JP2010020970A - Connecting structure of superconductive cable core - Google Patents

Connecting structure of superconductive cable core Download PDF

Info

Publication number
JP2010020970A
JP2010020970A JP2008179046A JP2008179046A JP2010020970A JP 2010020970 A JP2010020970 A JP 2010020970A JP 2008179046 A JP2008179046 A JP 2008179046A JP 2008179046 A JP2008179046 A JP 2008179046A JP 2010020970 A JP2010020970 A JP 2010020970A
Authority
JP
Japan
Prior art keywords
superconducting
connection
reinforcing member
sleeve
cable core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008179046A
Other languages
Japanese (ja)
Other versions
JP4751424B2 (en
Inventor
Yuichi Ashibe
祐一 芦辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2008179046A priority Critical patent/JP4751424B2/en
Publication of JP2010020970A publication Critical patent/JP2010020970A/en
Application granted granted Critical
Publication of JP4751424B2 publication Critical patent/JP4751424B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connecting structure of a superconductive cable core which is more miniaturized than that in the prior art. <P>SOLUTION: Th superconductive cable core includes a pair of the superconductive cable cores 10 with a superconductive conductor layer 12 at the outer periphery of a former 11, a connecting sleeve 8 by which ends of the formers 11 of these superconductive cable cores 10 are compressed and connected in a mutually butted state, a connecting superconductive wire material 5 arranged at the outer periphery of the connecting sleeve 8 by which the conductor layers 12 of both cable cores 10 are mutually electrically connected, and a conductive connecting member by which a plurality of the connecting superconductive wire materials are integrated with the connecting sleeve. Then, the connecting structure 1 of this superconductive cable core satisfies a relationship of Sf>Ss≥0.7×Sf when a cross-sectional area of the connecting sleeve 8 after compression at a position where the ends of the formers 11 are mutually butted is Ss and the cross-sectional area of the former 11 at the same position is Sf. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フォーマの外周に超電導導体層を有する一対の超電導ケーブルコア同士を接続することで形成される超電導ケーブルコアの接続構造に関する。   The present invention relates to a superconducting cable core connection structure formed by connecting a pair of superconducting cable cores having a superconducting conductor layer on the outer periphery of a former.

近年、電力ケーブルとして、常電導ケーブルよりも送電容量の高い超電導ケーブルを用いることが提案されている。超電導ケーブルとして、例えば、図6に記載のような3心の超電導ケーブルコア10を撚り合せて断熱管20に収納した3心一括型の超電導ケーブル100が挙げられる。   In recent years, it has been proposed to use a superconducting cable having a higher transmission capacity than a normal conducting cable as a power cable. As the superconducting cable, for example, a three-core superconducting cable 100 in which a three-core superconducting cable core 10 as shown in FIG.

超電導ケーブルコア10は、中心から順にフォーマ11、超電導導体層12、絶縁層13、超電導シールド層14、保護層15を備える。このような超電導ケーブル100同士を接続して電力路を形成する場合、ケーブル100に備わるコア10同士を接続した超電導ケーブルコアの接続構造が形成される(例えば、特許文献1)。   The superconducting cable core 10 includes a former 11, a superconducting conductor layer 12, an insulating layer 13, a superconducting shield layer 14, and a protective layer 15 in order from the center. When such superconducting cables 100 are connected to form a power path, a superconducting cable core connection structure in which the cores 10 included in the cable 100 are connected is formed (for example, Patent Document 1).

図7は、超電導ケーブルコアの接続構造の一例であって、(A)は、超電導ケーブルコアの接続構造の部分縦断面図、(B)は(A)のP−P断面図である。この接続構造Cを形成するには、まず、超電導ケーブルコア10の端部を段剥ぎし、フォーマ11と超電導導体層12を露出させる。次いで、露出させたフォーマ11の端部同士を接続スリーブ80のフォーマ挿入孔8hに挿入して、この接続スリーブ80を外周側から圧縮することによってフォーマ11の端部同士を接続する。そして、接続用超電導線材5を接続スリーブ80の外周に懸け渡して、その両端を両方の超電導導体層12に半田付けなどにより電気的に接続した後、超電導線材5を導電性結合材材(例えば、半田)により接続スリーブ80に一体化する。以降は、超電導線材5の外側に補強絶縁層(図示せず)や、シールド接続層(図示せず)を形成するなどして、その外周を断熱構造で覆い、接続構造Cを完成させる。   7A and 7B show an example of a superconducting cable core connection structure. FIG. 7A is a partial longitudinal sectional view of the superconducting cable core connection structure, and FIG. In order to form this connection structure C, first, the end portion of the superconducting cable core 10 is stepped off to expose the former 11 and the superconducting conductor layer 12. Next, the exposed end portions of the former 11 are inserted into the former insertion hole 8h of the connection sleeve 80, and the end portions of the former 11 are connected by compressing the connection sleeve 80 from the outer peripheral side. Then, after connecting the superconducting wire 5 for connection to the outer periphery of the connecting sleeve 80 and electrically connecting both ends thereof to both the superconducting conductor layers 12 by soldering or the like, the superconducting wire 5 is connected to a conductive bonding material (for example, , Solder) to be integrated with the connection sleeve 80. Thereafter, a reinforcing insulating layer (not shown) and a shield connection layer (not shown) are formed outside the superconducting wire 5 to cover the outer periphery with a heat insulating structure, thereby completing the connection structure C.

特開2005−353379号公報JP 2005-353379 A

ところで、超電導ケーブルを用いたケーブル線路は、主として、既存の管路に敷設されている常電導のケーブル線路の代わりに敷設することが検討されている。そのため、線路の敷設の際や、敷設後のメンテナンスの際に余裕を持った作業空間を確保するために、ケーブル線路の小型化、特に、大径化し易い超電導ケーブルコアの接続構造を小型化することが求められている。   By the way, it has been considered that a cable line using a superconducting cable is mainly laid in place of a normal conductive cable line laid on an existing pipe line. Therefore, in order to secure a working space with sufficient margin when laying the track and during maintenance after laying, the cable track is reduced in size, particularly the connection structure of the superconducting cable core that tends to increase in diameter. It is demanded.

ここで、接続スリーブは、接続される超電導ケーブルコアにより接続スリーブに作用する張力に耐え得るものでなければならず、厚肉のものを使用していた。具体的には、図7(B)に示すように、フォーマ11の端部の位置における圧縮後の接続スリーブ80の断面積Ss0が、同じ位置でのフォーマ11の断面積Sfと同じかそれ以上となるように接続スリーブ80を選択していた。そのため、超電導ケーブルコアの接続構造Cがどうしても大径化しやすかった。   Here, the connection sleeve must be able to withstand the tension acting on the connection sleeve by the superconducting cable core to be connected, and a thick-walled one is used. Specifically, as shown in FIG. 7B, the cross-sectional area Ss0 of the connection sleeve 80 after compression at the end position of the former 11 is equal to or larger than the cross-sectional area Sf of the former 11 at the same position. The connection sleeve 80 was selected so that Therefore, the connection structure C of the superconducting cable core is apt to increase in diameter.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、従来の超電導ケーブルコアの接続構造よりも小型化された超電導ケーブルコアの接続構造を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a superconducting cable core connection structure that is smaller than the conventional superconducting cable core connection structure.

本発明者は、超電導ケーブルコアの接続構造について再検討のための種々の試験を行った。その結果、接続用超電導線材を接続スリーブと一体化する導電性結合部材があれば、この結合部材に接続スリーブに作用する張力の一部を分担させることができることが明らかになった。この知見に基づいて本発明を以下に規定する。   The inventor conducted various tests for reexamination of the connection structure of the superconducting cable core. As a result, it has been clarified that if there is a conductive coupling member that integrates the superconducting wire for connection with the connection sleeve, a part of the tension acting on the connection sleeve can be shared by the coupling member. Based on this finding, the present invention is defined below.

