JP2010021155A - Solid oxide fuel battery stack and its manufacturing method - Google Patents

Solid oxide fuel battery stack and its manufacturing method Download PDF

Info

Publication number
JP2010021155A
JP2010021155A JP2009245880A JP2009245880A JP2010021155A JP 2010021155 A JP2010021155 A JP 2010021155A JP 2009245880 A JP2009245880 A JP 2009245880A JP 2009245880 A JP2009245880 A JP 2009245880A JP 2010021155 A JP2010021155 A JP 2010021155A
Authority
JP
Japan
Prior art keywords
solid oxide
oxide fuel
air electrode
glass frit
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009245880A
Other languages
Japanese (ja)
Other versions
JP5144622B2 (en
Inventor
Yoshiaki Yoshida
吉晃 吉田
Satoshi Sugita
敏 杉田
So Arai
創 荒井
Masayasu Arakawa
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009245880A priority Critical patent/JP5144622B2/en
Publication of JP2010021155A publication Critical patent/JP2010021155A/en
Application granted granted Critical
Publication of JP5144622B2 publication Critical patent/JP5144622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce contact resistance between an air electrode of a cell and a metal separator. <P>SOLUTION: In a solid oxide fuel battery stack for connecting a plurality of single cells 4 of a flat-plate type solid oxide fuel battery wherein an electrolyte 2 made of oxide is sandwiched by the air electrode 1 and a fuel electrode 3 via the separator 5, the air electrode 1 and the separator 5 are joined by applying a conductive paste wherein a glass frit is added to conductive ceramic powder on a joining surface of the air electrode 1 against the separator 5. The glass frit having SiO<SB>2</SB>as a principal component has an added amount of 0.5-1.5% at a weight ratio against the principal component of the conductive paste, a softening point of the glass frit is lower than operation temperature of the solid oxide fuel battery, and crystallization temperature is higher than the operation temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体酸化物燃料電池単セルをセパレータを介して複数個接続する固体酸化物形燃料電池スタックにおいて単セルの空気極とセパレータとを接続する技術に係り、特にセパレータの材料として金属を用いる固体酸化物形燃料電池スタックとその製造方法に関するものである。   The present invention relates to a technology for connecting a single cell air electrode and a separator in a solid oxide fuel cell stack in which a plurality of solid oxide fuel cell single cells are connected via a separator, and in particular, a metal as a separator material. The present invention relates to a solid oxide fuel cell stack to be used and a manufacturing method thereof.

燃料極と空気極がセラミックスの電解質を介して配置され、水素を始めとする燃料と空気を始めとする酸化剤とを供給することにより発電する固体酸化物形燃料電池において、実用上十分な発電電力を得るためには、前記固体酸化物形燃料電池の単位構成要素(単セル)を複数個、電気的に接続することが必要となる。隣り合う単セルの燃料ガスと酸化剤ガスとを分離して、単セルの燃料極に燃料ガスを供給し、かつ空気極に酸化剤ガスを供給しつつ、個々の単セルを電気的に接続するために、電子伝導性の高いセパレータが用いられる。   In a solid oxide fuel cell in which a fuel electrode and an air electrode are arranged via a ceramic electrolyte, and power is generated by supplying a fuel such as hydrogen and an oxidant such as air, the power generation is practically sufficient. In order to obtain electric power, it is necessary to electrically connect a plurality of unit components (single cells) of the solid oxide fuel cell. Separate the fuel gas and oxidant gas of adjacent single cells, supply the fuel gas to the fuel electrode of the single cell, and electrically connect the individual cells while supplying the oxidant gas to the air electrode In order to do so, a separator with high electron conductivity is used.

従来の固体酸化物形燃料電池では、動作温度が1000℃と高温であることから、ランタンクロマイトのようなセラミックスからなるセパレータが用いられてきた。しかし、近年、800℃程度の温度でも動作できる固体酸化物形燃料電池単セルが開発されるにつれて、耐熱合金を主体とするセパレータが利用できるようになった。この耐熱合金製のセパレータは、セラミックスのセパレータに比べて安価で、加工性がよく、電子伝導性が高いといった利点を有する。   In the conventional solid oxide fuel cell, since the operating temperature is as high as 1000 ° C., a separator made of ceramics such as lanthanum chromite has been used. However, in recent years, as solid oxide fuel cell single cells capable of operating even at temperatures of about 800 ° C. have been developed, separators mainly composed of heat-resistant alloys have become available. This separator made of a heat-resistant alloy is advantageous in that it is less expensive than a ceramic separator, has good workability, and has high electron conductivity.

