JP2010024078A - Admixture - Google Patents

Admixture Download PDF

Info

Publication number
JP2010024078A
JP2010024078A JP2008186275A JP2008186275A JP2010024078A JP 2010024078 A JP2010024078 A JP 2010024078A JP 2008186275 A JP2008186275 A JP 2008186275A JP 2008186275 A JP2008186275 A JP 2008186275A JP 2010024078 A JP2010024078 A JP 2010024078A
Authority
JP
Japan
Prior art keywords
concrete
water
admixture
specimen
neutralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008186275A
Other languages
Japanese (ja)
Other versions
JP5467588B2 (en
Inventor
Yuji Harashima
裕治 原嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008186275A priority Critical patent/JP5467588B2/en
Publication of JP2010024078A publication Critical patent/JP2010024078A/en
Application granted granted Critical
Publication of JP5467588B2 publication Critical patent/JP5467588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid admixture which contributes to the strength development and neutralization inhibition effect of mortar or concrete. <P>SOLUTION: The admixture to be mixed with mortar or concrete comprises calcium lignosulfonate, calcium chloride, calcium nitrite, hydroxyethyl cellulose, magnesium silicofluoride and water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、混和剤にかかり、更に詳しくは、モルタルやコンクリートの強度向上に寄与すると共に中性化防止に寄与する混和剤に関する。   The present invention relates to an admixture, and more particularly relates to an admixture that contributes to improving the strength of mortar and concrete and also prevents neutralization.

土木或いは建築の分野においては、構造物などの構築の材料としてコンクリートが使用されている。コンクリートの強度は水セメント比によって左右され、この値が大きいほど強度、耐久性、水密性が劣るといわれている。従ってコンクリートの強度を向上させようとすれば水セメント比を小さくすればよい。   In the field of civil engineering or architecture, concrete is used as a construction material such as a structure. The strength of concrete depends on the water-cement ratio, and it is said that the greater the value, the lower the strength, durability, and watertightness. Therefore, if it is going to improve the intensity | strength of concrete, what is necessary is just to make a water cement ratio small.

また、近年、コンクリートの耐久性問題、特にコンクリートの中性化が大きくクローズアップされている。コンクリートの中性化は、大気中の二酸化炭素がコンクリート内に侵入し、炭酸化反応を引き起こすことにより、本来アルカリ性であるコンクリートのpHを下げる現象である。   In recent years, the durability of concrete, particularly the neutralization of concrete, has been greatly highlighted. The neutralization of concrete is a phenomenon that lowers the pH of concrete that is essentially alkaline by the carbon dioxide in the atmosphere entering the concrete and causing a carbonation reaction.

中性化はコンクリート表面より進行し、鉄筋などの鋼材位置に達すると、不動態被膜を破壊する。これにより鋼材を腐食させ、コンクリートのひび割れ・剥離を引き起こし、耐荷力など構造物の性能低下を生じる。また、ひび割れが発生したコンクリートはさらに二酸化炭素の侵入を促すため、中性化によるコンクリート構造物の劣化を加速させる。   Neutralization proceeds from the concrete surface, and when it reaches the position of a steel material such as a reinforcing bar, the passive film is destroyed. As a result, the steel material is corroded, cracking and peeling of the concrete are caused, and the performance of the structure such as load resistance is deteriorated. In addition, since the cracked concrete further promotes the penetration of carbon dioxide, it accelerates the deterioration of the concrete structure due to neutralization.

従って、水セメント比の小さい密実なコンクリートは、コンクリートの強度を向上させると共にコンクリートの劣化因子である二酸化炭素の侵入を抑える効果がある。   Therefore, a solid concrete having a small water-cement ratio has an effect of improving the strength of the concrete and suppressing the intrusion of carbon dioxide, which is a deterioration factor of the concrete.

しかし、水セメント比を小さくすればコンクリートやモルタルの流動性が悪くなり、打設作業効率の低下と強度のばらつきが大きくなるばかりか、建設時のコスト増を招く課題がある。   However, if the water-cement ratio is reduced, the fluidity of concrete and mortar deteriorates, and there is a problem that not only the work efficiency is lowered and the variation in strength is increased, but also the cost during construction is increased.

