JP2010024773A - Water purifying apparatus for sewer pipeline, and water purifying method for sewer pipeline - Google Patents

Water purifying apparatus for sewer pipeline, and water purifying method for sewer pipeline Download PDF

Info

Publication number
JP2010024773A
JP2010024773A JP2008190087A JP2008190087A JP2010024773A JP 2010024773 A JP2010024773 A JP 2010024773A JP 2008190087 A JP2008190087 A JP 2008190087A JP 2008190087 A JP2008190087 A JP 2008190087A JP 2010024773 A JP2010024773 A JP 2010024773A
Authority
JP
Japan
Prior art keywords
sewage
fixed bed
oxygen
pipe
water purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190087A
Other languages
Japanese (ja)
Inventor
Sakae Fukunaga
栄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008190087A priority Critical patent/JP2010024773A/en
Publication of JP2010024773A publication Critical patent/JP2010024773A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Sewage (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water purifying technology in a sewer pipeline for optimizing sewage supplied to a sewage treatment plant so that it may be suitable for biological treatment in the sewage treatment plant. <P>SOLUTION: Water purifying apparatus 1, 20 for a sewer pipeline have water flowing fixed beds 5, 21 arranged at the bottom part in the sewer pipeline so as to be submerged in sewage and allowing nitrifying bacteria to be settled, and oxygen supply means 9, 23 for supplying oxygen into the fixed beds. The water flowing fixed beds on which the nitrifying bacteria can be settled are arranged at the bottom part in the sewer pipeline and submerged in sewage, and oxygen is supplied into the fixed beds to promote breeding of nitrifying bacteria in the fixed beds. Ammonia nitrogen contained in the sewage in the sewer pipeline is thereby oxidized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、下水処理場へ下水を送水する下水管路内の下水を浄化する下水管路用浄水装置及び下水管路用浄水方法に関し、特に、下水管路中での有機物の分解によって下水処理場に達する下水の水質が下水処理場での浄化処理に適した範囲から逸脱することを抑制するのに有効な下水管路用浄水装置及び下水管路用浄水方法に関する。   The present invention relates to a water purification device for a sewage pipeline and a water purification method for a sewage pipeline that purifies sewage in a sewage pipeline that feeds sewage to a sewage treatment plant, and in particular, sewage treatment by decomposition of organic matter in the sewage pipeline. The present invention relates to a sewage pipe water purification apparatus and a sewage pipe water purification method that are effective in suppressing the quality of sewage that reaches a place from deviating from a range suitable for purification treatment at a sewage treatment plant.

家庭等から排出される下水は、そのまま公共用水域に放流すると、感染症の蔓延や放流先の酸素欠乏、水質悪化、水資源としての価値低下など、様々な悪影響を及ぼす。このため、近代都市においては、排水を下水管路を通じて下水処理場に集めて浄化した後に公共用水域に放流するように設計されている。   If sewage discharged from households is discharged into public waters as it is, it will have various adverse effects such as the spread of infectious diseases, lack of oxygen at the discharge destination, deterioration of water quality, and decline in the value of water resources. For this reason, in modern cities, wastewater is designed to be collected in a sewage treatment plant through a sewage pipe and purified before being discharged into a public water area.

従来の下水浄化は、病原菌や有機性汚濁物質が処理対象であったので、懸濁物の分離・除去、溶解性有機物の生物分解及び消毒を下水処理場において行い、下水管路については下水処理場への迅速且つ円滑な配水が主な役割であった。   In conventional sewage purification, pathogenic bacteria and organic pollutants were treated. So, separation and removal of suspended solids, biodegradation and disinfection of soluble organic matter were performed at the sewage treatment plant, and sewage treatment was conducted for the sewage pipelines. The main role was to distribute water quickly and smoothly to the site.

しかし、近年、窒素化合物及びリン化合物による水域の富栄養化が問題となり、窒素及びリンの除去も下水処理場の機能として求められるようになった。このため、技術開発及び実用化が進められた結果、硝化細菌及び脱窒細菌による生物処理を主体とした窒素除去、及び、凝集沈殿又はリン蓄積菌を利用した生物処理によるリン除去が実施されている。   However, in recent years, eutrophication of water areas with nitrogen compounds and phosphorus compounds has become a problem, and removal of nitrogen and phosphorus has also been required as a function of sewage treatment plants. For this reason, as a result of technological development and practical application, nitrogen removal mainly by biological treatment with nitrifying bacteria and denitrifying bacteria and phosphorus removal by biological treatment using aggregated precipitation or phosphorus accumulating bacteria have been implemented. Yes.

詳述すると、第1図のように、下水処理場Aにおいて、沈砂池Bを経て第一沈殿池Cで懸濁物を除去された下水Sは、脱窒槽Dに流入して後続の硝化槽から還流される水に含まれる硝酸イオンが混合され、下水中の有機物を取り込んだ微生物による硝酸イオンの還元反応により、硝酸イオンが窒素ガスに変換されて水中から除去される。一方、下水S中に含まれる窒素化合物(主としてアンモニア)は、硝化槽Eにおいて硝化細菌によって硝酸イオンなどに酸化され、前段の脱窒槽Dへ戻される還流水中の硝酸イオンが窒素ガスに変換されて大気中へ放出される。このようにして下水中の窒素化合物は、硝化槽Eから還流されずに放流される分を除く大部分(70〜90%)が除去され、第二沈殿池F及び消毒槽Gを経て放流される。ここで、下水中の有機物濃度が低いと、硝酸イオンの還元に必要な有機物が不足して脱窒槽Dでの窒素除去率が低下する。それを補うためにメタノールなどの有機物源を人為的に加える方法もあるが、当然、費用が増加する。下水処理に適する下水の有機物(BODで表示)/窒素の比率は、理論上2.8以上であり、実際には3〜4以上の比率であることが必要とされる(非特許文献1参照)。リン除去についても、やはり有機物の濃度が高くないと良好に進行しない(非特許文献1参照)。つまり、窒素除去及びリン除去のためには、下水処理場に流入する下水中の有機物濃度ができるだけ高い方が望ましい。   More specifically, as shown in FIG. 1, in the sewage treatment plant A, the sewage S from which the suspended solids have been removed in the first settling basin C through the sand basin B flows into the denitrification tank D and enters the subsequent nitrification tank. The nitrate ions contained in the water refluxed are mixed, and the nitrate ions are converted into nitrogen gas by the reduction reaction of the nitrate ions by the microorganisms that have taken in the organic matter in the sewage, and are removed from the water. On the other hand, nitrogen compounds (mainly ammonia) contained in the sewage S are oxidized in the nitrification tank E to nitrate ions by nitrifying bacteria, and the nitrate ions in the reflux water returned to the previous denitrification tank D are converted into nitrogen gas. Released into the atmosphere. In this way, most of the nitrogen compounds in the sewage are removed from the nitrification tank E (70 to 90%) except for being discharged without being refluxed, and discharged through the second sedimentation tank F and the disinfection tank G. The Here, when the organic substance density | concentration in sewage is low, the organic substance required for the reduction | restoration of nitrate ion will run short, and the nitrogen removal rate in the denitrification tank D will fall. In order to compensate for this, there is a method of artificially adding an organic matter source such as methanol, but the cost naturally increases. The ratio of organic matter of sewage suitable for sewage treatment (expressed in BOD) / nitrogen is theoretically 2.8 or higher, and actually needs to be a ratio of 3-4 or higher (see Non-Patent Document 1). ). Phosphorus removal also does not proceed well unless the concentration of organic matter is high (see Non-Patent Document 1). In other words, for removing nitrogen and removing phosphorus, it is desirable that the organic matter concentration in the sewage flowing into the sewage treatment plant is as high as possible.

一方、下水管路H中の下水Sは、管路の大部分を占める流下管Haにおいて自然流下し、管路内で水面から下水に酸素が溶解する。従って、酸素呼吸をする微生物が下水管路内で増殖し易く、下水S中の有機物が微生物によって酸化分解されるため、下水Sの有機物濃度が低下する。また、一部にある圧送管Hbでは、酸素の代わりに硫酸イオンを用いて有機物を酸化する硫酸還元菌が繁殖し、やはり有機物濃度を低下させる。   On the other hand, the sewage S in the sewage pipe H naturally flows down in the downflow pipe Ha that occupies most of the pipe, and oxygen is dissolved from the water surface into the sewage in the pipe. Accordingly, microorganisms that breathe oxygen easily grow in the sewage pipe, and the organic matter in the sewage S is oxidatively decomposed by the microorganisms, so that the organic matter concentration in the sewage S decreases. Further, in some of the pumping pipes Hb, sulfate-reducing bacteria that oxidize organic substances using sulfate ions instead of oxygen propagate, and the organic substance concentration is also lowered.

下水管路Hに何等かの操作を加えて浄化を補助する試みとして従来提案されているものには、合流式下水道の殺菌(下記特許文献1参照)や、発生する硫化水素に関する対策などがあり、特に、ポンプ場Pからの圧送管内で硫酸還元菌によって発生する硫化水素による腐食や臭気への対策として、多くの特許が提案されている(例えば、下記特許文献2〜6参照)。これらは、いずれも薬剤を下水管路に注入するという化学的な処理である。
五訂・公害防止の技術と法規〔水質編〕、公害防止の技術と法規編集委員会編、通商産業省環境立地局監修 特開2004−122098号公報 特公平08−018018号公報 特許第3395576号 特開2004−027682号公報 特開平11−156373号公報 特開2000−229291号公報
What has been proposed as an attempt to assist purification by adding any operation to the sewage pipe H includes measures for sterilization of the combined sewer (see Patent Document 1 below) and measures for generated hydrogen sulfide. In particular, many patents have been proposed as countermeasures against corrosion and odor caused by hydrogen sulfide generated by sulfate-reducing bacteria in the pumping pipe from the pump station P (see, for example, Patent Documents 2 to 6 below). These are all chemical treatments in which a drug is injected into a sewer line.
Fifth Amendment / Pollution Prevention Technology and Regulations (Water Quality), Pollution Prevention Technology and Regulations Compilation Committee, Supervised by Ministry of International Trade and Industry, Environment Location Bureau JP 2004-122098 A Japanese Patent Publication No. 08-01018 Japanese Patent No. 3395576 JP 2004-027682 A Japanese Patent Laid-Open No. 11-156373 JP 2000-229291 A

上述のように、下水処理場における生物処理の技術が好適に実施されるためには、下水中の有機物濃度が窒素やリンの濃度に対して充分高いことが必要であり、生物処理が経済的に稼働するには、下水処理場に到達する下水にメタノールなどの有機物を添加せずにそのまま処理可能であることが望ましい。但し、このために下水処理水の富栄養化を許容するならば、これは公共用水域の富栄養化防止を推進する上で相反することであり、不適切である。   As described above, in order for the biological treatment technology in the sewage treatment plant to be suitably implemented, it is necessary that the organic matter concentration in the sewage is sufficiently higher than the concentration of nitrogen and phosphorus, and biological treatment is economical. Therefore, it is desirable that the sewage reaching the sewage treatment plant can be treated as it is without adding an organic substance such as methanol. However, if eutrophication of sewage treated water is allowed for this purpose, this is a contradiction in promoting prevention of eutrophication in public water bodies and is inappropriate.

本発明は、下水管路を通じて下水処理場に供給される下水の有機物/窒素の比率が下水処理場での生物処理に適したものとなるように下水管路中の下水を処理できる下水管路用浄水装置及び下水管路用浄水方法を提供することを課題とする。   The present invention provides a sewage pipe that can treat sewage in the sewage pipe so that the organic / nitrogen ratio of sewage supplied to the sewage treatment plant through the sewage pipe is suitable for biological treatment in the sewage treatment plant. An object of the present invention is to provide a water purification device for water and a water purification method for a sewage pipe.

上記課題を解決するために、本発明者らは鋭意研究を重ねた結果、下水管路内の下水中に硝化細菌の作用を利用可能な環境を提供することによって、下水の水質の適正化が可能であることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research, and as a result, by providing an environment in which the action of nitrifying bacteria can be used in the sewage in the sewage pipeline, the sewage water quality can be optimized. The inventors have found that this is possible and have completed the present invention.

本発明の一態様によれば、下水管路用浄水装置は、下水に浸漬するように下水管路内底部に配置される、硝化細菌が定着可能な通水性の固定床と、前記固定床中に酸素を供給するための酸素供給手段とを有することを要旨とする。   According to one aspect of the present invention, a water purifier for a sewage pipe is disposed at the bottom of the sewage pipe so as to be immersed in sewage, and has a water-permeable fixed bed capable of fixing nitrifying bacteria, And an oxygen supply means for supplying oxygen.

又、本発明の一態様によれば、下水管路用浄水方法は、硝化細菌が定着可能な通水性の固定床を下水管路内底部に配置して下水に浸漬し、前記固定床中に酸素を供給して前記固定床中で硝化細菌の増殖を促進することによって、下水管路の下水に含まれるアンモニア態窒素を酸化することを要旨とする。   Further, according to one aspect of the present invention, the water purification method for a sewage pipe line is provided with a water-permeable fixed bed capable of fixing nitrifying bacteria at the bottom of the sewage pipe line and immersed in sewage, The gist is to oxidize ammonia nitrogen contained in the sewage of the sewage pipeline by supplying oxygen to promote the growth of nitrifying bacteria in the fixed bed.

本発明によれば、硝化細菌によるアンモニアの酸化、すなわち硝化が進行することによって、有機物を消費する生物反応が、酸素を消費する好気性反応から硝酸イオンを利用する嫌気性反応に切り替わり、アンモニア態窒素を窒素ガスとして除去できるので、下水の有機物/窒素比率の低下を抑制可能であり、下水処理場の生物反応に適した下水を下水管路から供給することができ、硫黄還元細菌による硫化水素ガスの発生も抑制可能である。   According to the present invention, the oxidation of ammonia by nitrifying bacteria, that is, nitrification proceeds, so that the biological reaction that consumes organic matter is switched from an aerobic reaction that consumes oxygen to an anaerobic reaction that uses nitrate ions, Since nitrogen can be removed as nitrogen gas, it is possible to suppress a decrease in the organic matter / nitrogen ratio of sewage, and sewage suitable for biological reactions in the sewage treatment plant can be supplied from the sewage pipe. Gas generation can also be suppressed.

下水中の有機物を消費する微生物には、有機物及び酸素を取り込んで二酸化炭素を放出する好気性従属栄養細菌群、及び、有機物及び硝酸イオンを取り込んで窒素ガス及び二酸化炭素を放出する脱窒細菌がある。又、下水中の窒素化合物を消費する微生物には、アンモニア及び酸素を取り込んで硝酸イオンを放出する硝化細菌と、前述の脱窒細菌とがある。有機物に富み、水面から酸素を吸収可能な下水は、好気性従属栄養細菌群及び脱窒細菌にとっては存在し易いが、増殖の遅い硝化細菌は流水中での繁殖が難しい。また、硝酸イオンの供給に乏しい好気性条件では、脱窒細菌は酸素を利用する形態で生育し、硝酸イオンを利用する脱窒は進行しない。   Microorganisms that consume organic matter in sewage include aerobic heterotrophic bacteria that take up organic matter and oxygen and release carbon dioxide, and denitrifying bacteria that take up organic matter and nitrate ions and release nitrogen gas and carbon dioxide. is there. Microorganisms that consume nitrogen compounds in sewage include nitrifying bacteria that take in ammonia and oxygen and release nitrate ions, and the aforementioned denitrifying bacteria. Sewage rich in organic matter and capable of absorbing oxygen from the water surface is likely to exist for aerobic heterotrophic bacteria and denitrifying bacteria, but slow-growing nitrifying bacteria are difficult to propagate in running water. Further, under aerobic conditions where supply of nitrate ions is poor, denitrifying bacteria grow in a form using oxygen, and denitrification using nitrate ions does not proceed.

下水の窒素化合物濃度を低下させることが可能な微生物の作用としては、1)微生物細胞による取り込み、2)硝化ののち硝酸イオンの脱窒反応による窒素ガス放出、の2つがあるが、硝酸イオンに酸化する硝化細菌は増殖が遅く、自然流下する下水管路内の下水においては通常繁殖しないため、上記2)は進行しない。また、1)の微生物細胞に取りこまれる窒素化合物も、そのままでは下水処理場へ流入するので、実質的な窒素除去につながらない。従って、通常、上記1)及び2)の何れも、下水管路内の下水における窒素化合物の減少には役立っていない。リン蓄積菌についても、下水管路内で繁殖したという報告は聞かれない。これに比べて、硝化細菌より増殖が早い微生物(好気性従属栄養細菌群)は、流下する間に繁殖可能であり、水面を介して取り込まれる酸素を利用して下水中の有機物を消費・分解するので、有機物濃度は容易に低下する。下水が下水処理場の生物反応処理に適するには、下水の有機物/窒素比率が3以上、好ましくは4以上となる必要があるが、この点に関して、窒素化合物濃度が減少すれば、有機物濃度が低下しても有機物/窒素比率は低下しない。つまり、下水の好適化には窒素化合物の除去を促進することが重要である。窒素化合物濃度が減少しない最大の理由は硝化細菌が繁殖しないことである。換言すれば、下水の好適化には硝化細菌の繁殖を促進することが肝要であり、硝化細菌が繁殖すれば、生成した硝酸イオンは、下水中の脱窒細菌等が有機物と共に取り込んで窒素ガスへと変換することが可能である。   There are two actions of microorganisms that can reduce the concentration of nitrogen compounds in sewage: 1) uptake by microbial cells, and 2) release of nitrogen gas by denitrification of nitrate ions after nitrification. Oxidizing nitrifying bacteria are slow to grow and do not normally propagate in sewage in sewage pipes that naturally flow down, so the above 2) does not proceed. In addition, the nitrogen compound taken up by the microbial cells of 1) also flows into the sewage treatment plant as it is, and thus does not lead to substantial nitrogen removal. Therefore, neither of the above 1) and 2) usually serves to reduce nitrogen compounds in the sewage in the sewage pipeline. There are no reports of phosphorus-accumulating bacteria that have propagated in sewage pipelines. In comparison, microorganisms that grow faster than nitrifying bacteria (aerobic heterotrophic bacteria group) can propagate while flowing down, and consume and decompose organic matter in sewage using oxygen taken in through the water surface. As a result, the organic substance concentration easily decreases. In order for sewage to be suitable for biological reaction treatment in a sewage treatment plant, the organic matter / nitrogen ratio of the sewage needs to be 3 or more, preferably 4 or more. Even if it decreases, the organic substance / nitrogen ratio does not decrease. That is, it is important to promote the removal of nitrogen compounds in order to optimize sewage. The biggest reason that nitrogen compound concentration does not decrease is that nitrifying bacteria do not propagate. In other words, in order to optimize sewage, it is important to promote the growth of nitrifying bacteria. Once the nitrifying bacteria are propagated, the nitrate ions produced are taken into the nitrogen gas by the denitrifying bacteria in the sewage along with organic matter. Can be converted to

そこで、本発明の下水管路用浄水方法では、増殖速度の遅い硝化細菌の繁殖を促すために、微生物が定着可能な通水性の固定床を下水管路内の底部に設置して下水中に浸漬し、固定床中に酸素を供給して固定床中で硝化細菌の繁殖を促進する。固定床中へ酸素を供給すると、固定床中の下水の酸素濃度は周囲の下水より高くなって硝化細菌が繁殖し易くなり、更に、固定床中では水流が抑制されて細菌が定着し易くなり、硝化細菌が増殖する前に下水処理場まで流下することが抑制されるので、増殖速度の遅い硝化細菌であっても床中に定着して増殖が進行する。固定床中の硝化細菌の増殖が促進されると、下水に含まれるアンモニア態窒素が硝酸イオンに酸化されて、固定床から周囲の下水に硝酸イオンが放散される。固定床の周囲においては、固定床中より下水の酸素濃度が低く、脱窒細菌を含む硝酸イオンを利用可能な微生物は、固定床から放出される硝酸イオンを取り込んで窒素ガスに変換し、これは下水外に放出される。従って、下水の窒素化合物濃度が減少する。この結果、有機物濃度が脱窒細菌等の取り込みによって減少しても、有機物/窒素比率の低下は相対的に抑制される。   Therefore, in the water purification method for sewage pipelines of the present invention, in order to promote the growth of nitrifying bacteria having a slow growth rate, a water-permeable fixed bed capable of colonizing microorganisms is installed at the bottom of the sewage pipelines to sewage water. Immerse and supply oxygen in the fixed bed to promote the growth of nitrifying bacteria in the fixed bed. When oxygen is supplied into the fixed bed, the concentration of oxygen in the sewage in the fixed bed is higher than that in the surrounding sewage, making it easier for nitrifying bacteria to propagate. Since nitrifying bacteria are prevented from flowing down to the sewage treatment plant before they grow, even nitrifying bacteria having a slow growth rate settle in the bed and grow. When the growth of nitrifying bacteria in the fixed bed is promoted, ammonia nitrogen contained in the sewage is oxidized to nitrate ions, and nitrate ions are diffused from the fixed bed to the surrounding sewage. Around the fixed bed, the sewage oxygen concentration is lower than in the fixed bed, and microorganisms that can use nitrate ions including denitrifying bacteria take the nitrate ions released from the fixed bed and convert them into nitrogen gas. Is released out of the sewage. Therefore, the nitrogen compound concentration of sewage is reduced. As a result, even if the organic substance concentration is reduced by uptake of denitrifying bacteria or the like, the reduction in the organic substance / nitrogen ratio is relatively suppressed.

硝化細菌の硝化率は、溶存酸素濃度が0.5mg-O/Lを下回ると、最大活性時の半分以下に低下するので、固定床中の下水の溶存酸素濃度が0.5mg-O/L、好ましくは1mg-O/L以上となるように固定床中への酸素供給を調節するとよい。一方、固定床の外部の下水中では、好気性従属栄養細菌を抑制して脱窒細菌をできる限り増殖させ活性を高めるために、溶存酸素濃度を抑える必要がある。脱窒細菌の活性は、溶存酸素が1.0mg/L以上では最大活性の半分以下となる(参照:Elisabeth V.M. et al., "SIMULTANEOUS NITRIFICATION AND DENITRIFICATION IN BENCH-SALE SEQUENCING BATCH REACTORS", Wat. Res. vol.30, No.2, pp.277-284, 1996)ので、固定床の外側における下水の溶存酸素は1.0mg-O/L以下、好ましくは0.1mg-O/L以下となるのが好ましい(参照:福永・茂木、”オキシデーションディッチにおける窒素除去”、下水道協会誌、Vol. 21、No. 238、pp. 1-9、1984)。これらの点から、固定床内の溶存酸素が0.5mg/L以上、好ましくは1mg-O/L以上、外側の溶存酸素が1.0mg-O/L以下、好ましくは0.1mg-O/L以下となるように、固定床への酸素(空気)供給量を調整することによって、固定床内における硝化細菌の活性及び外側における脱窒細菌の活性を、各々、最大活性の半分以上に保持することができ、脱窒細菌等の作用による硝酸態窒素の脱窒が進行可能となる。外部の下水の溶存酸素濃度が1.0mg-O/L以下となるような実用的な酸素供給の設定としては、固定床中の下水の溶存酸素濃度が0.5〜3.0mg-O/Lの範囲となるように、固定床中への酸素の供給を調節することが有効であり、濃度勾配及び硝化細菌の取り込みによって固定床外部における溶存酸素濃度を1.0mg-O/L以下に抑制できる。   When the dissolved oxygen concentration falls below 0.5 mg-O / L, the nitrification rate of nitrifying bacteria decreases to less than half of the maximum activity, so the dissolved oxygen concentration of sewage in the fixed bed is 0.5 mg-O / L. The oxygen supply into the fixed bed is preferably adjusted so as to be preferably 1 mg-O / L or more. On the other hand, in the sewage outside the fixed bed, it is necessary to suppress the dissolved oxygen concentration in order to suppress aerobic heterotrophic bacteria and increase the activity of denitrifying bacteria as much as possible. The activity of denitrifying bacteria is less than half of the maximum activity when dissolved oxygen is 1.0 mg / L or more (see: Elisabeth VM et al., "SIMULTANEOUS NITRIFICATION AND DENITRIFICATION IN BENCH-SALE SEQUENCING BATCH REACTORS", Wat. Res. vol.30, No.2, pp.277-284, 1996), the dissolved oxygen of sewage outside the fixed bed is 1.0 mg-O / L or less, preferably 0.1 mg-O / L or less. (Ref: Fukunaga and Motegi, “Nitrogen removal in oxidation ditch”, Journal of Sewerage Society, Vol. 21, No. 238, pp. 1-9, 1984). From these points, the dissolved oxygen in the fixed bed is 0.5 mg / L or more, preferably 1 mg-O / L or more, and the outer dissolved oxygen is 1.0 mg-O / L or less, preferably 0.1 mg-O / L. By adjusting the amount of oxygen (air) supplied to the fixed bed so that it is less than or equal to L, the activity of nitrifying bacteria in the fixed bed and the activity of denitrifying bacteria in the outside are each maintained at half or more of the maximum activity The denitrification of nitrate nitrogen by the action of denitrifying bacteria or the like can proceed. As a practical oxygen supply setting so that the dissolved oxygen concentration of the external sewage is 1.0 mg-O / L or less, the dissolved oxygen concentration of the sewage in the fixed bed is 0.5 to 3.0 mg-O / L. It is effective to adjust the supply of oxygen into the fixed bed so that it is in the range of L, and the dissolved oxygen concentration outside the fixed bed is reduced to 1.0 mg-O / L or less by the concentration gradient and nitrifying bacteria uptake. Can be suppressed.

硝酸イオンの供給によって、下水中で有機物を取り込んで活動する微生物の少なくとも一部の反応は、酸素利用型の反応から硝酸利用型の反応へ転換される。この転換は、有機物/窒素比率の低下抑制において重要である。   By the supply of nitrate ions, at least a part of the reaction of microorganisms that take up organic substances in sewage is converted from a reaction using oxygen to a reaction using nitrate. This conversion is important in suppressing the decrease in the organic matter / nitrogen ratio.

従来の下水における試算として、有機物濃度がBOD換算で200mg/L、窒素化合物濃度がN換算で50mg/Lの下水が、下水管路を流下する間にBOD50mg/Lの有機物が酸化分解されたと仮定すると、下水のBOD/N比は、下水管路を流れる間に4.0から3.0まで低下し、窒素・リン除去には条件の悪いものに変化する。これに対し、本発明の下水管路用浄水装置を用いることにより、下水管路内で窒素化合物のうち15mg/Lのアンモニアが硝化されて硝酸イオンになり、これがBOD45mg/Lの有機物を利用した脱窒により窒素ガスとして除去されると、下水管路で酸化分解により消失する有機物の総量が変わらずBOD50mg/Lである場合には、下水の最終的なBOD/N比は150/35=4.3となる。この値は、少なくとも生物処理による窒素除去にとっては好適な値であり、下水処理場での窒素除去効率を従来より高め、メタノールなどの有機物の人為的添加を不要にすることが可能である。この試算に関して注意すべき点は、下水管路で酸素による酸化分解により消失する有機物の総量が増加すると、下水の最終的なBOD/N比の低下を抑制する効果が弱まる点であり、脱窒細菌の優先的増殖によって好気性従属栄養細菌を抑制し、微生物の活動が酸素利用型から硝酸利用型に転換することによって、酸化分解により消失する有機物総量を増加させずに硝化−脱窒を進行させることができ、下水の最終的なBOD/N比を効果的に上昇させることができる。   As a trial calculation in conventional sewage, it is assumed that organic matter with an organic matter concentration of 200 mg / L in terms of BOD and nitrogen compound concentration with 50 mg / L in terms of N has been oxidatively decomposed with 50 mg / L of organic matter flowing down the sewer line. Then, the BOD / N ratio of the sewage decreases from 4.0 to 3.0 while flowing through the sewage pipe, and changes to a poor condition for removing nitrogen and phosphorus. On the other hand, by using the water purifier for the sewage pipe of the present invention, 15 mg / L of the nitrogen compound in the sewage pipe is nitrified into nitrate ions, and this uses BOD 45 mg / L organic matter. When it is removed as nitrogen gas by denitrification, when the total amount of organic matter disappeared by oxidative decomposition in the sewage pipe is BOD 50 mg / L, the final BOD / N ratio of sewage is 150/35 = 4 .3. This value is a value suitable for at least nitrogen removal by biological treatment, and it is possible to improve the nitrogen removal efficiency in the sewage treatment plant as compared with the prior art and eliminate the need for artificial addition of organic substances such as methanol. The point to be noted about this trial calculation is that when the total amount of organic matter disappeared by oxidative decomposition with oxygen in the sewage pipe, the effect of suppressing the final decrease in the BOD / N ratio of the sewage is weakened. Suppressing aerobic heterotrophic bacteria by preferential growth of bacteria, and nitrification-denitrification progresses without increasing the total amount of organic matter lost by oxidative degradation by converting microbial activity from oxygen-utilizing to nitric acid-using And can effectively increase the final BOD / N ratio of sewage.

以下に、上述の下水管路用浄化方法の実施に適した下水管路用浄水装置について具体的に説明する。   Below, the sewage-pipe water purification apparatus suitable for implementation of the sewage-pipe purification method mentioned above is demonstrated concretely.

図2は、下水管路内に設定された本発明の下水管路用浄水装置の一例を示し、(a)は下水管路径方向の断面を、(b)は、下水管路軸方向の断面図を各々示す。この下水管路用浄水装置1は、網目状の被覆構造物3と、被覆構造物3内に充填収容される粒状の充填材5と、充填材5内に嵌装される送気管7と、空気を供給するブロワ9とを有し、送気管7はブロワ9に接続される。粒状の充填材5は、被覆構造物3によって円筒形状に保持されて、微生物を繁殖させる間隙を粒間に備える通水性の固定床を構成する。固定床の寸法は、下水管路の規模及び水深に応じて、外径0.2〜2m程度、長さ1〜100m程度に適宜設定され、増水によって移動しないように固定具(図示省略)を用いて下水管路底部に固定される。充填材5の粒形状及び寸法、充填率並びに被覆構造物3の網目形状は、充填材5の間隙及び被覆構造物3の網目の目開きが1〜50mmの範囲、好ましくは5〜20mmの範囲となるように、又、空隙率が50%程度以上となるように適宜選定されて、有機固形物の浸入が防止され、微生物を増殖させる間隙が確保される。固定床の中心軸より下側に、軸方向と平行に延伸する送気管7によって中空路が形成される。送気管7は、多数の孔が設けられた散気部11を有し、マンホールM下に設置されるブロワ9から送気管7を通じて供給される空気は、散気部11の孔から充填材5の間隙へ吹き込まれる。散気部11の数及び配置は、固定床全体に空気が均等に供給されるように配慮して適宜設定される。一方、水平より僅かに傾斜する下水管路に沿って流れる下水は、網目状の被覆構造物3を通って内部の充填材5の間隙に浸入し、散気部11から吹き込まれる空気によって溶存酸素濃度が増加し、充填材5間の下水は好気的条件となる。この際、溶解性有機物及びアンモニアは被覆構造物3を通って充填材5間に供給されるが、網目状の被覆構造物3はフィルターとして機能して、下水に含まれる不溶物(つまり、固形物や懸濁物)は濾過されて充填材5間への浸入が防止される。充填材5の間隙では、充填材による流動抵抗で流れが緩慢な下水中で硝化細菌が増殖し、充填材5表面に付着したり充填材の間隙に沈殿保持されると共に、好気性条件でアンモニアを取り込んで硝酸イオンに酸化する。一方、有機物を酸化分解する微生物は、有機固形物が充填材の間隙に浸入し難いために、従来の下水管路ほどには繁殖しない。このため、硝化細菌の競争力が相対的に向上し、硝化作用が進行し易くなる。硝化の進行につれて、生成した硝酸イオンが被覆構造物3の網目を通過して周囲の下水中に拡散し、周囲の下水中では、豊富な有機物の存在下で脱窒細菌が硝酸イオンを取り込んで窒素ガスに還元して放出し、下水から離脱する。   FIG. 2 shows an example of the sewage pipe water purifier of the present invention set in the sewage pipe, wherein (a) shows a cross section in the sewage pipe radial direction and (b) shows a cross section in the sewage pipe axial direction. Each figure is shown. The sewage pipe water purifier 1 includes a mesh-shaped covering structure 3, a granular filler 5 filled and accommodated in the covering structure 3, an air supply pipe 7 fitted in the filler 5, The air supply pipe 7 is connected to the blower 9. The granular filler 5 is held in a cylindrical shape by the covering structure 3 and constitutes a water-permeable fixed bed provided with a gap between the grains for propagation of microorganisms. The size of the fixed floor is appropriately set to an outer diameter of about 0.2 to 2 m and a length of about 1 to 100 m according to the scale and depth of the sewer pipe, and a fixture (not shown) is attached so as not to move due to water increase. Used to fix to the bottom of the sewer pipe. The particle shape and size of the filler 5, the filling rate, and the mesh shape of the covering structure 3 are such that the gap of the filler 5 and the mesh opening of the covering structure 3 are in the range of 1 to 50 mm, preferably in the range of 5 to 20 mm. In addition, it is appropriately selected so that the porosity is about 50% or more, so that the infiltration of organic solids is prevented and a gap for growing microorganisms is secured. A hollow path is formed below the central axis of the fixed bed by the air supply pipe 7 extending parallel to the axial direction. The air supply pipe 7 has an air diffuser 11 provided with a large number of holes, and the air supplied from the blower 9 installed under the manhole M through the air supply pipe 7 passes through the holes of the air diffuser 11 to fill the filler 5. It is blown into the gap. The number and arrangement of the air diffusers 11 are appropriately set in consideration so that air is evenly supplied to the entire fixed floor. On the other hand, the sewage flowing along the sewage pipeline slightly inclined from the horizontal passes through the mesh-like covering structure 3 and enters the gap between the internal fillers 5 and is dissolved by the air blown from the air diffuser 11. The concentration increases and the sewage between the fillers 5 becomes an aerobic condition. At this time, the soluble organic substance and ammonia are supplied between the fillers 5 through the covering structure 3, but the mesh-like covering structure 3 functions as a filter and is insoluble in sewage (that is, solids). The matter or suspension) is filtered to prevent entry between the fillers 5. In the gap of the filler 5, nitrifying bacteria grow in sewage that is slow due to the flow resistance due to the filler, adheres to the surface of the filler 5, precipitates and holds in the gap of the filler, and is aerobic under ammonia conditions. Is oxidized to nitrate ions. On the other hand, microorganisms that oxidize and decompose organic substances do not propagate as well as conventional sewage pipes because organic solids are difficult to enter the gaps in the filler. For this reason, the competitiveness of nitrifying bacteria is relatively improved, and the nitrifying action is likely to proceed. As nitrification progresses, the generated nitrate ions pass through the mesh of the coating structure 3 and diffuse into the surrounding sewage. In the surrounding sewage, denitrifying bacteria take up nitrate ions in the presence of abundant organic matter. Reduces to nitrogen gas and releases it, then leaves the sewage.

従って、従来、窒素化合物の濃度低下を伴わずに酸素や硫酸イオンを利用して酸化分解されていた有機物の少なくとも一部は、下水管路用浄水装置から供給される硝酸イオンを利用して有機物を酸化する細菌に利用され、窒素化合物の濃度低下を伴なうようになる。   Accordingly, at least a part of the organic matter that has been conventionally oxidized and decomposed using oxygen or sulfate ions without lowering the concentration of the nitrogen compound is obtained using nitrate ions supplied from the sewage pipe water purification device. It is used by bacteria that oxidize and comes with a decrease in the concentration of nitrogen compounds.

図2の下水管路用浄水装置1の固定床は、両端が閉じられた網目状の袋に円筒状に装填された粒状充填材で構成される屈曲可能な軸性体であるので、下水管路の屈曲に対応して設置することが可能である。固定床の形状は、円筒に限定されず、楕円柱、多角柱や、半円柱等の部分柱のような断面形状が異なる他の軸性形状であってもよい。このような軸性形状に構成すると、下水管路の底部の一部分のみを占有するので、増水時の下水の流れは殆ど阻害されない。充填材を構成する素材は、微生物が定着可能であれば特に制限はなく、植物繊維、木質、鉱物質等の天然素材やプラスチック等の合成素材から適宜選択して用いればよい。プラスチック素材は、微生物が付着し易く、加工及び取り扱いの点でも有用である。   Since the fixed floor of the water purifier 1 for the sewage pipe in FIG. 2 is a bendable axial body composed of a granular filler loaded in a cylindrical shape in a mesh bag with both ends closed, the sewage pipe It can be installed corresponding to the bending of the road. The shape of the fixed floor is not limited to a cylinder, and may be another axial shape having a different cross-sectional shape such as an elliptical column, a polygonal column, or a partial column such as a semi-column. Since it will occupy only a part of the bottom part of a sewer pipe, if it comprises in such an axial shape, the flow of the sewage at the time of water increase will be hardly inhibited. The material constituting the filler is not particularly limited as long as microorganisms can be fixed, and may be appropriately selected from natural materials such as plant fibers, woody materials, minerals, and synthetic materials such as plastics. The plastic material is easily attached to microorganisms, and is also useful in terms of processing and handling.

図3は、本発明の下水管路用浄水装置の他の例を示し、(a)は下水管路径方向の断面を、(b)は、下水管路軸方向の断面図を各々示す。この下水管路用浄水装置20の固定床は、自己保形性を有する素材で形成される円筒形状の屈曲可能な多孔質体21であり、被覆構造物による形状保持を必要としない。このような多孔質体21の固定床は、発泡ポリウレタン等のような連続気泡プラスチック材料や、織布又は不織布のような繊維集合体で構成することができ、織布又は不織布を用いる場合には、例えば、布を円筒状に巻回して一端部を布で閉じることによって形成される。多孔質体21の気孔(間隙)の寸法が1〜50mmの範囲、好ましくは5〜20mmの範囲となり、空隙率が50%程度以上となる素材が適宜選定される。固定床の寸法は、図2の例と同様に、下水管路の規模及び水深に応じて、外径0.2〜2m程度、長さ1〜100m程度に適宜設定され、増水によって移動しないように固定具(図示省略)を用いて下水管路底部に固定される。このような軸性形状に構成することにより、固定床は下水管路の底部の一部分のみを占め、増水時の流れを殆ど阻害しない。多孔質体21の中心軸より下方に、軸方向と平行に延伸する中空路を有し、中空路は一端において開口し、他端は閉じている。図3の例では、図2のブロワに代えて、下水又は外部供給水に1mm以下の微小気泡を混入させるマイクロバブル装置23が用いられる。マイクロバブル装置23は、全周面に多数の孔(図示略)を設けたバブル供給管25を有し、バブル供給管25は、多孔質体21の一端の中空路開口に嵌入されてマイクロバブル装置23と多孔質体21の中空路とを接続する。マイクロバブル装置23には空気を取り込むための空気取り込み管26が付属している。   FIG. 3: shows the other example of the water purifier for sewer pipes of this invention, (a) shows the cross section of a sewer pipe radial direction, (b) shows sectional drawing of a sewer pipe axial direction, respectively. The fixed floor of the sewage pipe water purification apparatus 20 is a cylindrical bendable porous body 21 formed of a material having a self-retaining property, and does not require shape retention by a covering structure. Such a fixed bed of the porous body 21 can be composed of an open-cell plastic material such as foamed polyurethane, or a fiber assembly such as a woven or non-woven fabric. When a woven or non-woven fabric is used, For example, it is formed by winding a cloth in a cylindrical shape and closing one end with the cloth. A material in which the pore (gap) size of the porous body 21 is in the range of 1 to 50 mm, preferably in the range of 5 to 20 mm, and the porosity is about 50% or more is appropriately selected. As in the example of FIG. 2, the dimensions of the fixed floor are appropriately set to an outer diameter of about 0.2 to 2 m and a length of about 1 to 100 m according to the scale and depth of the sewage pipe, so as not to move due to water increase. It is fixed to the bottom of the sewer pipe using a fixture (not shown). By configuring in such an axial shape, the fixed floor occupies only a part of the bottom of the sewer pipe, and hardly impedes the flow during water increase. A hollow path extending parallel to the axial direction is provided below the central axis of the porous body 21, and the hollow path is opened at one end and the other end is closed. In the example of FIG. 3, instead of the blower of FIG. 2, a microbubble device 23 that mixes fine bubbles of 1 mm or less into sewage or externally supplied water is used. The microbubble device 23 has a bubble supply pipe 25 provided with a large number of holes (not shown) on the entire circumferential surface, and the bubble supply pipe 25 is fitted into a hollow passage opening at one end of the porous body 21 to form a microbubble. The device 23 and the hollow path of the porous body 21 are connected. The microbubble device 23 is provided with an air intake pipe 26 for taking in air.

図3の下水管路用浄水装置20において、多孔質体21は、図2の浄水装置の場合と同様に、下水中の固形有機物が内部に浸入するのを表面において防止し、アンモニア及び溶解性有機物を含んだ下水が多孔質体21内に浸入する。マイクロバブル装置23によって調製される空気の微小気泡が混入した下水は、酸素が容易に下水に溶解して溶存酸素濃度が増加し、これがバブル供給管25から中空路を通じて多孔質体21に拡散・供給されると、多孔質体21中の下水の溶存酸素が増加し、好気性条件となって硝化細菌の増殖を容易にする。硝化細菌は、多孔質体21に付着したり、気孔又は間隙中に沈殿して保持され、アンモニアの酸化すなわち硝化作用を行う。固形有機物の排除によって、好気性従属栄養細菌の増殖は従来に比べて抑制され、硝化細菌の活性が向上し易くなる。多孔質体21で構成される固定床内での硝化により、生成した硝酸イオンは、多孔質体21で構成される固定床から有機物の豊富な周囲の下水に拡散し、硝酸イオンを利用する脱窒細菌の作用が促進され、窒素ガスとなって系外に放出される。脱窒細菌による脱窒反応の進行によって、少なくとも一部の細菌の活動が酸素利用型から硝酸利用型へ転換し、下水のBOD/N比の低下が抑制される。   In the sewage water purification apparatus 20 for the sewage pipe in FIG. 3, the porous body 21 prevents the solid organic matter in the sewage from entering the inside, as in the case of the water purification apparatus in FIG. Sewage containing organic matter infiltrates into the porous body 21. In the sewage mixed with microbubbles of air prepared by the microbubble device 23, oxygen easily dissolves in the sewage and the dissolved oxygen concentration increases. This is diffused from the bubble supply pipe 25 to the porous body 21 through the hollow path. When supplied, the dissolved oxygen of the sewage in the porous body 21 increases, and it becomes an aerobic condition and facilitates the growth of nitrifying bacteria. Nitrifying bacteria adhere to the porous body 21 or are precipitated and retained in the pores or gaps, and oxidize ammonia, that is, nitrify. By eliminating solid organic matter, the growth of aerobic heterotrophic bacteria is suppressed as compared with the conventional one, and the activity of nitrifying bacteria is easily improved. The nitrate ions generated by nitrification in the fixed bed composed of the porous body 21 are diffused from the fixed bed composed of the porous body 21 into the sewage around the organic matter, and are removed using the nitrate ions. The action of nitrogen bacteria is promoted and released as nitrogen gas. By the progress of the denitrification reaction by the denitrifying bacteria, the activity of at least a part of the bacteria is converted from the oxygen utilization type to the nitric acid utilization type, and the decrease in the BOD / N ratio of the sewage is suppressed.

下水管路の模擬設備として、底面が180mm×180mmの水槽を用意した。1mmメッシュの網製円筒袋に、織物状に成型されたプラスチックの充填材(外径30φ)を装填し、多穴散気管を接続した送気管を充填材中に軸方向に沿って挿入し、充填材中に溶存酸素計のセンサーを取り付けて袋の口を送気管に締着し、外径40mmΦ、長さ150mmの円筒形の固定床を作成した。送気管にブロワを接続して下水管路用浄水装置を構成し、固定床を水槽中に水平に据えた。水深60mmになるように水槽に水を投入して固定床を浸漬し、固定床からの距離が70mmの位置の水中にも溶存酸素計のセンサーを固定した。   A water tank having a bottom surface of 180 mm × 180 mm was prepared as a sewage pipe simulation facility. A 1 mm mesh netted cylindrical bag is filled with a plastic filler (outer diameter 30φ) molded into a woven fabric, and an air supply pipe connected with a multi-hole diffuser pipe is inserted into the filler along the axial direction. A sensor of a dissolved oxygen meter was attached to the filler, and the mouth of the bag was fastened to the air supply tube to create a cylindrical fixed bed having an outer diameter of 40 mmΦ and a length of 150 mm. A blower was connected to the air supply pipe to form a water purifier for the sewage pipe, and the fixed bed was placed horizontally in the water tank. Water was poured into the water tank so that the water depth was 60 mm and the fixed bed was immersed, and the sensor of the dissolved oxygen meter was also fixed in water at a distance of 70 mm from the fixed bed.

ブロワから固定床に40mL/分の供給速度で10分間空気を吹き込み、固定床中及び外部の溶存酸素濃度を測定したところ、固定床内部では3.73mg-O/L、外部では0.70mg-O/Lであった。これは、微生物が存在せず、水流のない条件での結果であるが、固定床内外の溶存酸素濃度は、実際の下水でも好適に溶存酸素濃度を調節可能であることを明示している。   Air was blown into the fixed bed from the blower at a supply rate of 40 mL / min for 10 minutes, and the dissolved oxygen concentration in the fixed bed and outside was measured to be 3.73 mg-O / L inside the fixed bed and 0.70 mg-- outside. O / L. This is a result in the absence of microorganisms and no water flow, but the dissolved oxygen concentration inside and outside the fixed bed clearly shows that the dissolved oxygen concentration can be adjusted appropriately even in actual sewage.

下水処理システムを説明するための概略構成図。The schematic block diagram for demonstrating a sewage treatment system. 本発明の下水管路用浄水装置の一実施形態を示す下水管路径方向断面図(a)及び軸方向断面図(b)。The sewage pipe radial direction sectional drawing (a) and axial direction sectional drawing (b) which show one Embodiment of the water purifier for sewage pipe lines of this invention. 本発明の下水管路用浄水装置の一実施形態を示す下水管路径方向断面図(a)及び軸方向断面図(b)。The sewage pipe radial direction sectional drawing (a) and axial direction sectional drawing (b) which show one Embodiment of the water purifier for sewage pipe lines of this invention.

符号の説明Explanation of symbols

A:下水処理場A、B:沈砂池、C:第一沈殿池、D:脱窒槽、E:硝化槽
F:第二沈殿池、G:消毒槽、H,Ha,Hb:下水管路
P:ポンプ場、S:下水、M:マンホール
1,20:下水管路用浄水装置、3:被覆構造物、5:充填材
7:送気管、9:ブロワ、11:散気部
21:多孔質体、23:マイクロバブル装置、25:バブル供給管
A: Sewage treatment plant A, B: Sedimentation basin, C: First sedimentation basin, D: Denitrification tank, E: Nitrification tank F: Second sedimentation tank, G: Disinfection tank, H, Ha, Hb: Sewage pipes P : Pump station, S: sewage, M: manhole 1,20: water purifier for sewage pipe, 3: covering structure, 5: filler 7: air supply pipe, 9: blower, 11: air diffuser 21: porous Body, 23: microbubble device, 25: bubble supply pipe

Claims (18)

下水に浸漬するように下水管路内底部に配置される、硝化細菌が定着可能な通水性の固定床と、前記固定床中に酸素を供給するための酸素供給手段とを有することを特徴とする下水管路用浄水装置。   Characterized in that it has a water-permeable fixed bed capable of fixing nitrifying bacteria and is disposed at the bottom of the sewage pipe so as to be immersed in sewage, and oxygen supply means for supplying oxygen into the fixed bed. Water purification equipment for sewage pipes. 前記固定床は、内部を延伸する中空路を有する屈曲可能な軸性体であり、前記酸素供給手段は、前記中空路に酸素を供給することによって固定床中の下水に酸素が提供される請求項1記載の下水管路用浄水装置。   The fixed bed is a bendable axial body having a hollow channel extending inside, and the oxygen supply means supplies oxygen to the sewage in the fixed bed by supplying oxygen to the hollow channel. Item 1. A water purifier for a sewage pipeline according to item 1. 前記酸素供給手段は、前記固定床の中空路に嵌装され散気部を有する送気管と、前記送気管に空気を送出して前記散気部から前記固定床中へ空気を吹き込む吹き込み装置とを有する請求項1又は2に記載の下水管路用浄水装置。   The oxygen supply means includes an air supply pipe fitted in a hollow passage of the fixed bed and having an air diffuser, and a blowing device for sending air to the air supply pipe and blowing air from the air diffuser into the fixed bed. The sewage-pipe water purification apparatus of Claim 1 or 2 which has these. 前記酸素供給手段は、下水に空気の微小気泡を混入して溶存酸素が増加した下水を調製するマイクロバブル装置を有し、前記マイクロバブル装置は、前記固定床の中空路に接続されて前記中空路に溶存酸素が増加した下水を供給する請求項1又は2に記載の下水管路用浄水装置。   The oxygen supply means has a microbubble device that prepares sewage in which dissolved oxygen is increased by mixing microbubbles of air into the sewage, and the microbubble device is connected to the hollow passage of the fixed bed and is The sewage pipe water purifier according to claim 1 or 2, wherein sewage in which dissolved oxygen is increased is supplied to the airway. 前記固定床は、網目状被覆部材で軸性形状に保持される多数の充填材で構成される請求項1〜4の何れかに記載の下水管路用浄水装置。   The said fixed floor is a water purification apparatus for sewage pipes in any one of Claims 1-4 comprised with many fillers hold | maintained by a mesh-shaped coating | coated member at an axial shape. 前記固定床は、連続気泡材料又は繊維集合体で構成される多孔質体である請求項1〜4の何れかに記載の下水管路用浄水装置。   The said fixed bed is a porous body comprised with an open-cell material or a fiber assembly, The water purifier for sewage pipes in any one of Claims 1-4. 前記固定床は、プラスチック素材で構成される請求項1〜6の何れかに記載の下水管路用浄水装置。   The said fixed floor is a water purification apparatus for sewage pipes in any one of Claims 1-6 comprised with a plastics material. 前記固定床は、空隙率が50%以上である請求項1〜7の何れかに記載の下水管路用浄水装置。   The water purification apparatus for a sewage pipeline according to any one of claims 1 to 7, wherein the fixed bed has a porosity of 50% or more. 硝化細菌が定着可能な通水性の固定床を下水管路内底部に配置して下水に浸漬し、前記固定床中に酸素を供給して前記固定床中で硝化細菌の増殖を促進することによって、下水管路の下水に含まれるアンモニア態窒素を酸化することを特徴とする下水管路用浄水方法。   By placing a water-permeable fixed bed capable of fixing nitrifying bacteria at the bottom of the sewer pipe and immersing it in sewage, supplying oxygen into the fixed bed to promote the growth of nitrifying bacteria in the fixed bed A method for purifying water for a sewage pipe, characterized by oxidizing ammonia nitrogen contained in the sewage of the sewage pipe. 前記固定床中の下水の溶存酸素濃度が0.5mg-O/L以上となるように前記固定床中への酸素の供給を調節する請求項9記載の下水管路用浄水方法。   The water purification method for a sewage pipeline according to claim 9, wherein supply of oxygen to the fixed bed is adjusted so that a dissolved oxygen concentration of sewage in the fixed bed is 0.5 mg-O / L or more. 前記固定床中の下水の溶存酸素濃度は0.5〜3.0mg-O/Lの範囲で、前記固定床外部の下水の溶存酸素濃度は1.0mg-O/L以下となるように前記固定床中への酸素の供給を調節することによって、前記固定床外部の下水中で脱窒細菌による亜硝酸態窒素及び硝酸態窒素の脱窒を進行させる請求項9又は10に記載の下水管路用浄水方法。   The dissolved oxygen concentration of sewage in the fixed bed is in the range of 0.5 to 3.0 mg-O / L, and the dissolved oxygen concentration of sewage outside the fixed bed is 1.0 mg-O / L or less. The sewage pipe according to claim 9 or 10, wherein denitrification of nitrite nitrogen and nitrate nitrogen by a denitrifying bacterium proceeds in sewage outside the fixed bed by adjusting supply of oxygen into the fixed bed. Road water purification method. 前記固定床は、内部を延伸する中空路を有する屈曲可能な軸性体であり、前記中空路に酸素を供給することによって固定床中の下水に酸素が提供される請求項9〜11の何れかに記載の下水管路用浄水方法。   The fixed bed is a bendable axial body having a hollow path extending inside, and oxygen is provided to sewage in the fixed bed by supplying oxygen to the hollow path. The water purification method for sewage pipes as described in Crab. 前記酸素は、空気の吹き込みによって供給される請求項9〜12の何れかに記載の下水管路用浄水方法。   The water purification method for a sewage pipe according to any one of claims 9 to 12, wherein the oxygen is supplied by blowing air. 前記酸素は、下水に空気の微小気泡を混入して調製される溶存酸素が増加した下水を前記固定床の中空路に送り込むことによって供給される請求項9〜13の何れかに記載の下水管路用浄水方法。   The sewage pipe according to any one of claims 9 to 13, wherein the oxygen is supplied by feeding sewage with increased dissolved oxygen prepared by mixing fine air bubbles into the sewage into the hollow passage of the fixed bed. Road water purification method. 前記固定床は、網目状被覆部材によって多数の充填材を軸性形状に保持することによって構成される請求項9〜14の何れかに記載の下水管路用浄水方法。   The said fixed floor is a water purification method for sewage pipes in any one of Claims 9-14 comprised by hold | maintaining many fillers in an axial shape with a mesh-shaped coating | coated member. 前記固定床は、連続気泡材料又は繊維集合体で構成される多孔質体である請求項9〜14の何れかに記載の下水管路用浄水方法。   The water purification method for a sewage conduit according to any one of claims 9 to 14, wherein the fixed bed is a porous body made of an open cell material or a fiber assembly. 前記固定床は、プラスチック素材で構成される請求項9〜16の何れかに記載の下水管路用浄水方法。   The water purification method for a sewage pipe line according to any one of claims 9 to 16, wherein the fixed floor is made of a plastic material. 前記固定床は、空隙率が50%以上である請求項9〜17の何れかに記載の下水管路用浄水方法。   The water purification method for a sewage pipeline according to any one of claims 9 to 17, wherein the fixed bed has a porosity of 50% or more.
JP2008190087A 2008-07-23 2008-07-23 Water purifying apparatus for sewer pipeline, and water purifying method for sewer pipeline Pending JP2010024773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190087A JP2010024773A (en) 2008-07-23 2008-07-23 Water purifying apparatus for sewer pipeline, and water purifying method for sewer pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190087A JP2010024773A (en) 2008-07-23 2008-07-23 Water purifying apparatus for sewer pipeline, and water purifying method for sewer pipeline

Publications (1)

Publication Number Publication Date
JP2010024773A true JP2010024773A (en) 2010-02-04

Family

ID=41730854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190087A Pending JP2010024773A (en) 2008-07-23 2008-07-23 Water purifying apparatus for sewer pipeline, and water purifying method for sewer pipeline

Country Status (1)

Country Link
JP (1) JP2010024773A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032602A1 (en) * 2010-09-07 2012-03-15 株式会社アースクリーン Sewage treatment system of sewer pipe
WO2013172288A1 (en) 2012-05-16 2013-11-21 積水化学工業株式会社 Pipe line purifying devices and connecting structure for pipe line purifying devices
WO2013190651A1 (en) 2012-06-20 2013-12-27 トヨタ自動車株式会社 Vehicle control device
KR101718108B1 (en) * 2016-09-21 2017-03-21 주식회사 뉴먼테크 Ultrafine bubble generator
CN107055809A (en) * 2016-04-15 2017-08-18 台湾塑胶工业股份有限公司 High-effect multi-angle well screen groundwater remediation equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032602A1 (en) * 2010-09-07 2012-03-15 株式会社アースクリーン Sewage treatment system of sewer pipe
WO2013172288A1 (en) 2012-05-16 2013-11-21 積水化学工業株式会社 Pipe line purifying devices and connecting structure for pipe line purifying devices
CN104285019A (en) * 2012-05-16 2015-01-14 积水化学工业株式会社 Pipe line purifying devices and connecting structure for pipe line purifying devices
CN104285019B (en) * 2012-05-16 2016-12-28 积水化学工业株式会社 The connecting structure of purifier in purifier and pipeline in pipeline
WO2013190651A1 (en) 2012-06-20 2013-12-27 トヨタ自動車株式会社 Vehicle control device
CN107055809A (en) * 2016-04-15 2017-08-18 台湾塑胶工业股份有限公司 High-effect multi-angle well screen groundwater remediation equipment
CN107055809B (en) * 2016-04-15 2020-07-07 台湾塑胶工业股份有限公司 High-effect multi-angle well screen groundwater remediation equipment
KR101718108B1 (en) * 2016-09-21 2017-03-21 주식회사 뉴먼테크 Ultrafine bubble generator

Similar Documents

Publication Publication Date Title
KR100574149B1 (en) Water treatment system based on denitrification
CN103265144B (en) Town wastewater treatment process and device with intensified nitrogen and phosphorus removing function
CN204848595U (en) Effluent disposal system breeds
CN103058460B (en) A/O (anoxic/oxic) flow separation and magnetic flocculation integrated sewage treatment device and method
CN102775025A (en) Municipal life wastewater treatment system with high efficiency and low energy consumption
WO2010016268A1 (en) Water treatment system and water treatment method
CN214528587U (en) Rural domestic sewage treatment system of nitrogen and phosphorus removal integration
CN206051680U (en) A kind of denitrification filter pool for processing country sewage is combined MBR devices
JP2010024773A (en) Water purifying apparatus for sewer pipeline, and water purifying method for sewer pipeline
CN114634276A (en) Nitrogen and phosphorus removal integrated rural domestic sewage treatment system and treatment method thereof
JP4476976B2 (en) Device for predominating Bacillus bacteria
JP5992807B2 (en) Waste water treatment apparatus and waste water treatment method
CN211035607U (en) Distributed domestic sewage treatment and reuse system
KR20140063454A (en) Apparatus and method for treatment wastewater
RU141341U1 (en) BIOLOGICAL WASTE WATER TREATMENT PLANT
KR101186606B1 (en) Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater
CN109574397B (en) Multi-technology coupled efficient constructed wetland treatment system and method
KR101345790B1 (en) Purifying and reusing system of wastewater using microbial permanent cultivation structure and surplus wastes
JP2008307494A (en) Sewage treating method and sewage treatment apparatus
Sekoulov et al. Application of biofiltration in the crude oil processing industry
AU2018204627A1 (en) Wastewater treatment method
KR101615981B1 (en) Apparatus for Wastewater treatment Having Returning Device of Fluidized Carrier
CN108640416B (en) Wetland ventilation system
Hwang et al. Simultaneous nitrification/denitrification in a single reactor using ciliated columns packed with granular sulfur
CN203474579U (en) Rural sewage treatment device with enhanced denitrification and phosphorous removal functions