本発明は、フォーマの外周に超電導導体層を備える一対の超電導ケーブルコアと、これら超電導ケーブルコアのフォーマの端部同士を突き合わせた状態で圧縮接続する接続スリーブとを備える超電導ケーブルコアの接続構造に係る。この本発明の超電導ケーブルコアの接続構造は、前記接続スリーブの外周に配されて、両ケーブルコアの超電導導体層同士を電気的に接続する接続用超電導線材と、複数の接続用超電導線材を接続スリーブと一体化する導電性結合部材とを備える。そして、前記フォーマの端部同士が突き合わされた位置における圧縮後の接続スリーブの断面積をSs、同位置におけるフォーマの断面積をSfとしたときに、Ssが以下の範囲にあることを特徴とする。
Sf>Ss≧0.7×Sf
The present invention provides a superconducting cable core connection structure comprising a pair of superconducting cable cores provided with a superconducting conductor layer on the outer periphery of the former, and a connection sleeve for compressing and connecting the ends of the formers of the superconducting cable cores. Related. The connection structure of the superconducting cable core according to the present invention is arranged on the outer periphery of the connection sleeve, and connects a superconducting wire for connection that electrically connects the superconducting conductor layers of both cable cores and a plurality of superconducting wires for connection. A conductive coupling member integral with the sleeve. When the cross-sectional area of the connection sleeve after compression at the position where the end portions of the former are abutted is Ss, and the cross-sectional area of the former at the same position is Sf, Ss is in the following range. To do.
Sf> Ss ≧ 0.7 × Sf

本発明の構成によれば、接続スリーブの断面積Ssが従来よりも小さいため、超電導ケーブルコアの接続構造の小型化を図ることができる。   According to the configuration of the present invention, since the cross-sectional area Ss of the connection sleeve is smaller than the conventional one, the connection structure of the superconducting cable core can be downsized.

以下、本発明超電導ケーブルコアの接続構造の好ましい態様について説明する。   Hereinafter, a preferable aspect of the connection structure of the superconducting cable core of the present invention will be described.

本発明超電導ケーブルコアの接続構造は、前記接続スリーブの外周に懸け渡され、接続スリーブに作用する張力を分担する補強部材を備えることが好ましい。   The connection structure of the superconducting cable core according to the present invention preferably includes a reinforcing member that hangs around the outer periphery of the connection sleeve and shares the tension acting on the connection sleeve.

接続スリーブに作用する張力を補強部材に分担させることにより、上記SsがSfより小さくても、接続構造をより強固に維持することができる。   By making the reinforcing member share the tension acting on the connection sleeve, the connection structure can be more firmly maintained even when the above Ss is smaller than Sf.

上述した補強部材は、接続用超電導線材と接続スリーブとの間に配置されていても良いし、接続用超電導線材と共に接続スリーブの周方向に並列されていても良い。この場合、接続スリーブと各超電導導体層の端部との間から露出するフォーマの外周に、前記補強部材の両端が接続されるようにすると良い。   The reinforcing member described above may be disposed between the connecting superconducting wire and the connecting sleeve, or may be juxtaposed in the circumferential direction of the connecting sleeve together with the connecting superconducting wire. In this case, both ends of the reinforcing member are preferably connected to the outer periphery of the former exposed from between the connection sleeve and the end of each superconducting conductor layer.

前者の場合、補強部材が配置される位置は、接続用超電導線材をコアの導電層に接続する際の邪魔とならない位置である。これは、補強部材のフォーマとの接続位置が、接続用超電導線材と導体層との接続位置よりもコアの径方向で内方側に、コアの軸方向で接続スリーブ側にズレているからである。また、補強部材が、接続用超電導線材の超電導導体層への接続の障害とならないため、例えば、補強部材を接続スリーブの全周に設けることもでき、その結果、コアの接続構造をより強固にできる。但し、この構成の場合、コアの接続構造が径方向に補強部材の厚み分大きくなるので、接続スリーブの断面積を従来よりも小さくした効果が無駄とならないように補強部材の厚さを選択する。補強部材は、あくまでコアの接続構造をより強固にするためのものであるので、薄いものでかまわないし、接続スリーブとは別部材であるので、スリーブよりも引張り強さの大きな材料を利用することもできる。   In the former case, the position at which the reinforcing member is disposed is a position that does not interfere with the connection of the connecting superconducting wire to the conductive layer of the core. This is because the connecting position of the reinforcing member to the former is shifted inward in the radial direction of the core and closer to the connecting sleeve in the axial direction of the core than the connecting position of the connecting superconducting wire and the conductor layer. is there. Further, since the reinforcing member does not hinder the connection of the connecting superconducting wire to the superconducting conductor layer, for example, the reinforcing member can be provided on the entire circumference of the connection sleeve, and as a result, the core connection structure can be further strengthened. it can. However, in this configuration, the connecting structure of the core is increased by the thickness of the reinforcing member in the radial direction. Therefore, the thickness of the reinforcing member is selected so that the effect of reducing the cross-sectional area of the connecting sleeve compared to the conventional case is not wasted. . The reinforcing member is only for strengthening the core connection structure, so it can be thin, and since it is a separate member from the connecting sleeve, use a material with a higher tensile strength than the sleeve. You can also.

補強部材が、接続用超電導線材と共に接続スリーブの周方向に並列されている場合、コアの接続構造のサイズを維持したまま、コアの接続構造をより強固にすることができる。補強部材を接続用超電導線材と並列できるのは、導体層までのコアの径よりも接続スリーブの外径が大きいため、スリーブ上では接続用超電導線材同士の間隔が開くからである。一方、接続スリーブから導体層に向かっては、接続用超電導線材同士の間隔が小さくなっていくが、線材同士の間隔が小さくなる位置では、補強部材はフォーマの外周に接続できるように接続用超電導線材の下(コアの径方向内方)にもぐり込む。従って、補強部材は、接続用超電導線材の超電導導体層への接続の邪魔とならない。   When the reinforcing member is juxtaposed in the circumferential direction of the connection sleeve together with the connecting superconducting wire, the core connection structure can be further strengthened while maintaining the size of the core connection structure. The reason why the reinforcing member can be juxtaposed with the connecting superconducting wire is that the connecting sleeve has an outer diameter larger than the core diameter up to the conductor layer, so that the connecting superconducting wires are spaced apart on the sleeve. On the other hand, the distance between the connecting superconducting wires decreases from the connecting sleeve toward the conductor layer, but at the position where the distance between the connecting wires decreases, the reinforcing member can be connected to the outer periphery of the former. Crew under the wire (inward of the core in the radial direction). Therefore, the reinforcing member does not interfere with the connection of the connecting superconducting wire to the superconducting conductor layer.

また、補強部材は、接続用超電導線材の外周側に沿って配置されていても良い。この場合、接続スリーブに作用する張力はもちろん、接続用超電導線材に作用する張力も軽減することができる。また、補強部材により接続用超電導線材を外周側から保護することもできるので、例えば、接続スリーブの外周に補強絶縁層などを形成する際、接続用超電導線材が損傷し難くなる。   Further, the reinforcing member may be arranged along the outer peripheral side of the connecting superconducting wire. In this case, not only the tension acting on the connecting sleeve but also the tension acting on the connecting superconducting wire can be reduced. Further, since the connecting superconducting wire can be protected from the outer peripheral side by the reinforcing member, for example, when the reinforcing insulating layer is formed on the outer periphery of the connecting sleeve, the connecting superconducting wire is hardly damaged.

本発明の超電導ケーブルコアの接続構造によれば、接続スリーブの断面積Ssが小さくなった分、従来の超電導ケーブルコアの接続構造よりも小型化されたコアの接続構造とすることができる。   According to the connection structure of the superconducting cable core of the present invention, the core connection structure can be made smaller than the conventional connection structure of the superconducting cable core because the cross-sectional area Ss of the connection sleeve is reduced.