特許文献1には、高炉徐冷スラグ粉末とギ酸類とを含有してなり、コンクリートの強度発現と中性化抑制効果を奏するセメント混和材が開示されている。   Patent Document 1 discloses a cement admixture containing blast furnace slow-cooled slag powder and formic acids, and exhibiting the strength development of concrete and the effect of inhibiting neutralization.

特開2003−221265JP 2003-221265 A

特許文献1に開示されている混和材の原料である高炉徐冷スラグは、高炉から生成する溶融スラグを空冷と適度の散水によって塊状化させたものであり、コンクリート用粗骨材やセメント原料等として使用されているが、塊状であるために必ずしも使い勝手がよいというものではない。   The blast furnace slow-cooled slag which is a raw material of the admixture disclosed in Patent Document 1 is obtained by agglomeration of molten slag generated from the blast furnace by air cooling and appropriate water spray, such as coarse aggregate for concrete, cement raw material, etc. However, it is not necessarily easy to use because it is in a lump shape.

本発明者はコンクリートの強度発現と中性化抑制効果を奏する液状の混和剤を開発すべく研究を重ね、リグニンスルホン酸カルシウム、塩化カルシウム、亜硝酸カルシウムにヒドロキシエチルセルロースを加え、更にケイフッ化マグネシウムを加えることによって水セメント比を小さくしないでもコンクリートの強度発現と中性化抑制効果を奏することを知見し、本発明を完成するに至った。   The present inventor has repeatedly studied to develop a liquid admixture that exhibits the strength development and neutralization suppressing effect of concrete, adding hydroxyethyl cellulose to calcium lignin sulfonate, calcium chloride and calcium nitrite, and further adding magnesium silicofluoride. It has been found that the addition of the water cement ratio does not reduce the water cement ratio, and the concrete exhibits the strength development and the neutralization suppressing effect, thereby completing the present invention.

(本発明の目的)
そこで本発明の目的は、モルタル又はコンクリートの強度発現と中性化抑制効果を奏する液状の混和剤を提供することにある。
(Object of the present invention)
Accordingly, an object of the present invention is to provide a liquid admixture that exhibits the strength development and neutralization suppressing effect of mortar or concrete.

上記課題を解決するために本発明が講じた手段は次のとおりである。
本発明は、リグニンスルホン酸カルシウム、塩化カルシウム、亜硝酸カルシウム、ヒドロキシエチルセルロース、ケイフッ化マグネシウム、水を含む混和剤である。
Means taken by the present invention to solve the above problems are as follows.
The present invention is an admixture containing calcium lignin sulfonate, calcium chloride, calcium nitrite, hydroxyethyl cellulose, magnesium fluorosilicate, and water.

本発明は、リグニンスルホン酸カルシウム5〜20重量部、塩化カルシウム1〜10重量部、亜硝酸カルシウム1〜5重量部、ヒドロキシエチルセルロース3〜5重量部、ケイフッ化マグネシウム3〜5重量部、水80〜90重量部を含む混和剤である。   The present invention comprises 5 to 20 parts by weight of calcium lignin sulfonate, 1 to 10 parts by weight of calcium chloride, 1 to 5 parts by weight of calcium nitrite, 3 to 5 parts by weight of hydroxyethyl cellulose, 3 to 5 parts by weight of magnesium fluorosilicate, and 80 water. An admixture containing ˜90 parts by weight.

本発明は、前記混和剤を用いるモルタル又はコンクリートの製造方法である。   The present invention is a method for producing mortar or concrete using the admixture.

本発明は、前記混和剤を含むモルタル又はコンクリート製品である。   The present invention is a mortar or concrete product containing the admixture.

本発明によれば、モルタル又はコンクリートの強度発現と中性化抑制効果を奏する液状の混和剤が提供できる。
また、モルタル又はコンクリートの強度発現と中性化抑制効果を奏するコンクリートの製造方法が提供できる。
更には、モルタル又はコンクリートの強度発現と中性化抑制効果を奏するコンクリート製品が提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the liquid admixture which shows the strength expression and neutralization inhibitory effect of mortar or concrete can be provided.
Moreover, the manufacturing method of the concrete which has the strength expression and neutralization inhibitory effect of mortar or concrete can be provided.
Furthermore, it is possible to provide a concrete product exhibiting strength development and neutralization suppressing effect of mortar or concrete.

本発明で使用しているリグニンスルホン酸は、セメントの凝結を遅らせる遅延剤として知られている。塩化カルシウムは凝結、硬化を促進させる促進剤として使用されている他、コンクリートの吸水性または透水性を減ずる目的で使用される防水剤の主成分としても使用されている。   The lignin sulfonic acid used in the present invention is known as a retarder that delays the setting of cement. Calcium chloride is used as an accelerator for accelerating setting and hardening, and also as a main component of a waterproofing agent used for the purpose of reducing the water absorption or water permeability of concrete.

混和剤は、リグニンスルホン酸カルシウム5〜20重量部、塩化カルシウム1〜10重量部、亜硝酸カルシウム1〜5重量部、ヒドロキシエチルセルロース3〜5重量部、ケイフッ化マグネシウム3〜5重量部、水80〜90重量部を含む組成からなるのが好ましい。これらの数値は数々の実験結果と経験則から導き出されたものである。   The admixture is 5 to 20 parts by weight of calcium lignin sulfonate, 1 to 10 parts by weight of calcium chloride, 1 to 5 parts by weight of calcium nitrite, 3 to 5 parts by weight of hydroxyethyl cellulose, 3 to 5 parts by weight of magnesium silicofluoride, 80 of water. It preferably comprises a composition containing ~ 90 parts by weight. These numbers are derived from numerous experimental results and empirical rules.

後述するように、ケイフッ化マグネシウムを配合しない混和剤でもJIS規格による配合のコンクリートよりも強度が向上する。しかし、ケイフッ化マグネシウムを配合することによって飛躍的に強度が向上する。その理由は今のところ明らかではない。   As will be described later, even an admixture that does not contain magnesium silicofluoride is improved in strength as compared with concrete blended according to JIS standards. However, the strength is dramatically improved by blending magnesium silicofluoride. The reason is not clear so far.

本発明で使用する水としては、井戸水、雨水、水道水等が使用されるが、混入物がない蒸留水が好ましい。   As the water used in the present invention, well water, rain water, tap water or the like is used, but distilled water free from contaminants is preferable.

本発明の混和剤は、コンクリートの練り混ぜに使用する水(以下「混練水」という。)に希釈して使用することができるので使い勝手がよい。   Since the admixture of the present invention can be used after being diluted with water used for kneading concrete (hereinafter referred to as “kneading water”), it is easy to use.

本発明の混和剤は、セメントペースト、モルタル、またはコンクリートに使用できる。
本発明に係る混和剤の使用分野としては、主として土木・建築の分野である。
The admixture of the present invention can be used for cement paste, mortar, or concrete.
The field of use of the admixture according to the present invention is mainly the field of civil engineering and architecture.

本発明にかかるモルタル又はコンクリートの製造方法は、本発明にかかる混和剤を用いる他は従来からあるモルタル又はコンクリートの製造方法に適用できるため、説明を省略する。   Since the manufacturing method of the mortar or concrete concerning this invention can be applied to the conventional manufacturing method of mortar or concrete except using the admixture concerning this invention, description is abbreviate | omitted.

本発明にかかるモルタル又はコンクリート製品は、本発明にかかる混和剤を用いる他は従来からあるモルタル又はコンクリート製品に適用でき、その製造も従来の製造方法で製造できるために説明を省略する。   The mortar or concrete product according to the present invention can be applied to a conventional mortar or concrete product except that the admixture according to the present invention is used, and the description thereof is omitted because it can be manufactured by a conventional manufacturing method.

本発明を実施例に基づき詳細に説明する。   The present invention will be described in detail based on examples.

リグニンスルホン酸カルシウム 20重量部
塩化カルシウム 6重量部
亜硝酸カルシウム 5重量部
ヒドロキシエチルセルロース 6重量部
ケイフッ化マグネシウム 5重量部
蒸留水 85重量部
を容器にいれ撹拌して液状の混和剤を得た。なお、配合の順序や撹拌速度などは特段限定するものではなく、常法で十分である。この混和剤の色は茶褐色であり、水よりやや粘性を有する。
Calcium lignin sulfonate 20 parts by weight Calcium chloride 6 parts by weight Calcium nitrite 5 parts by weight Hydroxyethyl cellulose 6 parts by weight Magnesium fluorosilicate 5 parts by weight Distilled water 85 parts by weight were placed in a container and stirred to obtain a liquid admixture. In addition, the order of mixing and the stirring speed are not particularly limited, and conventional methods are sufficient. The color of this admixture is brown and has a slightly higher viscosity than water.

試験例1 強度試験(1)
実施例1で得られた混和剤のコンクリート強度発現性について、コンクリート強度試験用供試体(以下「供試体」という。)の圧縮強度試験を行った。
供試体は、実施例1で得られた混和剤を混練水に100倍に希釈した混練水A163リットルを調整し、一般的なJIS規格のコンクリート(標準配合)のセメント、骨材配合(1m3)と混ぜ合わせ、材齢7日の供試体Aを製造した。供試体Aの寸法は、φ10×20cmの円柱形である。
Test example 1 Strength test (1)
The concrete strength testability of the admixture obtained in Example 1 was subjected to a compressive strength test of a concrete strength test specimen (hereinafter referred to as “test specimen”).
The test specimen was prepared by adjusting 163 liters of kneaded water A obtained by diluting the admixture obtained in Example 1 into kneaded water 100 times, and mixing JIS standard concrete (standard blend) cement and aggregate (1 m 3). ), And a specimen A having a material age of 7 days was produced. The dimension of the specimen A is a cylindrical shape of φ10 × 20 cm.

供試体Aの配合
・セメント 296kg
・混練水A 163リットル
・細骨材 780kg
・粗骨材 1094kg
Composition of specimen A-Cement 296kg
-Kneading water A 163 liters-Fine aggregate 780kg
・ Coarse aggregate 1094kg

比較のために二つの供試体を準備した。一つは一般的なJIS規格のコンクリート(標準配合)の配合(1m3)で材齢7日、φ10×20cmの円柱形の供試体Sである。 Two specimens were prepared for comparison. One is a columnar specimen S of φ10 × 20 cm with a composition (1 m 3 ) of general JIS standard concrete (standard blend) and a material age of 7 days.

供試体Sの配合
・セメント 296kg
・水 163リットル
・細骨材 780kg
・粗骨材 1094kg
Composition of specimen S ・ Cement 296kg
・ 163 liters of water ・ fine aggregate 780 kg
・ Coarse aggregate 1094kg

他の一つは、実施例1の混和剤の組成からケイフッ化マグネシウムを除きその他は実施例1と同じ組成の混和剤を混練水に100倍に希釈した混練水B163リットルを調整し、供試体Aと同様の配合で供試体Bを製造した(混練水Aを混練水Bに置換したものである。)。   The other one was prepared by adjusting 163 liters of the kneaded water B obtained by diluting the admixture of the same composition as in Example 1 with the kneaded water 100 times except for the magnesium silicofluoride from the composition of the admixture of Example 1. Specimen B was produced with the same composition as A (kneaded water A was replaced with kneaded water B).

試験はJIS A 1132ならびに圧縮強度万能試験機100t(島津製作所)等JISに規定する試験方法で行い、供試体Aは1回、供試体B,Sについては二回行った。
圧縮強度試験の結果を表1に示す。
The test was conducted by a test method prescribed in JIS such as JIS A 1132 and a compressive strength universal testing machine 100t (Shimadzu Corporation), and specimen A was conducted once and specimens B and S were conducted twice.
The results of the compressive strength test are shown in Table 1.

Figure 2010024078
Figure 2010024078

表1から明らかなように、通常の混練水を使用した供試体Sの圧縮強度が10.1N/mm2(平均)であるのに対して、混練水Aを使用した供試体Aの圧縮強度は34.6N/mm2 であり、略3倍の強度向上が発現できた。
なお、混練水Bを使用した供試体Bの圧縮強度は12.6N/mm2(平均)であり、混練水Aを使用した供試体Aの圧縮強度より小さいが、通常の混練水を使用した供試体Sの圧縮強度よりも大きい。
As is evident from Table 1, the compressive strength of the specimen A compressive strength of the specimen S using a conventional kneading water whereas is 10.1N / mm 2 (average), using mixing water A Was 34.6 N / mm 2 , and an approximately three-fold improvement in strength could be realized.
The compressive strength of the specimen B using the kneaded water B is 12.6 N / mm 2 (average), which is smaller than the compressive strength of the specimen A using the kneaded water A, but normal kneaded water was used. It is larger than the compressive strength of the specimen S.

試験例2 強度試験(2)
活性汚泥法で廃水を処理する際に生じる余剰汚泥は、現在は投棄や堆肥化等で処理されているが、何れも問題がある。余剰汚泥をコンクリートの骨材として使用できれば、新たな処理方法となるが、その際に問題となるのは得られたコンクリートの強度である。
Test example 2 Strength test (2)
Excess sludge produced when wastewater is treated by the activated sludge method is currently treated by dumping or composting, but all have problems. If excess sludge can be used as the aggregate of concrete, it becomes a new treatment method, but the problem is the strength of the obtained concrete.

そこで、実施例1で得られた混和剤のコンクリート強度発現性について、汚泥を骨材の一部に使用した供試体の圧縮強度試験を行った。
混練水Aを使用し、セメントや他の骨材と混ぜ合わせて材齢6日の供試体aを製造した。供試体aの寸法は、φ10×20cmの円柱形である。
なお、汚泥は脱水し乾燥させたものを使用した。
Then, the compressive strength test of the specimen which used sludge for some aggregates was done about the concrete strength expressibility of the admixture obtained in Example 1.
A kneaded water A was used and mixed with cement and other aggregates to produce a specimen a having a material age of 6 days. The dimension of the specimen a is a cylindrical shape of φ10 × 20 cm.
The sludge was dehydrated and dried.

供試体aの配合
・セメント 672g
・砂 303g
・砂利 2018g
・乾燥汚泥 720g
・混練水A 330g
Composition of specimen a ・ Cement 672g
・ Sand 303g
・ Gravel 2018 g
・ Dry sludge 720g
・ Kneading water A 330g

比較のために二つの供試体を準備した。一つは供試体aと同じ配合で、混練水Aの代わりに通常の水を混練水として使用した、材齢7日、φ10×20cmの円柱形の供試体sである。   Two specimens were prepared for comparison. One is a cylindrical specimen s having a material age of 7 days and a diameter of 10 × 20 cm, in which normal water is used instead of the kneaded water A as the kneaded water.

他の一つは、供試体aと同じ配合配合で、混練水Aの代わりに混練水Bを使用した、材齢7日、φ10×20cmの円柱形の供試体bである。
圧縮強度試験の結果を表2に示す。
The other is a cylindrical specimen b having a material age of 7 days and a φ10 × 20 cm in which the kneading water B is used in place of the kneading water A with the same blending composition as the specimen a.
The results of the compressive strength test are shown in Table 2.

Figure 2010024078
Figure 2010024078

表2から明らかなように、通常の混練水を使用した供試体sの圧縮強度が9.55N/mm2であるのに対して、混練水Aを使用した供試体aの圧縮強度は23.7N/mm2 であり、略2倍以上の強度向上が発現できた。 As is clear from Table 2, the compressive strength of the specimen s using normal kneaded water is 9.55 N / mm 2 , whereas the compressive strength of the specimen a using kneaded water A is 23. The strength was 7 N / mm 2 , and a strength improvement of about twice or more could be realized.

なお、混練水Bを使用した供試体bの圧縮強度は12.6N/mm2であり、混練水Aを使用した供試体aの圧縮強度より小さいが、通常の混練水を使用した供試体sの圧縮強度よりも大きい。従って、本発明にかかる混和剤を使用することによって、汚泥をコンクリートの骨材として使用できることがわかった。 The compressive strength of the specimen b using the kneaded water B is 12.6 N / mm 2, which is smaller than the compressive strength of the specimen a using the kneaded water A, but the specimen s using ordinary kneaded water is used. Greater than the compressive strength. Therefore, it was found that sludge can be used as a concrete aggregate by using the admixture according to the present invention.

試験例3 中性化試験
中性化試験としては、コンクリートの供試体を自然条件下においてその中性化の進行状況を調べる方法、コンクリートの炭酸ガスによる促進試験等がある。
Test Example 3 Neutralization test As a neutralization test, there are a method for examining the progress of neutralization of a concrete specimen under natural conditions, a concrete acceleration test using carbon dioxide gas, and the like.

ここでは、実施例1の混和剤を50倍に希釈した混練水を用いた供試体C及び比較のため標準配合(JIS)された供試体Dの屋外暴露試験による中性化の進行状況試験を行った結果を示す。表3は供試体Cの配合表、表4は供試体Dの配合表である。   Here, the progress test of the neutralization by the outdoor exposure test of Specimen C using kneaded water obtained by diluting the admixture of Example 1 50 times and Specimen D standardly mixed (JIS) for comparison is performed. The results are shown. Table 3 is a recipe for specimen C, and Table 4 is a recipe for specimen D.

Figure 2010024078
Figure 2010024078

Figure 2010024078
Figure 2010024078

試験方法
(1)供試体
JIS A 1132に規定された作成方法に拠って作製したφ15×30cm円柱供試体を用いた。
(2)養生方法
打設後24時間して脱型した直後に搬入し、28日間温度20±2℃の恒温室中に設置された水槽中で水中養生した。
Test Method (1) Specimen A φ15 × 30 cm cylindrical specimen prepared according to the preparation method defined in JIS A1132.
(2) Curing method It carried in immediately after demolding 24 hours after placement, and was cured in water in a water tank installed in a temperature-controlled room at a temperature of 20 ± 2 ° C. for 28 days.

(3)試験時材齢
28日養生後、屋外暴露試験を開始し、(材齢約90日)、(材齢約180日)、(材齢約270日)、(材齢約360日)の材齢において中性化試験を実施した。
(4)中性化試験
供試体を屋外において中性化させる暴露試験を行った。屋外暴露試験は、出願人の住所地である熊本市にて実施した。
(5)コンクリートの中性化度の測定
コンクリートの中性化は、圧裂による供試体破断面にフェノールフタレイン溶液(1gを無水アルコール65cm3に溶かして水を加え100cm3とする)を噴霧器で塗布し、供試体断面撮影したものについて赤紫色に着色しない部分の面積を測定して平均中性化深さを求めた。
(3) Age at the time of testing After the 28-day curing, an outdoor exposure test was started, (material age of about 90 days), (material age of about 180 days), (material age of about 270 days), (material age of about 360 days) Neutralization tests were carried out at the ages.
(4) Neutralization test An exposure test was conducted to neutralize the specimen outdoors. The outdoor exposure test was conducted in Kumamoto City, the address of the applicant.
(5) Measurement of the degree of neutralization of concrete The neutralization of concrete is achieved by spraying a phenolphthalein solution (1 g in 65 cm 3 of absolute alcohol and adding water to 100 cm 3 ) on the fracture surface of the specimen due to crushing. The average neutralization depth was determined by measuring the area of the portion that was not colored reddish purple for the sample cross-sectioned and coated.

試験結果を表5に示す。   The test results are shown in Table 5.

Figure 2010024078
Figure 2010024078

表5から明らかなように、材齢360日での中性化深さが、材齢270日での測定値よりも少なくなっている。中性化試験では、供試体を圧裂、あるいは切断してその破断面が新鮮な状態で行わねばならない。そのため、中性化度の測定に一度供されたものは、再び仕様することができない。よって、個体差によるばらつきが出てくる場合があるため注意が必要である。しかしながら、材齢270日における中性化深さの計測値を無効とみなすことができるならば、時間の経過とともに表層より中性化部が深部へと進行していくことが見て取れる。   As is clear from Table 5, the neutralization depth at the age of 360 days is less than the measured value at the age of 270 days. In the neutralization test, the specimen must be crushed or cut and the fracture surface must be fresh. Therefore, once provided for the measurement of the degree of neutralization, it cannot be specified again. Therefore, caution is necessary because there may be variations due to individual differences. However, if the measured value of the neutralization depth at the age of 270 days can be regarded as invalid, it can be seen that the neutralized portion proceeds from the surface layer to the deeper portion with the passage of time.

これらを供試体の種類別にみると、用意した標準配合(JIS)の供試体Dの方が中性化の進行が大きく、また供試体Cの方が、中性化の進行が遅い結果となっている。   Looking at these by type of specimen, the specimen D with the standard composition (JIS) prepared has a greater progress in neutralization, and the specimen C has a slower progress in neutralization. ing.

以上の説明から明らかなように、屋外における暴露試験に供されたコンクリート供試体の中性化度測定結果より、本発明にかかる混和剤を使用したコンクリート供試体は、本発明にかかる混和剤を使用しない標準配合のコンクリートと比べて中性化の進行が遅れる傾向が見られ、本発明にかかる混和剤が中性化の抑制効果を持つ可能性があることが判明した。   As is clear from the above explanation, the concrete specimen using the admixture according to the present invention shows that the admixture according to the present invention is determined from the measurement result of the neutralization degree of the concrete specimen subjected to the outdoor exposure test. There was a tendency for the progress of neutralization to be delayed as compared with the concrete of the standard composition not used, and it was found that the admixture according to the present invention may have an effect of suppressing neutralization.

なお、本明細書で使用している用語と表現は、あくまでも説明上のものであって、なんら限定的なものではなく、本明細書に記述された特徴およびその一部と等価の用語や表現を除外する意図はない。また、本発明の技術思想の範囲内で、種々の変形態様が可能であるということは言うまでもない。   Note that the terms and expressions used in this specification are merely explanatory and are not limiting at all, and terms and expressions equivalent to the features described in this specification and parts thereof. There is no intention to exclude. It goes without saying that various modifications are possible within the scope of the technical idea of the present invention.

Claims (4)

リグニンスルホン酸カルシウム、塩化カルシウム、亜硝酸カルシウム、ヒドロキシエチルセルロース、ケイフッ化マグネシウム、水を含む混和剤。 Admixture containing calcium lignin sulfonate, calcium chloride, calcium nitrite, hydroxyethyl cellulose, magnesium fluorosilicate, and water. リグニンスルホン酸カルシウム5〜20重量部、塩化カルシウム1〜10重量部、亜硝酸カルシウム1〜5重量部、ヒドロキシエチルセルロース3〜5重量部、ケイフッ化マグネシウム3〜5重量部、水80〜90重量部を含む混和剤。 5-20 parts by weight of calcium lignin sulfonate, 1-10 parts by weight of calcium chloride, 1-5 parts by weight of calcium nitrite, 3-5 parts by weight of hydroxyethyl cellulose, 3-5 parts by weight of magnesium fluorosilicate, 80-90 parts by weight of water Containing admixture. 請求項1または2の混和剤を用いるモルタル又はコンクリートの製造方法。 A method for producing mortar or concrete using the admixture according to claim 1. 請求項1または2の混和剤を含むモルタル又はコンクリート製品。 A mortar or concrete product comprising the admixture of claim 1 or 2.
JP2008186275A 2008-07-17 2008-07-17 Cement admixture, mortar or concrete production method and mortar or concrete product Active JP5467588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186275A JP5467588B2 (en) 2008-07-17 2008-07-17 Cement admixture, mortar or concrete production method and mortar or concrete product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186275A JP5467588B2 (en) 2008-07-17 2008-07-17 Cement admixture, mortar or concrete production method and mortar or concrete product

Publications (2)

Publication Number Publication Date
JP2010024078A true JP2010024078A (en) 2010-02-04
JP5467588B2 JP5467588B2 (en) 2014-04-09

Family

ID=41730239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186275A Active JP5467588B2 (en) 2008-07-17 2008-07-17 Cement admixture, mortar or concrete production method and mortar or concrete product

Country Status (1)

Country Link
JP (1) JP5467588B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588417A (en) * 2013-11-01 2014-02-19 江苏百瑞吉新材料有限公司 Modifier of sodium lignosulfonate concrete water reducing agent
CN107673674A (en) * 2017-10-24 2018-02-09 潍坊友容实业有限公司 Loss prevention cement prefab for salt-soda soil supply and discharge drainage facility

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302352A (en) * 1989-05-15 1990-12-14 Mitsubishi Materials Corp Rapid hardening type self-leveling composition for floor covering material
JP2000511151A (en) * 1995-11-17 2000-08-29 ダブリユ・アール・グレイス・アンド・カンパニー・コネテイカツト Multipurpose mixtures for hydraulic cement compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302352A (en) * 1989-05-15 1990-12-14 Mitsubishi Materials Corp Rapid hardening type self-leveling composition for floor covering material
JP2000511151A (en) * 1995-11-17 2000-08-29 ダブリユ・アール・グレイス・アンド・カンパニー・コネテイカツト Multipurpose mixtures for hydraulic cement compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588417A (en) * 2013-11-01 2014-02-19 江苏百瑞吉新材料有限公司 Modifier of sodium lignosulfonate concrete water reducing agent
CN107673674A (en) * 2017-10-24 2018-02-09 潍坊友容实业有限公司 Loss prevention cement prefab for salt-soda soil supply and discharge drainage facility

Also Published As

Publication number Publication date
JP5467588B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5931317B2 (en) Hydraulic composition and concrete using the hydraulic composition
JP5442249B2 (en) Acid resistant cement composition
JP6639608B2 (en) Highly durable mortar, highly durable concrete, and method of manufacturing high durable mortar
Miyazawa et al. Properties of concrete using high C3S cement with ground granulated blast-furnace slag
KR101514741B1 (en) Cement concrete composition and manufacture method of concrete block using the said
KR101779565B1 (en) Eco-friendly cement concrete composition for ready-mixed concrete
Khana et al. Strength and durability of mortar and concrete containing rice husk ash: a review
JP5957944B2 (en) Repair method for concrete structures
JP5467588B2 (en) Cement admixture, mortar or concrete production method and mortar or concrete product
Al-Khaiat et al. Long-term strength development of concrete in arid conditions
JP2019167273A (en) Mortar for plastering
JP2018172236A (en) Rapid hardening concrete and production method thereof
JP2009114018A (en) Admixture for quick hardening cement composition, quick hardening cement composition containing the same, quick hardening cement kneaded material and spraying material
JP2009084118A (en) Method for producing cement concrete tube by using cement concrete for centrifugal molding, and cement concrete tube produced by the method
JP5724188B2 (en) Concrete production method
Bumanis et al. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete
JP2004331459A (en) Cement composition and hardened cement having resistance to sulfuric acid
JP2009227558A (en) Self-restorable high strength hydration hardened material
JP5169368B2 (en) Self-healing hydrated cured product and low-reactivity active cement material
Anandan et al. Strength Properties of Processed Fly Ash Concrete.
JP2011001251A (en) Method for determining blending amount of expansive material, method for producing concrete hardened body and shrinkage suppressing method
JP3657058B2 (en) Cement admixture and cement composition
JP4222870B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant concrete
JP2011132106A (en) Hydraulic composition and cured product
Olivia et al. Evaluating mechanical properties of fly ash bottom ash (FABA) geopolymer hybrid concrete in peat environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5467588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250