectric characteristics while improving mechanical strength.

従来、自動車の燃料ポンプの弁やクラッチ油圧バルブ、あるいはインクジェットプリンタのインクノズルなどの駆動源にはトランスデューサが用いられている。また、近年では自動車の車体制御などにトランスデューサを備えた加速度センサが用いられ、トランスデューサは、各種技術分野で重要な役割を担いつつある。トランスデューサには、導電/誘電高分子で構成されたものや、形状記憶合金で構成されたもの、あるいは、ピエゾセラミックスで構成されたものがある。その中でもピエゾセラミックスは、応答周波数が高く出力密度が高いことから、近年、脚光を浴びてきている。ピエゾセラミックスには、Pbと他の金属との複合酸化物からなるPb系と、チタン酸バリウムなどの非Pb系とがあり、Pb系は耐熱性が良好で圧電特性に優れている。また、非Pb系は、現在提供されているものでは非Pb系ほどの性能は発揮しないが、将来の環境対策として技術の確立が求められている。ここで、ピエゾセラミックスには、圧力が加わると電気を生じる圧電効果と、電圧が加わると歪みを生じる逆圧電効果を生じる性質がある。圧電効果は各種センサに利用され、逆圧電効果は各種アクチュエータに利用される。   Conventionally, a transducer is used as a drive source such as a fuel pump valve of an automobile, a clutch hydraulic valve, or an ink nozzle of an ink jet printer. In recent years, an acceleration sensor having a transducer is used for vehicle body control of an automobile, and the transducer is playing an important role in various technical fields. There are transducers composed of conductive / dielectric polymers, transducers composed of shape memory alloys, and transducers composed of piezoceramics. Among them, piezoceramics have been attracting attention in recent years because of their high response frequency and high output density. Piezoceramics include Pb-based materials composed of complex oxides of Pb and other metals and non-Pb-based materials such as barium titanate. Pb-based materials have good heat resistance and excellent piezoelectric characteristics. In addition, non-Pb systems that are currently provided do not perform as well as non-Pb systems, but establishment of technology is required as a future environmental measure. Here, piezoceramics have a property of generating a piezoelectric effect that generates electricity when pressure is applied and an inverse piezoelectric effect that generates distortion when voltage is applied. The piezoelectric effect is used for various sensors, and the reverse piezoelectric effect is used for various actuators.

ピエゾセラミックスの圧電特性を向上させる技術として、例えば特許文献1に記載されているように、テンプレート法と呼ばれる手法を用いてセラミックス粒子の方向を揃える技術や、特許文献2に記載されているように、単結晶ピエゾを製造する技術がある。しかしながら、これらの技術では、いずれも特殊な工程を必要とするため、製造費用が高価になるとともに、製造できる成分、元素および組成が限定されてしまうという問題があった。また、特に単結晶ピエゾでは、強度が低いという問題もあった。   As a technique for improving the piezoelectric characteristics of piezoceramics, for example, as described in Patent Document 1, a technique for aligning ceramic particles using a technique called a template method, or as described in Patent Document 2 There is a technique for producing a single crystal piezo. However, each of these techniques requires a special process, so that the manufacturing cost is high and the components, elements, and compositions that can be manufactured are limited. In particular, single crystal piezos have a problem of low strength.

一方、特許文献3には、多結晶体で構成された圧電体膜の粒径分布のピークを少なくとも2つ備え、大粒径側の結晶粒の粒径を1000〜2000nmとしたピエゾセラミックスが提案されている。このようなピエゾセラミックスでは、比較的粒径の大きな粒子により圧電特性が向上されるという利点がある。   On the other hand, Patent Document 3 proposes a piezoceramic having at least two peak of the particle size distribution of a piezoelectric film made of a polycrystal and having a large crystal grain size of 1000 to 2000 nm. Has been. Such piezoceramics have the advantage that the piezoelectric properties are improved by particles having a relatively large particle size.

特開2004−300019号公報(要約書)JP 2004-300019 A (abstract) 特開2003−89599号公報(要約書)JP 2003-89599 A (abstract) 特開2002−84012号公報(要約書)JP 2002-84012 A (abstract)

しかしながら、特許文献3に記載の技術は、インクジェットプリンタのインクノズルの駆動を目的としたもので、自動車のアクチュエータ等に用いるには歪み量が少なく、車載用としては充分な特性を有するものではなかった。
したがって、本発明は、歪み量を含む圧電特性を向上させつつ従来のセラミックスと同等の強度を有し、かつ、適用できる成分、元素および組成が広く、しかも通常のセラミックすと同程度のコストで製造することができる圧電素子材料を提供することを目的としている。
However, the technique described in Patent Document 3 is intended to drive the ink nozzles of an ink jet printer, has a small amount of distortion for use in automobile actuators, and does not have sufficient characteristics for in-vehicle use. It was.
Accordingly, the present invention has the same strength as conventional ceramics while improving the piezoelectric characteristics including the amount of strain, has a wide range of applicable components, elements and compositions, and at the same cost as ordinary ceramics. An object of the present invention is to provide a piezoelectric element material that can be manufactured.

本発明の圧電素子材料は、多結晶のセラミックスで構成される圧電素子材料であって、セラミックス粒子の粒度分布が2つ以上のピークを有し、最大の粒子径のピークが10〜400μmの範囲に存在し、かつ、最大の粒子径のピークの半値幅以内の粒径のセラミックス粒子の個数が、セラミックス粒子全体の個数の10%以上であることを特徴とする。   The piezoelectric element material of the present invention is a piezoelectric element material composed of polycrystalline ceramics, wherein the particle size distribution of the ceramic particles has two or more peaks, and the maximum particle diameter peak is in the range of 10 to 400 μm. And the number of ceramic particles having a particle size within a half width of the peak of the maximum particle size is 10% or more of the total number of ceramic particles.

図1は、本発明におけるセラミックス粒子の粒度分布を示す図である。図1に示すように、本発明では、セラミックス粒子の粒度分布が2つ以上のピークを有している。ここで、ピークの半値幅とは、粒子径の分布曲線において極地(個数)hの半分の値をとる2点a,bにおける粒子径の範囲Da〜Dbと定義する。   FIG. 1 is a diagram showing the particle size distribution of ceramic particles in the present invention. As shown in FIG. 1, in the present invention, the particle size distribution of ceramic particles has two or more peaks. Here, the half width of the peak is defined as a particle diameter range Da to Db at two points a and b that take half the value of the polar (number) h in the particle diameter distribution curve.

本発明では、最大の粒子径のピークを10〜400μmという極めて大きな範囲に設定しており、大粒径の粒子は分極が大きいため圧電特性を向上させることができる。また、粒子径の小さいピークも存在するため、大粒径の粒子の隙間を小粒径の粒子が埋めて機械的強度を維持することができる。また、本発明の圧電素子材料は、セラミックス粒子を分級して混合するといった通常の工程で製造することができるので、製造コストの上昇を抑えることができる。さらに、通常の焼成が可能なものであれば、成分、元素および組成による制約は一切ない。   In the present invention, the peak of the maximum particle size is set to an extremely large range of 10 to 400 μm, and the large particle size has large polarization, so that the piezoelectric characteristics can be improved. In addition, since there is a peak with a small particle size, the mechanical strength can be maintained by filling the gaps between the large particles with the small particles. Moreover, since the piezoelectric element material of the present invention can be manufactured by a normal process of classifying and mixing ceramic particles, an increase in manufacturing cost can be suppressed. Furthermore, as long as normal firing is possible, there are no restrictions due to components, elements, and composition.

以下、本発明を実施するための最良の形態を説明する。本発明の圧電素子材料は、セラミックス粒子からなる原料粉末を混合する工程と、混合した原料粉末を仮焼きして誘電体とする工程と、仮焼きして固まった誘電体粉末を粉砕する工程と、粉砕した誘電体粉末を本焼きする工程と、本焼きして固まった誘電体粉末を粉砕する工程と、粉砕した誘電体粉末を分級する工程と、所定の粒度範囲の誘電体粉末を混合する工程と、混合した誘電体粉末を成形して圧粉体とする工程と、前記圧粉体を焼成する工程とにより製造することができる。以下、以上の工程を順番に説明する。   Hereinafter, the best mode for carrying out the present invention will be described. The piezoelectric element material of the present invention includes a step of mixing raw material powder made of ceramic particles, a step of calcining the mixed raw material powder to form a dielectric, and a step of pulverizing the calcined dielectric powder. The step of firing the pulverized dielectric powder, the step of pulverizing the dielectric powder that has been baked and solidified, the step of classifying the pulverized dielectric powder, and the dielectric powder having a predetermined particle size range are mixed. It can be manufactured by a step, a step of forming the mixed dielectric powder into a green compact, and a step of firing the green compact. Hereinafter, the above steps will be described in order.

1.混合工程
PbO,NiO,Nb,TiO,ZrO等の金属酸化物粉末を所定の割合で秤量し、乳鉢やボールミル等を用いて混合する。
1. Mixing step Metal oxide powders such as PbO, NiO, Nb 2 O 3 , TiO 2 , and ZrO 2 are weighed at a predetermined ratio and mixed using a mortar, ball mill, or the like.

2.仮焼き工程
混合した原料粉末を容器に充填し熱処理して誘電体化する。仮焼き工程では原料粉末の全てを誘電体化するのではなく、大まかに誘電体化する。仮焼きは、例えば約1000℃で2〜6時間保持する。
2. Calcination process The mixed raw material powder is filled in a container and heat treated to form a dielectric. In the calcining step, not all of the raw material powder is made dielectric, but is roughly made dielectric. For example, the calcining is held at about 1000 ° C. for 2 to 6 hours.

3.粉砕工程
仮焼きにより誘電体粉末が固まるので、それを乳鉢やボールミル等を用いて粉砕する。これにより、未反応の原料粉末が次の本焼きで完全に反応する。
3. Crushing process The dielectric powder is hardened by calcining, and is pulverized using a mortar, a ball mill or the like. Thereby, the unreacted raw material powder completely reacts in the next main baking.

4.本焼き工程
本焼き工程は、未反応の原料粉末を反応させて完全に誘電体化する工程である。本焼きは、例えば約1200℃で2時間程度保持する。
4). Main baking process The main baking process is a process in which unreacted raw material powder is reacted to form a dielectric completely. For example, the main baking is held at about 1200 ° C. for about 2 hours.

5.粉砕工程
粉砕工程では、本焼きにより誘電体粉末が固まるので、それを乳鉢やボールミル等を用いて粉砕する。これにより、次の分級が可能となる。
5). Pulverization process In the pulverization process, the dielectric powder is hardened by the main baking, and is pulverized using a mortar or a ball mill. Thereby, the next classification becomes possible.

6.分級工程
分級工程は、篩い等によって誘電体粉末を所望の粒子サイズに分ける工程である。そして、次の混合工程で混合するサイズのものが得られるように分級する。
6). Classification step The classification step is a step of dividing the dielectric powder into a desired particle size by sieving or the like. And it classifies so that the thing of the size mixed in the next mixing process may be obtained.

7.混合工程
分級工程で分級された粒子径の中から誘電体粉末を選定して、セラミックス粒子の粒度分布が2つ以上のピークを有し、最大の粒子径のピークが10〜400μmの範囲に存在し、かつ、最大の粒子径のピークの半値幅以内の粒径のセラミックス粒子の個数が、セラミックス粒子全体の個数の10%以上となるように混合する。なお、混合は乳鉢やボールミルを用いて行う。また、必要に応じてステアリン酸亜鉛などの潤滑剤を混合することもできる。なお、最小の粒子径のピークは0.5〜3μmであることが望ましい。
7). Mixing process The dielectric powder is selected from the particle sizes classified in the classification step, the particle size distribution of the ceramic particles has two or more peaks, and the maximum particle size peak is in the range of 10 to 400 μm. In addition, the ceramic particles are mixed so that the number of ceramic particles having a particle size within the half width of the peak of the maximum particle size is 10% or more of the total number of ceramic particles. Mixing is performed using a mortar or ball mill. Moreover, lubricants, such as zinc stearate, can also be mixed as needed. In addition, it is desirable that the minimum peak of the particle diameter is 0.5 to 3 μm.

8.形成工程
成形工程は、通常の粉末冶金法と同じ手法で行うことができ、混合された誘電体粉末をプレスの金型に充填し、所望の形状に成形して圧粉体とする。あるいは、水などの液体を加圧媒体とし、高い等方圧力を圧粉体に加える手法(CIP法)を用いることも可能である。
8). Forming Step The forming step can be performed by the same method as a normal powder metallurgy method, and the mixed dielectric powder is filled in a press die and formed into a desired shape to obtain a green compact. Alternatively, it is also possible to use a method (CIP method) in which a liquid such as water is used as a pressurizing medium and a high isotropic pressure is applied to the green compact.

9.焼成工程
焼成工程は、圧粉体を焼き固めて誘電体セラミックスとする工程である。焼成は、例えば約1200〜1300℃で1〜2時間程度保持する。なお、本焼き工程を省略して焼成工程において未反応原料粉末を反応させることもできる。
9. Firing step The firing step is a step in which the green compact is baked and solidified to form a dielectric ceramic. For example, the baking is performed at about 1200 to 1300 ° C. for about 1 to 2 hours. It is also possible to omit the main baking step and react the unreacted raw material powder in the baking step.

PbO,NiO,Nb,TiO,ZrOの金属酸化物粉末を所定の割合で秤量し、それら原料粉末に対して、混合、仮焼き、粉砕、本焼き、および粉砕の各工程を行った。得られた誘電体粉末を分級し、混合した。またBaTiOの粉末を用意し、同様に分級し、混合した。誘電体粉末の混合に際しては、セラミックス粒子の粒度分布が2つ以上のピークを有し、最大の粒子径のピークが10〜400μmの範囲に存在し、かつ、最大の粒子径のピークの半値幅以内の粒径のセラミックス粒子の個数が、セラミックス粒子全体の個数の10%以上となる粉末と、上記範囲を逸脱する粉末を作製した。 PbO, NiO, Nb 2 O 3 , TiO 2 , ZrO 2 metal oxide powders are weighed at a predetermined ratio, and mixing, calcination, pulverization, main baking, and pulverization processes are performed on these raw material powders. went. The obtained dielectric powder was classified and mixed. Also, a BaTiO 3 powder was prepared, classified in the same manner, and mixed. When mixing the dielectric powder, the particle size distribution of the ceramic particles has two or more peaks, the maximum particle diameter peak is in the range of 10 to 400 μm, and the full width at half maximum of the maximum particle diameter peak is A powder in which the number of ceramic particles having a particle size within the range is 10% or more of the total number of ceramic particles and a powder deviating from the above range were prepared.

表1および表2に、得られた誘電体粉末の粒度分布における2つのピークの中での平均粒径と、最大の粒子径のピーク中に存在する粒子の個数および粒径を示す。また、表1および表2に誘電体粉末の組成比を併記する。表1および表2において、PZNはPb(Zn1/3Nb2/3)O、PNNはPb(Ni1/3Nb2/3)O、PZTはPb(Zr0.52Ti0.48)O、PTはPbTiOを示し、BTはBaTiOを示す。また、0.5PNN−0.5PZT等の記載は、50体積%のPNNと50体積%PZTの混合粉末であることを示す。なお、表1および表2において「局在粒径数」とは、粒度分布のピークの数をいい、「平均粒径」とは、ピークとなる粒径をいう。たとえば、表1のNo.1では、図1に示した粒度分布のピークが15μmと400μmに存在し、400μmが「最大局在粒径」である。 Tables 1 and 2 show the average particle diameter of the two peaks in the particle size distribution of the obtained dielectric powder, and the number and particle diameter of the particles present in the peak of the maximum particle diameter. Tables 1 and 2 also show the composition ratio of the dielectric powder. In Tables 1 and 2, PZN is Pb (Zn 1/3 Nb 2/3 ) O 3 , PNN is Pb (Ni 1/3 Nb 2/3 ) O 3 , and PZT is Pb (Zr 0.52 Ti 0. 48 ) O 3 , PT represents PbTiO 3 , and BT represents BaTiO 3 . Moreover, description of 0.5PNN-0.5PZT etc. shows that it is a mixed powder of 50 volume% PNN and 50 volume% PZT. In Tables 1 and 2, “localized particle size” refers to the number of peaks in the particle size distribution, and “average particle size” refers to the particle size at the peak. For example, in Table 1, No. 1, the peak of the particle size distribution shown in FIG. 1 is present at 15 μm and 400 μm, and 400 μm is the “maximum localized particle size”.

Figure 2007284278
Figure 2007284278

Figure 2007284278
Figure 2007284278

得られた誘電体粉末を圧力200〜400MPaで直径:10mm、厚さ1mmの円板状にプレス成形し、圧粉体を温度1200〜1300℃で1〜2時間焼成した。また、誘電体セラミックスの軸方向に2〜3kV/mm(DC)の電圧を印加して分極させた。得られた圧電素子の電気機械結合係数を測定した。ここで、電気機械結合係数とは、トランスデューサの電気対機械の変換能力を表す係数であり、与えた電気入力Aのうち機械出力に変換される量をBとすると、(B/A)1/2で表される。また、圧電素子の比誘電率(ε)を測定した。以上の測定結果を表3および表4に示す。なお、インピーダンスアナライザー(ヒューレットパッカード社製、HP4294A)を用いて誘電体セラミックスのインピーダンスを測定することにより、被誘電率を算出し(JISR1627)、電気機械結合係数を算出した(JISR1600 4306)。また、得られた誘電体セラミックスの曲げ強さ(MPa)を測定した。 The obtained dielectric powder was press-molded into a disk shape having a diameter of 10 mm and a thickness of 1 mm at a pressure of 200 to 400 MPa, and the green compact was fired at a temperature of 1200 to 1300 ° C. for 1 to 2 hours. Further, the dielectric ceramic was polarized by applying a voltage of 2 to 3 kV / mm (DC) in the axial direction of the dielectric ceramic. The electromechanical coupling coefficient of the obtained piezoelectric element was measured. Here, the electromechanical coupling coefficient is a coefficient that represents the electrical-to-machine conversion capability of the transducer. If the amount of electrical input A that is converted to mechanical output is B, then (B / A) 1 / It is represented by 2 . Further, the relative dielectric constant (ε) of the piezoelectric element was measured. The above measurement results are shown in Tables 3 and 4. In addition, the dielectric constant was calculated by measuring the impedance of dielectric ceramics using an impedance analyzer (HP4294A, manufactured by Hewlett-Packard Company) (JIS R1627), and the electromechanical coupling coefficient was calculated (JIS R1600 4306). Further, the bending strength (MPa) of the obtained dielectric ceramic was measured.

次に、得られた圧電素子の圧電効果の大きさ(g31)を測定した。圧電効果とは、圧電素子に与えられた歪みに対して出力する電力の大きさである。また、圧電素子に印加した電界に対して生じる歪みを、平面視で横方向(d31)、縦方向(d33)および分圧方向(軸方向、d15)について調べた。以上の測定結果を表3および表4に併記する。   Next, the magnitude (g31) of the piezoelectric effect of the obtained piezoelectric element was measured. The piezoelectric effect is the magnitude of electric power that is output with respect to strain applied to the piezoelectric element. In addition, the distortion generated with respect to the electric field applied to the piezoelectric element was examined in the horizontal direction (d31), the vertical direction (d33), and the partial pressure direction (axial direction, d15) in plan view. The above measurement results are also shown in Tables 3 and 4.

Figure 2007284278
Figure 2007284278

Figure 2007284278
Figure 2007284278

試料No.4,8,9等は、最大の粒子径のピークが10〜400μmの範囲に存在しているが、最大の粒子径のピークの半値幅以内の粒径のセラミックス粒子の個数がセラミックス粒子全体の個数の10%を下回っている。このため、それら比較例は、機械強度は本発明例と同等であるものの、比誘電率等の圧電特性は全て本発明例よりも劣っていた。また、試料No.24では、セラミックス粒子の粒度分布が1つしかないため、圧電特性はかなり悪くなった。なお、最大の粒子径のピークが大きくなる程圧電特性が向上している。チタン酸バリウムの粉末から得た圧電素子においても同等の結果が得られた。   Sample No. 4, 8, 9, etc., the maximum particle diameter peak exists in the range of 10 to 400 μm, but the number of ceramic particles having a particle size within the half-value width of the maximum particle diameter peak is the total number of ceramic particles. Less than 10% of the number. For this reason, these comparative examples have mechanical strength equivalent to that of the example of the present invention, but all the piezoelectric properties such as relative dielectric constant are inferior to those of the example of the present invention. Sample No. In No. 24, since there was only one particle size distribution of the ceramic particles, the piezoelectric characteristics were considerably deteriorated. In addition, the piezoelectric characteristics are improved as the peak of the maximum particle diameter increases. Similar results were obtained with piezoelectric elements obtained from barium titanate powder.

本発明は、アクチュエータやセンサ等の圧力と電力とのエネルギー変換を行うトランスデューサに適用可能であり、特に、自動車の燃料ポンプの弁などのように大きな作動範囲を必要とするものに好適に用いることができる。   The present invention is applicable to transducers that perform energy conversion between pressure and electric power, such as actuators and sensors, and is particularly suitable for applications that require a large operating range such as fuel pump valves for automobiles. Can do.

セラミックス粒子の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of ceramic particles.

Claims (2)

多結晶のセラミックスで構成される圧電素子材料であって、セラミックス粒子の粒度分布が2つ以上のピークを有し、最大の粒子径のピークが10〜400μmの範囲に存在し、かつ、最大の粒子径のピークの半値幅以内の粒径のセラミックス粒子の個数が、セラミックス粒子全体の個数の10%以上であることを特徴とする圧電素子材料。   A piezoelectric element material composed of polycrystalline ceramics, wherein the particle size distribution of the ceramic particles has two or more peaks, the maximum particle diameter peak is in the range of 10 to 400 μm, and the maximum A piezoelectric element material characterized in that the number of ceramic particles having a particle diameter within a half-value width of a particle diameter peak is 10% or more of the total number of ceramic particles. セラミックス粒子からなる原料粉末を混合する工程と、混合した原料粉末を仮焼きして誘電体とする工程と、仮焼きして固まった誘電体粉末を粉砕する工程と、所定の粒度範囲の誘電体粉末を混合する工程と、混合した誘電体粉末を成形して圧粉体とする工程と、前記圧粉体を焼成する工程とを備えた圧電素子材料の製造方法において、前記分級したセラミックス粒子を、セラミックス粒子の粒度分布が2つ以上のピークを有し、最大の粒子径のピークが10〜400μmの範囲に存在し、かつ、最大の粒子径のピークの半値幅以内の粒径のセラミックス粒子の個数が、セラミックス粒子全体の個数の10%以上となるように取り分けて混合することを特徴とする圧電素子材料の製造方法。   A step of mixing raw material powders made of ceramic particles, a step of calcining the mixed raw material powder to form a dielectric, a step of grinding the calcined dielectric powder, and a dielectric having a predetermined particle size range In the method of manufacturing a piezoelectric element material comprising the steps of mixing powder, forming the mixed dielectric powder into a green compact, and firing the green compact. The ceramic particle size distribution has two or more peaks, the maximum particle diameter peak is in the range of 10 to 400 μm, and the ceramic particle has a particle size within the half width of the maximum particle diameter peak. A method for producing a piezoelectric element material, characterized in that the number is divided and mixed so as to be 10% or more of the total number of ceramic particles.
JP2006111986A 2006-04-14 2006-04-14 Piezoelectric element material and production method therefor Pending JP2007284278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111986A JP2007284278A (en) 2006-04-14 2006-04-14 Piezoelectric element material and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111986A JP2007284278A (en) 2006-04-14 2006-04-14 Piezoelectric element material and production method therefor

Publications (1)

Publication Number Publication Date
JP2007284278A true JP2007284278A (en) 2007-11-01

Family

ID=38756404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111986A Pending JP2007284278A (en) 2006-04-14 2006-04-14 Piezoelectric element material and production method therefor

Country Status (1)

Country Link
JP (1) JP2007284278A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132121A (en) * 2009-11-30 2011-07-07 Canon Inc Piezoelectric ceramic, method for manufacturing the same, piezoelectric element, liquid discharge head, and ultrasonic motor
CN112236877A (en) * 2018-07-17 2021-01-15 永井清 Porous piezoelectric material molded body, method for producing same, and probe using same
KR20220091301A (en) * 2020-12-23 2022-06-30 엘티메탈 주식회사 Piezoelectric element composition, piezoelectric element using the same, and manufacturing method thereof
KR102673231B1 (en) 2021-12-10 2024-06-07 엘티메탈 주식회사 Piezoelectric element composition, piezoelectric element using the same, and manufacturing method thereof
KR102673229B1 (en) 2021-12-10 2024-06-07 엘티메탈 주식회사 Piezoelectric element composition, piezoelectric element using the same, and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132121A (en) * 2009-11-30 2011-07-07 Canon Inc Piezoelectric ceramic, method for manufacturing the same, piezoelectric element, liquid discharge head, and ultrasonic motor
US8846556B2 (en) 2009-11-30 2014-09-30 Canon Kabushiki Kaisha Piezoelectric ceramic, method for making the same, piezoelectric element, liquid discharge head, and ultrasonic motor
CN112236877A (en) * 2018-07-17 2021-01-15 永井清 Porous piezoelectric material molded body, method for producing same, and probe using same
KR20220091301A (en) * 2020-12-23 2022-06-30 엘티메탈 주식회사 Piezoelectric element composition, piezoelectric element using the same, and manufacturing method thereof
KR102621317B1 (en) 2020-12-23 2024-01-05 엘티메탈 주식회사 Piezoelectric element composition, piezoelectric element using the same, and manufacturing method thereof
KR102673231B1 (en) 2021-12-10 2024-06-07 엘티메탈 주식회사 Piezoelectric element composition, piezoelectric element using the same, and manufacturing method thereof
KR102673229B1 (en) 2021-12-10 2024-06-07 엘티메탈 주식회사 Piezoelectric element composition, piezoelectric element using the same, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101541022B1 (en) Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP4795748B2 (en) Piezoelectric actuator
KR101158444B1 (en) Piezoelectric ceramic, process for producing the piezoelectric ceramic, and piezoelectric device
JP5511447B2 (en) Piezoelectric material, method for manufacturing the same, and piezoelectric element
JP2009046373A (en) Piezoelectric/electrostrictive body, manufacturing method of the same, and piezoelectric/electrostrictive element
JP2013191751A (en) Piezoelectric material, piezoelectric device, liquid discharging head, ultrasonic motor and dust removal apparatus
WO2006095716A1 (en) Piezoelectric ceramic composition and method for producing same
TW201329017A (en) Lead-free piezoelectric ceramic composition, producing method thereof, piezoelectric element using the composition, ultrasonic processing machine, ultrasonic driving device, and sensoring device
JP2006108638A (en) Piezoelectric actuator
JP5651452B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP2013151404A (en) Piezoelectric ceramic and piezoelectric device
JP2007284278A (en) Piezoelectric element material and production method therefor
JP2017092280A (en) Piezoelectric ceramic, piezoelectric ceramic electronic part, and method for manufacturing piezoelectric ceramic
JP4995412B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP2008050206A (en) Piezoelectric material and method of manufacturing the same and piezoelectric element
EP3085678B1 (en) Piezoelectric ceramic, manufacturing method therefor, and electronic component
CN104230333B (en) A kind of high temperature piezoceramics and preparation method thereof
JP5462090B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP5044437B2 (en) Method for manufacturing piezoelectric / electrostrictive porcelain sintered body
JP2011195382A (en) Piezoelectric ceramic and piezoelectric element using the same
JP2008078267A (en) Piezoelectric ceramic, its manufacturing method, and piezoelectric/electrostrictive element
JP5036758B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP2008169113A (en) Piezoelectric ceramic composition and piezoelectric element
JP2010018514A (en) Method for producing piezoelectric material, piezoelectric element, and piezoelectric power generator
JPWO2006093002A1 (en) Piezoelectric ceramic composition