以下に、本発明の超電導ケーブルコアの接続構造に係る実施形態(実施形態1〜4)を図面に基づいて説明する。まず、コアの接続構造の説明に先立って、超電導ケーブルの構成について説明する。   Embodiments (Embodiments 1 to 4) according to a superconducting cable core connection structure of the present invention will be described below with reference to the drawings. First, prior to the description of the core connection structure, the configuration of the superconducting cable will be described.

(実施形態1)
<超電導ケーブル>
本発明の超電導ケーブルコアの接続構造に用いる超電導ケーブルとして、交流用三心一括型の超電導ケーブルを説明する。
(Embodiment 1)
<Superconducting cable>
As a superconducting cable used for the connection structure of the superconducting cable core of the present invention, a three-core superconducting cable for alternating current will be described.

図6は、三心一括型の超電導ケーブルの断面図である。この超電導ケーブル100は、3心の超電導ケーブルコア10と、このコア10を収納する断熱管20とを有する。   FIG. 6 is a cross-sectional view of a three-core collective superconducting cable. The superconducting cable 100 has a three-core superconducting cable core 10 and a heat insulating tube 20 that houses the core 10.

コア10は、中心から順に、フォーマ11、クッション層(図示せず)、超電導導体層12、内部半導電層(図示せず)、絶縁層13、外部半導電層(図示せず)、超電導シールド層14、保護層15を有している。これらの各層のうち、導体層12とシールド層14には超電導線材が用いられる。このコア10を構成する超電導線材は、断熱管20内とコア10の間の空間に冷媒(例えば液体窒素)を流通させることで、超電導状態に保持される。   The core 10 includes, in order from the center, a former 11, a cushion layer (not shown), a superconducting conductor layer 12, an internal semiconductive layer (not shown), an insulating layer 13, an external semiconductive layer (not shown), and a superconducting shield. It has a layer 14 and a protective layer 15. Of these layers, a superconducting wire is used for the conductor layer 12 and the shield layer 14. The superconducting wire constituting the core 10 is maintained in a superconducting state by circulating a refrigerant (for example, liquid nitrogen) in the space between the heat insulating tube 20 and the core 10.

フォーマ11は、導体層を所定形状に保形するものであり、事故電流の分流路でもある。フォーマ11としては、パイプ状のものや素線を束ねたもの(例えば、複数の素線を撚り合わせた撚り線)を利用できる。フォーマ11をパイプ状のものとした場合、フォーマ11内を冷媒の流路とできる。フォーマ11の材質は、銅やステンレス、アルミニウムなどの非磁性の金属材料が好適である。   The former 11 keeps the conductor layer in a predetermined shape, and is also a shunt path for accident current. As the former 11, a pipe-like one or a bundle of strands (for example, a strand obtained by twisting a plurality of strands) can be used. When the former 11 is pipe-shaped, the inside of the former 11 can be a refrigerant flow path. The material of the former 11 is preferably a nonmagnetic metal material such as copper, stainless steel, or aluminum.

フォーマ11上に設けられるクッション層は、カーボン紙をフォーマ11上にらせん状に巻きつけることで形成できる。このクッション層により、フォーマ11表面を平滑化することができ、フォーマ11と導体層12の直接接触による損傷を軽減することができる。   The cushion layer provided on the former 11 can be formed by winding carbon paper around the former 11 in a spiral shape. With this cushion layer, the surface of the former 11 can be smoothed, and damage due to direct contact between the former 11 and the conductor layer 12 can be reduced.

導体層12は、超電導線材をクッション層の上に多層に巻回することで形成できる。このような導体層12を構成する各層は、通常、超電導線材の撚りピッチが異なっている。加えて、各層ごと又は複数層ごとに巻き方向を変えることで、各層に流れる電流の均流化を図ることができる。導体層12を構成する超電導線材としては、ビスマス系超電導線材(例えば、Bi2223系Ag−Mnシーステープ線材)や、イットリウム系超電導線材(例えば、YBCO系薄膜線材)などを使用することができる。   The conductor layer 12 can be formed by winding a superconducting wire in multiple layers on a cushion layer. Each layer constituting such a conductor layer 12 is usually different in the twist pitch of the superconducting wire. In addition, the current flowing in each layer can be equalized by changing the winding direction for each layer or for each of the plurality of layers. As the superconducting wire constituting the conductor layer 12, bismuth-based superconducting wire (for example, Bi2223-based Ag-Mn sheath tape wire), yttrium-based superconducting wire (for example, YBCO-based thin film wire), or the like can be used.

絶縁層13は、例えばクラフト紙とポリプロピレンなどの樹脂フィルムとをラミネートした半合成紙(住友電気工業株式会社製PPLP:登録商標)を内部半導電層の外周に巻回することで形成できる。   The insulating layer 13 can be formed by, for example, winding semi-synthetic paper (PPLP: registered trademark, manufactured by Sumitomo Electric Industries, Ltd.) laminated with kraft paper and a resin film such as polypropylene around the inner semiconductive layer.

導体層12と絶縁層13との間に設けられる内部半導電層、および絶縁層13とシールド層14との間に設けられる外部半導電層は、例えばカーボン紙を巻回して形成することができる。これら内部半導電層と外部半導電層はそれぞれ、導体層12と絶縁層13との界面、および絶縁層13とシールド層14との界面に微小な空隙が生じることを抑制し、その空隙での部分放電を防止する。   The internal semiconductive layer provided between the conductor layer 12 and the insulating layer 13 and the external semiconductive layer provided between the insulating layer 13 and the shield layer 14 can be formed, for example, by winding carbon paper. . These internal semiconductive layer and external semiconductive layer suppress the generation of minute voids at the interface between the conductor layer 12 and the insulating layer 13 and the interface between the insulating layer 13 and the shield layer 14, respectively. Prevent partial discharge.

上記の外部半導電層の上に設けられるシールド層14は、導体層12に用いたものと同様の超電導線材を巻回することで形成できる。このシールド層14には、導体層12とほぼ同じ大きさで逆方向の電流が誘導されることで導体層12から生じる磁場を実質的に相殺し、外部への磁場の漏洩を防止することができる。   The shield layer 14 provided on the external semiconductive layer can be formed by winding a superconducting wire similar to that used for the conductor layer 12. The shield layer 14 is substantially the same size as the conductor layer 12 and induces a reverse current to substantially cancel the magnetic field generated from the conductor layer 12 and prevent leakage of the magnetic field to the outside. it can.

保護層15は、例えば、クラフト紙を巻回することで形成することができる。この保護層15は、シールド層14を機械的に保護すると共に、断熱管20との間を絶縁させるためのものである。   The protective layer 15 can be formed, for example, by winding kraft paper. The protective layer 15 mechanically protects the shield layer 14 and insulates it from the heat insulating tube 20.

一方、断熱管20は、コルゲート状の内管21とコルゲート状の外管22とを有するステンレス製の二重管構造である。通常、コルゲート内管21とコルゲート外管22との間は空間が形成され、その空間は真空引きされている。真空引きされる空間内には、断熱材(図示せず)となるスーパーインシュレーションが配置され、輻射熱の反射が行なわれる。また、コルゲート外管22の外側には、ポリ塩化ビニルなどの樹脂からなる防食層23が形成されている。   On the other hand, the heat insulating tube 20 has a stainless double tube structure having a corrugated inner tube 21 and a corrugated outer tube 22. Usually, a space is formed between the corrugated inner tube 21 and the corrugated outer tube 22, and the space is evacuated. In the space to be evacuated, a super insulation serving as a heat insulating material (not shown) is arranged to reflect radiant heat. An anticorrosion layer 23 made of a resin such as polyvinyl chloride is formed outside the corrugated outer tube 22.

<超電導ケーブルコアの接続構造>
図1(A)は、上述した超電導ケーブルのケーブルコア同士を接続することで形成した超電導ケーブルコアの接続構造1を示す部分縦断面図であり、(B)は(A)のX−X断面図である。この図1においては、コア10の構成部材としてフォーマ11と超電導導体層12のみを図示する。この点は、後述する実施形態2〜5のそれぞれを説明する際に使用する図2〜5においても同様である。
<Connection structure of superconducting cable core>
FIG. 1A is a partial longitudinal sectional view showing a superconducting cable core connection structure 1 formed by connecting the cable cores of the above-described superconducting cables, and FIG. 1B is a sectional view taken along line XX in FIG. FIG. In FIG. 1, only the former 11 and the superconducting conductor layer 12 are shown as constituent members of the core 10. This also applies to FIGS. 2 to 5 used when explaining each of Embodiments 2 to 5 described later.

超電導ケーブルコアの接続構造1は、一対のコア10と、これらコア10のフォーマ11の端部同士を突き合わせた状態で圧縮接続するための接続スリーブ8とを備える。接続スリーブ8は、フォーマ11の端部を収納することができるフォーマ挿入孔8hを備える筒状の部材であり、例えば、銅やアルミニウムなどの非磁性金属材料で形成することができる。この接続スリーブ8は、接続構造1の構築の際に、フォーマ挿入孔8hにフォーマ11が収納された状態で圧縮される。その結果として、接続スリーブ8の内部でフォーマ11同士が接続される。   The superconducting cable core connection structure 1 includes a pair of cores 10 and a connection sleeve 8 for compressing and connecting the ends of the formers 11 of the cores 10 to each other. The connection sleeve 8 is a cylindrical member having a former insertion hole 8h that can accommodate the end portion of the former 11, and can be formed of a nonmagnetic metal material such as copper or aluminum, for example. When the connection structure 1 is constructed, the connection sleeve 8 is compressed in a state where the former 11 is accommodated in the former insertion hole 8h. As a result, the formers 11 are connected to each other inside the connection sleeve 8.

接続スリーブ8の外周には、両ケーブルコア10の超電導導体層12同士を電気的に接続する接続用超電導線材5が配置されている。超電導線材5は、導体層12を構成する超電導線材と同じものであることが好ましい。超電導線材5と導体層12との接続は、導電性接着剤7(例えば、Sn−Ag系の半田)により行うと良い。導電性接着剤7は、予め超電導線材5の両端に被着されていると、超電導線材5の取り付けが容易になる。   On the outer periphery of the connection sleeve 8, a superconducting wire 5 for connection for electrically connecting the superconducting conductor layers 12 of both cable cores 10 is disposed. The superconducting wire 5 is preferably the same as the superconducting wire constituting the conductor layer 12. The connection between the superconducting wire 5 and the conductor layer 12 is preferably performed by a conductive adhesive 7 (for example, Sn-Ag solder). If the conductive adhesive 7 is applied to both ends of the superconducting wire 5 in advance, the superconducting wire 5 can be easily attached.

また、超電導線材5の本数は、1層の導体層12を構成する超電導線材の本数と同じ、又は1層の導体層12を構成する超電導線材の本数よりも1〜2本少ない本数であることが好ましい。これら超電導線材5は、導体層12に接続する前に、並列した状態で線材5の軸方向と交差する方向に懸け渡される固定部材により一体化しておいても良い。この場合、超電導線材5を導体層12に取り付ける際、超電導線材5の位置決めを容易にできるし、複数の超電導線材5を一括して接続スリーブの外周に取り付けることも可能である。一体化物とした超電導線材5を導体層12に接続した後は、固定部材を外してもかまわない。固定部材は、耐熱性・絶縁性に優れるもので構成することが好ましく、例えば、カプトンテープ(商品名)や、ガラステープなどのテープ状や線状のものが利用できる。その他、固定部材は、柔軟なシート状のものであっても良い。   The number of superconducting wires 5 is the same as the number of superconducting wires constituting the one conductor layer 12, or one or two less than the number of superconducting wires constituting the one conductor layer 12. Is preferred. These superconducting wires 5 may be integrated by a fixing member suspended in a direction intersecting the axial direction of the wires 5 in a parallel state before being connected to the conductor layer 12. In this case, when the superconducting wire 5 is attached to the conductor layer 12, the superconducting wire 5 can be easily positioned, and a plurality of superconducting wires 5 can be attached to the outer periphery of the connection sleeve all at once. After connecting the superconducting wire 5 as an integrated product to the conductor layer 12, the fixing member may be removed. The fixing member is preferably made of a material having excellent heat resistance and insulation, and for example, a tape-shaped or linear material such as Kapton tape (trade name) or glass tape can be used. In addition, the fixing member may be a flexible sheet.

接続用超電導線材5は、図示しない導電性結合部材、例えば、Sn−Ag系の半田材により接続スリーブ8と一体化されている。導電性結合部材は、超電導線材5と接続スリーブ8との間だけでなく、超電導線材5同士の間にも入り込んで、全ての超電導線材5を一括して接続スリーブ8に一体化する。その結果、接続用超電導線材5の両端部が実質的に円錐面に、その中間部が実質的に円筒面に形成される。この導電性結合部材により、超電導線材5がスリーブ8から外れることを防止できる。また、導電性結合部材が、接続スリーブ8に作用するコア10の張力を分担するので、従来よりも筒の外径、即ち、断面積が小さな接続スリーブ8を使用することができる。   The connecting superconducting wire 5 is integrated with the connecting sleeve 8 by a conductive coupling member (not shown), for example, Sn-Ag solder material. The conductive coupling member enters not only between the superconducting wire 5 and the connection sleeve 8 but also between the superconducting wires 5 and integrates all the superconducting wires 5 into the connection sleeve 8 at once. As a result, both end portions of the connecting superconducting wire 5 are substantially formed in a conical surface, and an intermediate portion thereof is formed in a substantially cylindrical surface. This conductive coupling member can prevent the superconducting wire 5 from being detached from the sleeve 8. Further, since the conductive coupling member shares the tension of the core 10 acting on the connection sleeve 8, it is possible to use the connection sleeve 8 having a smaller outer diameter of the cylinder, that is, a cross-sectional area than the conventional one.

本実施形態における接続スリーブ8の寸法について具体的に言及する。まず、フォーマ11の端部同士が突き合わされた位置における圧縮後の接続スリーブ8の断面積Ss、同じ位置におけるフォーマの断面積(≒端面の面積)Sfとしたときに、Sf>Ss≧0.7×Sfの関係を満たす。つまり、図7(B)に示す従来の超電導ケーブルコアの接続構造Cでは、接続スリーブ80の断面積Ss0がフォーマ11の断面積Sfよりも大きかったのに対して、図1に示す本実施形態の超電導ケーブルコアの接続構造1では、SsがSfよりも小さくなっている。   The dimensions of the connection sleeve 8 in this embodiment will be specifically described. First, when the cross-sectional area Ss of the connection sleeve 8 after compression at the position where the ends of the former 11 are abutted, and the cross-sectional area of the former at the same position (≈the area of the end face) Sf, Sf> Ss ≧ 0. The relationship of 7 × Sf is satisfied. That is, in the conventional superconducting cable core connection structure C shown in FIG. 7B, the cross-sectional area Ss0 of the connection sleeve 80 is larger than the cross-sectional area Sf of the former 11, whereas this embodiment shown in FIG. In the superconducting cable core connection structure 1, Ss is smaller than Sf.

図1に示した構成の外周には、補強絶縁層や、コア10のシールド層同士を接続する超電導線材などが配置される。これら補強絶縁層以降の形成は、従来と同様であるので説明を省略する。   On the outer periphery of the configuration shown in FIG. 1, a reinforcing insulating layer, a superconducting wire that connects the shield layers of the core 10, and the like are disposed. Since the formation after the reinforcing insulating layer is the same as the conventional one, the description thereof is omitted.

以上のようにして形成された超電導ケーブルコアの接続構造1は、接続構造1に用いる接続スリーブ8の外径が従来よりも小さいため、従来のコアの接続構造よりも小型になる。   The superconducting cable core connection structure 1 formed as described above is smaller than the conventional core connection structure because the outer diameter of the connection sleeve 8 used in the connection structure 1 is smaller than the conventional one.

<引張り試験>
以上説明した実施形態1と同じ構成を有する模擬構造体を作製し、実際に超電導ケーブル線路の運転の際にコアの接続構造に作用する張力をかけて接続構造が維持されるかどうかを試験した。
<Tensile test>
A simulated structure having the same configuration as that of the first embodiment described above was produced, and whether or not the connection structure was maintained by applying tension acting on the core connection structure during the operation of the superconducting cable line was actually tested. .

試験に使用したフォーマは、銅素線を撚り合わせた撚り線とし、圧縮後の断面積Sfは約140mmであった。このフォーマの引張り強さは、約7kg/mmであった。このようなフォーマに対して、圧縮後の断面積Ssが約150mmから5mm刻みで小さくなる接続スリーブを用意し、試験を実施した。その結果、Ssが約150〜100mm(≒1.07Sf〜0.71×Sf)の範囲であれば接続構造が良好に維持され、Ssが95mm(≒0.67×Sf)であれば、スリーブに伸びが生じるなどの不具合が生じ、接続構造に不安があった。 The former used in the test was a stranded wire obtained by twisting copper strands, and the cross-sectional area Sf after compression was about 140 mm 2 . The former had a tensile strength of about 7 kg / mm 2 . For such a former, a connection sleeve having a cross-sectional area Ss after compression that decreases in steps of about 150 mm 2 to 5 mm 2 was prepared and tested. As a result, if Ss is in the range of about 150 to 100 mm 2 (≈1.07 Sf to 0.71 × Sf), the connection structure is maintained well, and if Ss is 95 mm 2 (≈0.67 × Sf). There were problems such as elongation of the sleeve, and there was anxiety in the connection structure.

(実施形態2)
実施形態2では、実施形態1の構成に加えて、超電導ケーブルコアにより接続スリーブに作用する張力を分担する補強部材を設けた例を図に基づいて説明する。この実施形態2では、実施形態1と共通する構成には同一の符号を付してその説明を省略する。
(Embodiment 2)
In the second embodiment, in addition to the configuration of the first embodiment, an example in which a reinforcing member that shares tension acting on the connection sleeve by the superconducting cable core is provided will be described with reference to the drawings. In this Embodiment 2, the same code | symbol is attached | subjected to the structure which is common in Embodiment 1, and the description is abbreviate | omitted.

図2(A)は実施形態2に係る超電導ケーブルコアの接続構造2の部分断面図であり、図2(B)は(A)のY−Y断面図である。   2A is a partial cross-sectional view of the superconducting cable core connection structure 2 according to the second embodiment, and FIG. 2B is a YY cross-sectional view of FIG.

超電導ケーブルコアの接続構造2は、接続スリーブ8の外周に懸け渡されて、接続スリーブ8に作用する張力を分担する補強部材6を有する。この補強部材6は、接続用超電導線材5と接続スリーブ8との間に配置され、その両端が接続スリーブ8と導体層12の端部との間に露出するフォーマ11の外周に接続されている。補強部材6と接続スリーブ8との接続は、例えば、半田などにより行えば良い。   The superconducting cable core connection structure 2 has a reinforcing member 6 that is suspended on the outer periphery of the connection sleeve 8 and shares the tension acting on the connection sleeve 8. The reinforcing member 6 is disposed between the connecting superconducting wire 5 and the connecting sleeve 8, and both ends thereof are connected to the outer periphery of the former 11 exposed between the connecting sleeve 8 and the end of the conductor layer 12. . The connection between the reinforcing member 6 and the connection sleeve 8 may be performed by, for example, solder.

補強部材6の厚さは、接続スリーブ8の外径と補強部材6の厚さを足した長さ(図2(B)のL)が、従来のスリーブの外径よりも小さくなるように選択すれば良い。補強部材6の分だけ、コアの接続構造2は実施形態1のものよりも大きくなる。   The thickness of the reinforcing member 6 is selected so that the length obtained by adding the outer diameter of the connection sleeve 8 and the thickness of the reinforcing member 6 (L in FIG. 2B) is smaller than the outer diameter of the conventional sleeve. Just do it. The core connection structure 2 is larger than that of the first embodiment by the amount of the reinforcing member 6.

補強部材6は、接続スリーブ8と同じ材料(例えば、銅やアルミニウム)で形成しても良いし、別の材料で形成しても良い。特に、ステンレスなどの、スリーブ8よりも引張り強さの大きな材料とすると、補強部材6が薄くても高い補強効果を奏することができる。また、補強部材6は、その表面にスリーブ8との密着性を高めるためのメッキを有していても良い。   The reinforcing member 6 may be formed of the same material as the connection sleeve 8 (for example, copper or aluminum), or may be formed of another material. In particular, when a material having a higher tensile strength than the sleeve 8 such as stainless steel is used, a high reinforcing effect can be obtained even if the reinforcing member 6 is thin. In addition, the reinforcing member 6 may have plating on the surface for improving the adhesion with the sleeve 8.

取り付け前の補強部材6は、接続用超電導線材5のように、複数本を固定部材により一体化した形態とすることが好ましい。このような構成であれば、補強部材6のフォーマ11に対する取り付けが容易になる。   It is preferable that the reinforcing member 6 before the attachment has a form in which a plurality of reinforcing members 6 are integrated by a fixing member, like the superconducting wire 5 for connection. With such a configuration, attachment of the reinforcing member 6 to the former 11 is facilitated.

以上説明した実施形態2の構成によれば、補強部材6が接続スリーブ8に作用する張力を分担するので、コアの接続構造2をより強固にすることができる。さらに、補強部材を設けることで、組立施工時の作業寸法公差・施工のばらつきを小さくすることができる。また、この構成では、接続用超電導線材5よりもコア10の内方側に補強部材6が配置されているので、補強部材6が、超電導線材5をコア10の導電層12に接続する際の邪魔とならない。   According to the configuration of the second embodiment described above, since the reinforcing member 6 shares the tension acting on the connection sleeve 8, the core connection structure 2 can be further strengthened. Furthermore, by providing the reinforcing member, it is possible to reduce work size tolerances and variations in construction during assembly work. Further, in this configuration, since the reinforcing member 6 is disposed on the inner side of the core 10 than the connecting superconducting wire 5, the reinforcing member 6 is used when the superconducting wire 5 is connected to the conductive layer 12 of the core 10. It won't get in the way.

(実施形態3)
実施形態3では、実施形態2で説明した補強部材6を実施形態2の超電導ケーブルコアの接続構造とは別の位置に設けた例を図に基づいて説明する。
(Embodiment 3)
Embodiment 3 demonstrates the example which provided the reinforcement member 6 demonstrated in Embodiment 2 in the position different from the connection structure of the superconducting cable core of Embodiment 2 based on figures.

図3(A)は実施形態3に係る超電導ケーブルコアの接続構造3の部分縦断面図であり、図3(B)は(A)のZ−Z断面図である。以下、補強部材6の配置を中心に説明する。   FIG. 3A is a partial longitudinal sectional view of the superconducting cable core connection structure 3 according to Embodiment 3, and FIG. 3B is a ZZ sectional view of FIG. Hereinafter, the arrangement of the reinforcing member 6 will be mainly described.

この実施形態では、補強部材6が、接続用超電導線材5と共に接続スリーブ8の周方向に並列されている。接続用超電導線材5の本数と補強部材6の本数の組み合わせ及び超電導線材5と補強部材6の並列順は、適宜選択すれば良い。補強部材6と超電導線材5とを並列することができるのは、超電導線材5同士の間隔が、接続スリーブ8により広げられているからである。また、接続スリーブ8から導体層12に向かって超電導線材5同士の間隔が狭まっていくが、補強部材6は導体層12に向かうに従って超電導線材5の下側にもぐり込む。そのため、超電導線材5が導体層12に接続されることを補強部材6が阻害することはない。   In this embodiment, the reinforcing member 6 is juxtaposed in the circumferential direction of the connecting sleeve 8 together with the connecting superconducting wire 5. The combination of the number of superconducting wires 5 for connection and the number of reinforcing members 6 and the parallel order of the superconducting wires 5 and the reinforcing members 6 may be appropriately selected. The reason why the reinforcing member 6 and the superconducting wire 5 can be arranged in parallel is that the interval between the superconducting wires 5 is widened by the connection sleeve 8. Further, the distance between the superconducting wires 5 decreases from the connection sleeve 8 toward the conductor layer 12, but the reinforcing member 6 gets under the superconducting wire 5 toward the conductor layer 12. Therefore, the reinforcing member 6 does not hinder the superconducting wire 5 from being connected to the conductor layer 12.

上述した超電導線材5と補強部材6とは、並列した状態で固定部材により一体化した構成としても良い。この場合、コアの接続構造3を形成する際の超電導線材5と補強部材6の取り付けが容易になる。具体的には、上記の一体化物を接続スリーブ8の外周に巻きつけて、まず補強部材6をフォーマ11の外周に接続する。そして、超電導線材5をコア10の導体層12に接続すると良い。   The superconducting wire 5 and the reinforcing member 6 described above may be integrated with a fixing member in a parallel state. In this case, the superconducting wire 5 and the reinforcing member 6 can be easily attached when the core connection structure 3 is formed. Specifically, the integrated product is wound around the outer periphery of the connection sleeve 8, and the reinforcing member 6 is first connected to the outer periphery of the former 11. The superconducting wire 5 is preferably connected to the conductor layer 12 of the core 10.

以上説明した実施形態3の構成によれば、実施形態1と同じサイズを有する超電導ケーブルコアの接続構造であって、同接続構造よりも強固な接続構造とすることができる。   According to the configuration of the third embodiment described above, it is a connection structure of a superconducting cable core having the same size as that of the first embodiment, and a connection structure stronger than the connection structure can be obtained.

(実施形態4)
実施形態4では、実施形態2,3の超電導ケーブルコアの接続構造とは別の位置に補強部材6を設けた例を図に基づいて説明する。
(Embodiment 4)
Embodiment 4 demonstrates the example which provided the reinforcement member 6 in the position different from the connection structure of the superconducting cable core of Embodiment 2,3 based on a figure.

図4(A)は実施形態4に係る超電導ケーブルコアの接続構造4の部分縦断面図であり、図4(B)は(A)のW−W断面図である。以下、補強部材6の配置を中心に説明する。   4A is a partial longitudinal sectional view of the superconducting cable core connection structure 4 according to the fourth embodiment, and FIG. 4B is a WW sectional view of FIG. Hereinafter, the arrangement of the reinforcing member 6 will be mainly described.

この実施形態では、補強部材6が、接続用超電導線材5の外周側に沿って配置されている。この補強部材6は、接続構造4に作用する張力を分担するだけでなく、超電導線材5を機械的に保護する役割を果たす。   In this embodiment, the reinforcing member 6 is disposed along the outer peripheral side of the connecting superconducting wire 5. This reinforcing member 6 serves not only to share the tension acting on the connection structure 4 but also to protect the superconducting wire 5 mechanically.

この実施形態で例示する補強部材6は、超電導線材5と同じ長さと、同じ幅を有し、超電導線材5をぴったり重なるようになっている。補強部材6と超電導線材5とは、接着剤などで接合しておくと、超電導線材5に作用する張力を補強部材6が効果的に分担することができる。また、補強部材6と超電導線材5とを接合した上で固定部材により一体化した構成とすると、実施形態3と同様にコアの接続構造4を形成する際の超電導線材5と補強部材6の取り付けが容易になる。   The reinforcing member 6 illustrated in this embodiment has the same length and the same width as the superconducting wire 5 and is superposed on the superconducting wire 5. When the reinforcing member 6 and the superconducting wire 5 are bonded with an adhesive or the like, the reinforcing member 6 can effectively share the tension acting on the superconducting wire 5. When the reinforcing member 6 and the superconducting wire 5 are joined and then integrated by the fixing member, the superconducting wire 5 and the reinforcing member 6 are attached when the core connection structure 4 is formed as in the third embodiment. Becomes easier.

補強部材6は、超電導線材5と異なる寸法を有していても良い。例えば、補強部材6を超電導線材5よりも長くしても良く、その場合、補強部材5の両端を超電導層12に接続するようにしても良い。また、補強部材6を超電導線材5よりも幅広のものとしても良く、その場合、補強部材6が隣接する2つの超電導線材5を繋ぐようにしても良い。また、補強部材6の本数は、適宜選択すれば良いが、いずれかの補強部材6がいずれかの超電導線材5に沿っている状態とすることが好ましい。   The reinforcing member 6 may have a size different from that of the superconducting wire 5. For example, the reinforcing member 6 may be longer than the superconducting wire 5, and in this case, both ends of the reinforcing member 5 may be connected to the superconducting layer 12. In addition, the reinforcing member 6 may be wider than the superconducting wire 5, and in that case, the reinforcing member 6 may connect two adjacent superconducting wires 5. Further, the number of the reinforcing members 6 may be selected as appropriate, but it is preferable that any one of the reinforcing members 6 is along any one of the superconducting wires 5.

以上説明した実施形態4の構成によれば、強固な接続構造とできる上、補強部材6が超電導線材5の外周を覆っているので、たとえば、接続スリーブ8の外周に補強絶縁層を形成する際に、超電導線材5が機械的に損傷することを防止できる。   According to the configuration of the fourth embodiment described above, a strong connection structure can be obtained, and the reinforcing member 6 covers the outer periphery of the superconducting wire 5. Therefore, for example, when a reinforcing insulating layer is formed on the outer periphery of the connecting sleeve 8 Moreover, it is possible to prevent the superconducting wire 5 from being mechanically damaged.

(実施形態5)
実施形態5では、多層の超電導導体層を備える超電導ケーブルコアの接続構造を図5に基づいて説明する。
(Embodiment 5)
In the fifth embodiment, a connection structure of a superconducting cable core having a multilayer superconducting conductor layer will be described with reference to FIG.

図5(A)は、3層の超電導導体層12(内周層12a、中間層12b、外周層12c)を備える超電導ケーブルコア10と、多層構成の接続用超電導線材5(5a〜5c)および補強部材6の一体化物との対応関係を説明する部分断面図である。また図5(B)は、図5(A)に示す一体化物のA−A断面図である。この場合、導体層12は、内周層12aの端部がフォーマ11の端部に近く、外周層12cの端部がフォーマ11の端部から遠くなるように段階的に露出される。   FIG. 5A shows a superconducting cable core 10 including three superconducting conductor layers 12 (inner peripheral layer 12a, intermediate layer 12b, and outer peripheral layer 12c), a superconducting wire 5 (5a-5c) for connection having a multilayer structure, and It is a fragmentary sectional view explaining the correspondence with the integrated object of the reinforcing member. FIG. 5B is a cross-sectional view taken along the line AA of the integrated body shown in FIG. In this case, the conductor layer 12 is exposed stepwise so that the end of the inner peripheral layer 12 a is close to the end of the former 11 and the end of the outer peripheral layer 12 c is far from the end of the former 11.

これに対して、接続用超電導線材5も、導体層12の段階構造に対応するよう、積層構造とする。具体的には、内周層12aに対応する超電導線材5aが短く、外周層12cに対応する超電導線材5cが長い構成とする。そして、導体層12bに対応する超電導線材5bが線材5aと5cの中間の長さ有する構成とする。これら積層された超電導線材5a〜5c同士は、導電性接着剤71,72(例えば半田など)で予め接合しておけば良い。   On the other hand, the connecting superconducting wire 5 has a laminated structure so as to correspond to the stepped structure of the conductor layer 12. Specifically, the superconducting wire 5a corresponding to the inner peripheral layer 12a is short and the superconducting wire 5c corresponding to the outer peripheral layer 12c is long. The superconducting wire 5b corresponding to the conductor layer 12b has a length intermediate between the wires 5a and 5c. These laminated superconducting wires 5a to 5c may be joined in advance with conductive adhesives 71 and 72 (for example, solder).

一方、補強部材6は、超電導線材5b,5cと共に積層された構成とし、接続スリーブ8の外周において超電導線材5aと並列されるようにする。この補強部材6の長さは、超電導線材5aよりも短くなるようにして、超電導線材5a〜5cの導体層12a〜12cとの接続の邪魔とならないようにする。なお、補強部材6は、超電導線材5b,5cと積層構造を形成せずに、単独で超電導線材5aと並列されるようにしても良い。この場合、補強部材6の厚さは、超電導線材5a〜5cの厚さと接着剤71,72の厚さを足した範囲で適宜選択することができる。   On the other hand, the reinforcing member 6 is configured to be laminated together with the superconducting wires 5b and 5c, and is arranged in parallel with the superconducting wire 5a on the outer periphery of the connection sleeve 8. The length of the reinforcing member 6 is made shorter than the superconducting wire 5a so as not to obstruct the connection of the superconducting wires 5a to 5c with the conductor layers 12a to 12c. The reinforcing member 6 may be arranged in parallel with the superconducting wire 5a alone without forming a laminated structure with the superconducting wires 5b and 5c. In this case, the thickness of the reinforcing member 6 can be appropriately selected within a range obtained by adding the thicknesses of the superconducting wires 5a to 5c and the thicknesses of the adhesives 71 and 72.

超電導線材5a〜5cの積層体と、補強部材6および超電導線材5b,5cの積層体とは並列して、適宜な固定部材9で一体化しておくことが好ましい。適宜な固定部材9で一体化されたものを取り付けるときは、一体化物を接続スリーブ8の外周に配置して、補強部材6を接続スリーブ8の外周に固定する。そして、超電導線材5aと導体層12a、超電導線材5bと導体層12b、超電導線材5cと導体層12cの順に接続していく。このような構成とすることにより、超電導ケーブルの接続構造を補強部材6で強固にすることができるし、突き合わされたコア10の導体層12a〜12c同士を接続することができる。   It is preferable that the laminated body of the superconducting wires 5a to 5c and the laminated body of the reinforcing member 6 and the superconducting wires 5b and 5c are integrated with an appropriate fixing member 9 in parallel. When attaching a unit integrated with an appropriate fixing member 9, the integrated member is disposed on the outer periphery of the connection sleeve 8, and the reinforcing member 6 is fixed to the outer periphery of the connection sleeve 8. Then, the superconducting wire 5a and the conductor layer 12a, the superconducting wire 5b and the conductor layer 12b, the superconducting wire 5c and the conductor layer 12c are connected in this order. By setting it as such a structure, the connection structure of a superconducting cable can be strengthened with the reinforcement member 6, and the conductor layers 12a-12c of the core 10 which faced can be connected.

なお、本発明の実施形態は、上述した実施の形態に限定されるわけではなく、発明の要旨を逸脱しない限りにおいて適宜、改良変更等は自由である。   The embodiments of the present invention are not limited to the above-described embodiments, and modifications and changes can be made as appropriate without departing from the gist of the invention.

本発明の超電導ケーブルコアの接続構造は、設置空間に制限のある場所に敷設される超電導ケーブル線路に好適に利用可能である。   The connection structure of the superconducting cable core of the present invention can be suitably used for a superconducting cable line laid in a place where the installation space is limited.

(A)は実施形態1に係る超電導ケーブルコアの接続構造を模式的に示す部分縦断面図であり、(B)は(A)のX−X断面図である。(A) is the fragmentary longitudinal cross-sectional view which shows typically the connection structure of the superconducting cable core which concerns on Embodiment 1, (B) is XX sectional drawing of (A). (A)は実施形態2に係る超電導ケーブルコアの接続構造を模式的に示す部分縦断面図であり、(B)は(A)のY−Y断面図である。(A) is the fragmentary longitudinal cross-sectional view which shows typically the connection structure of the superconducting cable core which concerns on Embodiment 2, (B) is YY sectional drawing of (A). (A)は実施形態3に係る超電導ケーブルコアの接続構造を模式的に示す部分縦断面図であり、(B)は(A)のZ−Z断面図である。(A) is the fragmentary longitudinal cross-sectional view which shows typically the connection structure of the superconducting cable core which concerns on Embodiment 3, (B) is ZZ sectional drawing of (A). (A)は実施形態4に係る超電導ケーブルコアの接続構造を模式的に示す部分縦断面図であり、(B)は(A)のW−W断面図である。(A) is the fragmentary longitudinal cross-sectional view which shows typically the connection structure of the superconducting cable core which concerns on Embodiment 4, (B) is WW sectional drawing of (A). (A)は多層の超電導導体層を備える超電導ケーブルコアと、多層構成の接続用超電導線材および補強部材の一体化物との接続を説明する概略図である。(B)は(A)に示す一体化物のA−A断面図である。(A) is the schematic explaining the connection of the superconducting cable core provided with a multilayer superconducting conductor layer, and the integrated thing of the superconducting wire for a connection of a multilayer structure, and a reinforcement member. (B) is AA sectional drawing of the integrated object shown to (A). 三心一括型の超電導ケーブルの横断面図である。It is a cross-sectional view of a three-core batch type superconducting cable. (A)は従来の超電導ケーブルコアの接続構造を模式的に示す部分縦断面図であり、(B)は(A)のP−P断面図である。(A) is the fragmentary longitudinal cross-sectional view which shows typically the connection structure of the conventional superconducting cable core, (B) is PP sectional drawing of (A).

符号の説明Explanation of symbols

1,2,3,4,C 超電導ケーブルコアの接続構造
5,5a,5b,5c 接続用超電導線材 7,71,72 導電性接着剤
6 補強部材
8,80 接続スリーブ 8h フォーマ挿入孔
9 固定部材
100 超電導ケーブル
10 超電導ケーブルコア
11 フォーマ 12,12a,12b,12c 超電導導体層 13 絶縁層
14 超電導シールド層 15 保護層
20 断熱管
21 内管 22 外管 23 防食層
Ss,Ss0 圧縮後の接続スリーブの断面積
Sf 圧縮後のフォーマの断面積
1, 2, 3, 4, C Superconducting cable core connection structure 5, 5a, 5b, 5c Superconducting wire for connection 7, 71, 72 Conductive adhesive 6 Reinforcement member 8, 80 Connection sleeve 8h Former insertion hole 9 Fixing member DESCRIPTION OF SYMBOLS 100 Superconducting cable 10 Superconducting cable core 11 Former 12, 12a, 12b, 12c Superconducting conductor layer 13 Insulating layer 14 Superconducting shield layer 15 Protective layer 20 Thermal insulation pipe 21 Inner pipe 22 Outer pipe 23 Corrosion-proof layer Ss, Ss0 Cross section Sf Cross section of former after compression

Claims (5)

フォーマの外周に超電導導体層を備える一対の超電導ケーブルコアと、これら超電導ケーブルコアのフォーマの端部同士を突き合わせた状態で圧縮接続する接続スリーブとを備える超電導ケーブルコアの接続構造であって、
前記接続スリーブの外周に配されて、両ケーブルコアの超電導導体層同士を電気的に接続する接続用超電導線材と、
前記接続用超電導線材を接続スリーブと一体化する導電性結合部材とを備え、
前記フォーマの端部同士が突き合わされた位置における圧縮後の接続スリーブの断面積をSs、同位置におけるフォーマの断面積をSfとしたときに、Ssが以下の範囲にあることを特徴とする超電導ケーブルコアの接続構造。
Sf>Ss≧0.7×Sf
A superconducting cable core connection structure comprising a pair of superconducting cable cores provided with a superconducting conductor layer on the outer periphery of the former, and a connection sleeve for compression connection in a state where the ends of the formers of these superconducting cable cores are butted together.
A superconducting wire for connection that is disposed on the outer periphery of the connection sleeve and electrically connects the superconducting conductor layers of both cable cores;
A conductive coupling member that integrates the connecting superconducting wire with a connection sleeve;
Superconductivity characterized in that Ss is in the following range, where Ss is the cross-sectional area of the connection sleeve after compression at the position where the ends of the former are abutted, and Sf is the cross-sectional area of the former at the same position. Cable core connection structure.
Sf> Ss ≧ 0.7 × Sf
前記接続スリーブの外周に懸け渡され、接続スリーブに作用する張力を分担する補強部材を備え、
接続スリーブと各超電導導体層の端部との間から露出するフォーマの外周に、前記補強部材の両端が接続されていることを特徴とする請求項1に記載の超電導ケーブルコアの接続構造。
A reinforcing member that is suspended on the outer periphery of the connection sleeve and shares the tension acting on the connection sleeve;
2. The superconducting cable core connection structure according to claim 1, wherein both ends of the reinforcing member are connected to the outer periphery of the former exposed from between the connection sleeve and the end of each superconducting conductor layer.
前記補強部材は、前記接続用超電導線材と接続スリーブとの間に配置されていることを特徴とする請求項2に記載の超電導ケーブルコアの接続構造。   The superconducting cable core connection structure according to claim 2, wherein the reinforcing member is disposed between the connecting superconducting wire and a connecting sleeve. 前記補強部材は、接続用超電導線材と共に、接続スリーブの周方向に並列されていることを特徴とする請求項2に記載の超電導ケーブルコアの接続構造。   The superconducting cable core connection structure according to claim 2, wherein the reinforcing member is juxtaposed in the circumferential direction of the connection sleeve together with the superconducting wire for connection. 前記接続スリーブの外周に懸け渡され、接続スリーブに作用する張力を分担する補強部材を備え、
前記補強部材は、前記接続用超電導線材の外周側に沿って配置されていることを特徴とする請求項1に記載の超電導ケーブルコアの接続構造。
A reinforcing member that is suspended on the outer periphery of the connection sleeve and shares the tension acting on the connection sleeve;
2. The superconducting cable core connection structure according to claim 1, wherein the reinforcing member is disposed along an outer peripheral side of the connection superconducting wire. 3.
JP2008179046A 2008-07-09 2008-07-09 Superconducting cable core connection structure Expired - Fee Related JP4751424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179046A JP4751424B2 (en) 2008-07-09 2008-07-09 Superconducting cable core connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179046A JP4751424B2 (en) 2008-07-09 2008-07-09 Superconducting cable core connection structure

Publications (2)

Publication Number Publication Date
JP2010020970A true JP2010020970A (en) 2010-01-28
JP4751424B2 JP4751424B2 (en) 2011-08-17

Family

ID=41705663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179046A Expired - Fee Related JP4751424B2 (en) 2008-07-09 2008-07-09 Superconducting cable core connection structure

Country Status (1)

Country Link
JP (1) JP4751424B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105364A1 (en) * 2012-01-10 2013-07-18 住友電気工業株式会社 Connecting structure for room-temperature insulation type superconductive cable
WO2015136813A1 (en) * 2014-03-13 2015-09-17 住友電気工業株式会社 Superconducting cable intermediate connection member and superconducting cable intermediate connection structure
EP2852001B1 (en) * 2013-09-19 2016-12-07 Nexans Superconducting cable joint
CN113418782A (en) * 2021-06-21 2021-09-21 国网上海市电力公司 Method for testing tensile property of three-core superconducting cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320564A (en) * 1994-05-25 1995-12-08 Sumitomo Electric Ind Ltd Superconducting cable
JPH11121059A (en) * 1997-10-20 1999-04-30 Fujikura Ltd Intermediate connection portion for superconducting cable
JP2005011669A (en) * 2003-06-19 2005-01-13 Sumitomo Electric Ind Ltd Joint structure of superconducting cable
JP2005251570A (en) * 2004-03-04 2005-09-15 Sumitomo Electric Ind Ltd Intermediate connection part of superconducting cable
JP2006320115A (en) * 2005-05-12 2006-11-24 Sumitomo Electric Ind Ltd Connecting part of superconductive cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320564A (en) * 1994-05-25 1995-12-08 Sumitomo Electric Ind Ltd Superconducting cable
JPH11121059A (en) * 1997-10-20 1999-04-30 Fujikura Ltd Intermediate connection portion for superconducting cable
JP2005011669A (en) * 2003-06-19 2005-01-13 Sumitomo Electric Ind Ltd Joint structure of superconducting cable
JP2005251570A (en) * 2004-03-04 2005-09-15 Sumitomo Electric Ind Ltd Intermediate connection part of superconducting cable
JP2006320115A (en) * 2005-05-12 2006-11-24 Sumitomo Electric Ind Ltd Connecting part of superconductive cable

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105364A1 (en) * 2012-01-10 2013-07-18 住友電気工業株式会社 Connecting structure for room-temperature insulation type superconductive cable
JP2013143823A (en) * 2012-01-10 2013-07-22 Sumitomo Electric Ind Ltd Connection structure of room-temperature insulation type superconducting cable
EP2852001B1 (en) * 2013-09-19 2016-12-07 Nexans Superconducting cable joint
WO2015136813A1 (en) * 2014-03-13 2015-09-17 住友電気工業株式会社 Superconducting cable intermediate connection member and superconducting cable intermediate connection structure
JP2015177605A (en) * 2014-03-13 2015-10-05 住友電気工業株式会社 Intermediate connection member for superconducting cables, and intermediate connection structure of superconducting cables
KR101823814B1 (en) * 2014-03-13 2018-01-30 스미토모 덴키 고교 가부시키가이샤 Joint part for superconducting cable and joint structure for superconducting cable
CN113418782A (en) * 2021-06-21 2021-09-21 国网上海市电力公司 Method for testing tensile property of three-core superconducting cable
CN113418782B (en) * 2021-06-21 2023-01-10 国网上海市电力公司 Method for testing tensile property of three-core superconducting cable

Also Published As

Publication number Publication date
JP4751424B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
TWI336982B (en) Joint of superconducting cable
JP5416509B2 (en) Intermediate connection structure of superconducting cable
JP2007287388A (en) Superconductive cable core, and superconductive cable
JP2004265715A (en) Terminal structure of superconducting cable for dc
WO2015019897A1 (en) Connection structure of superconducting cables, superconducting cable, and current terminal structure at end portion of superconducting cable
JP4374613B2 (en) Intermediate connection structure of superconducting cable
JP4751424B2 (en) Superconducting cable core connection structure
CN101091294A (en) Method for assembling interconnecting structure for superconducting cable
US11289966B2 (en) Prefabricated coil for a direct drive
US20090025979A1 (en) Coupling structure of superconducting cable
JP2006059695A (en) Superconductive cable
JP4904090B2 (en) Return conductor connection method for DC coaxial cable for electric power
KR101823814B1 (en) Joint part for superconducting cable and joint structure for superconducting cable
JP5003942B2 (en) Superconducting cable and superconducting cable connection
JP4716160B2 (en) Superconducting cable
JP4927794B2 (en) Superconducting cable former connection method and superconducting cable former connection structure
JP5257595B2 (en) Superconducting cable
JP4330008B2 (en) Superconducting cable pooling eye and laying method of superconducting cable using pooling eye
JP5273572B2 (en) Laying the superconducting cable
JP4795123B2 (en) Return conductor connection method for DC coaxial cable for electric power
JP4953069B2 (en) Superconducting cable terminal structure
JP5348511B2 (en) Superconducting cable and superconducting cable connection
CN216448850U (en) Breakage-proof structure of lead-out wire of linear displacement sensor
JP2006276606A (en) Loose tube type submarine optical fiber cable
JP4544433B2 (en) Intermediate connection of superconducting cable

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Ref document number: 4751424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees