JP2009084118A - Method for producing cement concrete tube by using cement concrete for centrifugal molding, and cement concrete tube produced by the method - Google Patents
Method for producing cement concrete tube by using cement concrete for centrifugal molding, and cement concrete tube produced by the method Download PDFInfo
- Publication number
- JP2009084118A JP2009084118A JP2007257364A JP2007257364A JP2009084118A JP 2009084118 A JP2009084118 A JP 2009084118A JP 2007257364 A JP2007257364 A JP 2007257364A JP 2007257364 A JP2007257364 A JP 2007257364A JP 2009084118 A JP2009084118 A JP 2009084118A
- Authority
- JP
- Japan
- Prior art keywords
- cement concrete
- cement
- concrete tube
- parts
- centrifugal force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、主に土木・建築分野において使用される遠心力成形用セメントコンクリートを用いたセメントコンクリート管の製造方法とそのセメントコンクリート管に関する。 TECHNICAL FIELD The present invention relates to a method for producing a cement concrete pipe using cement for forming centrifugal force mainly used in the field of civil engineering and architecture, and the cement concrete pipe.
化学薬品を、製造したり取り扱う化学工場や、様々な化学薬品や汚染物質等を取り扱う下水道施設や高度浄水処理場等においては、化学劣化に対する抵抗性の高いコンクリートを用いて製造された遠心力成形コンクリート管を使用することが求められている。 In chemical factories that manufacture and handle chemicals, sewerage facilities that handle various chemicals and pollutants, advanced water treatment plants, etc., centrifugal force molding made of concrete that is highly resistant to chemical degradation There is a need to use concrete pipes.
また、化学的に厳しい環境に置かれている遠心力成形コンクリート管の補修や補強については、劣化部位を覆うように保護材を設置したり、さらに修復後に表面に保護材を設置したりしている。 In addition, for the repair and reinforcement of centrifugally formed concrete pipes that are placed in a chemically harsh environment, a protective material is installed to cover the deteriorated part, or a protective material is installed on the surface after repair. Yes.
このような補修や補強に用いる保護材として、化学抵抗性の高い塗料やセメントを塗布したりして、表面を保護したり、定期的に補修を施す必要があった。 As a protective material used for such repair and reinforcement, it is necessary to apply a paint or cement with high chemical resistance to protect the surface or to periodically repair.
化学劣化に対する抵抗性である、耐腐食性に優れるアルミナセメントが知られている(特許文献1参照)。 An alumina cement that is resistant to chemical deterioration and excellent in corrosion resistance is known (see Patent Document 1).
また、アルミナセメントやスラグを含むモルタルを30℃以上の温度で養生する高強度モルタル硬化体の製造方法等も知られている(特許文献2参照)。 Moreover, the manufacturing method of the high intensity | strength mortar hardening body etc. which age the mortar containing an alumina cement and slag at the temperature of 30 degreeC or more are also known (refer patent document 2).
しかしながら、アルミナセメントは、ポルトランドセメントに比べて初期の強度発現が速やかであるが、水和物の転化により長期強度が低下するという課題があった。 Alumina cement, however, has rapid initial strength development compared to Portland cement, but has a problem that long-term strength is reduced due to hydrate conversion.
セメントコンクリート管の化学劣化抵抗性が高くても、ひび割れが生じると塩分や硫酸塩等がセメントコンクリート中に入り込み、鉄筋を劣化させることがあり、ひび割れ抵抗性と高い外圧強度(曲げ強度)が求められていた。 Even if the chemical deterioration resistance of the cement concrete pipe is high, if cracks occur, salt and sulfate may enter the cement concrete and deteriorate the reinforcing bars. Crack resistance and high external pressure strength (bending strength) are required. It was done.
本発明は、アルミナセメントとSiO2とAl2O3を含有する無機物質とからなる結合材と、骨材とを配合し、水/結合材比22〜60%で混練して遠心力成形用セメントコンクリートを調製し、ポルトランドセメント、細骨材、粗骨材、及び減水剤を含有してなるセメント組成物を用いて遠心力成形したベースセメントコンクリート管の内側に、該遠心力成形用セメントコンクリートを投入し、遠心力成形して、ベースセメントコンクリート管の内層を形成し、その後、40〜80℃の加熱養生で硬化してなるセメントコンクリート管の製造方法であり、SiO2とAl2O3を含有する無機物質100部中、SiO2が45〜98部で、Al2O3が0.5〜45部である該セメントコンクリート管の製造方法であり、内層の厚みが、3mm以上、全管厚の50%以下である該セメントコンクリート管の製造方法であり、該セメントコンクリート管の製造方法で製造されたセメントコンクリート管である。 The present invention blends a binder composed of an alumina cement, an inorganic substance containing SiO 2 and Al 2 O 3 and an aggregate, and kneads them at a water / binder ratio of 22 to 60% for centrifugal force molding. Cement concrete for centrifugal force molding is prepared on the inside of a base cement concrete pipe prepared by preparing a cement concrete and centrifugally molded using a cement composition containing Portland cement, fine aggregate, coarse aggregate, and water reducing agent. Is formed by centrifugal force forming to form an inner layer of a base cement concrete pipe, and then cured by heating curing at 40 to 80 ° C., and SiO 2 and Al 2 O 3 in 100 parts of inorganic material containing, in SiO 2 is 45 to 98 parts, there is provided a process for the preparation of the cement concrete pipes Al 2 O 3 is 0.5 to 45 parts, the inner layer having a thickness of, 3 mm or more, ZenkanAtsu 50% or less of the cement concrete pipe A manufacturing method, a cement concrete pipe which is manufactured by the manufacturing method of the cement concrete pipes.
本発明方法で遠心力成形コンクリート管を製造することによって、膨張性が得られ、従来からの化学劣化抵抗性に加え、ひび割れ抵抗性も向上することが可能になり、また、外圧強度を高めることが可能となる。 By producing a centrifugally formed concrete pipe by the method of the present invention, expandability is obtained, and it becomes possible to improve crack resistance in addition to conventional chemical degradation resistance, and to increase external pressure strength. Is possible.
本発明で使用する部や%は、特に規定のない限り質量基準である。
また、本発明で言うセメントコンクリートとは、セメントペースト、モルタル、及びコンクリートを総称するものである。
Unless otherwise specified, parts and% used in the present invention are based on mass.
Moreover, the cement concrete said by this invention is a general term for cement paste, mortar, and concrete.
本発明で使用するアルミナセメントは、モノカルシウムアルミネートを主要鉱物として含有するクリンカー粉砕物から得られるものであり、例えば、市販品では、電気化学工業株式会社製商品名「デンカアルミナセメント1号」、「デンカアルミナセメント2号」、及び「デンカハイアルミナセメント」、ラファージュ社製商品名「セカール71」や「セカール80」などを用いることができる。 The alumina cement used in the present invention is obtained from a clinker pulverized product containing monocalcium aluminate as a main mineral. For example, in a commercial product, trade name “DENKA ALUMINUM CEMENT 1” manufactured by Denki Kagaku Kogyo Co., Ltd. “Denka Alumina Cement No. 2”, “Denka High Alumina Cement”, trade names “SECAR 71” and “SECAR 80” manufactured by Lafarge can be used.
アルミナセメントの粉末度は水和活性の面で、ブレーン比表面積値(以下、ブレーン値という)で2,000〜8,000cm2/gが好ましい。2,000cm2/g未満ではSiO2とAl2O3を含有する無機物質との反応性が悪くなるおそれがあり、8,000cm2/gを超えると硬化が早くなり、作業性が確保しにくくなるおそれがある。 The fineness of the alumina cement is preferably 2,000 to 8,000 cm 2 / g in terms of the hydration activity in terms of the specific surface area of the brain (hereinafter referred to as the brain value). If it is less than 2,000 cm 2 / g, the reactivity between the inorganic substance containing SiO 2 and Al 2 O 3 may be deteriorated, and if it exceeds 8,000 cm 2 / g, curing will be faster and workability will be difficult to ensure. There is a fear.
本発明で使用するSiO2とAl2O3を含有する無機物質(以下、シリカ含有物質という)は、化学成分としてSiO2とAl2O3を主成分とするものである。
シリカ含有物質としては、流動接触分解用触媒のFCC、廃活性白土焼却の商品名「ハイクレー」、及び石炭灰(フライアッシュ)が挙げられる。
The inorganic substance containing SiO 2 and Al 2 O 3 (hereinafter referred to as silica-containing substance) used in the present invention is composed mainly of SiO 2 and Al 2 O 3 as chemical components.
Examples of the silica-containing material include FCC which is a catalyst for fluid catalytic cracking, trade name “Hi Clay” of waste activated clay incineration, and coal ash (fly ash).
シリカ含有物質中のSiO2とAl2O3成分の含有量は、SiO2が45〜98部で、Al2O3が0.5〜45部が好ましく、SiO2が50〜85部で、Al2O3が5〜35部がより好ましい。この範囲外では充分な膨張量と外圧強度が得られなくなるおそれがある。 The content of SiO 2 and Al 2 O 3 component of the silica-containing material is a SiO 2 is 45 to 98 parts, Al 2 O 3 is preferably 0.5 to 45 parts, of SiO 2 is 50 to 85 parts, Al 2 O 3 is more preferably 5 to 35 parts. Outside this range, there is a possibility that a sufficient expansion amount and external pressure strength cannot be obtained.
本発明で使用するシリカ含有物質の粉末度は、ブレーン値で、1,000〜7,000cm2/gが好ましく、2,000〜6,000cm2/gがより好ましい。1,000cm2/g未満では水和活性が不充分で強度や膨張が不足するおそれがあり、7,000cm2/gを超えると粉砕動力がかかりすぎて不経済になるおそれがある。 The fineness of the silica-containing material used in the present invention is preferably from 1,000 to 7,000 cm 2 / g, more preferably from 2,000 to 6,000 cm 2 / g, in terms of Blaine value. If it is less than 1,000 cm 2 / g, the hydration activity is insufficient and the strength and expansion may be insufficient, and if it exceeds 7,000 cm 2 / g, the pulverization power is excessively applied, which may be uneconomical.
本発明において、アルミナセメントとシリカ含有物質とからなる結合材100部中、シリカ含有物質は5〜50部が好ましく、10〜40部がより好ましい。5部未満では充分な膨張量が得られなくなるおそれがあり、外圧強度の増加が期待できないおそれがある。50部を超えると充分な膨張量と圧縮強度が得られなくなるおそれがあり、外圧強度の増加が期待できないおそれがある。 In the present invention, the silica-containing material is preferably 5 to 50 parts, more preferably 10 to 40 parts, in 100 parts of the binder composed of alumina cement and silica-containing material. If it is less than 5 parts, a sufficient expansion amount may not be obtained, and an increase in external pressure strength may not be expected. If it exceeds 50 parts, a sufficient expansion amount and compressive strength may not be obtained, and an increase in external pressure strength may not be expected.
本発明で使用する骨材は特に限定されるものではなく、砕砂、川砂、海砂、珪砂、石灰砂、砕石、川砂利、及び石灰石等、通常、セメントコンクリート製造に用いられる材料を使用することが可能である。
骨材の使用量は特に限定されるものではないが、結合材100部に対して、50〜300部が好ましい。50部未満では結合材量が多くなり不経済になるおそれがあり、300部を超えると流動性や膨張性が得られなくなり、外圧強度の増加が期待できないおそれがある。
The aggregate used in the present invention is not particularly limited, and materials usually used for cement concrete production such as crushed sand, river sand, sea sand, quartz sand, lime sand, crushed stone, river gravel, and limestone should be used. Is possible.
The amount of aggregate used is not particularly limited, but is preferably 50 to 300 parts with respect to 100 parts of the binder. If the amount is less than 50 parts, the amount of the binder may increase, which may be uneconomical. If the amount exceeds 300 parts, fluidity and expandability cannot be obtained, and an increase in external pressure strength may not be expected.
本発明で使用する水の量は、水/結合材比で22〜60%であり、30〜50%が好ましい。22%未満では所定の流動性を確保することが難しくなるおそれがあり、60%を超えると充分な膨張量や強度が得られなくなり、外圧強度の増加が期待できないおそれがある。 The amount of water used in the present invention is 22 to 60%, preferably 30 to 50% in terms of water / binder ratio. If it is less than 22%, it may be difficult to ensure the predetermined fluidity. If it exceeds 60%, a sufficient expansion amount and strength cannot be obtained, and an increase in external pressure strength may not be expected.
本発明では、アルミナセメント、シリカ含有物質、及び骨材の材料の他に、減水剤、高性能減水剤、AE減水剤、流動化剤、凝結調整剤、並びに、ビニロン繊維、アクリル繊維、及び炭素繊維等の繊維状物質のうちの一種又は二種以上を本発明の目的を阻害しない範囲で使用することが可能である。 In the present invention, in addition to alumina cement, silica-containing material, and aggregate material, water reducing agent, high performance water reducing agent, AE water reducing agent, fluidizing agent, setting modifier, vinylon fiber, acrylic fiber, and carbon One or two or more kinds of fibrous substances such as fibers can be used as long as the object of the present invention is not impaired.
本発明における各材料の混合方法は特に限定されるものではなく、それぞれの材料を混りするときに混合しても良いし、あらかじめその一部あるいは全部を混合しておいても差し支えない。 The mixing method of each material in this invention is not specifically limited, It may mix when each material is mixed, and it does not interfere even if the one part or all part is mixed beforehand.
混合装置としては、既存のいかなる装置も使用可能であり、例えば傾胴ミキサ、ヘンシェルミキサ、V型ミキサ、及びナウターミキサなどが挙げられる。 Any existing apparatus can be used as the mixing apparatus, and examples thereof include a tilting cylinder mixer, a Henschel mixer, a V-type mixer, and a Nauter mixer.
本発明における混練方法は特に限定されるものではなく、例えば、10〜20分で混合した材料を、傾胴ミキサ、二軸強制ミキサ、及びオムニミキサなどを使用し、水投入から、60〜180秒程度で混練することが通常である。 The kneading method in the present invention is not particularly limited. For example, the material mixed in 10 to 20 minutes is used for 60 to 180 seconds from the addition of water using a tilting barrel mixer, a biaxial forced mixer, an omni mixer, and the like. It is usual to knead to the extent.
本発明では、遠心成形したベースセメントコンクリート管の内面に、本発明の遠心力成形用セメントコンクリートを投入し、遠心成形して、該ベースセメントコンクリート管の内面に、本発明の遠心力成形用セメントコンクリートの内層を形成するが、該遠心力成形用セメントコンクリートのみで遠心成形して、セメントコンクリート管を成形することも可能である。 In the present invention, the centrifugal force-forming cement concrete of the present invention is introduced into the inner surface of a centrifugally formed base cement concrete pipe, and is centrifugally molded. Then, the centrifugal force-forming cement of the present invention is applied to the inner surface of the base cement concrete pipe. An inner layer of concrete is formed, but it is also possible to form a cement concrete pipe by centrifugal molding only with the cement for forming centrifugal force.
ベースセメントコンクリート管の製造方法は、通常の方法が可能であり特に限定されるものではない。
例えば、ポルトランドセメント、細骨材、粗骨材、及び減水剤を、水で混練りして、セメントコンクリートを調製し、それを遠心力成形することでベースセメントコンクリート管を成形することが可能である。
ポルトランドセメント、細骨材、粗骨材、及び減水剤も特に限定されるものではなく、通常使用されるものの使用が可能である。
遠心力成形の条件は特に限定されるものではなく、例えば、セメントコンクリートを低速G2.5で投入し、低速G2.5〜5で5〜10分、中速G10〜20で2〜8分、及び高速G30〜40で5〜15分の三段階の遠心力成形条件で遠心成形して、ベースセメントコンクリート管を成形することが可能である。
The manufacturing method of the base cement concrete pipe can be a normal method and is not particularly limited.
For example, Portland cement, fine aggregate, coarse aggregate, and water reducing agent can be kneaded with water to prepare cement concrete, and then base cement concrete pipe can be formed by centrifugally forming it. is there.
Portland cement, fine aggregate, coarse aggregate, and water reducing agent are not particularly limited, and those that are usually used can be used.
Centrifugal force molding conditions are not particularly limited. For example, cement concrete is charged at low speed G2.5, low speed G2.5-5 for 5-10 minutes, medium speed G10-20, 2-8 minutes, And it is possible to form a base cement concrete pipe by centrifugal molding at a high speed G30-40 under three-stage centrifugal force molding conditions for 5-15 minutes.
本発明では、成形したベースセメントコンクリート管の内面に、本発明の遠心力成形用セメントコンクリートを投入して、ベースセメントコンクリート管の内層を形成する。
本発明で、ベースセメントコンクリート管の内層を形成する方法は特に限定されるものではないが、例えば、成形されたベースセメントコンクリート管の内面に、本発明の遠心力成形用セメントコンクリートを低速G2.5で投入し、低速G2.5〜5で1〜5分、中速G10〜20で1〜3分、及び高速G30〜40で5〜15分の三段階の遠心力成形条件をとることが通常である。
In this invention, the cement concrete for centrifugal force shaping | molding of this invention is thrown into the inner surface of the shape | molded base cement concrete pipe, and the inner layer of a base cement concrete pipe is formed.
In the present invention, the method of forming the inner layer of the base cement concrete pipe is not particularly limited. For example, the centrifugal concrete of the present invention is formed on the inner surface of the molded base cement concrete pipe at a low speed G2. 5 at three low speed G2.5-5, 1-5 minutes, medium speed G10-20 1-3 minutes, high speed G30-40 5-15 minutes. It is normal.
遠心力成形用セメントコンクリートで形成する内層厚は、3mm以上、管厚の50%以下が好ましく、5mm以上、管厚の30%以下がより好ましい。3mm未満では外圧強度が増加しないおそれがあり、管厚の50%を超えても外圧強度の増加が期待できない。 The inner layer thickness formed from the cement concrete for centrifugal forming is preferably 3 mm or more and 50% or less of the tube thickness, more preferably 5 mm or more and 30% or less of the tube thickness. If it is less than 3 mm, the external pressure strength may not increase, and even if it exceeds 50% of the tube thickness, an increase in external pressure strength cannot be expected.
本発明では、例えば、遠心力成形後、加温養生することによって、膨張性が得られ、外圧強度の増加が可能である。
加温養生の方法は特に限定されるものではなく、蒸気養生、オートクレーブ養生、いずれも可能である。
養生温度は、40〜80℃が好ましく、50〜65℃がより好ましい。養生温度が前記範囲外では膨張量が小さくなるおそれがあり、外圧強度の増加が期待できない。
In the present invention, for example, by performing heat curing after forming the centrifugal force, expandability can be obtained and the external pressure strength can be increased.
The method of heating curing is not particularly limited, and both steam curing and autoclave curing are possible.
The curing temperature is preferably 40-80 ° C, more preferably 50-65 ° C. If the curing temperature is outside the above range, the amount of expansion may be small, and an increase in external pressure strength cannot be expected.
本発明では、遠心力成形後から加温養生するまでの前置時間は特に重要であり、8時間以内が好ましく、2〜4時間がより好ましい。前置時間がこの範囲外では膨張量が小さくなり、外圧強度が小さくなるおそれがある。ただし、凝結調整剤等を用いて硬化を遅らせた場合にはこの限りではない。 In the present invention, the pre-treatment time from centrifugal force molding to warm curing is particularly important, preferably within 8 hours, and more preferably from 2 to 4 hours. If the preposition time is outside this range, the amount of expansion is small, and the external pressure strength may be small. However, this does not apply when curing is delayed using a setting modifier or the like.
加熱養生の昇温速度も特に重要であり、10℃/hr以上が好ましく、20℃/hrがより好ましい。昇温速度が遅いと膨張量が小さくなり、外圧強度が小さくなるおそれがあり、昇温速度が早すぎるとひび割れが発生するおそれがある。 The heating rate of heat curing is also particularly important, preferably 10 ° C./hr or more, and more preferably 20 ° C./hr. If the rate of temperature rise is slow, the amount of expansion becomes small and the external pressure strength may be reduced, and if the rate of temperature rise is too fast, cracks may occur.
養生温度の保持時間は特に限定されるものではないが、通常3〜6時間程度が好ましい。3時間未満では膨張量が小さくなり、外圧強度が小さくなるおそれがあり、6時間を超えて養生してもさらなる外圧強度の増加は見込めない。 The holding time of the curing temperature is not particularly limited, but is usually preferably about 3 to 6 hours. If it is less than 3 hours, the amount of expansion will be small and the external pressure strength may be small. Even if it is cured beyond 6 hours, no further increase in external pressure strength can be expected.
以下、本発明の実験例に基づいて、本発明をさらに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be further described based on experimental examples of the present invention, but the present invention is not limited thereto.
実験例1
セメント450kg/m3、水170kg/m3、細骨材612kg/m3、粗骨材1,145kg/m3、及び減水剤2.7kg/m3で、スランプ8cm、s/a35%、及びW/C37.8%のコンクリート配合を用い、容量50リットルの遊星型強制練りミキサで3分間練混ぜ、30リットル分のコンクリートを調製した。
調製したコンクリートを、直径20cm×長さ30cm×厚さ4cmの遠心力成形用型枠に投入し、遠心力の低速G2.5で5分、中速G10で2分、高速G30で5分の三段階の遠心力成形条件で遠心力成形試験体の外層を形成した。
次に、アルミナセメント80部とシリカ含有物質イ20部からなる結合材、表1に示す水/結合材比と結合材/砂比の配合を用い、モルタルミキサで2分間練り混ぜ、遠心力成形試験体の内層用モルタルを調製した。
20℃環境下、遠心力の低速G2.5で、調製した内層用モルタルを、内層厚が5mmになるように投入し、低速G2.5で1分、高速G30で10分の遠心力成形条件で内層を形成した。その後、前置時間4時間で、昇温速度15℃/hrの速度で昇温し、65℃×5時間保持で以後自然降温の蒸気養生を行い遠心力成形試験体を成形した。材齢1日で脱型後、水中養生を行い材齢7日で外圧試験を行った。結果を表1に併記する。
なお、水/結合材比が小さく、練り混ぜが困難な場合には、型詰できる程度に減水剤を添加した。
また、比較として、セメント100部、砂200部、及び水50部を混合して、内層用のプレーンモルタルを調製し、同様に遠心力成形コンクリート管を成形した。
成形した遠心力成形試験体とプレーンモルタルで内層を形成して成形した遠心力成形コンクリート管の外圧強度を測定し、(遠心力成形試験体の外圧強度/プレーンモルタルで内層を形成して成形した遠心力成形コンクリート管の外圧強度)から外圧強度比を算出した。結果を表1に併記する。
Experimental example 1
Cement 450 kg / m 3, water 170 kg / m 3, fine aggregates 612kg / m 3, with coarse aggregate 1,145kg / m 3, and water reducing agent 2.7 kg / m 3, slump 8cm, s / a35%, and W / C37.8% concrete mix was used and mixed for 3 minutes with a 50 liter planetary forced kneading mixer to prepare 30 liters of concrete.
The prepared concrete is put into a mold for forming a centrifugal force having a diameter of 20 cm, a length of 30 cm and a thickness of 4 cm. The centrifugal force is low speed G2.5 for 5 minutes, medium speed G10 for 2 minutes, and high speed G30 for 5 minutes. The outer layer of the centrifugal force molded specimen was formed under three-stage centrifugal force molding conditions.
Next, using a binder consisting of 80 parts of alumina cement and 20 parts of silica-containing material, and mixing the water / binder ratio and binder / sand ratio shown in Table 1, knead in a mortar mixer for 2 minutes, and then form a centrifugal force. A mortar for the inner layer of the test specimen was prepared.
In a 20 ° C environment, insert the inner layer mortar prepared with a low-speed G2.5 centrifugal force so that the inner layer thickness is 5 mm. Centrifugal force molding conditions for 1 minute at low-speed G2.5 and 10 minutes at high-speed G30 The inner layer was formed. Thereafter, the preheating time was 4 hours, the temperature was raised at a rate of 15 ° C./hr, the temperature was kept at 65 ° C. for 5 hours, and then a natural temperature drop steam curing was performed to form a centrifugal force molded specimen. After demolding at a material age of 1 day, water curing was performed and an external pressure test was conducted at a material age of 7 days. The results are also shown in Table 1.
When the water / binder ratio was small and mixing was difficult, a water reducing agent was added to such an extent that mold filling was possible.
For comparison, 100 parts of cement, 200 parts of sand, and 50 parts of water were mixed to prepare a plain mortar for the inner layer, and a centrifugally formed concrete tube was similarly formed.
Measure the external pressure strength of the molded centrifugal force molded concrete pipe and the inner layer formed with plain mortar and measure the external pressure strength of the molded concrete tube (centrifugal force molded specimen external pressure strength / plain mortar to form the inner layer) The external pressure strength ratio was calculated from the external pressure strength of the centrifugally formed concrete pipe. The results are also shown in Table 1.
<使用材料>
アルミナセメント:AC、電気化学工業株式会社製商品名「デンカアルミナセメント1号」、密度3.00g/cm3、ブレーン値5,000cm2/g
シリカ含有物質イ:流動接触分解用触媒のFCC、市販品、SiO2 65.7%、Al2O3 27.5%、密度2.70g/cm3
細骨材 :新潟県姫川水系産天然砂、密度2.62g/cm3
粗骨材 :新潟県姫川水系産砕石、骨材寸法5〜13mm、密度2.64g/cm3
水 :水道水
減水剤 :ポリカルボン酸系高性能減水剤、市販品
セメント :普通ポルトランドセメント、電気化学工業株式会社製
砂 :標準砂
<Materials used>
Alumina cement: AC, trade name “Denka Alumina Cement No. 1” manufactured by Denki Kagaku Kogyo Co., Ltd., density 3.00g / cm 3 , brain value 5,000cm 2 / g
Silica-containing material A: FCC of fluid catalytic cracking catalyst, commercially available, SiO 2 65.7%, Al 2 O 3 27.5%, density 2.70 g / cm 3
Fine aggregate: Natural sand from Himekawa water system, Niigata prefecture, density 2.62g / cm 3
Coarse aggregate: Crushed stone from Himekawa water system, Niigata prefecture, aggregate size 5-13mm, density 2.64g / cm 3
Water: Tap water reducing agent: Polycarboxylic acid-based high-performance water reducing agent, commercial cement: Ordinary Portland cement, sand made by Denki Kagaku Kogyo Co., Ltd .: Standard sand
<測定方法>
外圧強度 :曲げ強度、JIS A 5372 「プレキャスト鉄筋コンクリート製品」附属書3に準じ測定。直径20×長さ30cm×厚さ4.5cmの成形した遠心力成形試験体、又はプレーンモルタルで内層を形成して成形した遠心力成形コンクリート管を、材齢7日にマルイ製作所社製商品名「HI-TRITRON(3000KN)圧縮試験機」を使用し、上下から載荷して測定
<Measurement method>
External pressure strength: Bending strength, measured according to JIS A 5372 “Precast reinforced concrete products” Annex 3. Centrifugal molded specimens with a diameter of 20 x length of 30 cm x thickness of 4.5 cm, or formed by forming an inner layer with plain mortar, a brand name made by Marui Manufacturing Co., Ltd. Using HI-TRITRON (3000KN) compression tester, load and measure from above and below
実験例2
表2に示す結合材、水/結合材比50%、結合材/砂比1/2の配合を用いて成形した内層用モルタルを用いたこと以外は実験例1と同様に行った。結果を表2に併記する。
Experimental example 2
The experiment was performed in the same manner as in Experimental Example 1 except that the inner layer mortar formed using the binder shown in Table 2 and the mixture of water / binder ratio 50% and binder / sand ratio 1/2 was used. The results are also shown in Table 2.
<使用材料>
シリカ含有物質ロ:廃活性白土焼却、当栄ケミカル社製商品名「ハイクレー」、市販品、SiO2 79.8%、Al2O3 9.25%、密度1.97g/cm3
シリカ物質ハ:フライアッシュ、セメント混和用、市販品、SiO2 60.0%、Al2O3 27.0%、密度2.05g/cm3
<Materials used>
Silica-containing material B: Waste activated clay incineration, Toei Chemical Co., Ltd. trade name “Hi-Clay”, commercial product, SiO 2 79.8%, Al 2 O 3 9.25%, density 1.97 g / cm 3
Silica substance C: fly ash, cement admixture, commercial product, SiO 2 60.0%, Al 2 O 3 27.0%, density 2.05g / cm 3
実験例3
アルミナセメント80部、シリカ含有物質イ20部からなる結合材、水/結合材比50%、結合材/砂比1/2の配合を用いて調製した内層用モルタルを用いて、表3に示す内層モルタルの厚みを調製したこと以外は実験例1と同様に行った。
なお、成形した遠心力成形試験体とプレーンモルタルで内層を形成して成形した遠心力成形コンクリート管の全厚みを4.5cm一定とした。結果を表3に併記する。
Experimental example 3
Table 3 shows the inner layer mortar prepared by using 80 parts of alumina cement, 20 parts of silica-containing material, 20 parts of water, binder ratio of 50% water / binder ratio, and 1/2 binder / sand ratio. The same operation as in Experimental Example 1 was performed except that the thickness of the inner layer mortar was adjusted.
The total thickness of the centrifugally formed concrete pipe formed by forming the inner layer with the formed centrifugal force test specimen and plain mortar was constant at 4.5 cm. The results are also shown in Table 3.
実験例4
アルミナセメント80部、シリカ含有物質イ20部からなる結合材、水/結合材比50%、結合材/砂比1/2の配合を用いて調製した内層用モルタルを用いて、表4に示す前置き時間、昇温速度15℃/hr、養生温度65℃、及び保持時間5時間で蒸気養生したこと以外は実験例1と同様に行った。結果を表4に併記する。
Experimental Example 4
Table 4 shows the inner layer mortar prepared using 80 parts of alumina cement, 20 parts of silica-containing material, 20 parts of water, 50% water / binder ratio, and 1/2 binder / sand ratio. The experiment was performed in the same manner as in Experimental Example 1 except that steam curing was performed at a preliminary time, a heating rate of 15 ° C / hr, a curing temperature of 65 ° C, and a holding time of 5 hours. The results are also shown in Table 4.
実験例5
アルミナセメント80部、シリカ含有物質イ20部からなる結合材、水/結合材比50%、結合材/砂比1/2の配合を用いて調製した内層用モルタルを用いて、前置時間4時間、表5に示す昇温速度、養生温度65℃、及び保持時間5時間で蒸気養生したこと以外は実験例1と同様に行った。結果を表5に併記する。
Experimental Example 5
Using a mortar for an inner layer prepared using a binder comprising 80 parts of alumina cement, 20 parts of silica-containing material, 20% water / binder ratio, and a binder / sand ratio of 1/2, The experiment was performed in the same manner as in Experimental Example 1 except that the steam curing was performed at the time, the heating rate shown in Table 5, the curing temperature 65 ° C., and the holding time 5 hours. The results are also shown in Table 5.
実験例6
アルミナセメント80部、シリカ含有物質イ20部からなる結合材、水/結合材比50%、結合材/砂比1/2の配合を用いて調製した内層用モルタルを用いて、前置時間4時間、昇温速度15℃/hr、養生温度65℃、及び表6に示す保持時間で蒸気養生したこと以外は実験例1と同様に行った。結果を表6に併記する。
Experimental Example 6
Using a mortar for an inner layer prepared using a binder comprising 80 parts of alumina cement, 20 parts of silica-containing material, 20% water / binder ratio, and a binder / sand ratio of 1/2, The test was performed in the same manner as in Experimental Example 1 except that steam curing was performed at the time, the heating rate of 15 ° C./hr, the curing temperature of 65 ° C., and the holding time shown in Table 6. The results are also shown in Table 6.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007257364A JP5069073B2 (en) | 2007-10-01 | 2007-10-01 | Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007257364A JP5069073B2 (en) | 2007-10-01 | 2007-10-01 | Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009084118A true JP2009084118A (en) | 2009-04-23 |
JP5069073B2 JP5069073B2 (en) | 2012-11-07 |
Family
ID=40658020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007257364A Active JP5069073B2 (en) | 2007-10-01 | 2007-10-01 | Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5069073B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104496365A (en) * | 2014-12-05 | 2015-04-08 | 江苏格雷特复合材料有限公司 | Production process of waterproof material |
CN104829195A (en) * | 2015-04-15 | 2015-08-12 | 临沂大学 | Prestress foam concrete preparation method |
WO2018052112A1 (en) * | 2016-09-16 | 2018-03-22 | 花王株式会社 | Hydraulic composition to be used for centrifugal casting |
CN109400074A (en) * | 2018-12-20 | 2019-03-01 | 石家庄市矿区宏源混凝土搅拌有限公司 | A kind of energy conservation anti-crack concrete |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04323005A (en) * | 1991-04-23 | 1992-11-12 | Denki Kagaku Kogyo Kk | Lined pipe and manufacture thereof |
JP2007190754A (en) * | 2006-01-18 | 2007-08-02 | Denki Kagaku Kogyo Kk | Method for producing centrifugally molded concrete pipe |
-
2007
- 2007-10-01 JP JP2007257364A patent/JP5069073B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04323005A (en) * | 1991-04-23 | 1992-11-12 | Denki Kagaku Kogyo Kk | Lined pipe and manufacture thereof |
JP2007190754A (en) * | 2006-01-18 | 2007-08-02 | Denki Kagaku Kogyo Kk | Method for producing centrifugally molded concrete pipe |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104496365A (en) * | 2014-12-05 | 2015-04-08 | 江苏格雷特复合材料有限公司 | Production process of waterproof material |
CN104829195A (en) * | 2015-04-15 | 2015-08-12 | 临沂大学 | Prestress foam concrete preparation method |
WO2018052112A1 (en) * | 2016-09-16 | 2018-03-22 | 花王株式会社 | Hydraulic composition to be used for centrifugal casting |
CN109715584A (en) * | 2016-09-16 | 2019-05-03 | 花王株式会社 | Centrifugal forming hydraulic-composition |
CN109715584B (en) * | 2016-09-16 | 2022-01-07 | 花王株式会社 | Hydraulic composition for centrifugal molding |
CN109400074A (en) * | 2018-12-20 | 2019-03-01 | 石家庄市矿区宏源混凝土搅拌有限公司 | A kind of energy conservation anti-crack concrete |
Also Published As
Publication number | Publication date |
---|---|
JP5069073B2 (en) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008174429A (en) | Salt-shielding cement mortar concrete and its hardened body | |
JP2009227574A (en) | Cement composition and method for producing the same | |
JP5101355B2 (en) | Cement composition | |
JP5804470B2 (en) | Binding material for paving material, paving material and method of using the paving material | |
JP5069073B2 (en) | Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe | |
JP2017193470A (en) | Concrete product and manufacturing method of concrete product | |
JP6796743B2 (en) | Acid-resistant concrete, precast concrete, and acid-resistant concrete manufacturing method | |
JP5271073B2 (en) | Hardened concrete and concrete composition | |
JP2010228953A (en) | Cement composition | |
JP4809575B2 (en) | Cement composition for civil engineering structure and concrete product using the same | |
JP2011157242A (en) | Method for producing cement hardened body | |
JP2011184237A (en) | White color ultrahigh-strength concrete and method of manufacturing the same | |
JP4999179B2 (en) | Admixture for high-strength cement composition and high-strength cement composition using the same | |
JP5403496B2 (en) | Hardened concrete and concrete composition | |
JP4681359B2 (en) | High-strength mortar, high-strength concrete, method for producing high-strength mortar hardened body, method for improving durability of structure, and premix material for high-strength mortar | |
JP5255240B2 (en) | Cement concrete hardened body, method for producing the same, and cement concrete used therefor | |
JP5863296B2 (en) | Method for producing ultra-high-strength cement-based hardened body | |
JP5165436B2 (en) | Concrete composition and hardened concrete | |
JP2015189628A (en) | Method of producing crack-reduced cement product and crack-reduced cement product | |
JP2006137630A (en) | Concrete | |
JP2007186372A (en) | Explosive fracture-resistant cement hardened body and method for producing the same | |
JP2011001251A (en) | Method for determining blending amount of expansive material, method for producing concrete hardened body and shrinkage suppressing method | |
JP2011132106A (en) | Hydraulic composition and cured product | |
JP2003267772A (en) | Grout composition | |
JP2001270761A (en) | Repairing panel for sewerage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100816 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120814 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120816 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150824 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5069073 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150824 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |