JP2010022965A - Desulfurization method and apparatus for digestive gas - Google Patents

Desulfurization method and apparatus for digestive gas Download PDF

Info

Publication number
JP2010022965A
JP2010022965A JP2008188704A JP2008188704A JP2010022965A JP 2010022965 A JP2010022965 A JP 2010022965A JP 2008188704 A JP2008188704 A JP 2008188704A JP 2008188704 A JP2008188704 A JP 2008188704A JP 2010022965 A JP2010022965 A JP 2010022965A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
carbon dioxide
gas
water
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008188704A
Other languages
Japanese (ja)
Other versions
JP4344773B1 (en
Inventor
Masahiko Miura
雅彦 三浦
Shiro Toyohisa
志朗 豊久
Katsuo Matsumoto
勝生 松本
Susumu Kumano
晋 熊野
Koji Murakoshi
浩二 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2008188704A priority Critical patent/JP4344773B1/en
Application granted granted Critical
Publication of JP4344773B1 publication Critical patent/JP4344773B1/en
Publication of JP2010022965A publication Critical patent/JP2010022965A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurization method and an apparatus for desulfurizing digestive gas capable of appropriately diluting hydrogen sulfide without restriction even when an amount of hydrogen sulfide contained in the digestive gas becomes much, capable of performing efficient desulfurization, not only not requiring measurement of concentration of hydrogen sulfide and oxygen and control of a feeding amount of the oxygen in order to prevent explosion but also capable of miniaturizing a removal treatment part of hydrogen sulfide. <P>SOLUTION: The desulfurization apparatus for the digestive gas includes an absorption column 4 for separating carbon dioxide and hydrogen sulfide from the digestive gas and refining methane, a pressure reduction tank 11 and a diffusion column 12 as a separation means for pressure-reducing high pressure water dissolved with carbon dioxide and hydrogen sulfide taken out from the absorption column 4 and separating the carbon dioxide and the hydrogen sulfide, and an organism desulfurization column 16 having a filling material layer 15 for receiving the separated carbon dioxide and hydrogen sulfide and air 14 as an oxygen-containing gas and deposited with micro-organism for decomposing the hydrogen sulfide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機性廃棄物をメタン発酵させることにより発生した消化ガスに含まれる硫化水素を除去する消化ガスの脱硫方法及び装置に関する。   The present invention relates to a digestion gas desulfurization method and apparatus for removing hydrogen sulfide contained in digestion gas generated by subjecting organic waste to methane fermentation.

比較的水分の多い有機性廃棄物の処理には、現在、メタン発酵処理が多用されている。このメタン発酵処理され、発生したガスは通常「消化ガス」と呼ばれ、この消化ガス中の成分は、メタンが約60容量%及び二酸化炭素が約40容量%である。さらに、不純物として、通常100〜3000ppmの硫化水素も含まれている。この消化ガスは、燃料ガスとして利用される。例えば、発電用のガスエンジン、ガスタービン、燃料電池等、温水や蒸気を製造するボイラー等の燃料である。しかし、上記消化ガスのように硫化水素が混入していると燃焼によって硫黄酸化物が生成するので、いずれの用途でも、エンジン等の機械部分を腐食させたり、あるいは排ガス中の硫黄酸化物濃度が高くなるという問題が起こる。したがって、硫化水素を低減させてから利用する必要がある。この硫化水素を低減させる技術として、特許文献1に記載されたようなものが知られている。   Currently, methane fermentation treatment is frequently used to treat organic waste with relatively high water content. The gas generated by this methane fermentation treatment is usually called “digestion gas”, and the components in the digestion gas are about 60% by volume of methane and about 40% by volume of carbon dioxide. Furthermore, 100 to 3000 ppm of hydrogen sulfide is usually contained as an impurity. This digestion gas is used as a fuel gas. For example, it is a fuel such as a boiler for producing hot water or steam, such as a gas engine for power generation, a gas turbine, or a fuel cell. However, if hydrogen sulfide is mixed in the digestion gas, sulfur oxides are generated by combustion. Therefore, in any application, mechanical parts such as engines are corroded or the concentration of sulfur oxides in exhaust gas is reduced. The problem of getting higher occurs. Therefore, it is necessary to use after reducing hydrogen sulfide. As a technique for reducing this hydrogen sulfide, a technique described in Patent Document 1 is known.

この特許文献1に開示された硫化水素を低減させる技術は、以下のようなものである。
1)微生物が付着する充填材が充填された反応塔を有した脱硫装置の反応塔に導入する前の消化ガスに空気供給手段から空気を供給する。
2)空気が供給された消化ガスと水を反応塔に導入し、消化ガス中の硫化水素を除去する(脱硫)。
3)脱硫後に反応塔から排出される消化ガス中の硫化水素及び酸素の濃度を測定し、これらの測定結果に基づいて空気供給手段から供給する空気中の酸素の濃度を制御する。
特開2003−305328号公報
The technique for reducing hydrogen sulfide disclosed in Patent Document 1 is as follows.
1) Air is supplied from the air supply means to the digestion gas before being introduced into the reaction tower of a desulfurization apparatus having a reaction tower filled with a filler to which microorganisms adhere.
2) Digestion gas and water supplied with air are introduced into the reaction tower to remove hydrogen sulfide in the digestion gas (desulfurization).
3) The concentration of hydrogen sulfide and oxygen in the digestion gas discharged from the reaction tower after desulfurization is measured, and the concentration of oxygen in the air supplied from the air supply means is controlled based on these measurement results.
JP 2003-305328 A

しかしながら、上記特許文献1に開示された硫化水素を低減させる技術には、以下のような問題点が存在する。   However, the technique for reducing hydrogen sulfide disclosed in Patent Document 1 has the following problems.

1)メタンを含有する消化ガスに空気が直接加えられる(すなわち、メタンに酸素が直接加えられることとなる)。したがって、消化ガス中のメタンに対して、酸素が所定濃度以上混入すると爆発する恐れがある。そこで、硫化水素及び酸素の濃度を測定し、酸素の供給量を制御しなければならない。
2)また、上述したように酸素が所定濃度以上混入すると爆発する恐れがあるため、反応塔へ導入される硫化水素の量が脱硫効率を低下させるほど多量になっても、それを希釈するために多量の酸素を適宜加えることができない。これは、消化ガス中に含有する硫化水素の量が多くなった場合には、大きな課題となる。
3)また、約60容量%もあるメタンを含有したままの消化ガスを反応塔に供給するため、どうしても反応塔を大きなものにせざるを得ないという問題点がある。
4)さらに、脱硫された消化ガスには、多量(約40容量%)の二酸化炭素、その他の不純物も残留したままであるので、燃料としての熱量不足や使用機器が限られるという問題がある。
1) Air is added directly to digestion gas containing methane (ie, oxygen will be added directly to methane). Therefore, there is a risk of explosion if oxygen is mixed in a predetermined concentration or more with respect to methane in the digestion gas. Therefore, it is necessary to control the supply amount of oxygen by measuring the concentration of hydrogen sulfide and oxygen.
2) In addition, as described above, since oxygen may explode when mixed at a predetermined concentration or more, even if the amount of hydrogen sulfide introduced into the reaction tower becomes so large as to reduce the desulfurization efficiency, it is diluted. A large amount of oxygen cannot be added appropriately. This becomes a big problem when the amount of hydrogen sulfide contained in the digestion gas increases.
3) Further, since digestion gas containing about 60% by volume of methane is supplied to the reaction tower, there is a problem that the reaction tower must be made large.
4) Furthermore, since a large amount (about 40% by volume) of carbon dioxide and other impurities remain in the desulfurized digestion gas, there is a problem that the amount of heat as a fuel is insufficient and the equipment used is limited.

本発明の目的は、食品廃棄物、下水汚泥などの有機性物質をメタン発酵して発生した消化ガス中の硫化水素を除去するに際し、爆発防止のための硫化水素及び酸素の濃度測定や酸素の供給量のシビアな制御を不要とし、硫化水素の除去処理部をコンパクトにできるとともに、良質のメタンガスを得ることが可能な消化ガスの脱硫方法及び装置を提供することにある。   The purpose of the present invention is to remove hydrogen sulfide in digestion gas generated by methane fermentation of organic substances such as food waste and sewage sludge. An object of the present invention is to provide a digestion gas desulfurization method and apparatus that can eliminate the need for severe control of the supply amount, make the hydrogen sulfide removal treatment section compact, and obtain high-quality methane gas.

この目的を達成するために、本発明の請求項1に記載の発明は、
有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮機で圧縮し昇圧させ、前記昇圧させた消化ガスを吸収塔へ供給して、前記吸収塔内で前記昇圧させた消化ガスと水とを高圧状態で接触させることにより、前記昇圧させた消化ガスに含まれる二酸化炭素及び硫化水素を高圧水に溶解させて前記昇圧させた消化ガスから前記二酸化炭素及び硫化水素を分離し、メタンを精製する工程と、
前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した水から前記二酸化炭素及び硫化水素を分離させる工程と、
前記分離させた二酸化炭素及び硫化水素と酸素含有ガスを硫化水素を分解する微生物が付着した充填材層を有する生物脱硫塔へ供給し、前記微生物の働きを利用して前記混合ガス中の硫化水素を分解する工程と、
を備えたことを特徴とする消化ガスの脱硫方法である。
In order to achieve this object, the invention according to claim 1 of the present invention provides:
The digestion gas generated by subjecting the organic waste to methane fermentation is compressed by a compressor and pressurized, the digested gas pressurized is supplied to an absorption tower, and the digestion gas and water whose pressure is increased in the absorption tower In a high-pressure state, carbon dioxide and hydrogen sulfide contained in the pressurized digestion gas are dissolved in high-pressure water, and the carbon dioxide and hydrogen sulfide are separated from the pressurized digestion gas. A purification step;
The high-pressure water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved is decompressed, and the carbon dioxide and hydrogen sulfide are extracted from the water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved. Separating the
The separated carbon dioxide, hydrogen sulfide, and oxygen-containing gas are supplied to a biological desulfurization tower having a filler layer to which microorganisms that decompose hydrogen sulfide are attached, and hydrogen sulfide in the mixed gas is utilized using the action of the microorganisms. Disassembling, and
A digestion gas desulfurization method characterized by comprising:

請求項2に記載の発明は、請求項1に記載の発明において、
前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水を前記生物脱硫塔へ供給し、前記高圧水中から発泡する前記二酸化炭素及び硫化水素の気泡で前記生物脱硫塔内の充填材層を洗浄する工程を有したことを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
The high-pressure water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved is supplied to the biological desulfurization tower, and the carbon dioxide and hydrogen sulfide bubbles generated from the high-pressure water are contained in the biological desulfurization tower. It has the process of wash | cleaning a filler layer.

請求項3に記載の発明は、請求項1または2に記載の発明において、
前記圧縮機から発生する熱を使用して前記生物脱硫塔を温める工程を有したことを特徴とする。
The invention according to claim 3 is the invention according to claim 1 or 2,
It has the process of heating the said biological desulfurization tower using the heat | fever which generate | occur | produces from the said compressor.

請求項4に記載の発明は、請求項1〜3のいずれかに記載の発明において、
前記生物脱硫塔へ供給する前記混合ガス中の硫化水素の濃度を所定値に保つために、前記消化ガス中の硫化水素の濃度を測定し、前記測定した硫化水素の濃度に応じて、前記酸素含有ガス供給手段から供給する前記酸素含有ガスの量を制御する工程を有したことを特徴とする。
The invention according to claim 4 is the invention according to any one of claims 1 to 3,
In order to keep the concentration of hydrogen sulfide in the mixed gas supplied to the biological desulfurization tower at a predetermined value, the concentration of hydrogen sulfide in the digestion gas is measured, and according to the measured concentration of hydrogen sulfide, the oxygen It has the process of controlling the quantity of the said oxygen containing gas supplied from a containing gas supply means.

請求項5に記載の発明は、
有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮し昇圧させる圧縮機と、前記圧縮機で昇圧させた消化ガスと水とを受入れ、高圧状態で接触させることにより、前記昇圧させた消化ガスに含まれる二酸化炭素及び硫化水素を高圧水に溶解させて前記昇圧させた消化ガスから前記二酸化炭素及び硫化水素を分離し、メタンを精製するための吸収塔と、前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した水から前記二酸化炭素及び硫化水素を分離させる分離手段と、前記分離させた二酸化炭素及び硫化水素と酸素含有ガスを受入れ、前記硫化水素を分解する微生物が付着した充填材層を有した生物脱硫塔と、を備えたことを特徴とする消化ガスの脱硫装置である。
The invention described in claim 5
The compressor that compresses and pressurizes digestion gas generated by methane fermentation of organic waste, and the digestion gas and water that have been pressurized by the compressor are received and brought into contact with each other in a high-pressure state, thereby increasing the pressure. The carbon dioxide and hydrogen sulfide contained in the digestion gas are dissolved in high-pressure water to separate the carbon dioxide and hydrogen sulfide from the pressurized digestion gas, and an absorption tower for purifying methane, and an extraction from the absorption tower Separating means for depressurizing the high-pressure water in which the carbon dioxide and hydrogen sulfide dissolved are separated to separate the carbon dioxide and hydrogen sulfide extracted from the water in which the carbon dioxide and hydrogen sulfide are extracted from the absorption tower; A biological desulfurization tower having a filler layer that receives the separated carbon dioxide, hydrogen sulfide, and oxygen-containing gas and has microorganisms that decompose the hydrogen sulfide attached thereto. It is desulfurizer biogas characterized.

請求項6に記載の発明は、請求項5に記載の発明において、
前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水中の前記二酸化炭素及び硫化水素の気泡で前記生物脱硫塔内の充填材層を洗浄するために、前記高圧水を前記生物脱硫塔へ供給する高圧水供給手段を備えたことを特徴とする。
The invention according to claim 6 is the invention according to claim 5,
In order to clean the filler layer in the biological desulfurization tower with bubbles of the carbon dioxide and hydrogen sulfide in the high-pressure water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved, High pressure water supply means for supplying to the biological desulfurization tower is provided.

請求項7に記載の発明は、請求項5または6に記載の発明において、
前記圧縮機から発生する熱を回収する回収手段と、前記回収手段で回収した熱を用いて前記生物脱硫塔を温めるための保温手段と、を備えたことを特徴とする。
The invention according to claim 7 is the invention according to claim 5 or 6,
A recovery means for recovering heat generated from the compressor, and a heat retaining means for warming the biological desulfurization tower using the heat recovered by the recovery means are provided.

請求項8に記載の発明は、請求項5〜7のいずれかに記載の発明において、
前記生物脱硫塔へ供給する前記混合ガス中の硫化水素の濃度を所定値に保つために、前記消化ガス中の硫化水素の濃度を測定する硫化水素濃度計と、前記硫化水素濃度計で測定した硫化水素の濃度に応じて、前記酸素含有ガス供給手段から供給する前記酸素含有ガスの量を制御する制御手段と、を備えたことを特徴とする。
The invention according to claim 8 is the invention according to any one of claims 5 to 7,
In order to keep the hydrogen sulfide concentration in the mixed gas supplied to the biological desulfurization tower at a predetermined value, the hydrogen sulfide concentration meter for measuring the concentration of hydrogen sulfide in the digestion gas and the hydrogen sulfide concentration meter were used. Control means for controlling the amount of the oxygen-containing gas supplied from the oxygen-containing gas supply means according to the concentration of hydrogen sulfide.

以上のように、本発明に係る消化ガスの脱硫方法によれば、
有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮機で圧縮し昇圧させ、前記昇圧させた消化ガスを吸収塔へ供給して、前記吸収塔内で前記昇圧させた消化ガスと水とを高圧状態で接触させることにより、前記昇圧させた消化ガスに含まれる二酸化炭素及び硫化水素を高圧水に溶解させて前記昇圧させた消化ガスから前記二酸化炭素及び硫化水素を分離し、メタンを精製する工程と、
前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した水から前記二酸化炭素及び硫化水素を分離させる工程と、
前記分離させた二酸化炭素及び硫化水素と酸素含有ガスを硫化水素を分解する微生物が付着した充填材層を有する生物脱硫塔へ供給し、前記微生物の働きを利用して前記混合ガス中の硫化水素を分解する工程と、
を備えているため、以下のような作用効果を奏する。
1)空気等の酸素含有ガスが混合される前のガスに、予めほとんどメタンを含有させないようにできるため、爆発防止のための硫化水素及び酸素の濃度測定や酸素の供給量制御が不要となるばかりか、前記ガス中に含有する硫化水素の量が多くなった場合にも制約なく適宜、硫化水素を希釈することが可能である。したがって、簡素化した設備でありながら、ガスの効率的な脱硫が行える。
2)生物脱硫塔へ供給されるガス中には、上記1)で説明した通り、メタンがほとんど含有しないため、硫化水素の除去処理部としての生物脱硫塔をコンパクトにした消化ガスの脱硫方法を実現できる。
3)本発明に係る消化ガスの脱硫方法によれば、脱硫が可能であるばかりか、効率的なメタンの精製も合わせて実現できる。
As described above, according to the digestion gas desulfurization method of the present invention,
The digestion gas generated by subjecting the organic waste to methane fermentation is compressed by a compressor and pressurized, the digested gas pressurized is supplied to an absorption tower, and the digestion gas and water whose pressure is increased in the absorption tower And the carbon dioxide and hydrogen sulfide contained in the pressurized digestion gas are dissolved in high pressure water to separate the carbon dioxide and hydrogen sulfide from the pressurized digestion gas, A purification step;
The high-pressure water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved is decompressed, and the carbon dioxide and hydrogen sulfide are extracted from the water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved. Separating the
The separated carbon dioxide, hydrogen sulfide, and oxygen-containing gas are supplied to a biological desulfurization tower having a filler layer to which microorganisms that decompose hydrogen sulfide are attached, and hydrogen sulfide in the mixed gas is utilized using the action of the microorganisms. Disassembling, and
Therefore, the following effects are achieved.
1) Almost no methane is contained in the gas before the oxygen-containing gas such as air is mixed in advance, which eliminates the need for hydrogen sulfide and oxygen concentration measurement and oxygen supply control to prevent explosions. In addition, even when the amount of hydrogen sulfide contained in the gas is increased, it is possible to dilute hydrogen sulfide as appropriate without restriction. Therefore, the gas can be efficiently desulfurized while the facility is simplified.
2) As described in 1) above, the gas supplied to the biological desulfurization tower contains almost no methane. Therefore, a digestion gas desulfurization method in which the biological desulfurization tower as a hydrogen sulfide removal treatment unit is made compact is used. realizable.
3) According to the digestion gas desulfurization method of the present invention, not only desulfurization is possible, but also efficient methane purification can be realized.

また、本発明に係る消化ガスの脱硫装置によれば、
有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮し昇圧させる圧縮機と、前記圧縮機で昇圧させた消化ガスと水とを受入れ、高圧状態で接触させることにより、前記昇圧させた消化ガスに含まれる二酸化炭素及び硫化水素を高圧水に溶解させて前記昇圧させた消化ガスから前記二酸化炭素及び硫化水素を分離し、メタンを精製するための吸収塔と、前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した水から前記二酸化炭素及び硫化水素を分離させる分離手段と、前記分離させた二酸化炭素及び硫化水素と酸素含有ガスを受入れ、前記硫化水素を分解する微生物が付着した充填材層を有した生物脱硫塔と、を備えているため、以下のような作用効果を奏する。
1)空気等の酸素含有ガスが混合される前のガスに、予めほとんどメタンを含有させないようにできるため、爆発防止のための硫化水素及び酸素の濃度測定計や酸素の供給量を制御する制御手段が不要となるばかりか、前記ガス中に含有する硫化水素の量が多くなった場合にも制約なく適宜、硫化水素を希釈することが可能である。したがって、ガスの効率的な脱硫が行えるにもかかわらず、設備を簡素化できる。
2)生物脱硫塔へ供給されるガス中には、上記1)で説明した通り、メタンがほとんど含有しないため、硫化水素の除去処理部としての生物脱硫塔をコンパクトにした消化ガスの脱硫装置を実現できる。
3)本発明に係る消化ガスの脱硫装置によれば、脱硫が可能であるばかりか、効率的なメタンの精製も合わせて可能な消化ガスの脱硫装置を実現できる。
Moreover, according to the digestion gas desulfurization apparatus according to the present invention,
The compressor that compresses and pressurizes digestion gas generated by methane fermentation of organic waste, and the digestion gas and water that have been pressurized by the compressor are received and brought into contact with each other in a high-pressure state, thereby increasing the pressure. The carbon dioxide and hydrogen sulfide contained in the digestion gas are dissolved in high-pressure water to separate the carbon dioxide and hydrogen sulfide from the pressurized digestion gas, and an absorption tower for purifying methane, and an extraction from the absorption tower Separating means for depressurizing the high-pressure water in which the carbon dioxide and hydrogen sulfide dissolved are separated to separate the carbon dioxide and hydrogen sulfide extracted from the water in which the carbon dioxide and hydrogen sulfide are extracted from the absorption tower; A biological desulfurization tower having a filler layer that receives the separated carbon dioxide, hydrogen sulfide, and oxygen-containing gas and has microorganisms that decompose the hydrogen sulfide attached thereto. Because you are, provide the following operational effects.
1) Since the gas before the oxygen-containing gas such as air is mixed with almost no methane in advance, the hydrogen sulfide and oxygen concentration meter for preventing explosion and the control to control the supply amount of oxygen It is possible to dilute the hydrogen sulfide as appropriate without restriction even when the means becomes unnecessary and the amount of hydrogen sulfide contained in the gas increases. Therefore, the facility can be simplified despite efficient gas desulfurization.
2) The gas supplied to the biological desulfurization tower contains almost no methane as described in 1) above. Therefore, a digestion gas desulfurization apparatus in which the biological desulfurization tower as a hydrogen sulfide removal treatment unit is made compact is provided. realizable.
3) According to the digestion gas desulfurization apparatus according to the present invention, it is possible to realize a digestion gas desulfurization apparatus that allows not only desulfurization but also efficient purification of methane.

以下、本発明の実施形態について、添付図面を参照しながら説明する。図1は本発明の一実施形態の消化ガスの脱硫装置の全体構成を模式的に説明する説明図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an explanatory diagram schematically illustrating the overall configuration of a digestion gas desulfurization apparatus according to an embodiment of the present invention.

まず、本発明に係る消化ガスの脱硫装置の構成について説明する。   First, the configuration of a digestion gas desulfurization apparatus according to the present invention will be described.

図1において、1はミストセパレータ、2はミストセパレータ1を通過した消化ガス中の硫化水素の濃度を測定するための硫化水素濃度計、3a、3bはガス圧縮機、4は吸収塔(スクラバー)、5は除湿器、6は給水槽、7は水補給用ポンプ、8は水循環用ポンプ、9は熱交換器、10はチラー、11は減圧タンク(フラッシングタンク)、12は放散塔(ストリッピングタワー)、13は酸素含有ガス供給手段としてのブロア、14は空気、15は微生物としてチオバチルス属細菌を主とした好気性硫黄酸化細菌が付着した充填材層、16は充填材層15を内包した生物脱硫塔である。   In FIG. 1, 1 is a mist separator, 2 is a hydrogen sulfide concentration meter for measuring the concentration of hydrogen sulfide in digested gas that has passed through the mist separator 1, 3a and 3b are gas compressors, and 4 is an absorption tower (scrubber). 5 is a dehumidifier, 6 is a water supply tank, 7 is a water supply pump, 8 is a water circulation pump, 9 is a heat exchanger, 10 is a chiller, 11 is a decompression tank (flushing tank), 12 is a stripping tower (stripping) (Tower), 13 is a blower as an oxygen-containing gas supply means, 14 is air, 15 is a filler layer to which aerobic sulfur-oxidizing bacteria mainly consisting of thiobacillus bacteria are attached as microorganisms, and 16 includes a filler layer 15. It is a biological desulfurization tower.

次に、本発明に係る消化ガスの脱硫装置の運転動作について、図1を参照しながら説明する。   Next, the operation of the digestion gas desulfurization apparatus according to the present invention will be described with reference to FIG.

有機性汚泥、有機性廃水等の有機性廃棄物をメタン発酵させることにより発生した消化ガスは、ミストセパレータ1によって消化ガス中のミスト(水分)、ダストが除去される。このミストセパレータ1を通過後の消化ガス中の成分は、メタン(CH)が約60容量%、二酸化炭素(CO)が約40容量%、硫化水素(HS)が100〜3000ppm、その他の不純物が極微量である。この消化ガスを直列接続されたガス圧縮機3a、3bによって圧縮し、大気圧より高い所定の圧力まで昇圧される。ガス圧縮機3a、3bによって昇圧された消化ガスは、吸収塔4の下部に導入される。一方、吸収塔4には、その上部から水が水循環用ポンプ8によって昇圧された状態で供給されるようになっている。 Digestion gas generated by subjecting organic waste such as organic sludge and organic wastewater to methane fermentation has mist (moisture) and dust in the digestion gas removed by the mist separator 1. The components in the digestion gas after passing through the mist separator 1 are about 60% by volume of methane (CH 4 ), about 40% by volume of carbon dioxide (CO 2 ), 100 to 3000 ppm of hydrogen sulfide (H 2 S), Trace amounts of other impurities. The digestion gas is compressed by gas compressors 3a and 3b connected in series, and the pressure is increased to a predetermined pressure higher than the atmospheric pressure. The digestion gas pressurized by the gas compressors 3 a and 3 b is introduced into the lower part of the absorption tower 4. On the other hand, water is supplied to the absorption tower 4 in a state where the pressure is increased by the water circulation pump 8 from above.

このように、ガス圧縮機3a、3bにより消化ガスを昇圧して吸収塔4内へその下部より送り込むとともに、水循環用ポンプ8により水を昇圧して吸収塔4内へその上部より送り込むことにより、吸収塔4内を0.55〜2.0MPaGの範囲を満たす高圧状態に保持し、吸収塔4内において消化ガスと水とを前記圧力範囲を満たす高圧状態で接触させるようにしている。なお、吸収塔4内には、消化ガスと水とを十分に接触させるためにラシヒリング等の充填物が充填されている。   Thus, by increasing the digestion gas by the gas compressors 3a, 3b and feeding it from the lower part into the absorption tower 4, and by boosting the water by the water circulation pump 8 and feeding it from the upper part to the absorption tower 4, The inside of the absorption tower 4 is maintained in a high pressure state satisfying the range of 0.55 to 2.0 MPaG, and the digestion gas and water are brought into contact with each other in the high pressure state satisfying the pressure range in the absorption tower 4. The absorption tower 4 is filled with a packing such as Raschig ring in order to bring the digestion gas and water into sufficient contact.

吸収塔4内において消化ガスと水とを0.55〜2.0MPaGの範囲を満たす高圧状態で接触させることにより、消化ガス中に気体状態で含まれていた二酸化炭素及び硫化水素は、高圧の水に溶解して吸収される一方、メタンは、高圧の水にほとんど溶解することなく、吸収塔4の頂部から取り出される。この吸収塔4の頂部から取り出された高濃度のメタンを有する精製ガスは、除湿器5に送られ、燃料として使用(利用)するときの圧力においても結露することがないように、水分が十分に吸着除去される。また、消化ガスから二酸化炭素及び硫化水素等を分離し、メタンを精製するに際し、消化ガスと水とを0.55〜2.0MPaGの範囲を満たす高圧状態で接触させるのがよい。この範囲より低圧力雰囲気では、二酸化炭素及び硫化水素等が十分に分離除去されず、また、この範囲より高圧力雰囲気にしても二酸化炭素及び硫化水素の除去率がそれほど向上せず、運転コストや、高圧化仕様による装置コストの増加などの点から好ましくない。なお、除去率、運転コスト及び装置コストの点から、消化ガスと水とを0.7MPaG以上1.0MPaG未満の範囲を満たす高圧状態で接触させることがより好ましい。   By contacting the digestion gas and water in the absorption tower 4 in a high pressure state satisfying the range of 0.55 to 2.0 MPaG, the carbon dioxide and hydrogen sulfide contained in the digestion gas in a gaseous state are in a high pressure state. While dissolved in water and absorbed, methane is taken from the top of the absorption tower 4 with almost no dissolution in high pressure water. The purified gas having a high concentration of methane taken out from the top of the absorption tower 4 is sent to the dehumidifier 5 and has sufficient moisture so that no condensation occurs even at the pressure when used (utilized) as fuel. Is removed by adsorption. Moreover, when purifying methane by separating carbon dioxide and hydrogen sulfide from the digestion gas, the digestion gas and water are preferably brought into contact with each other in a high pressure state satisfying a range of 0.55 to 2.0 MPaG. Carbon dioxide, hydrogen sulfide, etc. are not sufficiently separated and removed in an atmosphere at a pressure lower than this range, and the removal rate of carbon dioxide and hydrogen sulfide is not improved so much even in an atmosphere at a pressure higher than this range. In view of the increase in equipment cost due to high pressure specifications, it is not preferable. In addition, it is more preferable to make digestion gas and water contact in the high pressure state which satisfy | fills the range of 0.7 MPaG or more and less than 1.0 MPaG from the point of a removal rate, an operating cost, and apparatus cost.

尚、上記のように消化ガスと水とを0.55MPaG以上の高圧状態で接触させることにより、消化ガスにシロキサン化合物が含まれる場合、シロキサン化合物は凝縮しガスと分離されるので、吸収塔4の頂部から取り出される高濃度のメタンを有する精製ガス中に残留するシロキサン化合物も僅かである。よって、高カロリーで高純度なメタンガスが得られるので、ガスエンジン発電設備や、天然ガス自動車などにも使用可能となる。   When the digestion gas contains a siloxane compound by bringing the digestion gas and water into contact with each other at a high pressure of 0.55 MPaG or more as described above, the siloxane compound is condensed and separated from the gas. Few siloxane compounds remain in the purified gas with a high concentration of methane removed from the top of the tank. Therefore, since high-calorie and high-purity methane gas can be obtained, it can be used for gas engine power generation facilities, natural gas vehicles, and the like.

次に、消化ガスから分離した二酸化炭素及び硫化水素が溶解した高圧水は、吸収塔4の底部から抜き出されて、弁V1を介して減圧タンク11に導入される。この減圧タンク11内の圧力は、吸収塔4内に比べて減圧されている。例えば、吸収塔4内の圧力が0.9MPaGのとき、減圧タンク11内の圧力は0.3MPaGである。そして、メタン回収率を高める目的で、吸収塔4の底部からの高圧水にわずかに溶解しているメタンは、ガスとして分離されて減圧タンク11の頂部から弁V12を介して、ガス圧縮機3a、3bの中間段に戻されてガス圧縮機3aからの消化ガスに合流されるようになっている。このメタンが分離回収された後の二酸化炭素及び硫化水素が溶解した水は、減圧タンク11の底部から弁V3を介して放散塔12の上部に導入される。   Next, the high-pressure water in which carbon dioxide and hydrogen sulfide separated from the digestion gas are dissolved is extracted from the bottom of the absorption tower 4 and introduced into the decompression tank 11 through the valve V1. The pressure in the decompression tank 11 is reduced compared to that in the absorption tower 4. For example, when the pressure in the absorption tower 4 is 0.9 MPaG, the pressure in the decompression tank 11 is 0.3 MPaG. For the purpose of increasing the methane recovery rate, methane that is slightly dissolved in the high-pressure water from the bottom of the absorption tower 4 is separated as a gas and is gas-compressed from the top of the decompression tank 11 through the valve V12 to the gas compressor 3a. 3b is returned to the intermediate stage of 3b and joined to the digestion gas from the gas compressor 3a. The water in which carbon dioxide and hydrogen sulfide are dissolved after the methane is separated and recovered is introduced from the bottom of the decompression tank 11 to the upper portion of the stripping tower 12 through the valve V3.

この放散塔12においては、減圧タンク11から抜き出された水が上部から導入され大気圧程度まで減圧される一方、下部からはブロア13によって放散用ガス(例えば空気14)が上記二酸化炭素と略同一の容積量となるように供給される。大気圧程度まで減圧されることおよびこの空気14により、減圧タンク11から抜き出された水に溶解していた二酸化炭素及び硫化水素を水から分離させ、さらに放散塔12内でこの分離させた二酸化炭素及び硫化水素と空気14を混合し、この混合した二酸化炭素、硫化水素及び空気14からなる混合ガスが生物脱硫塔16の上部に導入される。また、上記放散用ガスとしては、空気が簡便であるが、必ずしもこれに限定されるものではなく、酸素を含有したさまざまなガス(以下、「酸素含有ガス」と称す)を用いることも可能である。このように空気をはじめとする酸素含有ガスを上記ブロア13等の酸素含有ガス供給手段を用いて供給すればよい。   In this stripping tower 12, water extracted from the decompression tank 11 is introduced from the upper part and depressurized to about atmospheric pressure, and from the lower part, the stripping gas (for example, air 14) is substantially the same as the carbon dioxide by the blower 13. Supplied to have the same volume. By reducing the pressure to about atmospheric pressure and the air 14, the carbon dioxide and hydrogen sulfide dissolved in the water extracted from the decompression tank 11 are separated from the water, and the separated carbon dioxide is further separated in the diffusion tower 12. Carbon and hydrogen sulfide are mixed with air 14, and a mixed gas composed of the mixed carbon dioxide, hydrogen sulfide, and air 14 is introduced into the upper portion of the biological desulfurization tower 16. In addition, air is simple as the gas for diffusion, but is not necessarily limited thereto, and various gases containing oxygen (hereinafter referred to as “oxygen-containing gas”) can be used. is there. Thus, oxygen-containing gas including air may be supplied using oxygen-containing gas supply means such as the blower 13.

また、二酸化炭素及び硫化水素が追い出された水は、放散塔12の底部から抜き出され、水循環用ポンプ8にて昇圧され、熱交換器9にてチラー10からのブラインとの間で熱交換して所定の温度(例えば、7℃)まで冷却された後、吸収塔4の上部に供給される。なお、放散塔12内には、空気14と水とを十分に接触させるためにラシヒリング等の充填物が充填されている。   Further, the water from which carbon dioxide and hydrogen sulfide have been expelled is extracted from the bottom of the stripping tower 12, pressurized by the water circulation pump 8, and heat exchanged with the brine from the chiller 10 by the heat exchanger 9. Then, after being cooled to a predetermined temperature (for example, 7 ° C.), it is supplied to the upper part of the absorption tower 4. The diffusion tower 12 is filled with a packing such as Raschig ring in order to bring the air 14 and water into sufficient contact.

また、生物脱硫塔16の上部から導入される水として、給水槽6に貯留された水や弁V4から排出される排水を利用することができる。また、生物脱硫塔16の上部から導入される水として、温水を利用する場合は、以下のような仕組みを設けることで後述する生物脱硫塔16内の硫黄酸化細菌の働きが活発になるため、より好ましい。例えば、圧縮機3a、3bから発生する熱により温水(例えば、30〜50℃)を製造し、その温水を生物脱硫塔16の上部から導入する。具体的には、圧縮機3a、3bの冷却に利用した水を生物脱硫塔16の上部から導入する。また、圧縮機3a、3bから発生する熱を回収し、回収した熱を利用して生物脱硫塔16を温めるのが好ましい。すなわち、圧縮機3a、3bから発生する熱を水で冷却するための冷却手段(図示せず)を圧縮機3a、3bに近接させて設けておく。そして、この冷却手段で冷却処理した後の温水(例えば、50℃〜60℃)を回収した回収手段(図示せず)から生物脱硫塔16に近接させて設けた保温手段(図示せず)に供給し、この温水で生物脱硫塔16内の硫黄酸化細菌の働きが最も活発となるように約37℃に温める。   Moreover, as the water introduced from the upper part of the biological desulfurization tower 16, the water stored in the water tank 6 or the waste water discharged from the valve V4 can be used. Moreover, when using warm water as water introduced from the upper part of the biological desulfurization tower 16, since the action | operation of the sulfur oxidation bacteria in the biological desulfurization tower 16 mentioned later becomes active by providing the following structures, More preferred. For example, warm water (for example, 30 to 50 ° C.) is produced by heat generated from the compressors 3 a and 3 b, and the warm water is introduced from the upper part of the biological desulfurization tower 16. Specifically, water used for cooling the compressors 3 a and 3 b is introduced from the upper part of the biological desulfurization tower 16. Further, it is preferable to recover the heat generated from the compressors 3a and 3b and warm the biological desulfurization tower 16 using the recovered heat. That is, a cooling means (not shown) for cooling the heat generated from the compressors 3a and 3b with water is provided close to the compressors 3a and 3b. And the heat retention means (not shown) provided in the vicinity of the biological desulfurization tower 16 from the recovery means (not shown) which collected the warm water (for example, 50 ° C. to 60 ° C.) after being cooled by the cooling means. The warm water is heated to about 37 ° C. so that the action of sulfur-oxidizing bacteria in the biological desulfurization tower 16 becomes most active.

次に、生物脱硫塔16内で二酸化炭素、硫化水素及び空気14等からなる混合ガス中の硫化水素を分解する(脱硫する)過程を説明する。生物脱硫塔16の上部から導入された上記混合ガスと水をチオバチルス属細菌を主とした好気性硫黄酸化細菌が付着した充填材層15を通過させることにより、この好気性硫黄酸化細菌の働きを利用して、硫化水素(HS)を酸化分解し硫黄(S)に変化させる。さらに、この硫黄(S)が酸化されSO 2−に変化する。このような過程を経て、最終的に消化ガス中から硫化水素が分解除去される(脱硫が完了する)。 Next, a process of decomposing (desulfurizing) hydrogen sulfide in a mixed gas composed of carbon dioxide, hydrogen sulfide, air 14 and the like in the biological desulfurization tower 16 will be described. By passing the mixed gas and water introduced from the upper part of the biological desulfurization tower 16 through the filler layer 15 to which aerobic sulfur-oxidizing bacteria mainly including Thiobacillus bacteria are attached, the aerobic sulfur-oxidizing bacteria can function. Utilizing it, hydrogen sulfide (H 2 S) is oxidized and decomposed to change to sulfur (S). Furthermore, this sulfur (S) is oxidized and changed to SO 4 2− . Through such a process, hydrogen sulfide is finally decomposed and removed from the digestion gas (desulfurization is completed).

上記生物脱硫塔16内では、硫化水素の濃度が一定の時に安定的に脱硫が行われ、効率が良くなるため、本実施形態のように、以下のような仕組みを設けるのが、より好ましい。すなわち、ミストセパレータ1を通過した箇所に消化ガス中の硫化水素の濃度を測定するための硫化水素濃度計2を設け、生物脱硫塔16内に導入される混合ガス中の硫化水素の濃度をほぼ一定に保つように、測定した硫化水素の濃度に応じて、ブロア13から供給する空気14の量を制御手段(図示せず)により制御する。   In the biological desulfurization tower 16, since desulfurization is stably performed when the concentration of hydrogen sulfide is constant and efficiency is improved, it is more preferable to provide the following mechanism as in this embodiment. That is, a hydrogen sulfide concentration meter 2 for measuring the concentration of hydrogen sulfide in the digestion gas is provided at a location that has passed through the mist separator 1, and the concentration of hydrogen sulfide in the mixed gas introduced into the biological desulfurization tower 16 is substantially reduced. The amount of air 14 supplied from the blower 13 is controlled by a control means (not shown) according to the measured concentration of hydrogen sulfide so as to keep constant.

また、上述の脱硫過程では、硫化水素(HS)が酸化分解され、変化した硫黄(S)が充填材層15に付着する傾向がある。そこで、本実施形態のように、以下のような仕組みを設けるのが、より好ましい。すなわち、吸収塔4から抜き出された二酸化炭素及び硫化水素が溶解した高圧水中の二酸化炭素及び硫化水素の発泡による気泡で生物脱硫塔16内の充填材層15に付着した硫黄(S)を洗浄するために、この高圧水を生物脱硫塔16へ供給する高圧水供給手段(図示せず)を設けておけばよい。このようにすれば、高圧水から発泡により発生する気泡含有水で付着物が洗浄され、剥げ落ちた硫黄(S)などからなる付着物がSO 2−を含む水とともに弁V8を介して排水される。また、硫化水素(HS)が分解除去された混合ガスは弁V7を介して排ガスされる。上記高圧水による充填材層15の洗浄は、具体的には、充填材層15に水で満たしてから高圧水を充填材層15の下から供給して気泡で洗浄するか、あるいは、高圧水を充填材層15の下から供給して充填材層15に水で満たしつつ気泡で洗浄するかのいずれかの方法が好ましい。 In the above desulfurization process, hydrogen sulfide (H 2 S) is oxidatively decomposed, and changed sulfur (S) tends to adhere to the filler layer 15. Therefore, it is more preferable to provide the following mechanism as in this embodiment. That is, sulfur (S) adhering to the filler layer 15 in the biological desulfurization tower 16 is washed with bubbles generated by foaming of carbon dioxide and hydrogen sulfide in high-pressure water in which carbon dioxide and hydrogen sulfide extracted from the absorption tower 4 are dissolved. In order to achieve this, high-pressure water supply means (not shown) for supplying this high-pressure water to the biological desulfurization tower 16 may be provided. In this way, the deposit is washed with the bubble-containing water generated by foaming from the high-pressure water, and the deposit composed of peeled sulfur (S) and the like is drained through the valve V8 together with the water containing SO 4 2-. Is done. The mixed gas from which hydrogen sulfide (H 2 S) has been decomposed and removed is exhausted through the valve V7. Specifically, the cleaning of the filler layer 15 with the high-pressure water is performed by filling the filler layer 15 with water and then supplying high-pressure water from the bottom of the filler layer 15 and cleaning with bubbles, or by using high-pressure water. Is preferably supplied from under the filler layer 15 and filled with water while the filler layer 15 is washed with bubbles.

また、吸収塔4に供給される循環水の品質を維持するために、定期的に弁V4を開にすることが望ましい。これによって循環水を一部抜き出し、抜き出された水は、排水される。この抜き出しによって循環水量が所定量以下になった場合は、水補給用ポンプ7により、弁V5を開にして不足分の水を給水槽6から補給する。このとき用いられる水としては、水道水、井水、または、下水等の排水を処理して得られる処理水を利用することも可能であり、本実施形態では、下水処理場の最終沈殿池の下流に設けられている処理水の砂ろ過設備からの砂ろ過水を利用するようにしている。   Moreover, in order to maintain the quality of the circulating water supplied to the absorption tower 4, it is desirable to open the valve V4 regularly. Thereby, a part of the circulating water is extracted, and the extracted water is drained. When the amount of circulating water falls below a predetermined amount due to this extraction, the water replenishment pump 7 opens the valve V5 and replenishes the insufficient amount of water from the water supply tank 6. As water used at this time, it is also possible to use treated water obtained by treating drainage water such as tap water, well water, or sewage. In this embodiment, the final sedimentation basin of the sewage treatment plant is used. Sand filtration water from a sand filtration facility for treated water provided downstream is used.

また、本実施形態においては、生物脱硫塔16の上部から導入される水として、給水槽6に貯留された水の例について説明したが、必ずしもこれに限定されるものではない。例えば、弁V4から排出される排水を生物脱硫塔16の上部から導入してもよい。また、圧縮機3a、3bの冷却に利用した水(例えば、30〜50℃)を生物脱硫塔16の上部から導入してもよい。   Moreover, in this embodiment, although the example of the water stored in the water supply tank 6 was demonstrated as water introduce | transduced from the upper part of the biological desulfurization tower 16, it is not necessarily limited to this. For example, waste water discharged from the valve V4 may be introduced from the upper part of the biological desulfurization tower 16. Moreover, you may introduce | transduce the water (for example, 30-50 degreeC) utilized for cooling of the compressors 3a and 3b from the upper part of the biological desulfurization tower 16. FIG.

また、本実施形態においては、減圧タンク11から抜き出された二酸化炭素及び硫化水素が溶解した水から二酸化炭素及び硫化水素を分離させ、この分離させた二酸化炭素及び硫化水素に酸素含有ガス供給手段から供給した酸素含有ガスを混合するために、上述のような放散塔12とブロア13とを用いた例について説明したが、必ずしもこれに限定されるものではない。例えば、減圧タンク11から抜き出された二酸化炭素及び硫化水素が溶解した水中の二酸化炭素及び硫化水素を吸入孔を有した気化塔(気液分離手段:図示せず)の吸入孔を通して大気圧開放することで、気化塔内へ二酸化炭素及び硫化水素を気化させ、この気化された二酸化炭素及び硫化水素と酸素含有ガス供給手段から供給された酸素含有ガスを気化塔内で混合させるような構成でも構わない。また、二酸化炭素及び硫化水素が生物脱硫塔16に供給される前に酸素含有ガスを供給するのではなく、生物脱硫塔16に直接酸素含有ガスを供給するような構成でも構わない。   Further, in the present embodiment, carbon dioxide and hydrogen sulfide are separated from water in which carbon dioxide and hydrogen sulfide extracted from the decompression tank 11 are dissolved, and oxygen-containing gas supply means is supplied to the separated carbon dioxide and hydrogen sulfide. Although the example using the diffusion tower 12 and the blower 13 as described above in order to mix the oxygen-containing gas supplied from is described, it is not necessarily limited to this. For example, the atmospheric pressure is released through the suction hole of a vaporization tower (gas-liquid separation means: not shown) having suction holes for carbon dioxide and hydrogen sulfide in water in which carbon dioxide and hydrogen sulfide extracted from the decompression tank 11 are dissolved. In this configuration, carbon dioxide and hydrogen sulfide are vaporized into the vaporization tower, and the vaporized carbon dioxide and hydrogen sulfide and the oxygen-containing gas supplied from the oxygen-containing gas supply means are mixed in the vaporization tower. I do not care. Further, the oxygen-containing gas may be directly supplied to the biological desulfurization tower 16 instead of supplying the oxygen-containing gas before the carbon dioxide and hydrogen sulfide are supplied to the biological desulfurization tower 16.

また、本実施形態においては、メタンの回収率を高めるために減圧タンク11を設けたが、例えば、減圧タンク11を設けずに、吸収塔4から二酸化炭素及び硫化水素が溶解した高圧水を抜き出して、大気圧開放等することにより気化塔(気液分離手段)にて二酸化炭素及び硫化水素が溶解した水から二酸化炭素及び硫化水素を分離しても、本発明の技術的範囲である。すなわち、少なくとも吸収塔4から抜き出された二酸化炭素及び硫化水素が溶解した高圧水を減圧して、吸収塔4から抜き出された二酸化炭素及び硫化水素が溶解した水から二酸化炭素及び硫化水素を分離させる機能を有した分離手段でありさえすればよい。   In the present embodiment, the decompression tank 11 is provided in order to increase the methane recovery rate. For example, without the decompression tank 11, high-pressure water in which carbon dioxide and hydrogen sulfide are dissolved is extracted from the absorption tower 4. Even if carbon dioxide and hydrogen sulfide are separated from water in which carbon dioxide and hydrogen sulfide are dissolved in a vaporization tower (gas-liquid separation means) by releasing atmospheric pressure or the like, it is within the technical scope of the present invention. That is, at least the high-pressure water in which carbon dioxide and hydrogen sulfide extracted from the absorption tower 4 are dissolved is depressurized, and carbon dioxide and hydrogen sulfide are removed from the water in which carbon dioxide and hydrogen sulfide extracted from the absorption tower 4 are dissolved. It only needs to be a separating means having a function of separating.

また、本実施形態においては、充填材層15に付着される硫黄酸化細菌として、チオバチルス属細菌を用いた例について説明したが必ずしもこれに限定されるものではない。   Further, in the present embodiment, an example in which Thiobacillus bacteria are used as the sulfur-oxidizing bacteria attached to the filler layer 15 has been described, but the present invention is not necessarily limited thereto.

本発明の一実施形態の消化ガスの脱硫装置の全体構成を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the whole structure of the desulfurization apparatus of the digestion gas of one Embodiment of this invention.

符号の説明Explanation of symbols

1 ミストセパレータ
2 硫化水素濃度計
3a、3b ガス圧縮機
4 吸収塔
5 除湿器
6 給水槽
7 水補給用ポンプ
8 水循環用ポンプ
9 熱交換器
10 チラー
11 減圧タンク
12 放散塔
13 ブロア
14 空気
15 充填材層
16 生物脱硫塔
DESCRIPTION OF SYMBOLS 1 Mist separator 2 Hydrogen sulfide concentration meter 3a, 3b Gas compressor 4 Absorption tower 5 Dehumidifier 6 Water supply tank 7 Water supply pump 8 Water circulation pump 9 Heat exchanger 10 Chiller 11 Depressurization tank 12 Stripping tower 13 Blower 14 Air 15 Filling Material layer 16 Biodesulfurization tower

Claims (8)

有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮機で圧縮し昇圧させ、前記昇圧させた消化ガスを吸収塔へ供給して、前記吸収塔内で前記昇圧させた消化ガスと水とを高圧状態で接触させることにより、前記昇圧させた消化ガスに含まれる二酸化炭素及び硫化水素を高圧水に溶解させて前記昇圧させた消化ガスから前記二酸化炭素及び硫化水素を分離し、メタンを精製する工程と、
前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した水から前記二酸化炭素及び硫化水素を分離させる工程と、
前記分離させた二酸化炭素及び硫化水素と酸素含有ガスを硫化水素を分解する微生物が付着した充填材層を有する生物脱硫塔へ供給し、前記微生物の働きを利用して前記混合ガス中の硫化水素を分解する工程と、
を備えたことを特徴とする消化ガスの脱硫方法。
The digestion gas generated by subjecting the organic waste to methane fermentation is compressed by a compressor and pressurized, the digested gas pressurized is supplied to an absorption tower, and the digestion gas and water whose pressure is increased in the absorption tower And the carbon dioxide and hydrogen sulfide contained in the pressurized digestion gas are dissolved in high pressure water to separate the carbon dioxide and hydrogen sulfide from the pressurized digestion gas, A purification step;
The high-pressure water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved is decompressed, and the carbon dioxide and hydrogen sulfide are extracted from the water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved. Separating the
The separated carbon dioxide, hydrogen sulfide, and oxygen-containing gas are supplied to a biological desulfurization tower having a filler layer to which microorganisms that decompose hydrogen sulfide are attached, and hydrogen sulfide in the mixed gas is utilized using the action of the microorganisms. Disassembling, and
A method for desulfurizing digestion gas, comprising:
前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水を前記生物脱硫塔へ供給し、前記高圧水中から発泡する前記二酸化炭素及び硫化水素の気泡で前記生物脱硫塔内の充填材層を洗浄する工程を有したことを特徴とする請求項1に記載の消化ガスの脱硫方法。   The high-pressure water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved is supplied to the biological desulfurization tower, and the carbon dioxide and hydrogen sulfide bubbles generated from the high-pressure water are contained in the biological desulfurization tower. 2. The digestion gas desulfurization method according to claim 1, further comprising a step of cleaning the filler layer. 前記圧縮機から発生する熱を使用して前記生物脱硫塔を温める工程を有したことを特徴とする請求項1または2に記載の消化ガスの脱硫方法。   The digestion gas desulfurization method according to claim 1, further comprising a step of heating the biological desulfurization tower using heat generated from the compressor. 前記生物脱硫塔へ供給する前記混合ガス中の硫化水素の濃度を所定値に保つために、前記消化ガス中の硫化水素の濃度を測定し、前記測定した硫化水素の濃度に応じて、前記酸素含有ガス供給手段から供給する前記酸素含有ガスの量を制御する工程を有したことを特徴とする請求項1〜3のいずれかに記載の消化ガスの脱硫方法。   In order to keep the concentration of hydrogen sulfide in the mixed gas supplied to the biological desulfurization tower at a predetermined value, the concentration of hydrogen sulfide in the digestion gas is measured, and according to the measured concentration of hydrogen sulfide, the oxygen The method for desulfurization of digestion gas according to any one of claims 1 to 3, further comprising a step of controlling the amount of the oxygen-containing gas supplied from the containing gas supply means. 有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮し昇圧させる圧縮機と、前記圧縮機で昇圧させた消化ガスと水とを受入れ、高圧状態で接触させることにより、前記昇圧させた消化ガスに含まれる二酸化炭素及び硫化水素を高圧水に溶解させて前記昇圧させた消化ガスから前記二酸化炭素及び硫化水素を分離し、メタンを精製するための吸収塔と、前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した水から前記二酸化炭素及び硫化水素を分離させる分離手段と、前記分離させた二酸化炭素及び硫化水素と酸素含有ガスを受入れ、前記硫化水素を分解する微生物が付着した充填材層を有した生物脱硫塔と、を備えたことを特徴とする消化ガスの脱硫装置。   The compressor that compresses and pressurizes digestion gas generated by methane fermentation of organic waste, and the digestion gas and water that have been pressurized by the compressor are received and brought into contact with each other in a high-pressure state, thereby increasing the pressure. The carbon dioxide and hydrogen sulfide contained in the digestion gas are dissolved in high-pressure water to separate the carbon dioxide and hydrogen sulfide from the pressurized digestion gas, and an absorption tower for purifying methane, and an extraction from the absorption tower Separating means for depressurizing the high-pressure water in which the carbon dioxide and hydrogen sulfide dissolved are separated to separate the carbon dioxide and hydrogen sulfide extracted from the water in which the carbon dioxide and hydrogen sulfide are extracted from the absorption tower; A biological desulfurization tower having a filler layer that receives the separated carbon dioxide, hydrogen sulfide, and oxygen-containing gas and has microorganisms that decompose the hydrogen sulfide attached thereto. Desulfurizer digestion gas, characterized in that. 前記吸収塔から抜き出された前記二酸化炭素及び硫化水素が溶解した前記高圧水中の前記二酸化炭素及び硫化水素の気泡で前記生物脱硫塔内の充填材層を洗浄するために、前記高圧水を前記生物脱硫塔へ供給する高圧水供給手段を備えたことを特徴とする請求項5に記載の消化ガスの脱硫装置。   In order to clean the filler layer in the biological desulfurization tower with bubbles of the carbon dioxide and hydrogen sulfide in the high-pressure water in which the carbon dioxide and hydrogen sulfide extracted from the absorption tower are dissolved, 6. The digestion gas desulfurization apparatus according to claim 5, further comprising high-pressure water supply means for supplying the biological desulfurization tower. 前記圧縮機から発生する熱を回収する回収手段と、前記回収手段で回収した熱を用いて前記生物脱硫塔を温めるための保温手段と、を備えたことを特徴とする請求項5または6に記載の消化ガスの脱硫装置。   The recovery means for recovering the heat generated from the compressor, and the heat retaining means for warming the biological desulfurization tower using the heat recovered by the recovery means. Desulfurization equipment for digestion gas as described. 前記生物脱硫塔へ供給する前記混合ガス中の硫化水素の濃度を所定値に保つために、前記消化ガス中の硫化水素の濃度を測定する硫化水素濃度計と、前記硫化水素濃度計で測定した硫化水素の濃度に応じて、前記酸素含有ガス供給手段から供給する前記酸素含有ガスの量を制御する制御手段と、を備えたことを特徴とする請求項5〜7のいずれかに記載の消化ガスの脱硫装置。   In order to keep the hydrogen sulfide concentration in the mixed gas supplied to the biological desulfurization tower at a predetermined value, the hydrogen sulfide concentration meter for measuring the concentration of hydrogen sulfide in the digestion gas and the hydrogen sulfide concentration meter were used. The digestion according to any one of claims 5 to 7, further comprising control means for controlling an amount of the oxygen-containing gas supplied from the oxygen-containing gas supply means according to a concentration of hydrogen sulfide. Gas desulfurization equipment.
JP2008188704A 2008-07-22 2008-07-22 Digestion gas desulfurization method and apparatus Active JP4344773B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188704A JP4344773B1 (en) 2008-07-22 2008-07-22 Digestion gas desulfurization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188704A JP4344773B1 (en) 2008-07-22 2008-07-22 Digestion gas desulfurization method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009141425A Division JP2010024443A (en) 2009-06-12 2009-06-12 Method for desulfurizing digestion gas and desulfurizer therefor

Publications (2)

Publication Number Publication Date
JP4344773B1 JP4344773B1 (en) 2009-10-14
JP2010022965A true JP2010022965A (en) 2010-02-04

Family

ID=41253497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188704A Active JP4344773B1 (en) 2008-07-22 2008-07-22 Digestion gas desulfurization method and apparatus

Country Status (1)

Country Link
JP (1) JP4344773B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180197A (en) * 2008-08-27 2010-08-19 Kobelco Eco-Solutions Co Ltd Method for deoxidation of digestive gas and apparatus therefor
JP2010215735A (en) * 2009-03-13 2010-09-30 Yanmar Co Ltd Desulfurizer
WO2014002926A1 (en) * 2012-06-29 2014-01-03 荏原実業株式会社 Device and method for biological desulfurization of biogas
WO2014007089A1 (en) * 2012-07-03 2014-01-09 荏原実業株式会社 Device and method for biologically desulfurizing biogas
JP2014148575A (en) * 2013-01-31 2014-08-21 Kobelco Eco-Solutions Co Ltd Cleaning method of absorption tower, and digestion gas purification apparatus
JP2015116514A (en) * 2013-12-17 2015-06-25 荏原実業株式会社 Device and method for biological desulfurization
JP2015214695A (en) * 2015-05-28 2015-12-03 荏原実業株式会社 Apparatus and method for biologically desulfurizing biogas
JP2015221431A (en) * 2015-05-28 2015-12-10 荏原実業株式会社 Biological desulfurizer and desulfurization method of biogas
JP2015226904A (en) * 2015-05-28 2015-12-17 荏原実業株式会社 Biological desulfurization equipment and biological desulfurization method of biogas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773783B (en) * 2010-03-17 2012-02-22 南京碳环生物质科技有限公司 Wet catalytic oxidative desulfurization method for biogas
CN103666612B (en) * 2013-11-12 2016-05-11 中国科学院青岛生物能源与过程研究所 The method that the decarburization of a kind of normal pressure washing biogas purifies

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180197A (en) * 2008-08-27 2010-08-19 Kobelco Eco-Solutions Co Ltd Method for deoxidation of digestive gas and apparatus therefor
JP2010215735A (en) * 2009-03-13 2010-09-30 Yanmar Co Ltd Desulfurizer
WO2014002926A1 (en) * 2012-06-29 2014-01-03 荏原実業株式会社 Device and method for biological desulfurization of biogas
JP2014008466A (en) * 2012-06-29 2014-01-20 Ebara Jitsugyo Co Ltd Device and method for biological desulfurization of biogas
WO2014007089A1 (en) * 2012-07-03 2014-01-09 荏原実業株式会社 Device and method for biologically desulfurizing biogas
JP2014008493A (en) * 2012-07-03 2014-01-20 Ebara Jitsugyo Co Ltd Device and method for biological desulfurization of biogas
JP2014148575A (en) * 2013-01-31 2014-08-21 Kobelco Eco-Solutions Co Ltd Cleaning method of absorption tower, and digestion gas purification apparatus
JP2015116514A (en) * 2013-12-17 2015-06-25 荏原実業株式会社 Device and method for biological desulfurization
JP2015214695A (en) * 2015-05-28 2015-12-03 荏原実業株式会社 Apparatus and method for biologically desulfurizing biogas
JP2015221431A (en) * 2015-05-28 2015-12-10 荏原実業株式会社 Biological desulfurizer and desulfurization method of biogas
JP2015226904A (en) * 2015-05-28 2015-12-17 荏原実業株式会社 Biological desulfurization equipment and biological desulfurization method of biogas

Also Published As

Publication number Publication date
JP4344773B1 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4344773B1 (en) Digestion gas desulfurization method and apparatus
JP5492942B2 (en) Digestion gas deoxygenation method and apparatus
US20110244555A1 (en) Method and system for purifying raw gases, particularly biogas, for obtaining methane
JP4022555B2 (en) Biogas purification method and biogas purification equipment
KR100985911B1 (en) System for preprocessing of bio-gas
JP4088632B2 (en) Gas purification method
JP2011523671A (en) Biogas purification method and system for methane extraction
JP2008062138A (en) Biogas refining method and system
JP2008255209A (en) Method and apparatus for concentrating methane gas
US9597630B2 (en) Gas scrubber system and method
JP4959742B2 (en) Digestion gas deoxygenation method and apparatus
JP5020490B2 (en) Organic sludge treatment method and organic sludge treatment equipment
JP2010024443A (en) Method for desulfurizing digestion gas and desulfurizer therefor
JP5112664B2 (en) Methane recovery method and digestion gas purification device
JP2008208268A (en) Methane gas purifying equipment, and methane gas purifying equipment and system
TW201512110A (en) Method for improved treatment of wastewaters from a coking oven plant
JP3700843B2 (en) Methane fermentation method and apparatus
KR102388825B1 (en) Pressurized Oxy-Combustion System comprising water electrolysis module
JP4800569B2 (en) Fuel gas production apparatus and fuel gas production method
JP2006299105A (en) Method for concentrating methane gas and carbon dioxide gas and concentrator
JP5248352B2 (en) Gas purification equipment
CN110446688A (en) Biogas solidifies preprocess method
JP6077169B1 (en) Method for producing hydrogen gas and biogas hydrogenation facility
JP2017206402A (en) Hydrogen gas production method and biogas hydrogenation facility
JP2007138033A (en) Method and apparatus for purifying pyrolysis gas

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4344773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250