JP2010022339A - Method for evaluating activation activity of substance toward natural killer cell - Google Patents

Method for evaluating activation activity of substance toward natural killer cell Download PDF

Info

Publication number
JP2010022339A
JP2010022339A JP2008191289A JP2008191289A JP2010022339A JP 2010022339 A JP2010022339 A JP 2010022339A JP 2008191289 A JP2008191289 A JP 2008191289A JP 2008191289 A JP2008191289 A JP 2008191289A JP 2010022339 A JP2010022339 A JP 2010022339A
Authority
JP
Japan
Prior art keywords
cells
natural killer
cell
killer cells
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008191289A
Other languages
Japanese (ja)
Inventor
Nozomi Eto
望 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki NUC
Original Assignee
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki NUC filed Critical University of Miyazaki NUC
Priority to JP2008191289A priority Critical patent/JP2010022339A/en
Publication of JP2010022339A publication Critical patent/JP2010022339A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for screening a component activating NK cells, capable of performing simply and in a large scale. <P>SOLUTION: This method for evaluating the activation activity of a test substance toward the NK cells is characterized by comprising an activation process of giving the test substance to cell-lined natural killer cells, and an evaluating process for evaluating the cell-injuring activity of the natural killer cells after the activation process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、機能性を有すると期待される候補物質のナチュラルキラー細胞に対する賦活化活性を簡便に評価する方法に関する。   The present invention relates to a method for simply evaluating the activation activity of a candidate substance expected to have functionality on natural killer cells.

ナチュラルキラー(NK)細胞は、生体内で腫瘍細胞やウイルス感染細胞の排除を担う。したがって、NK細胞を賦活化する(すなわちNK細胞が有する細胞傷害活性を高める)成分のスクリーニングを簡便に、かつ大規模に行うことが可能であれば、新たな機能性食品素材の探索に極めて有用である。   Natural killer (NK) cells are responsible for eliminating tumor cells and virus-infected cells in vivo. Therefore, if screening of components that activate NK cells (ie, increase the cytotoxic activity of NK cells) can be performed easily and on a large scale, it is extremely useful for searching for new functional food materials. It is.

従来は、候補物質のNK細胞賦活化活性を評価するためには、健常人から採血して得たヒト抹消血単核球(PBMC)かマウス脾臓細胞に候補物質を作用させることが一般的であった。これらの細胞は大量に調製することが困難な細胞であるため、大規模なスクリーニングを行うことは従来困難であった。また、PBMCには複数の細胞が混在するので、純粋にNK細胞に対する候補物質の作用のみを測定することはできなかった。
特開2007−297291号公報
Conventionally, in order to evaluate the NK cell activation activity of a candidate substance, it has been common to cause the candidate substance to act on human peripheral blood mononuclear cells (PBMC) or mouse spleen cells obtained by collecting blood from healthy individuals. there were. Since these cells are difficult to prepare in large quantities, it has heretofore been difficult to perform large-scale screening. In addition, since multiple cells coexist in PBMC, it was not possible to measure purely the action of candidate substances on NK cells.
JP 2007-297291 A

本発明は、NK細胞を賦活化する成分のスクリーニングを簡便かつ大規模に実施することを可能にする方法を提供することを目的とする。   An object of the present invention is to provide a method that enables simple and large-scale screening of components that activate NK cells.

本発明者らは驚くべきことにPBMCに代えてヒトNK細胞株を用いた場合にもNK細胞に対する賦活化が測定できることを見出し、本発明を完成させるに至った。本発明は以下の発明を包含する。
(1)被験物質のナチュラルキラー細胞に対する賦活化活性を評価する方法であって、
株化されたナチュラルキラー細胞に被験物質を与える賦活化工程と、
賦活化工程の後に前記ナチュラルキラー細胞の細胞傷害活性を評価する評価工程と
を含むことを特徴とする前記方法。
(2)前記株化されたナチュラルキラー細胞がヒト由来である、(1)記載の方法。
(3)前記ヒト由来の細胞がKHYG-1細胞、NK-92細胞、YT細胞、NKL細胞、SNT-8細胞、HANK-1細胞、及びNK-YS細胞のいずれかである、(2)記載の方法。
(4)前記評価工程が、前記賦活化工程後のナチュラルキラー細胞と標的細胞とを培地中に加えて該ナチュラルキラー細胞を該標的細胞に作用させ、次いで該培地中のL-乳酸デヒドロゲナーゼ(LDH)量を測定し、測定されたLDH量に基づいてナチュラルキラー細胞の細胞傷害活性を評価する工程である、(1)〜(3)のいずれかに記載の方法。
(5)前記評価工程が、前記賦活化工程後のナチュラルキラー細胞とクロミウムで標識した標的細胞とを培地中に加えて該ナチュラルキラー細胞を該標的細胞に作用させ、次いで該培地中に放出されたクロミウムの放射活性をガンマーカウンターで測定し、測定された放射活性量に基づいてナチュラルキラー細胞の細胞傷害活性を評価する工程である、(1)〜(3)のいずれかに記載の方法。
(6)前記評価工程が、前記賦活化工程後のナチュラルキラー細胞中のγ型インターフェロン(INF-γ)又はCD69の遺伝子発現量を測定し、測定された遺伝子発現量に基づいてナチュラルキラー細胞の細胞傷害活性を評価する工程である、(1)〜(3)のいずれかに記載の方法。
(7)前記評価工程が、前記賦活化工程後のナチュラルキラー細胞中のINF-γのタンパク質発現量を測定し、測定されたタンパク質発現量に基づいてナチュラルキラー細胞の細胞傷害活性を評価する工程である、(1)〜(3)のいずれかに記載の方法。
The present inventors have surprisingly found that activation of NK cells can be measured even when a human NK cell line is used instead of PBMC, and the present invention has been completed. The present invention includes the following inventions.
(1) A method for evaluating the activation activity of a test substance on natural killer cells,
An activation step of providing a test substance to the established natural killer cells;
An evaluation step of evaluating the cytotoxic activity of the natural killer cells after the activation step.
(2) The method according to (1), wherein the established natural killer cells are derived from human.
(3) The human-derived cell is any one of KHYG-1 cells, NK-92 cells, YT cells, NKL cells, SNT-8 cells, HANK-1 cells, and NK-YS cells (2) the method of.
(4) In the evaluation step, the natural killer cell and the target cell after the activation step are added to the medium to cause the natural killer cell to act on the target cell, and then L-lactate dehydrogenase (LDH in the medium) ) The method according to any one of (1) to (3), which is a step of measuring the amount and evaluating the cytotoxic activity of natural killer cells based on the measured LDH amount.
(5) In the evaluation step, the natural killer cell after the activation step and the target cell labeled with chromium are added to the medium to cause the natural killer cell to act on the target cell, and then released into the medium. The method according to any one of (1) to (3), wherein the radioactivity of chromium is measured with a gamma counter and the cytotoxic activity of natural killer cells is evaluated based on the measured radioactivity.
(6) The evaluation step measures the gene expression level of γ-type interferon (INF-γ) or CD69 in the natural killer cells after the activation step, and based on the measured gene expression level, The method according to any one of (1) to (3), which is a step of evaluating cytotoxic activity.
(7) The step in which the evaluation step measures the protein expression level of INF-γ in the natural killer cells after the activation step, and evaluates the cytotoxic activity of the natural killer cells based on the measured protein expression level The method according to any one of (1) to (3).

株化NK細胞は容易に大量に増殖させることが可能であることから、本発明の方法によればNK細胞賦活物質を大規模にスクリーニングすることが可能である。本発明の方法によれば純粋にNK細胞に対する作用のみに基づいてNK細胞賦活物質をスクリーニングできるため、精度の高いスクリーニングが可能となる。   Since the established NK cells can be easily proliferated in large quantities, the NK cell activator can be screened on a large scale according to the method of the present invention. According to the method of the present invention, an NK cell activator can be screened purely based only on the action on NK cells, so that highly accurate screening is possible.

1.ナチュラルキラー細胞
本発明に用いるNK細胞は、株化されたNK細胞、すなわち培養内で無限増殖性を獲得した安定したNK細胞の系統である。NK細胞は哺乳動物、特にヒトに由来するものであることが好ましい。
1. Natural Killer Cells NK cells used in the present invention are established NK cells, that is, a stable NK cell line that has acquired unlimited proliferation in culture. NK cells are preferably derived from mammals, particularly humans.

具体的なNK細胞株としてはKHYG-1細胞、NK-92細胞、YT細胞、NKL細胞、SNT-8細胞、HANK-1細胞、及びNK-YS細胞が挙げられる。   Specific NK cell lines include KHYG-1 cells, NK-92 cells, YT cells, NKL cells, SNT-8 cells, HANK-1 cells, and NK-YS cells.

KHYG-1細胞(JCRB0156)は、p53にポイントミューテーションを有する悪性のNK白血病患者由来細胞株であり、Yagita M.らによって樹立された(Leukemia. 2000;14:922-930)。同細胞はJCRB細胞バンクにて入手可能である。NK-92細胞(CRL-2407)は、非ホジキンリンパ腫患者の末梢血単核細胞由来のIL-2依存性NK細胞株であり、Gong J.H.らによって樹立された(Leukemia. 1994;8:652-658)。同細胞はATCCより入手可能である。YT細胞(ACC434)は、急性リンパ性白血病患者からYodoi J.らによって樹立された(J.Immunol. 1985;134:1623-1630)。同細胞は、DSMZ-German Collection of Microorganisms and Cell Culturesにて入手可能である。NKL細胞は、大型顆粒リンパ球白血病患者の末梢血からRobertson M.J.らによって、樹立された(Exp. Hematol. 1996;24:406-415)。SNT-8細胞は、鼻部リンパ腫患者由来のEBウイルス陽性NKT細胞株であり、Nagata H.らにより樹立された(Blood. 2001;97:708-713)。HANK-1細胞は、腹膜後腔のCD56+ NK/T細胞リンパ腫患者からKagami Y.らによって樹立された(Br.J.Haematol. 1998;103:669-677)。NK-YS細胞は、鼻部原発の悪性リンパ腫患者からTsuchiyama J.らによって樹立された(Blood. 1998;92:1374-1383)。   KHYG-1 cells (JCRB0156) is a cell line derived from a malignant NK leukemia patient having a point mutation at p53, and was established by Yagita M. et al. (Leukemia. 2000; 14: 922-930). The cells are available from the JCRB cell bank. NK-92 cells (CRL-2407) is an IL-2-dependent NK cell line derived from peripheral blood mononuclear cells of non-Hodgkin lymphoma patients and was established by Gong JH et al. (Leukemia. 1994; 8: 652- 658). The cells are available from ATCC. YT cells (ACC434) were established by Yodoi J. et al. (J. Immunol. 1985; 134: 1623-1630) from patients with acute lymphocytic leukemia. The cells are available at the DSMZ-German Collection of Microorganisms and Cell Cultures. NKL cells were established by Robertson M.J. et al. (Exp. Hematol. 1996; 24: 406-415) from the peripheral blood of patients with large granular lymphocyte leukemia. SNT-8 cells are an EB virus-positive NKT cell line derived from a patient with nasal lymphoma and were established by Nagata H. et al. (Blood. 2001; 97: 708-713). HANK-1 cells were established by Kagami Y. et al. (Br. J. Haematol. 1998; 103: 669-677) from a patient with retroperitoneal CD56 + NK / T cell lymphoma. NK-YS cells were established by Tsuchiyama J. et al. (Blood. 1998; 92: 1374-1383) from a patient with primary malignant lymphoma of the nose.

本発明に用いるKHYG-1細胞の培養は好ましくは次の条件で行う。KHYG-1細胞を、1〜10%ウシ胎仔血清(FCS)と5〜40 unit/ml recombinant human IL-2 (rIL-2, PeproTech EC Ltd, London, UK)を含むRPMI1640培地で培養を行う。継代培養は60 mm ディッシュに細胞密度1.0×105cells/mlで播種し、48時間後に再び継代培養を行う。 The KHYG-1 cells used in the present invention are preferably cultured under the following conditions. KHYG-1 cells are cultured in RPMI1640 medium containing 1-10% fetal calf serum (FCS) and 5-40 unit / ml recombinant human IL-2 (rIL-2, PeproTech EC Ltd, London, UK). For subculture, inoculate a 60 mm dish at a cell density of 1.0 × 10 5 cells / ml and repeat subculture 48 hours later.

2.賦活化工程
本発明において賦活化工程とは、株化NK細胞に被験物質を与え、被験物質を株化NK細胞に一定時間作用させる工程である。このとき、株化NK細胞を8.0×104〜3.0×105cells/mlの細胞密度で培地に播種し、被験物質を終濃度として1 nM〜2 mMの濃度で添加し一定時間作用させることが好ましい。作用時間は1〜48時間であることが好ましい。
2. Activation Process In the present invention, the activation process is a process in which a test substance is given to the established NK cells and the test substance is allowed to act on the established NK cells for a certain period of time. At this time, inoculate the established NK cells in a medium at a cell density of 8.0 × 10 4 to 3.0 × 10 5 cells / ml, add the test substance at a final concentration of 1 nM to 2 mM, and act for a certain period of time. Is preferred. The action time is preferably 1 to 48 hours.

3.評価工程
本発明において評価工程とは、賦活化工程の後に株化NK細胞の細胞傷害活性を直接的または間接的に評価する工程を指す。
3. Evaluation Step In the present invention, the evaluation step refers to a step of directly or indirectly evaluating the cytotoxic activity of the established NK cells after the activation step.

細胞傷害活性を直接的に評価する方法としては、賦活化工程後の株化NK細胞と標的細胞とを培地中に加えて株化NK細胞を標的細胞に作用させ、次いで標的細胞の損傷により生じる変化を測定する方法が挙げられる。そのような変化としては、標的細胞によるL-乳酸デヒドロゲナーゼ(LDH)の放出や、51Cr放出が挙げられる。LDH量による細胞傷害活性の評価はLDHアッセイとして周知の技術である。51Cr放出法は、標的細胞をあらかじめクロミウム(Na2 51CrO4)で標識しておき、NK細胞と4時間混合培養し、培養上清中に放出された遊離のクロミウムの放射活性をガンマーカウンターで測定する方法であり、信頼性の高い技術である。 As a method for directly evaluating the cytotoxic activity, the established NK cell and the target cell after the activation step are added to the medium so that the established NK cell acts on the target cell, and then the target cell is damaged. A method for measuring the change can be mentioned. Such changes include the release of L-lactate dehydrogenase (LDH) by target cells and 51 Cr release. Evaluation of cytotoxic activity by the amount of LDH is a well-known technique as an LDH assay. In the 51 Cr release method, target cells are labeled with chromium (Na 2 51 CrO 4 ) in advance, mixed with NK cells for 4 hours, and the radioactivity of free chromium released into the culture supernatant is measured using a gamma counter. This is a highly reliable technology.

使用する標的細胞としてはスクリーニングに広く用いられるK562細胞、HL-60細胞、Daudi細胞等が挙げられるが、これらの細胞に限定されるものではない。スクリーニングの目的に応じて標的細胞を適宜選択することができる。K562細胞(RCB0027)はヒト白血病細胞で、Lozzio CB.らによって樹立された(Blood. 1975;45:321-334)。ヒトナチュラルキラー細胞に感受性であるため、スクリーニングに多用される。同細胞は、RIKEN CELL BANKにて入手可能である。HL-60細胞(CCL-240)は急性前骨髄球性白血病患者からGallagher R.らによって樹立された(Blood. 1979;54:713-733)。同細胞はATCCにて入手可能である。Daudi細胞(RCB1640)は、ヒトバーキットリンパ腫でKlein E.らによって樹立された(Cancer Res. 1968;28:1300-1310)。同細胞はRIKEN CELL BANKにて入手可能である。   Examples of target cells to be used include K562 cells, HL-60 cells, and Daudi cells that are widely used for screening, but are not limited to these cells. Target cells can be appropriately selected according to the purpose of screening. K562 cells (RCB0027) are human leukemia cells and were established by Lozzio CB. Et al. (Blood. 1975; 45: 321-334). Because it is sensitive to human natural killer cells, it is frequently used for screening. The cells are available at RIKEN CELL BANK. HL-60 cells (CCL-240) were established by Gallagher R. et al. (Blood. 1979; 54: 713-733) from patients with acute promyelocytic leukemia. The cells are available at ATCC. Daudi cells (RCB1640) were established in human Burkitt lymphoma by Klein E. et al. (Cancer Res. 1968; 28: 1300-1310). The cells are available at RIKEN CELL BANK.

K562細胞の培養は例えば、次の方法で行うことができる。K562細胞を10% FCSを含むRPMI1640培地で培養を行う。継代培養は60 mm dishに細胞密度1.0×105cells/mlで播種し、48時間後に継代培養を行う。 For example, K562 cells can be cultured by the following method. K562 cells are cultured in RPMI1640 medium containing 10% FCS. For subculture, inoculate a 60 mm dish at a cell density of 1.0 × 10 5 cells / ml, and perform subculture 48 hours later.

株化NK細胞と標的細胞との比(E:T比)は、3:1〜40:1とすることが好ましい混合培養は、37℃で行うことが好ましい。混合培養時間は、2〜8時間とすることが好ましい。   The ratio of the established NK cells to the target cells (E: T ratio) is preferably 3: 1 to 40: 1. The mixed culture is preferably performed at 37 ° C. The mixed culture time is preferably 2 to 8 hours.

細胞傷害活性を間接的に評価する方法としては、株化NK細胞を標的細胞に作用させる工程を行わず、代わりに、賦活化工程後の株化NK細胞中において細胞傷害活性に依存して増減するタンパク質(γ型インターフェロン(INF-γ)、CD69等)の遺伝子発現量またはタンパク質発現量を測定する方法が挙げられる。本発明者らは驚くべきことに、株化NK細胞中のγ型インターフェロン(INF-γ)及びCD69の遺伝子発現量及びタンパク質発現量が、株化NK細胞による標的細胞に対する細胞傷害活性の強弱に対応して増減することを見出した。株化NK細胞による標的細胞に対する細胞傷害活性が強いほど、該株化NK細胞中のINF-γ及びCD69の遺伝子発現量及びタンパク質発現量が多い傾向がある。遺伝子発現量は例えば適当なプライマーを用いた逆転写PCR (RT-PCR)により測定できる。タンパク質発現量は免疫化学的測定法、例えばELISA法、により測定できる。   As a method of indirectly evaluating the cytotoxic activity, the step of allowing the established NK cell to act on the target cell is not performed, but instead, the increase / decrease depends on the cytotoxic activity in the established NK cell after the activation step. A method of measuring the gene expression level or protein expression level of the protein to be processed (γ-type interferon (INF-γ), CD69, etc.). The present inventors surprisingly found that the gene expression level and the protein expression level of γ-type interferon (INF-γ) and CD69 in the established NK cell are strong and weak in cytotoxic activity against the target cell by the established NK cell. We found that it increased or decreased correspondingly. The stronger the cytotoxic activity of the established NK cell against the target cell, the greater the gene expression level and protein expression level of INF-γ and CD69 in the established NK cell. The gene expression level can be measured, for example, by reverse transcription PCR (RT-PCR) using appropriate primers. The amount of protein expression can be measured by an immunochemical measurement method such as ELISA.

4.被験物質
本発明における被験物質としてはいかなる物質も使用できる。典型的には機能性食品の有効成分の候補となる物質が挙げられる。
4). Test substance Any substance can be used as the test substance in the present invention. Typically, a substance that is a candidate for an active ingredient of a functional food can be mentioned.

5.好適な実施形態
本発明の最も好ましい実施形態としては次のような例が挙げられるが、これらには限定されない。
5.1.LDH assayによるNK活性測定法( 51 Cr放出法でも可)
KHYG-1細胞を35 mm dishに1.0×106 cells/mlで播種し、被験物質を24〜36間作用させる。KHYG-1細胞を回収してPBSで洗浄し、1%BSA/RPMI1640フェノ−ルレッド不含培地 (SIGMA社) で細胞密度1.0×106 cells/mlに再懸濁する。また、別途、K562細胞を1%BSA/RPMI1640培地で細胞密度1.0×105cells/mlに調製する。次に、96-wellプレートに表1に示す培地及び細胞懸濁液を順に添加する。この条件ではE:T比は10:1である。
5. Preferred embodiments The most preferred embodiments of the present invention include, but are not limited to, the following examples.
5.1. NK activity measurement method by LDH assay ( 51 Cr release method is also acceptable)
KHYG-1 cells are seeded in a 35 mm dish at 1.0 × 10 6 cells / ml, and the test substance is allowed to act for 24-36. KHYG-1 cells are collected, washed with PBS, and resuspended in 1% BSA / RPMI1640 phenol red-free medium (SIGMA) to a cell density of 1.0 × 10 6 cells / ml. Separately, K562 cells are prepared in 1% BSA / RPMI1640 medium to a cell density of 1.0 × 10 5 cells / ml. Next, the medium and cell suspension shown in Table 1 are added to the 96-well plate in this order. Under this condition, the E: T ratio is 10: 1.

Figure 2010022339
Figure 2010022339

細胞を調製した後、96-wellプレートを37℃で5.0%CO2ガスで平衡化したCO2インキュベーター中で4時間保温する。次いで、1,200 rpm×10分間の遠心分離を行い、上清100μlについてLDH assay kit(Roche社)を用いて放出LDH量を測定する。細胞傷害活性を下式によって算出した後、コントールに対する相対活性として被験化合物のNK活性賦活活性を算出する。
細胞傷害活性(%)=100×(Test - Effector control - Low control)/( High control - Low control)
After the cells are prepared, the 96-well plate is incubated at 37 ° C. in a CO 2 incubator equilibrated with 5.0% CO 2 gas for 4 hours. Subsequently, centrifugation is performed at 1,200 rpm × 10 minutes, and the amount of released LDH is measured with 100 μl of the supernatant using an LDH assay kit (Roche). After calculating the cytotoxic activity by the following formula, the NK activity activation activity of the test compound is calculated as the relative activity with respect to control.
Cytotoxic activity (%) = 100 x (Test-Effector control-Low control) / (High control-Low control)

5.2.RT-PCRによる方法(リアルタイムPCRでも同様に実施可能)
KHYG-1細胞を60 mm dishに細胞密度1.5×105cells/mlで播種し、被験物質を添加して、24時間後に細胞を回収する。回収した細胞をPBSで2回洗浄し、TRIzoL Reagent (Invitrogen社) を用いて定法通りにRNA抽出を行う。
5.2. RT-PCR method (can be implemented in real-time PCR as well)
KHYG-1 cells are seeded in a 60 mm dish at a cell density of 1.5 × 10 5 cells / ml, a test substance is added, and the cells are collected 24 hours later. The collected cells are washed twice with PBS, and RNA is extracted as usual using TRIzoL Reagent (Invitrogen).

逆転写反応はReverTra Ace- (TOYOBO社) を用い、製品マニュアルに従ってcDNAを合成する。次いで、cDNAをテンプレートとするPCR反応には以下の各プライマー及びTaKaRa ExTaq (TaKaRa社)を製品マニュアルに従って使用する。   For reverse transcription, ReverTra Ace- (TOYOBO) is used to synthesize cDNA according to the product manual. Next, the following primers and TaKaRa ExTaq (TaKaRa) are used for PCR reaction using cDNA as a template according to the product manual.

CD69(NM_001781, product size:451bp)は、
5’-CCTTCCAAGTTCCTGTCC-3’(sense),
5’-CATTCCATGCTGCTGACCTC-3’(anti-sense)。
IFN-γ(NM_000619, product size:393bp)は、
5’-GCATCGTTTTGGGTTCTCTTGGCTGTTACTGC-3’(sense),
5’-CTCCTTTTTCGCTTCCCTGTTTTAGCTGCTGG-3’(anti-sense)。
β-actin(NM_001101, product size:661bp)は、
5’-TGACGGGGTCACCCACACTGTGCCCATCTA-3’(sense),
5’-CTAGAAGCATTGCGGTGGACGATGGAGGG-3’(anti-sense)を使用する。
CD69 (NM_001781, product size: 451bp)
5'-CCTTCCAAGTTCCTGTCC-3 '(sense),
5'-CATTCCATGCTGCTGACCTC-3 '(anti-sense).
IFN-γ (NM_000619, product size: 393bp) is
5'-GCATCGTTTTGGGTTCTCTTGGCTGTTACTGC-3 '(sense),
5'-CTCCTTTTTCGCTTCCCTGTTTTAGCTGCTGG-3 '(anti-sense).
β-actin (NM_001101, product size: 661bp) is
5'-TGACGGGGTCACCCACACTGTGCCCATCTA-3 '(sense),
Use 5'-CTAGAAGCATTGCGGTGGACGATGGAGGG-3 '(anti-sense).

PCR反応産物をアガロース電気泳動に供し、バンド強度を定法により解析する。IFN-γとCD69のバンド強度をβ-actinのバンド強度で除し、各遺伝子の発現量とする。さらに、コントロールに対する相対値を求め、被験化合物のNK活性賦活活性とする。   The PCR reaction product is subjected to agarose electrophoresis, and the band intensity is analyzed by a conventional method. Divide the band intensity of IFN-γ and CD69 by the band intensity of β-actin to obtain the expression level of each gene. Furthermore, the relative value with respect to the control is obtained and used as the NK activity activation activity of the test compound.

5.3.ELISAによる方法
KHYG-1細胞を60 mm dishに細胞密度1.5×105cells/mlで播種し、被験化合物を添加して、24時間後に100μlの培養上清を回収する。Human IFN-γ ELISA development kit(PEPROTECH社)を用いて培養上清中のIFN-γ量を定量し、コントロールに対する相対値を求め、被験化合物のNK活性賦活活性とする。
5.3. ELISA method
KHYG-1 cells are seeded in a 60 mm dish at a cell density of 1.5 × 10 5 cells / ml, a test compound is added, and 100 μl of the culture supernatant is recovered 24 hours later. Using a Human IFN-γ ELISA development kit (PEPROTECH), the amount of IFN-γ in the culture supernatant is quantified, the relative value to the control is determined, and the NK activity activation activity of the test compound is obtained.

(1a)実験手順
1a-1 PBMC(peripheral blood mononuclear cell)の分離
密度勾配遠心法を用いて行った。比重液はFicoll-paque plus (Amersham社)もしくはLSM(Organon Teknika社)を用いた。健常者から血液を採取し、血液1mlに対し1.6 mgのエチレンジアミン四酢酸(EDTA: ethylenediaminetetraacetic acid)を加え、リン酸緩衝食塩水(PBS: phosphate-buffered saline)で二倍希釈した。次に、15ml容量の遠心チューブにFicoll-paque plus もしくはLSMを3 mlを加え、先に希釈した血液4 mlを重層し、25分間400×gで遠心分離を行った。分離した4層のうち上部から2番目のリンパ球層とその下の試薬層の半分を別の遠心管チューブに移し、PBSで2回洗浄を行った。次いで、RPMI1640培地で再懸濁し、細胞密度と生存率を計測した。
(1a) Experimental procedure
1a-1 Separation density gradient centrifugation of PBMC (peripheral blood mononuclear cell) was performed. Ficoll-paque plus (Amersham) or LSM (Organon Teknika) was used as the specific gravity solution. Blood was collected from a healthy person, 1.6 mg of ethylenediaminetetraacetic acid (EDTA) was added to 1 ml of blood, and diluted twice with phosphate-buffered saline (PBS). Next, 3 ml of Ficoll-paque plus or LSM was added to a centrifuge tube having a capacity of 15 ml, and 4 ml of the previously diluted blood was overlaid, followed by centrifugation at 400 × g for 25 minutes. Of the four separated layers, the second lymphocyte layer from the top and half of the reagent layer below it were transferred to another centrifuge tube and washed twice with PBS. Subsequently, the cells were resuspended in RPMI1640 medium, and the cell density and viability were measured.

1a-2 細胞の培養方法
KHYG-1細胞(JCRB0156)は、Japanese Collection of Research Bioresources(JCRB)細胞バンクより入手し、10%FCS, 20 U/mlのrecombinant human IL-2を含むRPMI1640培地中で培養した。K562細胞及びPBMCは、10%FCSを含むRPMI1640培地中で培養した。
1a-2 Cell culture method
KHYG-1 cells (JCRB0156) were obtained from the Japanese Collection of Research Bioresources (JCRB) cell bank and cultured in RPMI1640 medium containing 10% FCS, 20 U / ml recombinant human IL-2. K562 cells and PBMC were cultured in RPMI1640 medium containing 10% FCS.

1a-3 細胞傷害活性測定(LDH release assay)
細胞傷害活性をLDH release assayによって測定した。
PBMCを用いる場合は35mmディッシュに1.0×106 cells/mlで播種し、KHYG-1細胞をはじめとする株化細胞を用いる場合は、35mmディッシュに1.5×105 cells/mlで播種し、同時に食品成分等の被験化合物を細胞に添加して1〜36時間作用させた。食品成分等の作用時間終了後にPBMC或いは株化細胞を回収してPBSで洗浄し、食品成分等を含まない1%BSA/RPMI1640フェノ−ルレッド不含培地 (SIGMA社) で細胞密度1.0×106 cells/mlに再懸濁した。また、別途、K562細胞を1%BSA/RPMI1640培地で細胞密度1.0×105 cells/mlに調製した。次に、96-wellプレートに表2に示す培地及び細胞懸濁液を順に添加した(実験は3連で行った)。ET比は、10:1となる。
1a-3 Cytotoxic activity assay (LDH release assay)
Cytotoxic activity was measured by LDH release assay.
When using PBMC, inoculate in a 35 mm dish at 1.0 × 10 6 cells / ml. When using cell lines such as KHYG-1 cells, inoculate in a 35 mm dish at 1.5 × 10 5 cells / ml. Test compounds such as food ingredients were added to the cells and allowed to act for 1-36 hours. After the action time of the food components, etc., the PBMC or the established cells are collected and washed with PBS, and the cell density is 1.0 × 10 6 in 1% BSA / RPMI1640 phenol red-free medium (SIGMA) containing no food components. Resuspended in cells / ml. Separately, K562 cells were prepared in 1% BSA / RPMI1640 medium to a cell density of 1.0 × 10 5 cells / ml. Next, the medium and cell suspension shown in Table 2 were sequentially added to the 96-well plate (the experiment was performed in triplicate). The ET ratio is 10: 1.

Figure 2010022339
Figure 2010022339

細胞を調製した後、96-wellプレートを37℃で5.0%CO2ガスで平衡化したCO2インキュベーター中で4時間保温した。次いで、250×gで10分間の遠心分離を行い、上清100μlについてLDH assay kit(Roche社)を用いて放出LDH量を測定した。細胞傷害活性を下式によって算出した後、コントロールに対する相対活性として各処理群の相対細胞傷害活性を算出した。統計解析はt検定を用いた。
細胞傷害活性(%)=100×(Test - Effector control - Low control)/( High control - Low control)
After the cells were prepared, the 96-well plate was incubated for 4 hours in a CO 2 incubator equilibrated with 5.0% CO 2 gas at 37 ° C. Subsequently, centrifugation was performed at 250 × g for 10 minutes, and the amount of released LDH was measured with 100 μl of the supernatant using an LDH assay kit (Roche). After calculating the cytotoxic activity by the following formula, the relative cytotoxic activity of each treatment group was calculated as the relative activity with respect to the control. Statistical analysis used t-test.
Cytotoxic activity (%) = 100 x (Test-Effector control-Low control) / (High control-Low control)

1a-4 IFN-γ、CD69の遺伝子発現量測定(RT-PCR)
KHYG-1細胞を60 mm dishに細胞密度1.5×105cells/mlで播種し、被験化合物を添加して、24時間後に細胞を回収した。回収した細胞をPBSで2回洗浄し、TRIzoL Reagent (Invitrogen社) を用いて定法通りにRNA抽出を行った。すなわち、5〜10×106cellsのKHYG-1細胞に対してTRIzoL Reagent 1 ml添加した。数回ピペッテングを行い1.5 ml容量マイクロチューブに移して5分間常温で静置した。次に0.2 mlのクロロホルムを加えて、15秒間ボルテックスミキサーで攪拌を行い、5分間常温で静置した。4℃で12,000×gの遠心分離を15分間行った後、上層部分(RNA層)から0.25 ml回収し、新しい1.5 ml容量マイクロチューブに移した。そして、クロロホルムを0.25 ml加えて再抽出を行った。その後、RNAを沈殿させるために、0.5 ml イソプロピルアルコールを加えて攪拌した。常温で15分間静置した後、4℃で12,000×gの遠心分離を15分間行った。次に、上清を除去し1mlの冷75%エタノールを加えてボルテックスミキサーで攪拌を行い、4℃で7,500×gの遠心分離を5分間行った。上清を除去し、5〜10分間風乾した後、20μlのDEPC(Diethyl Pyrocarbonate)処理水でRNAペレットを再溶解した。その後、ND-1000 (NanoDrop社) を用いて、RNA濃度、RNA純度を測定した。なお、実験操作中は手袋を着用した。
1a-4 IFN-γ and CD69 gene expression level measurement (RT-PCR)
KHYG-1 cells were seeded in a 60 mm dish at a cell density of 1.5 × 10 5 cells / ml, a test compound was added, and the cells were collected 24 hours later. The collected cells were washed twice with PBS, and RNA was extracted as usual using TRIzoL Reagent (Invitrogen). That is, 1 ml of TRIzoL Reagent was added to 5 to 10 × 10 6 cells of KHYG-1 cells. Pipetting several times, transferred to a 1.5 ml microtube and left at room temperature for 5 minutes. Next, 0.2 ml of chloroform was added, and the mixture was stirred with a vortex mixer for 15 seconds and allowed to stand at room temperature for 5 minutes. After centrifugation at 12,000 × g for 15 minutes at 4 ° C., 0.25 ml was recovered from the upper layer portion (RNA layer) and transferred to a new 1.5 ml capacity microtube. Then, 0.25 ml of chloroform was added and re-extraction was performed. Thereafter, in order to precipitate RNA, 0.5 ml isopropyl alcohol was added and stirred. After standing at room temperature for 15 minutes, centrifugation at 12,000 × g was performed at 4 ° C. for 15 minutes. Next, the supernatant was removed, 1 ml of cold 75% ethanol was added, the mixture was stirred with a vortex mixer, and centrifuged at 4,500 × g at 4 ° C. for 5 minutes. After removing the supernatant and air-drying for 5 to 10 minutes, the RNA pellet was redissolved with 20 μl of DEPC (Diethyl Pyrocarbonate) -treated water. Then, RNA concentration and RNA purity were measured using ND-1000 (NanoDrop). Gloves were worn during the experimental operation.

逆転写反応はReverTra Ace(TOYOBO社)を用い、製品マニュアルに従ってcDNAを合成した。すなわち、抽出したRNAが1μg/μlになるよう にDEPC処理水で調製した。次に0.2 ml容量PCRチューブにRNAse free H2O(10μl)、5×RT buffer(4μl)、dNTP mixture(20μl)、RNAse inhibitor(1.0μl)、Primer oligo(dT)20(1.0μl)、RNA(1.0μl)、ReverTra Ace(1.0μl)を加えた。このチューブをサーマルサイクラー(Bio-Rad社)にセットして42℃(20 min)→99℃(5 min)→4℃の運転を行い、逆転写反応を行った。 For reverse transcription, ReverTra Ace (TOYOBO) was used, and cDNA was synthesized according to the product manual. That is, it was prepared with DEPC-treated water so that the extracted RNA was 1 μg / μl. Next, add RNAse free H 2 O (10 μl), 5 × RT buffer (4 μl), dNTP mixture (20 μl), RNAse inhibitor (1.0 μl), Primer oligo (dT) 20 (1.0 μl), RNA in a 0.2 ml PCR tube (1.0 μl) and ReverTra Ace (1.0 μl) were added. This tube was set in a thermal cycler (Bio-Rad) and operated at 42 ° C. (20 min) → 99 ° C. (5 min) → 4 ° C. to perform a reverse transcription reaction.

次いで、cDNAをテンプレートとするPCR反応をTaKaRa ExTaq (TaKaRa社)を用いて実施した。すなわち、反応液の組成はTaKaRa ExTaq(0.1μl)、10×ExTaq buffer(2μl)、dNTP mixture(1.6μl)、Templete(1.0μl)、10 pmol/μlのPrimer-sense(1.0μl)、10 pmol/μlのPrimer-antisense(1.0μl)、DEPC処理水(13.3μl)とした。なお、各プライマーは以下の通りである。   Subsequently, PCR reaction using cDNA as a template was performed using TaKaRa ExTaq (TaKaRa). That is, the composition of the reaction solution is TaKaRa ExTaq (0.1 μl), 10 × ExTaq buffer (2 μl), dNTP mixture (1.6 μl), Templete (1.0 μl), 10 pmol / μl Primer-sense (1.0 μl), 10 pmol / μl Primer-antisense (1.0 μl) and DEPC treated water (13.3 μl). Each primer is as follows.

CD69(NM_001781, product size:451bp)は、
5-CCTTCCAAGTTCCTGTCC-3(sense),
5-CATTCCATGCTGCTGACCTC-3(anti-sense)。
IFN-γ(NM_000619, product size:393bp)は、
5-GCATCGTTTTGGGTTCTCTTGGCTGTTACTGC-3(sense),
5-CTCCTTTTTCGCTTCCCTGTTTTAGCTGCTGG-3(anti-sense)。
β-actin(NM_001101, product size:661bp)は、
5-TGACGGGGTCACCCACACTGTGCCCATCTA-3(sense),
5-CTAGAAGCATTGCGGTGGACGATGGAGGG-3(anti-sense)
を使用した。
CD69 (NM_001781, product size: 451bp)
5 ' -CCTTCCAAGTTCCTGTCC-3 ' (sense),
5 ' -CATTCCATGCTGCTGACCTC-3 ' (anti-sense).
IFN-γ (NM_000619, product size: 393bp) is
5 ' -GCATCGTTTTGGGTTCTCTTGGCTGTTACTGC-3 ' (sense),
5 ' -CTCCTTTTTCGCTTCCCTGTTTTAGCTGCTGG-3 ' (anti-sense).
β-actin (NM_001101, product size: 661bp) is
5 ' -TGACGGGGTCACCCACACTGTGCCCATCTA-3 ' (sense),
5 ' -CTAGAAGCATTGCGGTGGACGATGGAGGG-3 ' (anti-sense)
It was used.

反応は、サーマルサイクラーを用いて、94℃(3 min)→{94℃(30 sec)→55℃(30 sec)→72℃(1 min)}→72℃(5 min)→4℃のプログラムにより実施した({ }内は繰り返し。IFN-γは30回、β-actinは21回、CD69は27回)。また、CD69については、94℃(3 min)→{94℃(1 min)→52℃(1 min)→72℃(1 min)}→72℃(7 min)→4℃のプログラム({ }内は25回繰り返し。)でも良い。   Using a thermal cycler, the reaction is a program of 94 ° C (3 min) → {94 ° C (30 sec) → 55 ° C (30 sec) → 72 ° C (1 min)} → 72 ° C (5 min) → 4 ° C (Repetition in {}. IFN-γ 30 times, β-actin 21 times, CD69 27 times). For CD69, a program of 94 ° C (3 min) → {94 ° C (1 min) → 52 ° C (1 min) → 72 ° C (1 min)} → 72 ° C (7 min) → 4 ° C ({} The inside is repeated 25 times.)

PCR反応産物をアガロース電気泳動に供し、バンド強度を定法により解析した。IFN-γとCD69のバンド強度をβ-actinのバンド強度で除し、各遺伝子の発現量とした。さらに、コントロールに対する相対値を求め、被験化合物のNK活性賦活活性とした。   The PCR reaction product was subjected to agarose electrophoresis, and the band intensity was analyzed by a conventional method. The band intensity of IFN-γ and CD69 was divided by the band intensity of β-actin to obtain the expression level of each gene. Furthermore, the relative value with respect to control was calculated | required and it was set as the NK activity activation activity of the test compound.

1a-5 IFN-γの産生量測定(ELISA)
KHYG-1細胞を60 mm dishに細胞密度1.5×105cells/mlで播種し、被験化合物を添加して、24時間後に100μlの培養上清を回収した。Human IFN-γ ELISA development kit(PEPROTECH社)を用いて製品説明書通りに培養上清中のIFN-γ量を定量し、コントロールに対する相対値を求め、被験化合物のNK活性賦活活性とした。
1a-5 Measurement of IFN-γ production (ELISA)
KHYG-1 cells were seeded in a 60 mm dish at a cell density of 1.5 × 10 5 cells / ml, a test compound was added, and 100 μl of the culture supernatant was collected 24 hours later. Using a human IFN-γ ELISA development kit (PEPROTECH), the amount of IFN-γ in the culture supernatant was quantified according to the product instructions, the relative value to the control was determined, and the NK activity activation activity of the test compound was determined.

(1b)結果の説明
1b-1 食品成分に対するPBMCとKHYG-1細胞の反応性(細胞傷害活性:LDH assay)の差異
NK活性に影響を与えることが既に知られている食品成分(genistein, resveratrol, curcumin, beta-carotene, vitamin E, DHA)を被験化合物としてPBMC、KHYG-1両細胞に添加し、細胞傷害活性を測定した。その結果、60μMのDHAを添加した場合は、図1aに示すように両細胞共に有意な活性上昇が観察された。また、0.1μMのgenisteinを添加した場合、PBMCでは、活性上昇傾向が観察されたが、KHYG-1細胞で有意な活性上昇が観察された(図2a)。これとは逆に、14nMのcurcumin(図2b)或いは0.1μMのbeta-carotene(図1b)を添加した場合、PBMCでは有意な活性上昇が観察されたが、KHYG-1細胞では活性上昇傾向が観察された。Vitamin Eを添加した場合は、両細胞共にほとんど効果が認められなかった(図2c)。以上の成分では、PBMCとKHYG-1細胞の両細胞共に同じ、或いは同じ傾向の測定結果が得られた。これに対して0.6或いは1.3μMのresveratrolを添加した場合、図1cに示すように作用時間24時間では、PBMCで有意な活性上昇が認められたが、KHYG-1細胞では効果が認められなかった。Resveratrol濃度が1.3μMの場合、図1dに示すように成分の作用時間を36時間に延長することで、有意な活性上昇が認められた。食品成分によっては、細胞への暴露時間を延ばす必用があることが分かったが、こうした条件を整えることで、PBMCとKHYG-1細胞は、食品成分に対して細胞傷害活性に関して同じ反応性を示した。
(1b) Explanation of results
1b-1 Differences in PBMC and KHYG-1 cell reactivity (LDH assay) to food components
Add food ingredients (genistein, resveratrol, curcumin, beta-carotene, vitamin E, DHA) that are already known to affect NK activity as test compounds to both PBMC and KHYG-1 It was measured. As a result, when 60 μM DHA was added, a significant increase in activity was observed in both cells as shown in FIG. 1a. In addition, when 0.1 μM genistein was added, a trend of increased activity was observed in PBMC, but a significant increase in activity was observed in KHYG-1 cells (FIG. 2a). On the other hand, when 14nM curcumin (Fig. 2b) or 0.1µM beta-carotene (Fig. 1b) was added, a significant increase in activity was observed in PBMC, but there was a tendency for an increase in activity in KHYG-1 cells. Observed. When Vitamin E was added, almost no effect was observed in both cells (FIG. 2c). With the above components, the measurement results with the same or the same tendency were obtained for both PBMC and KHYG-1 cells. In contrast, when 0.6 or 1.3 μM resveratrol was added, a significant increase in activity was observed in PBMC at an action time of 24 hours as shown in FIG. 1c, but no effect was observed in KHYG-1 cells. . When the Resveratrol concentration was 1.3 μM, a significant increase in activity was observed by extending the action time of the components to 36 hours as shown in FIG. 1d. Some food ingredients have been found to require longer exposure times to cells, but with these conditions, PBMC and KHYG-1 cells have the same reactivity with respect to food ingredients for cytotoxic activity. It was.

まとめると、食品成分のNK活性(細胞傷害活性)賦活効果を測定する際、KHYG-1細胞は、PBMCの代替細胞として利用可能であることが分かった。   In summary, it was found that KHYG-1 cells can be used as substitute cells for PBMC when measuring the NK activity (cytotoxic activity) activation effect of food ingredients.

1b-2 食品成分に対するKHYG-1 細胞の遺伝子発現量と細胞傷害活性の差異
細胞傷害活性の測定は、NK細胞に加えて標的細胞(K562細胞)を調製する必用があるため、大規模な実験には向かない。そこで、NK細胞株のIFN-γ及びCD69の遺伝子発現量の変化と細胞傷害活性との異同を検討した(表3)。その結果、genistein, curcumin, DHAに関しては、IFN-γ、CD69共に1.0以上の値を示し、LDH assayの結果と似た傾向になっていた。また、beta-caroteneでは、IFN-γとLDH assayとの間に共通性が認められた。Vitamin Eについては、両測定法共に成分の影響がほとんど認められないと判定された。またresveratrolでは、IFN-γとCD69は共に発現上昇したが、成分の暴露時間(作用時間)が24時間では細胞傷害性の変動は、認められなかった。これは、36時間後では細胞傷害活性が上昇することから、遺伝子の発現量の短い時間での上昇変動は妥当な現象と考えられた。
1b-2 Difference in gene expression level and cytotoxic activity of KHYG-1 cells for food components Since the measurement of cytotoxic activity requires the preparation of target cells (K562 cells) in addition to NK cells, large-scale experiments Not suitable for. Therefore, the difference between the gene expression level of IFN-γ and CD69 in the NK cell line and the cytotoxic activity was examined (Table 3). As a result, regarding genistein, curcumin, and DHA, both IFN-γ and CD69 showed values of 1.0 or more, which was similar to the results of the LDH assay. In beta-carotene, there was a commonality between IFN-γ and LDH assay. For Vitamin E, it was determined that there was almost no effect of the components in both measurement methods. In resveratrol, both IFN-γ and CD69 increased in expression, but no change in cytotoxicity was observed when the exposure time (action time) of the components was 24 hours. Since the cytotoxic activity increased after 36 hours, it was considered that the increase in the gene expression level in a short time was a reasonable phenomenon.

まとめると、KHYG-1細胞に於いて、LDH assayによる細胞傷害活性とRT-PCRにより測定されるIFN-γ遺伝子発現量、CD69遺伝子発現量との間には相関があり、特にIFN-γ遺伝子発現量に基づく細胞傷害活性の評価法はLDH assayの代替測定法になりうることが分かった。   In summary, in KHYG-1 cells, there is a correlation between cytotoxic activity by LDH assay and IFN-γ gene expression level and CD69 gene expression level measured by RT-PCR, especially IFN-γ gene It was found that the evaluation method of cytotoxic activity based on the expression level could be an alternative measurement method of LDH assay.

Figure 2010022339
Figure 2010022339

1b-3 KHYG-1細胞におけるIFN-γタンパク質発現と細胞傷害活性の差異
RT-PCR(リアルタイムPCR)よりも簡便なELISAによるNK活性の測定を試みた。Genistein, curcumin, beta-caroteneのKHYG-1細胞に対するNK活性賦活作用について、ELISAで測定したIFN-γ(タンパク質)相対発現量とLDH assayによる相対細胞傷害活性とを比較した(表4)。その結果、いずれの化合物もNK活性を上昇させることが両方法によって同様に判定できた。このことから、KHYG-1等の株化細胞が産生するIFN-γを測定することにより、簡便にNK活性測定が可能なことが分かった。
1b-3 Difference in IFN-γ protein expression and cytotoxic activity in KHYG-1 cells
An attempt was made to measure NK activity by ELISA, which is simpler than RT-PCR (real-time PCR). Regarding the NK activity activation action of Genistein, curcumin, beta-carotene on KHYG-1 cells, the relative expression level of IFN-γ (protein) measured by ELISA was compared with the relative cytotoxic activity by LDH assay (Table 4). As a result, it was determined by both methods that any compound increased NK activity. From this, it was found that NK activity can be easily measured by measuring IFN-γ produced by cell lines such as KHYG-1.

Figure 2010022339
Figure 2010022339

PMBC及びKHYG-1の細胞傷害活性の測定結果を示す図である。It is a figure which shows the measurement result of the cytotoxic activity of PMBC and KHYG-1. PMBC及びKHYG-1の細胞傷害活性の測定結果を示す図である。It is a figure which shows the measurement result of the cytotoxic activity of PMBC and KHYG-1.

Claims (7)

被験物質のナチュラルキラー細胞に対する賦活化活性を評価する方法であって、
株化されたナチュラルキラー細胞に被験物質を与える賦活化工程と、
賦活化工程の後に前記ナチュラルキラー細胞の細胞傷害活性を評価する評価工程と
を含むことを特徴とする前記方法。
A method for evaluating the activation activity of a test substance on natural killer cells, comprising:
An activation step of providing a test substance to the established natural killer cells;
An evaluation step of evaluating the cytotoxic activity of the natural killer cells after the activation step.
前記株化されたナチュラルキラー細胞がヒト由来である、請求項1記載の方法。   The method according to claim 1, wherein the established natural killer cell is derived from a human. 前記ヒト由来の細胞がKHYG-1細胞、NK-92細胞、YT細胞、NKL細胞、SNT-8細胞、HANK-1細胞、及びNK-YS細胞のいずれかである、請求項2記載の方法。   The method according to claim 2, wherein the human-derived cell is any one of KHYG-1 cell, NK-92 cell, YT cell, NKL cell, SNT-8 cell, HANK-1 cell, and NK-YS cell. 前記評価工程が、前記賦活化工程後のナチュラルキラー細胞と標的細胞とを培地中に加えて該ナチュラルキラー細胞を該標的細胞に作用させ、次いで該培地中のL-乳酸デヒドロゲナーゼ(LDH)量を測定し、測定されたLDH量に基づいてナチュラルキラー細胞の細胞傷害活性を評価する工程である、請求項1〜3のいずれか1項記載の方法。   In the evaluation step, the natural killer cells and target cells after the activation step are added to the medium to cause the natural killer cells to act on the target cells, and then the amount of L-lactate dehydrogenase (LDH) in the medium is determined. The method according to any one of claims 1 to 3, which is a step of measuring and evaluating the cytotoxic activity of natural killer cells based on the measured LDH amount. 前記評価工程が、前記賦活化工程後のナチュラルキラー細胞とクロミウムで標識した標的細胞とを培地中に加えて該ナチュラルキラー細胞を該標的細胞に作用させ、次いで該培地中に放出されたクロミウムの放射活性をガンマーカウンターで測定し、測定された放射活性量に基づいてナチュラルキラー細胞の細胞傷害活性を評価する工程である、請求項1〜3のいずれか1項記載の方法。   In the evaluation step, the natural killer cells after the activation step and the target cells labeled with chromium are added to the medium to cause the natural killer cells to act on the target cells, and then the chromium released in the medium The method according to any one of claims 1 to 3, which is a step of measuring the radioactivity with a gamma counter and evaluating the cytotoxic activity of natural killer cells based on the measured radioactivity. 前記評価工程が、前記賦活化工程後のナチュラルキラー細胞中のγ型インターフェロン(INF-γ)又はCD69の遺伝子発現量を測定し、測定された遺伝子発現量に基づいてナチュラルキラー細胞の細胞傷害活性を評価する工程である、請求項1〜3のいずれか1項記載の方法。   The evaluation step measures the gene expression level of γ-type interferon (INF-γ) or CD69 in natural killer cells after the activation step, and the cytotoxic activity of natural killer cells based on the measured gene expression level The method according to any one of claims 1 to 3, wherein the method is a step of assessing. 前記評価工程が、前記賦活化工程後のナチュラルキラー細胞中のINF-γのタンパク質発現量を測定し、測定されたタンパク質発現量に基づいてナチュラルキラー細胞の細胞傷害活性を評価する工程である、請求項1〜3のいずれか1項記載の方法。   The evaluation step is a step of measuring the protein expression level of INF-γ in the natural killer cells after the activation step, and evaluating the cytotoxic activity of the natural killer cells based on the measured protein expression level. The method according to claim 1.
JP2008191289A 2008-07-24 2008-07-24 Method for evaluating activation activity of substance toward natural killer cell Pending JP2010022339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191289A JP2010022339A (en) 2008-07-24 2008-07-24 Method for evaluating activation activity of substance toward natural killer cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191289A JP2010022339A (en) 2008-07-24 2008-07-24 Method for evaluating activation activity of substance toward natural killer cell

Publications (1)

Publication Number Publication Date
JP2010022339A true JP2010022339A (en) 2010-02-04

Family

ID=41728780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191289A Pending JP2010022339A (en) 2008-07-24 2008-07-24 Method for evaluating activation activity of substance toward natural killer cell

Country Status (1)

Country Link
JP (1) JP2010022339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213249A1 (en) * 2016-06-09 2017-12-14 学校法人川崎学園 Method for testing natural killer cell functions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213249A1 (en) * 2016-06-09 2017-12-14 学校法人川崎学園 Method for testing natural killer cell functions
JPWO2017213249A1 (en) * 2016-06-09 2019-06-06 学校法人 川崎学園 Test method of natural killer cell function
JP7019188B2 (en) 2016-06-09 2022-02-15 学校法人 川崎学園 How to test natural killer cell function

Similar Documents

Publication Publication Date Title
de Matos-Neto et al. Systemic inflammation in cachexia–is tumor cytokine expression profile the culprit?
Ji et al. Benzo [a] pyrene induces oxidative stress and endothelial progenitor cell dysfunction via the activation of the NF-κB pathway
Lee et al. Obesity alters the long-term fitness of the hematopoietic stem cell compartment through modulation of Gfi1 expression
Kim et al. Paeonol inhibits anaphylactic reaction by regulating histamine and TNF-α
Thieringer et al. 11β-Hydroxysteroid dehydrogenase type 1 is induced in human monocytes upon differentiation to macrophages
Sturm et al. Characterization and role of intra-hepatic regulatory T cells in chronic hepatitis C pathogenesis
JP4945554B2 (en) Ex vivo gene expression in whole blood as a model for assessing individual variability for food supplements
Takahashi et al. Both estrogen and raloxifene cause G1 arrest of vascular smooth muscle cells
Zhang et al. Heterogeneity of leukemia-initiating capacity of chronic myelogenous leukemia stem cells
Bordner et al. Parallel declines in cognition, motivation, and locomotion in aging mice: association with immune gene upregulation in the medial prefrontal cortex
Zhou et al. Nicotine deteriorates the osteogenic differentiation of periodontal ligament stem cells through α7 nicotinic acetylcholine receptor regulating Wnt pathway
Zheng et al. Modulation of STAT3 and STAT5 activity rectifies the imbalance of Th17 and Treg cells in patients with acute coronary syndrome
Smith et al. Hepatotoxicity of fusariotoxins, alone and in combination, towards the HepaRG human hepatocyte cell line
Jevremović et al. A selective laser melted Co-Cr alloy used for the rapid manufacture of removable partial denture frameworks: Initial screening of biocompatibility
Nakanishi et al. A crucial role for reactive oxygen species in macrophage colony-stimulating factor-induced RANK expression in osteoclastic differentiation
Martin del Campo et al. The Raf kinase inhibitor sorafenib inhibits JAK–STAT signal transduction in human immune cells
Lalovic et al. Altered expression of lipid metabolism and immune response genes in the frontal cortex of suicide completers
Park et al. Natural killer cell activity in patients with major depressive disorder treated with escitalopram
Pang et al. Fine particulate matter induces airway inflammation by disturbing the balance between Th1/Th2 and regulation of GATA3 and Runx3 expression in BALB/c mice
Mills et al. Inhibition of mitochondrial function in HL60 cells is associated with an increased apoptosis and expression of CD14
Hejazi et al. Alternative viewpoint against breast cancer based on selective serotonin receptors 5HTR3A and 5HTR2A antagonists that can mediate apoptosis in MCF-7 cell line
Maddalon et al. Direct effects of glyphosate on in vitro T helper cell differentiation and cytokine production
Tang et al. Osteogenic induction and 1, 25-dihydroxyvitamin D3 oppositely regulate the proliferation and expression of RANKL and the vitamin D receptor of human periodontal ligament cells
JP2010022339A (en) Method for evaluating activation activity of substance toward natural killer cell
Harshitha et al. Influence of lead-induced toxicity on the inflammatory cytokines