このセパレータと単セルとを電気的に接続する際に単セルの反りと電極の凹凸のために有効な接触面積が小さくなり、単セルとセパレータとの接触抵抗のために生じる発電損失が大きいという問題があった。そこで、エタノールおよびトルエンなどの有機溶媒と混合したペーストを空気極に塗布した上で、空気極とセパレータとを接合し、この空気極とセパレータを1400℃〜1500℃で1〜10時間熱処理することによって、低コストで確実に空気極とセパレータとを接続する方法が提案されている(例えば、特許文献1、非特許文献1参照)。   When the separator and the single cell are electrically connected, the effective contact area is reduced due to the warpage of the single cell and the unevenness of the electrode, and the power generation loss caused by the contact resistance between the single cell and the separator is large. There was a problem. Therefore, after applying a paste mixed with an organic solvent such as ethanol and toluene to the air electrode, the air electrode and the separator are joined, and the air electrode and the separator are heat-treated at 1400 ° C. to 1500 ° C. for 1 to 10 hours. Has proposed a method for reliably connecting the air electrode and the separator at low cost (see, for example, Patent Document 1 and Non-Patent Document 1).

特開平6−223846号公報Japanese Patent Laid-Open No. 6-223846

Keqin Huang,Peggy Y.Hou,John B.Goodenough,「Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells」,Solid State Ionics 129,p.237-250,2000Keqin Huang, Peggy Y. Hou, John B. Goodenough, “Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells”, Solid State Ionics 129, p.237-250, 2000

しかしながら、特許文献1、非特許文献1に開示された方法では、金属セパレータを用いる場合、高温での熱処理により金属セパレータが酸化するため、空気極とセパレータとの接触抵抗の低減効果が不十分であるという問題点があった。
本発明の目的は、上記従来技術の問題点を解決し、複数の固体酸化物形燃料電池単セルをセパレータを介して接続する際の、セルの空気極とセパレータとの接触抵抗を低減することにある。
However, in the methods disclosed in Patent Document 1 and Non-Patent Document 1, when a metal separator is used, the metal separator is oxidized by heat treatment at a high temperature, so that the effect of reducing the contact resistance between the air electrode and the separator is insufficient. There was a problem that there was.
The object of the present invention is to solve the above-mentioned problems of the prior art and to reduce the contact resistance between the air electrode of the cell and the separator when connecting a plurality of solid oxide fuel cell single cells via the separator. It is in.

本発明は、酸化物からなる電解質を空気極と燃料極とで狭持してなる平板型の固体酸化物燃料電池単セルを、金属セパレータを介して複数個接続した固体酸化物形燃料電池スタックにおいて、前記単セルの空気極と前記金属セパレータとの間に、導電性セラミックス粉末にガラスフリットが添加された導電性ペーストを有し、前記ガラスフリットは、SiO2 を主成分とし、前記導電性ペーストの主成分に対して重量比で0.5%以上1.5%以下の添加量を有し、軟化点が固体酸化物形燃料電池の動作温度よりも低く、かつ結晶化温度が前記動作温度よりも高いことを特徴とするものである。 The present invention relates to a solid oxide fuel cell stack in which a plurality of flat plate type solid oxide fuel cell single cells formed by sandwiching an oxide electrolyte between an air electrode and a fuel electrode are connected via a metal separator. And a conductive paste in which a glass frit is added to a conductive ceramic powder between the air electrode of the single cell and the metal separator, the glass frit having SiO 2 as a main component, and the conductive It has an addition amount of 0.5% to 1.5% by weight with respect to the main component of the paste, the softening point is lower than the operating temperature of the solid oxide fuel cell, and the crystallization temperature is the above-mentioned operation It is characterized by being higher than the temperature.

また、本発明は、酸化物からなる電解質を空気極と燃料極とで狭持してなる平板型の固体酸化物燃料電池単セルを、金属セパレータを介して複数個接続する固体酸化物形燃料電池スタックの製造方法において、前記単セルの空気極の前記金属セパレータとの接合面に、導電性セラミックス粉末にガラスフリットが添加された導電性ペーストを塗布した上で、前記空気極と前記金属セパレータとを接合するようにしたものであり、前記ガラスフリットは、SiO2 を主成分とし、前記導電性ペーストの主成分に対して重量比で0.5%以上1.5%以下の添加量を有し、軟化点が固体酸化物形燃料電池の動作温度よりも低く、かつ結晶化温度が前記動作温度よりも高いことを特徴とするものである。 The present invention also relates to a solid oxide fuel in which a plurality of flat plate type solid oxide fuel cell single cells formed by sandwiching an oxide electrolyte between an air electrode and a fuel electrode are connected via a metal separator. In the method for manufacturing a battery stack, a conductive paste in which glass frit is added to conductive ceramic powder is applied to a joint surface of the air electrode of the single cell with the metal separator, and then the air electrode and the metal separator are applied. The glass frit is composed mainly of SiO 2 and has an additive amount of 0.5% to 1.5% by weight with respect to the main component of the conductive paste. The softening point is lower than the operating temperature of the solid oxide fuel cell, and the crystallization temperature is higher than the operating temperature.

本発明によれば、単セルの空気極の金属セパレータとの接合面に、導電性セラミックス粉末にガラスフリットを添加した導電性ペーストを塗布することにより、従来のような高温での熱処理を必要とせずに、空気極と金属セパレータとの接触抵抗を低減することができ、長時間安定して低い接触抵抗を実現することができる。また、本発明では、ガラスフリットの軟化点を固体酸化物形燃料電池の動作温度より低くすることにより、空気極と金属セパレータとの接着強度を強くすることができる。その理由は、動作温度においてガラスフリットが軟化することで、導電性ペーストの主成分の粒子同士または導電性ペーストの主成分の粒子と空気極との結合が強固になるためである。また、本発明では、ガラスフリットの結晶化温度を動作温度よりも高くすることにより、空気極へのガスの拡散を妨げずに、接着強度を向上させることができる。その理由は、ガラスフリットの結晶化温度が動作温度よりも高いため、ガラスフリットが液状まで軟化しないためである。さらに、本発明では、ガラスフリットを導電性ペーストの主成分に対して重量比で0.5%以上1.5%以下の割合で添加することにより、空気極と金属セパレータとの接触抵抗を効果的に低減することができる。   According to the present invention, a conductive paste in which glass frit is added to conductive ceramic powder is applied to the joint surface of a single cell air electrode with a metal separator, so that heat treatment at a high temperature as in the prior art is required. In addition, the contact resistance between the air electrode and the metal separator can be reduced, and a low contact resistance can be realized stably for a long time. Further, in the present invention, the adhesive strength between the air electrode and the metal separator can be increased by making the softening point of the glass frit lower than the operating temperature of the solid oxide fuel cell. The reason is that the glass frit softens at the operating temperature, thereby strengthening the bond between the main components of the conductive paste or between the main components of the conductive paste and the air electrode. In the present invention, the crystallization temperature of the glass frit is set higher than the operating temperature, whereby the adhesive strength can be improved without hindering the diffusion of gas to the air electrode. This is because the crystallization temperature of the glass frit is higher than the operating temperature, so that the glass frit is not softened to a liquid state. Furthermore, in the present invention, the glass frit is added at a ratio of 0.5% to 1.5% by weight with respect to the main component of the conductive paste, thereby improving the contact resistance between the air electrode and the metal separator. Can be reduced.

本発明の実施の形態となる固体酸化物形燃料電池の単セルの構成を示す断面図である。It is sectional drawing which shows the structure of the single cell of the solid oxide fuel cell used as embodiment of this invention. 図1の単セルを複数積層した固体酸化物形燃料電池スタックの構成を示す図である。It is a figure which shows the structure of the solid oxide fuel cell stack which laminated | stacked several single cells of FIG. 本発明の実施の形態の効果を検証するための試料を示す断面図である。It is sectional drawing which shows the sample for verifying the effect of embodiment of this invention. 図3の2つの試料片の間に導電性ペーストを塗布した様子を示す断面図である。It is sectional drawing which shows a mode that the electrically conductive paste was apply | coated between the two sample pieces of FIG. 図4の2つの試料片の間の抵抗を測定した結果を示す図である。It is a figure which shows the result of having measured the resistance between the two sample pieces of FIG. ガラスフリット添加導電性ペーストを塗布した試料とガラスフリット無添加導電性ペーストを塗布した試料の各々について抵抗の時間変化を測定した結果を示す図である。It is a figure which shows the result of having measured the time change of resistance about each of the sample which apply | coated the glass frit addition conductive paste, and the sample which apply | coated the glass frit non-addition conductive paste.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態となる固体酸化物形燃料電池の単セルの構成を示す断面図である。固体酸化物形燃料電池の単セル4は、平板型の酸化物からなる固体電解質層2を同じく平板型の空気極1と平板型の燃料極3とで狭持してなるものである。固体電解質層2の材料としては、例えばイットリア安定化ジルコニア(YSZ)、サマリア安定化ジルコニア(SSZ)、スカンジア安定化ジルコニア(ScSZ)、コバルト添加ランタンガレート系酸化物(LSGMC)などがある。空気極1の材料としては、例えばランタンニッケルフェライト(LNF)、ランタンマンガネート(LSM)、ランタンストロンチウムコバルタイト(LSC)、ランタンストロンチウムコバルトフェライト(LSCF)、ランタンストロンチウムフェライト(LSF)、サマリウムストロンチウムコバルタイト(SSC)などがある。燃料極3の材料としては、例えばニッケルドープイットリア安定化ジルコニア(Ni−YSZ)、ニッケルドープサマリア安定化ジルコニア(Ni−SSZ)、ニッケルドープスカンジア安定化ジルコニア(Ni−ScSZ)などのNiと前記固体電解質層の材料との混合物などがある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing the configuration of a single cell of a solid oxide fuel cell according to an embodiment of the present invention. A unit cell 4 of a solid oxide fuel cell is formed by sandwiching a solid electrolyte layer 2 made of a flat plate oxide between a flat plate air electrode 1 and a flat plate fuel electrode 3. Examples of the material of the solid electrolyte layer 2 include yttria-stabilized zirconia (YSZ), samaria-stabilized zirconia (SSZ), scandia-stabilized zirconia (ScSZ), and cobalt-added lanthanum gallate oxide (LSGMC). Examples of the material of the air electrode 1 include lanthanum nickel ferrite (LNF), lanthanum manganate (LSM), lanthanum strontium cobaltite (LSC), lanthanum strontium cobalt ferrite (LSCF), lanthanum strontium ferrite (LSF), and samarium strontium cobaltite. (SSC). Examples of the material of the fuel electrode 3 include Ni such as nickel-doped yttria-stabilized zirconia (Ni-YSZ), nickel-doped samaria-stabilized zirconia (Ni-SSZ), nickel-doped scandia-stabilized zirconia (Ni-ScSZ), and the solids. There is a mixture with the material of the electrolyte layer.

複数の単セル4を積層したスタック構造を作製するには、図2に示すように、各単セル4をセパレータ5を介して電気的に接続する。セパレータ5の材料としては、例えばCrが16−25%程度含まれているフェライト系合金などの耐熱合金がある。
本実施の形態は、固体酸化物形燃料電池スタックを製造する際の、空気極1とセパレータ5との接続方法を提供するものであり、以下、この接続方法について説明する。
In order to produce a stack structure in which a plurality of single cells 4 are stacked, each single cell 4 is electrically connected via a separator 5 as shown in FIG. As a material of the separator 5, for example, there is a heat-resistant alloy such as a ferritic alloy containing about 16-25% of Cr.
The present embodiment provides a method for connecting the air electrode 1 and the separator 5 when manufacturing a solid oxide fuel cell stack, and this connection method will be described below.

まず、導電性セラミックスとしてLNF粉末を用意し、このLNF粉末にガラスフリットを添加し、さらにトルエン等の有機溶媒を加えて導電性ペーストを予め作製する。添加するガラスフリットは軟化点が固体酸化物形燃料電池の動作温度(例えば800℃)より低く、結晶化温度が固体酸化物形燃料電池の動作温度よりも高い。さらに、その形状は粉末状であり、用いるセラミックス(例えばLNF)粉末の間にガラスフリットが入り込むために、セラミックス粉末の粒径よりも小さいことが好ましい。また、その成分は、固体酸化物形燃料電池の動作温度が高温であることから、SiO2 を主成分とすることが好ましい。
次に、本実施の形態による空気極とセパレータとの接触抵抗の低減効果を検証するために、空気極1に相当するLNFからなる平板状の試料片6と、セパレータ5に相当する耐熱合金からなる平板状の試料片7とを試料として用意する。試料片6には2本の白金のリード線8が電気的に接続され、同様に試料片7には2本の白金のリード線9が電気的に接続されている。
First, an LNF powder is prepared as a conductive ceramic, glass frit is added to the LNF powder, and an organic solvent such as toluene is further added to prepare a conductive paste in advance. The glass frit to be added has a softening point lower than the operating temperature of the solid oxide fuel cell (for example, 800 ° C.) and a crystallization temperature higher than the operating temperature of the solid oxide fuel cell. Furthermore, the shape is powdery, and it is preferable that the particle size of the ceramic powder is smaller than the ceramic powder because glass frit enters between the ceramic (for example, LNF) powder to be used. Further, the component is preferably composed mainly of SiO 2 because the operating temperature of the solid oxide fuel cell is high.
Next, in order to verify the effect of reducing the contact resistance between the air electrode and the separator according to the present embodiment, a flat sample piece 6 made of LNF corresponding to the air electrode 1 and a heat resistant alloy corresponding to the separator 5 are used. A flat sample piece 7 is prepared as a sample. Two platinum lead wires 8 are electrically connected to the sample piece 6, and similarly, two platinum lead wires 9 are electrically connected to the sample piece 7.

そして、図4に示すように試料片6と試料片7との間に、予め作製した導電性ペースト10を塗布して、試料片6と試料片7とを電気的に接続する。このようにして作製した図4の試料を800℃の空気中において100時間放置した後のリード線8とリード線9との間の抵抗、すなわち試料片6と試料片7との間の抵抗(Area Specific Resistance、以下ASRとする)を測定した。この測定結果を図5に示す。   Then, as shown in FIG. 4, a conductive paste 10 prepared in advance is applied between the sample piece 6 and the sample piece 7 to electrically connect the sample piece 6 and the sample piece 7. The sample of FIG. 4 produced in this way is left in air at 800 ° C. for 100 hours, and the resistance between the lead wire 8 and the lead wire 9, that is, the resistance between the sample piece 6 and the sample piece 7 ( Area Specific Resistance (hereinafter referred to as ASR) was measured. The measurement results are shown in FIG.

図5の結果から分かるように、導電性ペースト10のガラスフリットの添加量が零の場合に比べて、導電性ペースト10にガラスフリットを添加すると、ASRが小さくなることが分かる。その理由は、固体酸化物形燃料電池の動作温度(800℃)よりもガラスフリットの軟化温度が低いために、動作温度においてガラスフリットが軟化し、導電性ペースト10の主成分であるLNFの粒子同士の結合あるいはLNFの粒子と試料片6との結合がより強固となり、試料片6と試料片7との接着強度が強くなるためである。   As can be seen from the results of FIG. 5, it can be seen that the ASR becomes smaller when the glass frit is added to the conductive paste 10 than when the amount of the glass frit added to the conductive paste 10 is zero. The reason for this is that the softening temperature of the glass frit is lower than the operating temperature (800 ° C.) of the solid oxide fuel cell, so that the glass frit softens at the operating temperature, and the particles of LNF which are the main components of the conductive paste 10 This is because the bond between the LNF particles and the sample piece 6 becomes stronger and the adhesive strength between the sample piece 6 and the sample piece 7 becomes stronger.

このガラスフリットの添加量は、導電性ペースト10の主成分に対して重量比で10%以上添加すると、ガラスフリットを添加しない場合よりもASRが増大することが図5に示す測定結果から予想される。そのため、ガラスフリットの添加量は、導電性ペースト10の主成分に対して重量比で高々10%が好ましい。また、ガラスフリットの添加量を、導電性ペースト10の主成分に対して重量比で0.5%以上1.5%以下とすることが特に好ましい。その理由は、導電性ペースト10の導電率に対する影響が小さく、空気極(試料片6)へのガスの拡散を妨げずに、空気極とセパレータ(試料片7)との接着強度を向上させることができるからである。   It is expected from the measurement results shown in FIG. 5 that the amount of glass frit added is increased by 10% or more by weight with respect to the main component of the conductive paste 10 than when no glass frit is added. The Therefore, the addition amount of the glass frit is preferably at most 10% by weight with respect to the main component of the conductive paste 10. Moreover, it is particularly preferable that the addition amount of the glass frit is 0.5% to 1.5% by weight with respect to the main component of the conductive paste 10. The reason is that the effect on the conductivity of the conductive paste 10 is small, and the adhesion strength between the air electrode and the separator (sample piece 7) is improved without disturbing the diffusion of gas to the air electrode (sample piece 6). Because you can.

次に、導電性セラミックスとしてLNF粉末を用意すると共に、軟化点が800℃より低いガラスフリットを用意し、ガラスフリットの添加量がLNF粉末に対して重量比で1%となるようにLNF粉末とガラスフリットとを配合して、さらにトルエン等の有機溶媒を加えてガラスフリット添加導電性ペーストを作製した。
また、このガラスフリット添加導電性ペーストと比較するために、LNF粉末にトルエン等の有機溶媒を加えてガラスフリット無添加導電性ペーストを作製した。
Next, an LNF powder is prepared as a conductive ceramic, a glass frit having a softening point lower than 800 ° C. is prepared, and the amount of the glass frit added is 1% by weight with respect to the LNF powder. Glass frit was added, and an organic solvent such as toluene was further added to prepare a glass frit-added conductive paste.
For comparison with the glass frit-added conductive paste, an organic solvent such as toluene was added to the LNF powder to prepare a glass frit-free conductive paste.

そして、上記と同様に、試料片6と試料片7との間にガラスフリット添加導電性ペーストを塗布した試料と、試料片6と試料片7との間にガラスフリット無添加導電性ペーストを塗布した試料とを作製した。この2つの試料を800℃の空気中において10時間放置した後のASR及び100時間放置した後のASRを、2つの試料の各々について上記と同様に測定した。この測定結果を図6に示す。   Then, in the same manner as described above, a glass frit-added conductive paste is applied between the sample piece 6 and the sample piece 7, and a glass frit-free conductive paste is applied between the sample piece 6 and the sample piece 7. Were made. The ASR after leaving these two samples in air at 800 ° C. for 10 hours and the ASR after leaving them for 100 hours were measured in the same manner as described above for each of the two samples. The measurement results are shown in FIG.

図6から分かるように、ガラスフリット無添加導電性ペーストを塗布した試料では、ASR値が高く、また時間の経過に伴ってASR値が増大することが分かる。これに対して、ガラスフリット添加導電性ペーストを塗布した試料では、低いASR値が得られているだけでなく、長時間にわたってASR値が安定することが分かる。   As can be seen from FIG. 6, in the sample coated with the glass frit-free conductive paste, the ASR value is high, and the ASR value increases with time. On the other hand, in the sample coated with the glass frit-added conductive paste, not only a low ASR value is obtained, but also the ASR value is stabilized over a long time.

図5、図6に示した結果から、本実施の形態では、空気極のセパレータとの接合面にガラスフリット添加導電性ペーストを塗布した上で空気極とセパレータとを合わせるようにすれば、従来のような高温での熱処理を必要とせずに、強固な接着が実現でき、空気極とセパレータとの接触抵抗を低減することができる。また、長時間安定して低い接触抵抗を実現することができる。さらに、本実施の形態では、ガラスフリットの結晶化温度が固体酸化物形燃料電池の動作温度よりも高いため、空気極へのガスの拡散を妨げずに、接着強度を向上させることができる。   From the results shown in FIG. 5 and FIG. 6, in this embodiment, if the air electrode and the separator are combined with each other after the glass frit-added conductive paste is applied to the joint surface of the air electrode and the separator, Thus, strong adhesion can be realized without requiring heat treatment at such a high temperature, and the contact resistance between the air electrode and the separator can be reduced. Further, a low contact resistance can be realized stably for a long time. Furthermore, in this embodiment, since the crystallization temperature of the glass frit is higher than the operating temperature of the solid oxide fuel cell, the adhesive strength can be improved without hindering the diffusion of gas to the air electrode.

なお、本発明は以上の実施の形態に限定されるものではない。例えば、導電性ペーストは、Fe、Co、Ni、Cu、Rh、Pd、Ag、Ir、Pt、Auの中から選ばれた少なくとも1種類の金属又はこの金属を含む合金を主成分とし、ガラスフリットが主成分に対して前述の重量比の範囲で添加されているものであってもよい(以下、導電性ペーストAと呼ぶ)。特に、導電性ペーストAの主成分となる金属としては、Ag、Pt、AuそしてPdが望ましく、中でも安価で導電率が最も高く、そして高温酸化雰囲気下で安定なAgが好ましい。   In addition, this invention is not limited to the above embodiment. For example, the conductive paste is mainly composed of at least one metal selected from Fe, Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au or an alloy containing the metal, and is made of glass frit. May be added in the range of the aforementioned weight ratio with respect to the main component (hereinafter referred to as conductive paste A). In particular, Ag, Pt, Au, and Pd are desirable as the metal as the main component of the conductive paste A, and among them, Ag that is inexpensive, has the highest conductivity, and is stable in a high-temperature oxidizing atmosphere is preferable.

また、導電性ペーストは、La元素とM元素(MはNi、Fe、Cu、Co、Mnのうちいずれか1種類の元素)とO元素とを含む導電性セラミックスを主成分とし、ガラスフリットが主成分に対して前述の重量比の範囲で添加されているものであってもよく、この導電性セラミックスは、さらにA元素(AはSr、Ca、Baのうちいずれか1種類の元素)を含むものであってもよく、さらにM’元素(M’はNi、Fe、Cu、Co、Mnのうち前記M元素と異なる1種類の元素)を含むものであってもよい。これらの導電性ペーストを以下、導電性ペーストBと呼ぶ。   The conductive paste is mainly composed of conductive ceramics containing La element, M element (M is any one element of Ni, Fe, Cu, Co, and Mn) and O element. The conductive ceramic may be added in the range of the weight ratio described above, and this conductive ceramic further contains an element A (A is any one element of Sr, Ca, and Ba). It may also contain M ′ element (M ′ is one element different from M element among Ni, Fe, Cu, Co, and Mn). These conductive pastes are hereinafter referred to as conductive paste B.

特に、LaNi1-yFey3、La1-xSrxCo1-yFey3、La1-xSrxCoO3、La1-xSrxMnO3そしてLa1-xSrxCuO3-d(ただし、xは0<x<1を満たし、yは0<y<1を満たし、dは0<d<1を満たす)で表記される酸化物のいずれかを主成分とすることが望ましく、中でも導電率の高いLaNi1-yFey3又はLa1-xSrxCo1-yFey3を主成分とすることが好ましい。 In particular, LaNi 1-y Fe y O 3 , La 1-x Sr x Co 1-y Fe y O 3 , La 1-x Sr x CoO 3 , La 1-x Sr x MnO 3 and La 1-x Sr x CuO 3-d (where x satisfies 0 <x <1, y satisfies 0 <y <1 and d satisfies 0 <d <1) Among them, LaNi 1-y Fe y O 3 or La 1-x Sr x Co 1-y Fe y O 3 having high conductivity is preferable as a main component.

また、導電性ペーストは、前記導電性ペーストAで用いる金属と前記導電性ペーストBで用いる導電性セラミックスとの混合物を主成分とし、ガラスフリットが主成分に対して前述の重量比の範囲で添加されているものであってもよい。特に、AgとLaNi1-yFey3又はLa1-xSrxCo1-yFey3との混合物を主成分とすることが好ましい。 The conductive paste is mainly composed of a mixture of the metal used in the conductive paste A and the conductive ceramic used in the conductive paste B, and the glass frit is added in the above-mentioned weight ratio range with respect to the main component. It may be what has been done. In particular, it is preferable that a main component is a mixture of Ag and LaNi 1-y Fe y O 3 or La 1-x Sr x Co 1-y Fe y O 3 .

また、本実施の形態では、導電性ペーストの主成分とガラスフリットとを分散させる溶媒として、トルエンをはじめとする有機溶媒を使用しているが、この溶媒については従来公知のものが使用でき、特に制限はない。   In this embodiment, an organic solvent such as toluene is used as a solvent for dispersing the main component of the conductive paste and the glass frit, and a conventionally known one can be used for this solvent. There is no particular limitation.

なお、本実施の形態では、単セルを積層する方法として、空気極上にガラスフリット添加導電性ペーストを塗布した上で空気極とセパレータとを接合する方法を説明しているが、これに限るものではなく、ガラスフリット添加導電性ペーストを塗布した空気極とセパレータとの間に集電体のような材料を挟むようにしてもよい。
また、本実施の形態では、金属セパレータを用いる場合について説明したが、これに限るものではなく、酸化物セパレータを用いる場合にも本発明を適用することができる。
In the present embodiment, as a method of laminating the single cells, a method of joining the air electrode and the separator after applying the glass frit-added conductive paste on the air electrode is described. However, the present invention is not limited to this. Instead, a material such as a current collector may be sandwiched between the air electrode coated with the glass frit-added conductive paste and the separator.
In this embodiment, the case of using a metal separator has been described. However, the present invention is not limited to this, and the present invention can also be applied to the case of using an oxide separator.

本発明は、固体酸化物形燃料電池スタックに適用することができる。   The present invention can be applied to a solid oxide fuel cell stack.

1…空気極、2…固体電解質層、3…燃料極、4…単セル、5…セパレータ。   DESCRIPTION OF SYMBOLS 1 ... Air electrode, 2 ... Solid electrolyte layer, 3 ... Fuel electrode, 4 ... Single cell, 5 ... Separator.

Claims (2)

酸化物からなる電解質を空気極と燃料極とで狭持してなる平板型の固体酸化物燃料電池単セルを、金属セパレータを介して複数個接続した固体酸化物形燃料電池スタックにおいて、
前記単セルの空気極と前記金属セパレータとの間に、導電性セラミックス粉末にガラスフリットが添加された導電性ペーストを有し、
前記ガラスフリットは、SiO2 を主成分とし、前記導電性ペーストの主成分に対して重量比で0.5%以上1.5%以下の添加量を有し、軟化点が固体酸化物形燃料電池の動作温度よりも低く、かつ結晶化温度が前記動作温度よりも高いことを特徴とする固体酸化物形燃料電池スタック。
In a solid oxide fuel cell stack in which a plurality of flat solid oxide fuel cell single cells formed by sandwiching an oxide electrolyte between an air electrode and a fuel electrode are connected via a metal separator,
Between the air electrode of the single cell and the metal separator, a conductive paste in which glass frit is added to conductive ceramic powder,
The glass frit has SiO 2 as a main component, has an addition amount of 0.5% to 1.5% by weight with respect to the main component of the conductive paste, and has a softening point of a solid oxide fuel A solid oxide fuel cell stack characterized by being lower than the operating temperature of the battery and having a crystallization temperature higher than the operating temperature.
酸化物からなる電解質を空気極と燃料極とで狭持してなる平板型の固体酸化物燃料電池単セルを、金属セパレータを介して複数個接続する固体酸化物形燃料電池スタックの製造方法において、
前記単セルの空気極の前記金属セパレータとの接合面に、導電性セラミックス粉末にガラスフリットが添加された導電性ペーストを塗布した上で、前記空気極と前記金属セパレータとを接合するようにしたものであり、
前記ガラスフリットは、SiO2 を主成分とし、前記導電性ペーストの主成分に対して重量比で0.5%以上1.5%以下の添加量を有し、軟化点が固体酸化物形燃料電池の動作温度よりも低く、かつ結晶化温度が前記動作温度よりも高いことを特徴とする固体酸化物形燃料電池スタックの製造方法。
In a manufacturing method of a solid oxide fuel cell stack in which a plurality of flat plate type solid oxide fuel cell single cells formed by sandwiching an oxide electrolyte between an air electrode and a fuel electrode are connected via a metal separator ,
A conductive paste in which glass frit is added to conductive ceramic powder is applied to the bonding surface of the single cell air electrode to the metal separator, and then the air electrode and the metal separator are bonded. Is,
The glass frit has SiO 2 as a main component, has an addition amount of 0.5% to 1.5% by weight with respect to the main component of the conductive paste, and has a softening point of a solid oxide fuel A method for producing a solid oxide fuel cell stack, characterized in that the operating temperature of the battery is lower and the crystallization temperature is higher than the operating temperature.
JP2009245880A 2009-10-26 2009-10-26 Solid oxide fuel cell stack and manufacturing method thereof Expired - Fee Related JP5144622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245880A JP5144622B2 (en) 2009-10-26 2009-10-26 Solid oxide fuel cell stack and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245880A JP5144622B2 (en) 2009-10-26 2009-10-26 Solid oxide fuel cell stack and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005002246A Division JP2006190593A (en) 2005-01-07 2005-01-07 Solid oxide fuel cell stack and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2010021155A true JP2010021155A (en) 2010-01-28
JP5144622B2 JP5144622B2 (en) 2013-02-13

Family

ID=41705803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245880A Expired - Fee Related JP5144622B2 (en) 2009-10-26 2009-10-26 Solid oxide fuel cell stack and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5144622B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212046A (en) * 2008-03-06 2009-09-17 Nissan Motor Co Ltd Metallic member for solid oxide fuel cell
JP2011175906A (en) * 2010-02-25 2011-09-08 Kyocera Corp Cell stack, fuel cell module, and fuel cell device
JP2012084508A (en) * 2010-10-11 2012-04-26 Samsung Electro-Mechanics Co Ltd Fuel battery and method for manufacturing the same
JP2013030442A (en) * 2011-07-29 2013-02-07 Noritake Co Ltd Electrochemical reactor
JP2015082433A (en) * 2013-10-23 2015-04-27 株式会社ノリタケカンパニーリミテド Conductive bonding material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6240761B2 (en) * 2013-07-31 2017-11-29 エルジー・ケム・リミテッド Solid oxide fuel cell and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270062A (en) * 1997-03-21 1998-10-09 Sanyo Electric Co Ltd Separator for solid electrolyte fuel cell, its manufacture, and solid electrolyte fuel cell
JP2006190593A (en) * 2005-01-07 2006-07-20 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell stack and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270062A (en) * 1997-03-21 1998-10-09 Sanyo Electric Co Ltd Separator for solid electrolyte fuel cell, its manufacture, and solid electrolyte fuel cell
JP2006190593A (en) * 2005-01-07 2006-07-20 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell stack and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212046A (en) * 2008-03-06 2009-09-17 Nissan Motor Co Ltd Metallic member for solid oxide fuel cell
JP2011175906A (en) * 2010-02-25 2011-09-08 Kyocera Corp Cell stack, fuel cell module, and fuel cell device
JP2012084508A (en) * 2010-10-11 2012-04-26 Samsung Electro-Mechanics Co Ltd Fuel battery and method for manufacturing the same
JP2013030442A (en) * 2011-07-29 2013-02-07 Noritake Co Ltd Electrochemical reactor
JP2015082433A (en) * 2013-10-23 2015-04-27 株式会社ノリタケカンパニーリミテド Conductive bonding material

Also Published As

Publication number Publication date
JP5144622B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5075183B2 (en) Electrochemical equipment
JP5483714B2 (en) Bonding agent
JP5242909B2 (en) Solid oxide fuel cell
JP5144622B2 (en) Solid oxide fuel cell stack and manufacturing method thereof
JP5189405B2 (en) Method for producing solid oxide fuel cell
JP2527876B2 (en) Method for manufacturing solid oxide fuel cell
JP2006190593A (en) Solid oxide fuel cell stack and its manufacturing method
JP2010033747A (en) Solid-oxide fuel cell stack and method of manufacturing the same
US20130101922A1 (en) Solid oxide fuel cell
JP2010073566A (en) Solid electrolyte fuel cell and method of manufacturing the same
JP4866955B2 (en) Zygote
JP2011119178A (en) Solid oxide fuel cell
JP5443325B2 (en) Solid oxide fuel cell and single cell for solid oxide fuel cell
JP6389133B2 (en) Fuel cell stack
JP2011108621A (en) Bonding agent
JP5346873B2 (en) Bonding agent
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP2012084508A (en) Fuel battery and method for manufacturing the same
JP5072188B2 (en) Current collector film and flat plate solid oxide fuel cell using the same
JP2007134133A (en) Solid electrolyte fuel cell
JP5373668B2 (en) Single cell for solid oxide fuel cell and solid oxide fuel cell
KR20160058275A (en) Metal-supported solid oxide fuel cell and method of manufacturing the same
JP5117821B2 (en) Solid oxide fuel cell and method for producing the same
JP2018014309A (en) Method for manufacturing electrochemical reaction cell stack, and electrochemical reaction cell stack
JP2017157553A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5144622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees