JP2006320115A - Connecting part of superconductive cable - Google Patents

Connecting part of superconductive cable Download PDF

Info

Publication number
JP2006320115A
JP2006320115A JP2005140429A JP2005140429A JP2006320115A JP 2006320115 A JP2006320115 A JP 2006320115A JP 2005140429 A JP2005140429 A JP 2005140429A JP 2005140429 A JP2005140429 A JP 2005140429A JP 2006320115 A JP2006320115 A JP 2006320115A
Authority
JP
Japan
Prior art keywords
insulating layer
resistivity
layer
electric field
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005140429A
Other languages
Japanese (ja)
Inventor
Yuichi Ashibe
祐一 芦辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005140429A priority Critical patent/JP2006320115A/en
Publication of JP2006320115A publication Critical patent/JP2006320115A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connector of a superconductive cable that can smooth DC field distribution in the connector. <P>SOLUTION: The connector 30 of the superconductive cable comprises a superconductor 12; a conductor connector (conductor connecting sleeve 32) that connects the superconductor 12 and an object to be connected; an insulating layer 13 that covers a part of the superconductor by exposing the superconductor partially; and a reinforcing insulating layer 31 that covers at least the conductor connecting part, the exposed superconductor 12, and ends of the insulating layer 13. On the reinforcing insulating layer 31, there are formed places whose resistivity locally differ from one another to control the DC field distribution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超電導ケーブルの接続部に関するものである。特に、直流電界分布を制御できる超電導ケーブルの接続部に関するものである。   The present invention relates to a connecting portion of a superconducting cable. In particular, the present invention relates to a connection part of a superconducting cable capable of controlling a DC electric field distribution.

超電導ケーブルとして、図7に記載の直流超電導ケーブルが提案されている。この超電導ケーブル100は、3条のケーブルコア10を撚り合わせた多芯コアを断熱管20内に収納した構成である。   As a superconducting cable, a DC superconducting cable shown in FIG. 7 has been proposed. The superconducting cable 100 has a configuration in which a multicore core obtained by twisting three cable cores 10 is housed in a heat insulating tube 20.

各ケーブルコア10は、中心から順にフォーマ11、超電導導体12、絶縁層13、外部導体層14、保護層15を具えている。通常、絶縁層13は絶縁紙を巻回して構成される。超電導導体12及び外部導体層14はいずれも、超電導線材にて形成されている。外部導体層14は、例えば超電導導体12を電流往路とした場合の電流帰路として利用される。一方、断熱管20は、内管21と外管22とからなる二重管の間に断熱材(図示せず)が配置され、かつ二重管内が真空引きされた構成である。断熱管20の外側には、防食層23が形成されている。このようなケーブルにおいて、通常、内管21と各ケーブルコア10とで囲まれる空間が冷媒の流路となる。   Each cable core 10 includes a former 11, a superconducting conductor 12, an insulating layer 13, an outer conductor layer 14, and a protective layer 15 in order from the center. Usually, the insulating layer 13 is formed by winding insulating paper. Both the superconducting conductor 12 and the outer conductor layer 14 are formed of a superconducting wire. The outer conductor layer 14 is used as a current return path when, for example, the superconducting conductor 12 is used as a current forward path. On the other hand, the heat insulating tube 20 has a structure in which a heat insulating material (not shown) is disposed between the double tubes composed of the inner tube 21 and the outer tube 22, and the inside of the double tube is evacuated. An anticorrosion layer 23 is formed outside the heat insulating tube 20. In such a cable, a space surrounded by the inner tube 21 and each cable core 10 is usually a refrigerant flow path.

このような超電導ケーブルを用いて長距離に亘る線路を構築する場合、線路途中において、異なるケーブルから引き出したケーブルコア同士を接続する中間接続部が必要となる。この中間接続部として、例えば、特許文献1に記載のものがある。この中間接続部は、接続箱に収納したケーブルコア端部を段剥ぎして超電導導体を露出させ、各コアの超電導導体同士を接続スリーブにて接続し、露出した超電導導体及び接続スリーブの外周にストレスコーンを形成する構成である。   When constructing a line over a long distance using such a superconducting cable, an intermediate connection part for connecting cable cores drawn from different cables is required in the middle of the line. An example of the intermediate connection portion is described in Patent Document 1. The intermediate connection portion is formed by stepping off the end portion of the cable core stored in the connection box to expose the superconducting conductors, connecting the superconducting conductors of each core with a connecting sleeve, and connecting the outer periphery of the exposed superconducting conductor and the connecting sleeve. It is the structure which forms a stress cone.

一方、常電導ケーブルでは、絶縁層における直流電界の高くなる箇所に局部的なρグレーディングを形成して、その部分の直流電界を下げることが行われている(例えば特許文献2)。   On the other hand, in a normal conducting cable, local ρ grading is formed at a portion where the DC electric field in the insulating layer is high, and the DC electric field at that portion is lowered (for example, Patent Document 2).

常電導ケーブル、例えば直流OFケーブルでは、負荷に応じて絶縁層の径方向に温度勾配が発生し、それに伴って絶縁層の直流電界分布が大きく変化する。これは、直流の電界分布を決める絶縁層の抵抗率(ρ)が温度により大きく変化し、温度が高いほど抵抗率が小さくなるためである。図8に示すように、例えば、負荷がないときは、絶縁層中の温度がほぼ一定のため、電界の円筒座標構造により、導体側(内周側)の電界が高く、シース側(外周側)の電界が低い。一方、負荷がかかると導体側の温度がシース側の温度に比べて高くなり、導体側の抵抗率が小さく、シース側の抵抗率が大きくなる。そのため、抵抗率に依存する直流の電界分布は、シース側の電界が高くなり、導体側の電界が低くなる。   In a normal conducting cable, for example, a DC OF cable, a temperature gradient is generated in the radial direction of the insulating layer in accordance with the load, and the DC electric field distribution of the insulating layer changes greatly accordingly. This is because the resistivity (ρ) of the insulating layer that determines the DC electric field distribution varies greatly with temperature, and the resistivity decreases with increasing temperature. As shown in FIG. 8, for example, when there is no load, the temperature in the insulating layer is almost constant, so the electric field on the conductor side (inner side) is high due to the cylindrical coordinate structure of the electric field, and the sheath side (outer side) ) Electric field is low. On the other hand, when a load is applied, the temperature on the conductor side becomes higher than the temperature on the sheath side, the resistivity on the conductor side is small, and the resistivity on the sheath side is large. Therefore, in the DC electric field distribution depending on the resistivity, the electric field on the sheath side is high and the electric field on the conductor side is low.

このように、常電導ケーブルでは負荷によって最大電界強度となる位置が変化し、通常、最大負荷時のシース側の電界ストレスが絶縁層の弱点になることから、絶縁層におけるシース側の電界強度を下げるために、シース側に抵抗率の小さいクラフト紙を適用して局部的なρグレーディングを施すことが行われている。   As described above, in the normal conducting cable, the position where the maximum electric field strength changes depending on the load, and since the electric field stress on the sheath side at the maximum load usually becomes a weak point of the insulating layer, the electric field strength on the sheath side in the insulating layer is reduced. In order to lower it, local ρ grading is performed by applying a kraft paper having a low resistivity on the sheath side.

特開2000-340274号公報(図1)JP 2000-340274 A (Fig. 1) 特開平11-224546号公報(図13、図14)Japanese Patent Laid-Open No. 11-224546 (FIGS. 13 and 14)

しかし、従来の超電導ケーブルでは、絶縁層が内周側から外周側にわたって一様な電気特性の材料で構成されており、最大電界強度となる箇所の電界強度を局部的に緩和することはもちろん、絶縁層の厚さ方向全体にわたって直流の電界分布を平滑化するための工夫もなされていない。このような工夫がなされていないことは中間接続部あるいは終端接続部においても同様である。そのため、超電導ケーブルの接続部においても、より絶縁特性に優れた絶縁構造が求められている。   However, in the conventional superconducting cable, the insulating layer is composed of a material having uniform electrical characteristics from the inner peripheral side to the outer peripheral side, and of course, locally relieving the electric field strength at the point where the maximum electric field strength is reached, There is no contrivance for smoothing the DC electric field distribution over the entire thickness direction of the insulating layer. The fact that such a device has not been made also applies to the intermediate connection part or the terminal connection part. Therefore, there is a demand for an insulating structure with even better insulating properties at the connection portion of the superconducting cable.

その際、常電導ケーブルで既に利用されているρグレーディングなどの絶縁設計技術をそのまま超電導ケーブルの接続部に転用することも考えられる。しかし、常電導ケーブルでは負荷の状態によって絶縁層の径方向の温度分布が大きく変化するのに対し、超電導ケーブルおよびその接続部では絶縁層が極低温状態に保持されているという特殊事情がある。そのため、超電導ケーブルの接続部では、その直流電界分布を負荷時・無負荷時の区別なく一義的に設計することが可能で、この事情を考慮して常電導ケーブルとは異なった手法により絶縁設計がなされるべきである。   At that time, it is also conceivable to divert the insulation design technology such as ρ grading already used in the normal conducting cable to the connecting portion of the superconducting cable as it is. However, in the normal conducting cable, the temperature distribution in the radial direction of the insulating layer varies greatly depending on the state of the load, whereas in the superconducting cable and its connecting portion, there is a special circumstance that the insulating layer is kept in a cryogenic state. Therefore, it is possible to unambiguously design the DC electric field distribution at the connection part of the superconducting cable regardless of whether it is loaded or not loaded. In consideration of this situation, the insulation design is performed by a method different from that of the normal conducting cable. Should be made.

本発明は上記の事情に鑑みてなされたもので、その主目的は、接続部における直流電界分布を制御できる超電導ケーブルの接続部を提供することにある。   This invention is made | formed in view of said situation, The main objective is to provide the connection part of the superconducting cable which can control the DC electric field distribution in a connection part.

本発明者は、超電導ケーブルの接続部には超電導ケーブルの接続部に適した絶縁設計の手法があるはずであるとの考えの下、超電導ケーブルの接続部における直流の電界分布に関して種々の検討を行った結果、本発明を完成するに至った。   The present inventor has conducted various studies on the DC electric field distribution in the superconducting cable connection, considering that there should be an insulation design method suitable for the superconducting cable connection in the superconducting cable connection. As a result, the present invention has been completed.

本発明超電導ケーブルの接続部は、超電導導体と、超電導導体と接続対象とをつなぐ導体接続部と、超電導導体を部分的に露出させて覆う絶縁層と、少なくとも導体接続部、露出した超電導導体および絶縁層の端部を覆う補強絶縁層とを有する超電導ケーブルの接続部である。ここで、補強絶縁層には、直流電界分布を制御するように、局部的に抵抗率ρが相違する箇所を設けたことを特徴とする。   The connection part of the superconducting cable of the present invention includes a superconducting conductor, a conductor connecting part that connects the superconducting conductor and a connection target, an insulating layer that partially exposes the superconducting conductor, and at least a conductor connecting part, an exposed superconducting conductor, and It is the connection part of the superconducting cable which has a reinforcement insulation layer which covers the edge part of an insulation layer. Here, the reinforcing insulating layer is characterized in that a portion where the resistivity ρ is locally different is provided so as to control the DC electric field distribution.

超電導ケーブルは、そのケーブルに用いられる超電導線材を極低温に冷却する必要上、負荷の変動による絶縁層の温度変化も小さく、常電導ケーブルに比べれば非常に温度が安定した絶縁層を有している。そのため、超電導ケーブルの絶縁層では負荷に関わらずほぼ一様な電界分布となっており、常電導ケーブルの絶縁層のように、無負荷時と最大負荷時で最大電界強度となる位置が変わることもない。このことは接続部の構成部材として用いられる補強絶縁層においても同様である。そこで、接続部の補強絶縁層において、局部的に抵抗率ρが相違する箇所を設けることで、適切に直流電界分布を制御することができ、接続部の電気特性を向上させることができる。   A superconducting cable has an insulating layer with a very stable temperature compared to a normal conducting cable because the superconducting wire used for the cable needs to be cooled to a very low temperature and the temperature change of the insulating layer due to load fluctuations is small. Yes. Therefore, the electric field distribution is almost uniform regardless of the load in the insulation layer of the superconducting cable, and the position where the maximum electric field strength is changed between no load and maximum load like the insulation layer of the normal conduction cable. Nor. The same applies to the reinforcing insulating layer used as a constituent member of the connection portion. Therefore, by providing a location where the resistivity ρ is locally different in the reinforcing insulating layer of the connection portion, the DC electric field distribution can be appropriately controlled, and the electrical characteristics of the connection portion can be improved.

以下、本発明の接続部をより詳しく説明する。
本発明接続部は、中間接続部はもちろん、終端接続部においても適用できる。これらの接続部は、超電導ケーブルの端部に形成される。超電導ケーブルの構成は特に問わない。代表的には、ケーブルコアと、ケーブルコアを収納する断熱管とから構成される超電導ケーブルの端部に接続部が形成される。そのうち、ケーブルコアは、フォーマ、超電導導体、絶縁層を有することを基本構成とする。中間・終端接続部のいずれであっても、ケーブル端部を段剥ぎし、超電導導体や絶縁層を部分的に露出させて、その露出箇所に接続部の形成が行われる。中間接続部の場合、通常、一方のケーブルの超電導導体を他方のケーブルの超電導導体と突き合せて導体接続部を介して接続される。終端接続部の場合、通常、超電導ケーブルの超電導導体は銅などの電流リードと導体接続部を介して接続される。導体接続部は、例えば、少なくとも両端部が中空部なった導電部材を用い、超電導導体を中空部にはめ込んで半田付けしたり、電流リードを中空部にはめ込んで圧縮接続あるいはマルチコンタクトで接続することにより構成される。そして、少なくとも導体接続部、露出した超電導導体、絶縁層の端部までの範囲を補強絶縁層で覆う。
Hereinafter, the connecting portion of the present invention will be described in more detail.
The connection part of the present invention can be applied not only to the intermediate connection part but also to the terminal connection part. These connections are formed at the ends of the superconducting cable. The configuration of the superconducting cable is not particularly limited. Typically, a connection portion is formed at an end portion of a superconducting cable that includes a cable core and a heat insulating tube that houses the cable core. Among them, the cable core has a basic configuration including a former, a superconducting conductor, and an insulating layer. In either of the intermediate and terminal connection portions, the cable end portion is stripped, the superconducting conductor and the insulating layer are partially exposed, and the connection portion is formed at the exposed portion. In the case of the intermediate connection part, the superconducting conductor of one cable is usually abutted with the superconducting conductor of the other cable and connected via the conductor connecting part. In the case of a termination connection portion, the superconducting conductor of the superconducting cable is usually connected to a current lead such as copper via a conductor connecting portion. For the conductor connection part, for example, a conductive member having at least both ends hollow is used, and the superconducting conductor is fitted into the hollow part and soldered, or the current lead is fitted into the hollow part and connected by compression connection or multi-contact. Consists of. Then, at least the conductor connection portion, the exposed superconducting conductor, and the end of the insulating layer are covered with the reinforcing insulating layer.

このような接続部における直流電界分布を制御するには、大別して2通りの考え方がある。一つは直流電界が高い箇所に他の箇所よりも抵抗率が低い材料を用いて、その箇所の電界を緩和することであり、もう一つは直流電界が高い箇所に他の箇所よりも抵抗率が高く、かつ直流耐電圧特性の高い材料を用いることで直流電界ストレスに耐えられるようにすることである。以下、前者を低ρタイプ、後者を高ρタイプと呼ぶ。   There are roughly two ways to control the DC electric field distribution in such a connection. One is to relieve the electric field at the location where the DC electric field is high and use a material with lower resistivity than the other location, and the other is the resistance to the location where the DC electric field is high compared to other locations. By using a material having a high rate and a high DC withstand voltage characteristic, it is possible to withstand DC electric field stress. Hereinafter, the former is called a low ρ type, and the latter is called a high ρ type.

接続部で直流電界が他の箇所に比べて高くなる箇所としては、導体接続部の直上、絶縁層の端部をテーパー状に形成したペンシルダウン部の外側および絶縁層の外側に形成されるストレスコーンの立ち上がり部近傍が挙げられる。低ρタイプの場合、これら直流電界が高くなる箇所の少なくとも1箇所に他の箇所に比べて抵抗率が低い絶縁材料を適用する。高ρタイプの場合、これら直流電界が高くなる箇所の少なくとも1箇所に他の箇所に比べて抵抗率が高く、直流耐電圧特性の高い絶縁材料を適用する。   The locations where the DC electric field is higher than other locations at the connection include stresses formed directly above the conductor connection, outside the pencil-down portion where the end of the insulating layer is tapered, and outside the insulating layer The vicinity of the rising part of a cone is mentioned. In the case of the low rho type, an insulating material having a lower resistivity than that of the other part is applied to at least one of the parts where the DC electric field becomes high. In the case of the high ρ type, an insulating material having a high resistivity and a high DC withstand voltage characteristic is applied to at least one of the locations where the DC electric field is high, compared to other locations.

補強絶縁層に局部的に抵抗率の異なる箇所を形成する具体的な形態としては、補強絶縁層の厚さ方向にわたって抵抗率が異なる層を形成してρグレーディングを施すことや、直流電界の高くなる箇所のみ部分的に抵抗率の異なる材料を用いることでρグレーディングを施すことが挙げられる。   As a specific form of locally forming a portion having a different resistivity in the reinforcing insulating layer, a layer having a different resistivity over the thickness direction of the reinforcing insulating layer is formed and ρ grading is performed, or a high DC electric field is applied. It can be mentioned that ρ grading is performed by using a material having a partially different resistivity only at a certain point.

補強絶縁層の厚さ方向にわたって抵抗率が異なる層を形成した場合、補強絶縁層は抵抗率が段階的または連続的に異なる複数層から構成されることになる。その際、層数は特に問わない。実用的には、2層あるいは3層程度が好ましいが、この層数を増やすことで補強絶縁層の厚さ方向に実質的に連続して抵抗率が変化する補強絶縁層を構成することができる。   When layers having different resistivity over the thickness direction of the reinforcing insulating layer are formed, the reinforcing insulating layer is composed of a plurality of layers having different resistivities stepwise or continuously. In that case, the number of layers is not particularly limited. Practically, two or three layers are preferable, but by increasing the number of layers, a reinforcing insulating layer whose resistivity changes substantially continuously in the thickness direction of the reinforcing insulating layer can be configured. .

低ρタイプにおいて、補強絶縁層の内周側の抵抗率が低く、外周側の抵抗率が高くなるように、その厚さ方向の全体にわたってρグレーディングを施せば、補強絶縁層の厚さ方向全体の直流電界分布を平滑化でき、補強絶縁層の厚みを低減することができる。特に、補強絶縁層を構成する各層の厚みは極力均等にすることが望ましい。抵抗率の異なる各層の厚みが均等であれば、絶縁層の厚さ方向における直流電界分布の平滑化がより効果的に行える。   In the low ρ type, if the ρ grading is applied throughout the thickness direction so that the resistivity on the inner peripheral side of the reinforcing insulating layer is low and the resistivity on the outer peripheral side is high, the entire thickness of the reinforcing insulating layer is The DC electric field distribution can be smoothed, and the thickness of the reinforcing insulating layer can be reduced. In particular, it is desirable that the thickness of each layer constituting the reinforcing insulating layer be as uniform as possible. If the thicknesses of the layers having different resistivity are equal, the DC electric field distribution in the thickness direction of the insulating layer can be smoothed more effectively.

一方、直流電界の高くなる箇所のみ部分的に抵抗率の異なる材料を用いた場合、低ρタイプでは、その箇所の直流電界を緩和し、高ρタイプでは、その箇所の直流電界は高いが、その電界に十分に耐えられる直流耐電圧特性を備えることとなる。   On the other hand, when a material with a partially different resistivity is used only at a location where the DC electric field is high, the low ρ type relaxes the DC electric field at that location, and the high ρ type has a high DC electric field at that location, DC withstand voltage characteristics that can sufficiently withstand the electric field are provided.

直流電界の高くなる箇所のみ抵抗率の異なる材料を配するには、例えば、両端部がテーパー状に形成された抵抗率ρ1の補強絶縁層の主要部を形成し、このテーパー部の上にのみ抵抗率ρ2(但し、ρ2<ρ1)の絶縁材料をほぼ均等な厚さに巻回して、ストレスコーンの立ち上がり部の直流電界ストレスを緩和することが挙げられる。一般に、補強絶縁層の材料は、テープ材であるため、抵抗率の異なる複数のテープ材を用いることで局部的に抵抗率の異なる箇所を容易に形成できる。   In order to distribute materials having different resistivity only at the location where the DC electric field is high, for example, the main part of the reinforcing insulating layer having resistivity ρ1 having both ends tapered is formed, and only on the tapered portion. For example, an insulating material having a resistivity ρ2 (where ρ2 <ρ1) is wound to a substantially uniform thickness to alleviate the DC electric field stress at the rising portion of the stress cone. In general, since the material of the reinforcing insulating layer is a tape material, a portion having a different resistivity can be easily formed locally by using a plurality of tape materials having different resistivity.

その他、エポキシベルマウスを用いても良い。エポキシベルマウスであれば予め所定形状に成形しておくため、補強絶縁層の主要部を形成した後、この主要部に局部的に装着でき、作業性よく直流電界の高くなる箇所のみ抵抗率の異なる材料を配することができる。エポキシ樹脂の抵抗率ρは、石英配合材で約2.0×1017Ω・cm(0℃)、溶融石英配合材で約7.0×1017Ω・cm(0℃)、アルミナ配合材で約5.0×1017Ω・cm(0℃)である。従って、低ρタイプか高ρタイプかに応じて、適宜エポキシベルマウスの抵抗率を選択すればよい。 In addition, an epoxy bell mouth may be used. In the case of an epoxy bell mouth, since the main part of the reinforcing insulating layer is formed in advance in a predetermined shape, it can be locally attached to this main part, and the resistivity is high only in a portion where the DC electric field is high with good workability. Different materials can be arranged. The resistivity ρ of epoxy resin is about 2.0 × 10 17 Ω · cm (0 ° C) for the quartz compound material, about 7.0 × 10 17 Ω · cm (0 ° C) for the fused silica compound material, and about 5.0 × for the alumina compound material. 10 17 Ω · cm (0 ° C). Therefore, the resistivity of the epoxy bell mouth may be selected as appropriate depending on whether the low ρ type or the high ρ type.

もちろん、径方向に抵抗率の異なる層を形成することに加え、直流電界の高くなる箇所に局部的に抵抗率の異なる材料を配することを組み合わせても良い。   Of course, in addition to forming layers having different resistivities in the radial direction, a combination of locally dissipating materials having different resistivities may be combined at locations where the DC electric field is high.

ρグレーディングを施すには、抵抗率(ρ)の異なる絶縁材料を用いる必要がある。抵抗率を変える代表的な手段としては、次のものがある。   In order to perform ρ grading, it is necessary to use insulating materials having different resistivity (ρ). Typical means for changing the resistivity include the following.

絶縁紙の場合、例えばクラフト紙の密度を変えることで抵抗率を変えることができる。また、クラフト紙にジシアンジアミドを添加したり、クラフト紙をシアノエチル紙で構成することにより、抵抗率が一般的なクラフト紙よりも低い低抵抗クラフト紙とすることができる。一般的なクラフト紙の抵抗率ρ(20℃)は1014〜1017Ω・cm程度、低抵抗クラフト紙の同抵抗率は一般的なクラフト紙の抵抗率の半分ぐらいである。 In the case of insulating paper, for example, the resistivity can be changed by changing the density of kraft paper. Further, by adding dicyandiamide to kraft paper or forming kraft paper with cyanoethyl paper, a low resistance kraft paper having a resistivity lower than that of general kraft paper can be obtained. The resistivity ρ (20 ° C.) of general kraft paper is about 10 14 to 10 17 Ω · cm, and the resistivity of low resistance kraft paper is about half of the resistivity of general kraft paper.

絶縁紙とプラスチックフィルムからなる複合紙には、代表的にはポリプロピレンフィルムにクラフト紙をラミネートしたもの(PPLP:住友電気工業株式会社の登録商標)が挙げられる。この種の複合紙において、複合紙全体の厚みTに対するプラスチックフィルムの厚みtpの比率(tp/T)×100を変えることにより抵抗率の異なる複合紙を得ることができる。ここでは、この比率(tp/T)×100をk値とし、この比率kの値を例えば40%〜90%程度の範囲で変化させることにより抵抗率を変えればよい。通常、比率kが大きいほど抵抗率ρが大きくなる。例えば、比率kが40%の複合紙の抵抗率ρ(20℃)は1016〜1018Ω・cm程度、同60%の複合紙の抵抗率ρ(20℃)は1017〜1019Ω・cm程度、同80%の複合紙の抵抗率ρ(20℃)は1018〜1020Ω・cm程度である。さらに、複合紙を構成する絶縁紙の密度、材質、添加物などを変えることでも複合紙の抵抗率を変えることができる。 A composite paper made of insulating paper and plastic film typically includes a polypropylene film laminated with kraft paper (PPLP: registered trademark of Sumitomo Electric Industries, Ltd.). In this type of composite paper, composite paper having different resistivity can be obtained by changing the ratio of the thickness tp of the plastic film to the thickness T of the composite paper (tp / T) × 100. Here, the ratio (tp / T) × 100 is set as a k value, and the resistivity may be changed by changing the value of the ratio k in a range of about 40% to 90%, for example. Usually, the resistivity ρ increases as the ratio k increases. For example, the resistivity ρ (20 ° C) of composite paper with a ratio k of 40% is about 10 16 to 10 18 Ω · cm, and the resistivity ρ (20 ° C) of 60% composite paper is 10 17 to 10 19 Ω.・ The resistivity ρ (20 ° C.) of the composite paper of about 80% is about 10 18 to 10 20 Ω · cm. Furthermore, the resistivity of the composite paper can also be changed by changing the density, material, additive, etc. of the insulating paper constituting the composite paper.

以上の絶縁紙と複合紙を用いて補強絶縁層にρグレーディングを構成する場合、例えば、次の構成が考えられる。   When the ρ grading is formed on the reinforcing insulating layer using the above insulating paper and composite paper, for example, the following configuration can be considered.

A:絶縁紙だけを用いる場合
(1)密度の低い絶縁紙で低ρ層を形成し、その外側に密度の高い絶縁紙で高ρ層を形成する。
(2)抵抗率の低い材質からなる絶縁紙で低ρ層を形成し、その外側に抵抗率の高い材質からなる絶縁紙で高ρ層を形成する。
(3)添加物を加えることで抵抗率を低くした絶縁紙で低ρ層を形成し、その外側に添加物のない絶縁紙で高ρ層を形成する。
A: When using only insulating paper
(1) A low rho layer is formed of insulating paper having a low density, and a high rho layer is formed of insulating paper having a high density on the outside thereof.
(2) A low rho layer is formed with insulating paper made of a material having a low resistivity, and a high rho layer is formed outside with an insulating paper made of a material with a high resistivity.
(3) A low ρ layer is formed with insulating paper having a low resistivity by adding an additive, and a high ρ layer is formed with insulating paper having no additive on the outside thereof.

B:複合紙だけを用いる場合
(1)比率kの低い複合紙で低ρ層を形成し、その外側に比率kの高い複合紙で高ρ層を形成する。
(2)複合紙を構成する絶縁紙の抵抗率を上記Aの手法で変えて、絶縁層の内側に低ρ層を形成し、その外側に高ρ層を形成する。
B: When only composite paper is used
(1) A low rho layer is formed with composite paper having a low ratio k, and a high rho layer is formed with composite paper having a high ratio k on the outside thereof.
(2) The resistivity of the insulating paper constituting the composite paper is changed by the method A, and a low ρ layer is formed inside the insulating layer, and a high ρ layer is formed outside the insulating layer.

C:絶縁紙と複合紙を組み合わせる場合
(1)絶縁紙と複合紙を交互に巻いて低ρ層を形成し、その低ρ層の外周に複合紙だけを巻いて高ρ層を形成する。
(2)絶縁紙と複合紙を交互に巻いて絶縁層を構成し、上記AまたはBの手法で絶縁紙または複合紙の抵抗率を変えることにより絶縁層の内側に低ρ層を形成し、その外側に高ρ層を形成する。例えば、絶縁紙と比率kが低い複合紙を交互に巻いて低ρ層を形成し、その外側に絶縁紙と比率kが高い複合紙を交互に巻いて高ρ層を形成する。
(3)絶縁紙だけで低ρ層を形成し、その外側に複合紙だけで高ρ層を形成する。その場合、低ρ層は内側から外側に向けて抵抗率が高くなるように絶縁紙を巻くことが好ましい。
C: When combining insulating paper and composite paper
(1) A low ρ layer is formed by alternately winding insulating paper and composite paper, and a high ρ layer is formed by winding only composite paper around the periphery of the low ρ layer.
(2) Insulating paper and composite paper are alternately wound to form an insulating layer, and the low ρ layer is formed inside the insulating layer by changing the resistivity of the insulating paper or composite paper by the above method A or B. A high ρ layer is formed on the outside. For example, insulating paper and composite paper having a low ratio k are alternately wound to form a low ρ layer, and insulating paper and composite paper having a high ratio k are alternately wound on the outer side to form a high ρ layer.
(3) A low rho layer is formed only with insulating paper, and a high rho layer is formed only with composite paper on the outside. In that case, the low ρ layer is preferably wrapped with insulating paper so that the resistivity increases from the inside toward the outside.

以上の各構成において、絶縁紙だけで補強絶縁層を構成する構造が最も低コストである。複合紙と絶縁紙とを複合して用いれば、複合紙のみで補強絶縁層を構成する場合に比べて高価な複合紙の使用量を低減でき、接続部を構成する材料のコストを下げることができる。   In each of the above-described configurations, the structure in which the reinforcing insulating layer is configured only with insulating paper is the lowest cost. If composite paper and insulating paper are used in combination, the amount of expensive composite paper used can be reduced and the cost of the material constituting the connecting portion can be reduced compared to the case where the reinforcing insulating layer is composed of only composite paper. it can.

複合紙を補強絶縁層に用いる場合、比率kが60%以上の複合紙を用いてρグレーディングを形成することが好ましい。より好ましくは、補強絶縁層の全てを比率kが60%以上の複合紙で構成することである。複合紙を構成する絶縁紙とプラスチックフィルムの各抵抗率の違いにより、直流電界ストレスは直流耐電圧特性に優れたプラスチックフィルムに大きくかかる。そのため、補強絶縁層に占めるプラスチックフィルムの比率を高めることで補強絶縁層の直流耐電圧特性を改善し、補強絶縁層の厚みを低減することが可能となる。さらに好ましくは、比率kが70%以上の複合紙を用いてρグレーディングを形成すればよい。   When composite paper is used for the reinforcing insulating layer, it is preferable to form ρ grading using composite paper having a ratio k of 60% or more. More preferably, all of the reinforcing insulating layers are composed of composite paper having a ratio k of 60% or more. Due to the difference in resistivity between the insulating paper and the plastic film constituting the composite paper, the DC electric field stress is greatly applied to the plastic film having excellent DC withstand voltage characteristics. Therefore, by increasing the ratio of the plastic film in the reinforcing insulating layer, it is possible to improve the DC withstand voltage characteristics of the reinforcing insulating layer and reduce the thickness of the reinforcing insulating layer. More preferably, the ρ grading may be formed using a composite paper having a ratio k of 70% or more.

本発明超電導ケーブルの接続部によれば、次の効果を奏することができる。   According to the connecting portion of the superconducting cable of the present invention, the following effects can be obtained.

(1)補強絶縁層に、局部的に抵抗率が相違する箇所を設けることで、接続部の直流電界分布を制御することができ、電気的弱点を補強することができる。特に、導体接続部の直上、ケーブルの絶縁層の端部をテーパー状に形成したペンシルダウン部の外側、絶縁層の外側に形成されるストレスコーンの立ち上がり部の周辺などにρグレーディングを形成することで接続部の直流電界分布を効果的に調整することができる。   (1) By providing the reinforcing insulating layer with portions having locally different resistivities, it is possible to control the DC electric field distribution at the connecting portion and reinforce the electrical weak point. In particular, form ρ grading directly above the conductor connection, outside the pencil-down part where the end of the cable insulation layer is tapered, and around the rising part of the stress cone formed outside the insulation layer. Thus, the DC electric field distribution at the connection can be effectively adjusted.

(2)補強絶縁層のうち、直流電界が高くなる箇所の抵抗率を他の箇所の抵抗率よりも低くすることで、電気的弱点となりやすい箇所の直集電界ストレスを緩和できる。それに伴い、電界設計の裕度を上げられ、接続部の外径や長さを小さくすることができる。特に、接続部の内周側の抵抗率が低く、外周側の抵抗率が高くなるようにρグレーディングを施すことで、補強絶縁層の厚さ方向の全体にわたって直流電界分布を平滑化することができる。
(3)補強絶縁層のうち、直流電界が高くなる箇所を、他の箇所の抵抗率よりも高く、かつ直流耐電圧特性の高い材料で構成することで、直流電界ストレスが高くても十分な直流耐電圧特性を有する接続部とすることができる。
(2) By reducing the resistivity of the portion where the DC electric field is high in the reinforcing insulating layer to be lower than the resistivity of the other portions, it is possible to alleviate the directly collected electric field stress at the portion that tends to be an electrical weak point. Accordingly, the tolerance of electric field design can be increased, and the outer diameter and length of the connection portion can be reduced. In particular, by applying ρ grading so that the resistivity on the inner peripheral side of the connection portion is low and the resistivity on the outer peripheral side is high, the DC electric field distribution can be smoothed over the entire thickness direction of the reinforcing insulating layer. it can.
(3) Of the reinforced insulating layer, the part where the DC electric field is high is made of a material having a higher DC resistivity than that of the other parts, and it is sufficient even if the DC electric field stress is high. It can be set as the connection part which has a DC withstand voltage characteristic.

(4)補強絶縁層のρグレーディングは、絶縁紙と複合紙の組合せ、あるいは複合紙におけるプラスチックフィルムの厚さの比率を変えることで自由度の高い設計が可能である。そのため、要求される接続部の特性に応じて、様々な特性の接続部を作製することができる。   (4) The ρ grading of the reinforcing insulating layer can be designed with a high degree of freedom by changing the ratio of the thickness of the plastic film in the composite paper or the combination of the insulating paper and the composite paper. Therefore, connection portions having various characteristics can be manufactured according to the required characteristics of the connection portions.

(5)比率kの高い複合紙を補強絶縁層に用いることや、補強絶縁層に占めるプラスチックフィルムの比率を高めることで補強絶縁層の直流耐電圧特性やImp.(インパルス)耐電圧特性を改善し、絶縁層の厚みを低減することが可能となる。   (5) Improve the DC withstand voltage characteristics and Imp. Withstand voltage characteristics of the reinforcing insulating layer by using composite paper with a high ratio k for the reinforcing insulating layer and increasing the proportion of the plastic film in the reinforcing insulating layer. In addition, the thickness of the insulating layer can be reduced.

以下、本発明の実施の形態を説明する。ここでは、直流超電導ケーブルの中間接続部を例として、以下の各実施の形態を説明する。各実施の形態で参照する図面において、共通する部材には同一符号を付している。   Embodiments of the present invention will be described below. Here, the following embodiments will be described by taking the intermediate connection portion of the DC superconducting cable as an example. In the drawings referred to in each embodiment, common members are denoted by the same reference numerals.

(実施の形態1)
まず、図1に基づいて径方向の直流電界分布を平滑化できる本発明の実施の形態を説明する。
(Embodiment 1)
First, an embodiment of the present invention capable of smoothing a radial DC electric field distribution will be described with reference to FIG.

[接続部の構成]
この中間接続部は、直流超電導ケーブルの一対のケーブルコアを突き合わせ、各ケーブルコア同士を接続する構造である。
[Configuration of connection part]
This intermediate connection part has a structure in which a pair of cable cores of a DC superconducting cable are abutted and the cable cores are connected to each other.

各ケーブルコアは、図1では簡略化して示しているが、図7のコアと同様に中心から順に、フォーマ、超電導導体12、絶縁層13、外部導体層、保護層を具える。フォーマには、素線絶縁された複数本の銅素線を撚り合せた撚り線を用いた。超電導導体12および外部導体層には、Bi2223系Ag-Mnシーステープ線材を用いた。このテープ線材をフォーマの上に多層に巻回して超電導導体を、絶縁層13の上に多層に巻回して外部導体層を構成する。また、絶縁層13は、PPLP(登録商標)を巻回して構成した。この絶縁層13も、後述する補強絶縁層31と同様に、内周側の抵抗率が低く、外周側の抵抗率が高くなるようにρグレーディングを施すことが好ましい。保護層は絶縁紙を巻回して形成した。   Although each cable core is shown in a simplified manner in FIG. 1, it includes a former, a superconducting conductor 12, an insulating layer 13, an outer conductor layer, and a protective layer in order from the center as in the core of FIG. As the former, a stranded wire formed by twisting a plurality of insulated copper wires was used. Bi2223-based Ag-Mn sheath tape wire was used for the superconducting conductor 12 and the outer conductor layer. This tape wire is wound in multiple layers on the former to form a superconducting conductor, and wound on the insulating layer 13 in multiple layers to form an external conductor layer. The insulating layer 13 was formed by winding PPLP (registered trademark). Similarly to the reinforcing insulating layer 31 described later, this insulating layer 13 is preferably subjected to ρ grading so that the resistivity on the inner peripheral side is low and the resistivity on the outer peripheral side is high. The protective layer was formed by winding insulating paper.

このようなケーブルコアの端部を段剥ぎし、超電導導体12、絶縁層13を段階的に露出させる。実際には、他の層も段階的に露出させるが、図1では説明の便宜上、超電導導体12、絶縁層13を露出した状態を示している。その際、絶縁層13の端部には、先端側ほど径が小さくなるテーパー状のペンシルダウン部13Aが形成されている。   The end of such a cable core is stepped off, and the superconducting conductor 12 and the insulating layer 13 are exposed stepwise. Actually, other layers are also exposed in stages, but FIG. 1 shows a state in which the superconducting conductor 12 and the insulating layer 13 are exposed for convenience of explanation. At that time, a tapered pencil down portion 13A having a diameter that decreases toward the tip end is formed at the end of the insulating layer 13.

ここで、各コアの端部は、フォーマ同士を接続スリーブを介して圧縮接続されており(図示せず)、その外周の超電導導体12同士を導体接続スリーブ32に挿入して、半田にて接続されている。導体接続スリーブ32の外径は、両端側が小さく、中央部が大きく形成されており、その中央部の外径は絶縁層の外径と実質的に等しく構成されている。このような導体接続スリーブ32、露出された超電導導体12、絶縁層13の端部の範囲を覆うように補強絶縁層31が形成される。   Here, the end portions of the cores are compression-connected between the formers via a connection sleeve (not shown), and the superconducting conductors 12 on the outer periphery thereof are inserted into the conductor connection sleeve 32 and connected with solder. Has been. The outer diameter of the conductor connection sleeve 32 is small at both end sides and large at the central portion, and the outer diameter of the central portion is substantially equal to the outer diameter of the insulating layer. The reinforcing insulating layer 31 is formed so as to cover the range of the end portions of the conductor connecting sleeve 32, the exposed superconducting conductor 12, and the insulating layer 13.

この補強絶縁層31を抵抗率ρが異なる3層で構成した。つまり、内層31A、中間層31B、外層31Cの各抵抗率ρが、内層31A<中間層31B<外層31Cとなるように補強絶縁層31の絶縁材料を選択した。いずれの層もポリプロピレンにクラフト紙をラミネートした複合紙テープ(PPLP:登録商標)を巻き付けることで構成されている。   The reinforcing insulating layer 31 is composed of three layers having different resistivity ρ. That is, the insulating material of the reinforcing insulating layer 31 was selected so that the resistivity ρ of the inner layer 31A, the intermediate layer 31B, and the outer layer 31C was such that the inner layer 31A <the intermediate layer 31B <the outer layer 31C. Each layer is constituted by winding a composite paper tape (PPLP: registered trademark) in which kraft paper is laminated on polypropylene.

より具体的には、内層31Aは、絶縁層のペンシルダウン部13A、露出された超電導導体12および導体接続スリーブ32における両端のテーパー部の外周を覆い、内層31Aの外径をケーブルコアの絶縁層13の外径にほぼ対応させている。次に、中間層31Bは、一方のケーブルコアの絶縁層13におけるペンシルダウン部以外の箇所から他方のケーブルコアの絶縁層13におけるペンシルダウン部以外の箇所までの範囲を覆っている。その際、中間層31Bの両端部は、導体接続スリーブ32から離れるほど外径が小さくなるようにテーパー状に形成されている。この中間層31Bの両端部は、その上に半導電材料で形成される電界緩和層(図示せず)の立ち上がり部に相当する。さらに、外層31Cは、中間層31Bの上を覆うように形成されている。この外層31Cも両端部が導体接続スリーブ32から離れるほど外径が小さくなるようにテーパー状に形成されている。そして、中間層31Bの両端部のテーパーと外層31Cの両端部のテーパーが同一の傾斜で連続するように外層31Cを形成した。   More specifically, the inner layer 31A covers the outer periphery of the taper portions at both ends of the pencil-down portion 13A of the insulating layer, the exposed superconducting conductor 12 and the conductor connection sleeve 32, and the outer diameter of the inner layer 31A is the insulating layer of the cable core. Almost corresponds to 13 outer diameters. Next, the intermediate layer 31B covers a range from a portion other than the pencil down portion in the insulating layer 13 of one cable core to a portion other than the pencil down portion in the insulating layer 13 of the other cable core. At this time, both end portions of the intermediate layer 31B are formed in a tapered shape so that the outer diameter decreases as the distance from the conductor connection sleeve 32 increases. Both end portions of the intermediate layer 31B correspond to rising portions of an electric field relaxation layer (not shown) formed of a semiconductive material thereon. Further, the outer layer 31C is formed so as to cover the intermediate layer 31B. The outer layer 31C is also formed in a tapered shape so that the outer diameter becomes smaller as both end portions are separated from the conductor connection sleeve 32. Then, the outer layer 31C was formed so that the taper at both ends of the intermediate layer 31B and the taper at both ends of the outer layer 31C were continuous with the same inclination.

各層31A-31Cの構成材料の比率k(複合紙全体の厚みに対するポリプロピレンフィルムの厚みの比率)と抵抗率ρ並びに誘電率εは次の通りである。下記のAおよびBは各々定数を示している。
内層:比率k=60%、抵抗率ρ1(20℃)=AΩ・cm、誘電率ε=B
中間層:比率k=70%、抵抗率ρ2(20℃)=約1.2AΩ・cm、誘電率ε=約0.95B
外層:比率k=80%、抵抗率ρ3(20℃)=約1.4AΩ・cm、誘電率ε=約0.9B
The ratio k of the constituent materials of each layer 31A-31C (the ratio of the thickness of the polypropylene film to the thickness of the entire composite paper), the resistivity ρ, and the dielectric constant ε are as follows. A and B below are constants.
Inner layer: Ratio k = 60%, resistivity ρ1 (20 ℃) = AΩ ・ cm, dielectric constant ε = B
Intermediate layer: Ratio k = 70%, resistivity ρ2 (20 ° C) = about 1.2 AΩ · cm, dielectric constant ε = about 0.95B
Outer layer: Ratio k = 80%, resistivity ρ3 (20 ° C) = about 1.4 AΩ · cm, dielectric constant ε = about 0.9B

この構成によれば、補強絶縁層31の外周側ほど比率kの高いPPLP(登録商標)を用いているため、補強絶縁層31の外周側ほど高ρになると同時に外周側ほど低εとなっている。   According to this configuration, since PPLP (registered trademark) having a higher ratio k is used on the outer peripheral side of the reinforcing insulating layer 31, the outer peripheral side of the reinforcing insulating layer 31 becomes higher ρ and at the same time the outer peripheral side becomes lower ε. Yes.

この構成の接続部では、例えば補強絶縁層31のうち露出した超電導導体12の外側における厚さ方向の直流電界分布は図2に示すように抵抗率の相違に応じた3つの段階を有する分布となる。そのため、補強絶縁層31の厚さ方向における直流電界分布を平滑化でき、補強絶縁層31の厚みを低減することができる。   In the connection portion having this configuration, for example, the DC electric field distribution in the thickness direction outside the exposed superconducting conductor 12 in the reinforcing insulating layer 31 is a distribution having three stages corresponding to the difference in resistivity as shown in FIG. Become. Therefore, the DC electric field distribution in the thickness direction of the reinforcing insulating layer 31 can be smoothed, and the thickness of the reinforcing insulating layer 31 can be reduced.

また、本実施の形態により、(1)導体接続スリーブ32の直上、(2)ケーブルの絶縁層の端部をテーパー状に形成したペンシルダウン部13Aの外側、(3)その絶縁層13の外側に形成される電界緩和層の立ち上がり部にもρグレーディングが施されたことになり、これら電界ストレスが高くなりやすい箇所の電界緩和を効果的に行なうことができる。特に、比率kの高いPPLP(登録商標)で補強絶縁層31を構成することで、直流耐電圧特性に優れるポリプロピレンが補強絶縁層31に占める割合を高めることができ、補強絶縁層31の厚み低減効果がより一層期待できる。   Further, according to the present embodiment, (1) just above the conductor connection sleeve 32, (2) the outside of the pencil down portion 13A in which the end portion of the insulating layer of the cable is tapered, (3) the outside of the insulating layer 13 Since the ρ grading is also applied to the rising portion of the electric field relaxation layer formed in (1), the electric field relaxation can be effectively performed at the portion where the electric field stress is likely to be high. In particular, by configuring the reinforcing insulating layer 31 with PPLP (registered trademark) having a high ratio k, the proportion of polypropylene having excellent DC withstand voltage characteristics in the reinforcing insulating layer 31 can be increased, and the thickness of the reinforcing insulating layer 31 can be reduced. The effect can be expected even more.

(実施の形態2)
電界緩和層の立ち上がり部の直流電界ストレスを緩和するための本発明実施の形態を図3に基づいて説明する。
(Embodiment 2)
An embodiment of the present invention for relieving the DC electric field stress at the rising portion of the electric field relaxation layer will be described with reference to FIG.

本実施の形態も実施の形態1と同様に3層からなる補強絶縁層31を備えるが、導体接続スリーブ32の中間部の外径がケーブルの絶縁層13の外径よりも小さくなっている点、内層31Aと外層31Cの抵抗率が同じで、中間層31Bの抵抗率のみが低く構成されている点が実施の形態1と異なる。   The present embodiment also includes a reinforcing insulating layer 31 consisting of three layers as in the first embodiment, but the outer diameter of the intermediate portion of the conductor connection sleeve 32 is smaller than the outer diameter of the insulating layer 13 of the cable. The difference from Embodiment 1 is that the resistivity of the inner layer 31A and the outer layer 31C is the same, and only the resistivity of the intermediate layer 31B is low.

まず、内層31Aはペンシルダウン部13A、露出された超電導導体12、導体接続スリーブ32の上を覆い、ケーブルの絶縁層13の外径と同等の外径に形成されている。次に、中間層31Bは、両端部をテーパー状に形成して、中間部を均等な厚さとし、絶縁層13および内層31Aの上に形成されている。また、外層31Cは、その両端部を中間層31Bの両端部に連続するテーパー状に形成して、中間部を均等な厚さとし、中間層31Bの上に形成されている。   First, the inner layer 31A covers the pencil down portion 13A, the exposed superconducting conductor 12, and the conductor connection sleeve 32, and is formed to have an outer diameter equivalent to the outer diameter of the insulating layer 13 of the cable. Next, the intermediate layer 31B is formed on the insulating layer 13 and the inner layer 31A, with both end portions being tapered and the intermediate portion having an equal thickness. Further, the outer layer 31C is formed on the intermediate layer 31B, with both end portions formed in a tapered shape that is continuous with both end portions of the intermediate layer 31B, with the intermediate portion having an equal thickness.

そして、内層31A、中間層31B、外層31Cの各抵抗率ρ1〜ρ3を、ρ1=ρ3>ρ2となるようにしている。例えば、内層31Aと外層31Cを比率kの高いPPLPで構成し、中間層31Bをクラフト紙または比率kの低いPPLPで構成する。   The resistivity ρ1 to ρ3 of the inner layer 31A, the intermediate layer 31B, and the outer layer 31C are set to satisfy ρ1 = ρ3> ρ2. For example, the inner layer 31A and the outer layer 31C are made of PPLP having a high ratio k, and the intermediate layer 31B is made of kraft paper or PPLP having a low ratio k.

この構成の接続部によれば、電界緩和層の立ち上がり部に低ρの絶縁材料を配することになるため、この箇所の直流電界ストレスを緩和することができる。また、低ρの中間層31Bはほぼ一様な厚さの層に形成でき、補強絶縁層31の形成作業も容易に行える。さらに、補強絶縁層31は抵抗率の異なる2種類の材料で構成することができる。   According to the connection portion having this configuration, the low ρ insulating material is disposed at the rising portion of the electric field relaxation layer, so that the DC electric field stress at this portion can be reduced. Further, the low ρ intermediate layer 31B can be formed in a layer having a substantially uniform thickness, and the forming operation of the reinforcing insulating layer 31 can be easily performed. Furthermore, the reinforcing insulating layer 31 can be composed of two types of materials having different resistivity.

(実施の形態3)
電界緩和層の立ち上がり部の直流電界ストレスを緩和するための別の本発明実施の形態を図4に基づいて説明する。
(Embodiment 3)
Another embodiment of the present invention for relieving the DC electric field stress at the rising portion of the electric field relaxation layer will be described with reference to FIG.

本実施の形態は、補強絶縁層31の構成が実施の形態2と相違しており、それ以外の構成は、実施の形態2と共通である。ここでの補強絶縁層31は、主要部31Dと傾斜端部31Eとから構成される。主要部31Dは、各ケーブルコアの絶縁層外周の一部、ペンシルダウン部13A、露出された超電導導体12および導体接続スリーブ32の上を覆い、両端部がテーパー状に、中間部が円筒状に構成されている。一方、傾斜端部31Eは、絶縁層の一部およびテーパー状の主要部31Dの両端部を覆い、主要部両端のテーパーに沿ったほぼ一定の厚さに形成されている。   In the present embodiment, the configuration of the reinforcing insulating layer 31 is different from that of the second embodiment, and other configurations are the same as those of the second embodiment. The reinforcing insulating layer 31 here includes a main part 31D and an inclined end part 31E. The main part 31D covers a part of the outer periphery of the insulation layer of each cable core, the pencil down part 13A, the exposed superconducting conductor 12 and the conductor connection sleeve 32, both ends are tapered, and the middle part is cylindrical. It is configured. On the other hand, the inclined end portion 31E covers a part of the insulating layer and both end portions of the tapered main portion 31D, and is formed to have a substantially constant thickness along the taper at both ends of the main portion.

ここで、主要部31Dの抵抗率ρ1と傾斜端部31Eの抵抗率ρ2をρ1>ρ2となるようにする。例えば、主要部31Dを比率kの高いPPLPで構成し、傾斜端部31Eをクラフト紙または比率kの低いPPLPで構成する。   Here, the resistivity ρ1 of the main portion 31D and the resistivity ρ2 of the inclined end portion 31E are set to satisfy ρ1> ρ2. For example, the main part 31D is composed of PPLP with a high ratio k, and the inclined end part 31E is composed of kraft paper or PPLP with a low ratio k.

この構成の接続部によれば、電界緩和層の立ち上がり部に局部的に低ρの絶縁材料を配することになるため、この箇所の直流電界ストレスを緩和することができる。また、補強絶縁層31は抵抗率の異なる2種類の材料で構成することができる。   According to the connection portion having this configuration, since the low ρ insulating material is locally disposed on the rising portion of the electric field relaxation layer, the DC electric field stress at this portion can be reduced. The reinforcing insulating layer 31 can be made of two types of materials having different resistivity.

(実施の形態4)
次に、導体接続スリーブの直上、ペンシルダウン部の外側、電界緩和層の立ち上がり部の直流電界ストレスを緩和するための本発明の実施の形態を図5に基づいて説明する。
(Embodiment 4)
Next, an embodiment of the present invention for alleviating DC electric field stress immediately above the conductor connection sleeve, outside the pencil down portion, and the rising portion of the electric field relaxation layer will be described with reference to FIG.

本実施の形態は、実施の形態3における主要部を内側主要部31DIと外側主要部31DOとで構成し、内側主要部31DIも低ρの絶縁材料で構成している。内側主要部31DIは、ペンシルダウン部13A、露出された超電導導体12、導体接続スリーブ32の上を覆い、ケーブルの絶縁層13の外径と同等の外径に形成されている。外側主要部31DOは、両端部をテーパー状に、中間部を円筒状とし、絶縁層13の一部および内側主要部31DIの上に形成されている。傾斜端部31Eは、実施の形態2と同様に、外側主要部31DOの両端部のテーパーに沿って形成されている。   In the present embodiment, the main part in the third embodiment is constituted by an inner main part 31DI and an outer main part 31DO, and the inner main part 31DI is also constituted by a low ρ insulating material. The inner main portion 31DI covers the pencil down portion 13A, the exposed superconducting conductor 12, and the conductor connection sleeve 32, and has an outer diameter equivalent to the outer diameter of the insulating layer 13 of the cable. The outer main portion 31DO has both ends tapered and a middle portion formed in a cylindrical shape on a part of the insulating layer 13 and the inner main portion 31DI. The inclined end portion 31E is formed along the taper at both ends of the outer main portion 31DO, as in the second embodiment.

ここで、内側主要部31DI、外側主要部31DO、傾斜端部31Eの各抵抗率ρ1〜ρ3を、ρ1=ρ3<ρ2となるようにしている。例えば、外側主要部31DOを比率kの高いPPLPで構成し、内側主要部31DIと傾斜端部31Eをクラフト紙または比率kの低いPPLPで構成する。   Here, the resistivity ρ1 to ρ3 of the inner main portion 31DI, the outer main portion 31DO, and the inclined end portion 31E are set to satisfy ρ1 = ρ3 <ρ2. For example, the outer main portion 31DO is made of PPLP having a high ratio k, and the inner main portion 31DI and the inclined end portion 31E are made of kraft paper or PPLP having a low ratio k.

この構成の接続部によれば、導体接続スリーブ32の直上、ペンシルダウン部13Aの外側、電界緩和層の立ち上がり部のいずれにも低ρの絶縁材料を配することになるため、この箇所の直流電界ストレスを緩和することができる。また、補強絶縁層31は抵抗率の異なる2種類の材料で構成することができる。   According to the connecting portion having this configuration, the low ρ insulating material is disposed immediately above the conductor connecting sleeve 32, outside the pencil down portion 13A, and the rising portion of the electric field relaxation layer. World stress can be relieved. The reinforcing insulating layer 31 can be made of two types of materials having different resistivity.

(実施の形態5)
次に、エポキシベルマウスを用いた本発明の実施の形態を図6に基づいて説明する。
(Embodiment 5)
Next, an embodiment of the present invention using an epoxy bell mouth will be described with reference to FIG.

本実施の形態は、実施の形態3における主要部31Dの形状を若干変更し、傾斜端部31Eの一部をエポキシベルマウス31Fに置き換えている。主要部31Dは、各ケーブルコアの絶縁層外周の一部、ペンシルダウン部13A、露出された超電導導体12および導体接続スリーブ32の上を覆っている。主要部31Dの中間部は円筒状に構成され、両端部は内周側が円錐状のテーパー部に、外周側がテーパー部に連続する段差部に形成されている。一方、傾斜端部31Eは、絶縁層13の一部およびテーパー部を覆い、このテーパー部のテーパーに沿ったほぼ一定の厚さに形成されている。さらにエポキシベルマウス31Fは、主要部31Dの段差部にはめ込まれるように環状に構成されている。   In the present embodiment, the shape of the main part 31D in the third embodiment is slightly changed, and a part of the inclined end part 31E is replaced with an epoxy bell mouth 31F. The main part 31D covers a part of the outer periphery of the insulating layer of each cable core, the pencil down part 13A, the exposed superconducting conductor 12 and the conductor connection sleeve 32. The intermediate part of the main part 31D is formed in a cylindrical shape, and both end parts are formed as a conical tapered part on the inner peripheral side and a stepped part on the outer peripheral side continuing to the tapered part. On the other hand, the inclined end portion 31E covers a part of the insulating layer 13 and the tapered portion, and is formed to have a substantially constant thickness along the taper of the tapered portion. Further, the epoxy bell mouth 31F is formed in an annular shape so as to be fitted into the step portion of the main portion 31D.

ここで、主要部31D、傾斜端部31E、エポキシベルマウス31Fの各抵抗率ρ1〜ρ3を、ρ1>ρ2≒ρ3となるようにしている。例えば、主要部31Dを比率kの高いPPLPで構成し、傾斜端部31Eをクラフト紙または比率kの低いPPLPで構成して、エポキシベルマウス31Fを石英配合のエポキシ樹脂で構成する。   Here, the resistivity ρ1 to ρ3 of the main portion 31D, the inclined end portion 31E, and the epoxy bell mouth 31F are set to satisfy ρ1> ρ2≈ρ3. For example, the main part 31D is made of PPLP with a high ratio k, the inclined end part 31E is made of kraft paper or PPLP with a low ratio k, and the epoxy bell mouth 31F is made of an epoxy resin containing quartz.

この構成の接続部によれば、傾斜端部31Eとエポキシベルマウス31Fの複合により電界緩和層の立ち上がり部の直流電界ストレスを緩和することができる。また、予め直流電界分布に応じた形状にモールドされたエポキシベルマウス31Fを用いることで、より効果的に直流電界ストレスを緩和することができ、かつ接続部を容易に形成することができる。   According to the connection portion having this configuration, the DC electric field stress at the rising portion of the electric field relaxation layer can be alleviated by the composite of the inclined end portion 31E and the epoxy bell mouth 31F. In addition, by using the epoxy bell mouth 31F molded in advance according to the DC electric field distribution, the DC electric field stress can be more effectively reduced and the connection portion can be easily formed.

(実施の形態6)
次に、上記実施の形態1〜6とは逆に、直流電界の高い箇所に高ρの絶縁材料を用いた本発明の実施の形態を説明する。
(Embodiment 6)
Next, in contrast to the first to sixth embodiments, an embodiment of the present invention in which a high ρ insulating material is used at a location where the DC electric field is high will be described.

本実施の形態では、図1、図3〜図6において低ρの絶縁材料を用いた箇所に高ρの絶縁材料を用いる。つまり、図1の構成では、外周から内周に向かって順次高ρとなるように内層31A、中間層31B、外層31Cを形成する。図3の構成では、中間層31Bの抵抗率を内層31Aおよび外層31Cの抵抗率よりも高くする。図4の構成では、傾斜端部31Eの抵抗率を主要部31Dの抵抗率よりも高くする。図5の構成では、内側主要部31DIと傾斜端部31Eの抵抗率を外側主要部31DOの抵抗率よりも高くする。図6の構成では、傾斜端部31Eとエポキシベルマウス31Fの抵抗率を主要部31Dの抵抗率よりも高くする。   In the present embodiment, a high ρ insulating material is used at a location where a low ρ insulating material is used in FIGS. 1 and 3 to 6. In other words, in the configuration of FIG. 1, the inner layer 31A, the intermediate layer 31B, and the outer layer 31C are formed so that the height ρ sequentially increases from the outer periphery toward the inner periphery. In the configuration of FIG. 3, the resistivity of the intermediate layer 31B is made higher than the resistivity of the inner layer 31A and the outer layer 31C. In the configuration of FIG. 4, the resistivity of the inclined end portion 31E is made higher than the resistivity of the main portion 31D. In the configuration of FIG. 5, the resistivity of the inner main portion 31DI and the inclined end portion 31E is made higher than the resistivity of the outer main portion 31DO. In the configuration of FIG. 6, the resistivity of the inclined end portion 31E and the epoxy bell mouth 31F is made higher than the resistivity of the main portion 31D.

そして、いずれの構成においても高ρの絶縁材料は他の箇所に比べて直流耐電圧特性の高い材料とする。例えば、高ρの絶縁材料として比率kの高いPPLP(登録商標)を用い、他の箇所に比率kの低いPPLP(登録商標)を用いる。その他、高ρの絶縁材料としてPPLP(登録商標)を用い、他の箇所にクラフト紙を用いてもよい。   In any configuration, the high ρ insulating material is a material having higher DC withstand voltage characteristics than other parts. For example, PPLP (registered trademark) with a high ratio k is used as an insulating material with high ρ, and PPLP (registered trademark) with a low ratio k is used in other places. In addition, PPLP (registered trademark) may be used as a high ρ insulating material, and craft paper may be used in other places.

これらの構成により、高ρの絶縁材料を用いた箇所は、直流電界ストレスが他の箇所に比べて高くかかっても、直流耐電圧特性が高いため、電気特性の高い接続部とすることができる。   With these configurations, a portion using a high ρ insulating material has a high direct-current withstand voltage characteristic even when a direct-current electric field stress is higher than other portions. .

本発明超電導ケーブルの接続部は、直流の電力輸送手段として用いる超電導ケーブル線路に利用することができる。   The connection part of the superconducting cable of the present invention can be used for a superconducting cable line used as a DC power transportation means.

本発明実施の形態1の接続部を示す模式部分縦断面図である。It is a model partial longitudinal cross-sectional view which shows the connection part of Embodiment 1 of this invention. 本発明接続部の補強絶縁層における直流電界分布を示すグラフである。It is a graph which shows DC electric field distribution in the reinforcement insulation layer of this invention connection part. 本発明実施の形態2の接続部を示す模式部分縦断面図である。It is a model partial longitudinal cross-sectional view which shows the connection part of Embodiment 2 of this invention. 本発明実施の形態3の接続部を示す模式部分縦断面図である。It is a model partial longitudinal cross-sectional view which shows the connection part of Embodiment 3 of this invention. 本発明実施の形態4の接続部を示す模式部分縦断面図である。It is a model partial longitudinal cross-sectional view which shows the connection part of Embodiment 4 of this invention. 本発明実施の形態5の接続部を示す模式部分縦断面図である。It is a model partial longitudinal cross-sectional view which shows the connection part of Embodiment 5 of this invention. 超電導ケーブルの横断面図である。It is a cross-sectional view of a superconducting cable. OFケーブルの絶縁層における直流電界分布を示すグラフである。It is a graph which shows DC electric field distribution in the insulating layer of OF cable.

符号の説明Explanation of symbols

100 超電導ケーブル
10 コア
11 フォーマ 12 超電導導体 13 絶縁層
13A ペンシルダウン部 14 外部導体層 15 保護層
20 断熱管
21 内管 22 外管 23 防食層
30 中間接続部
31 補強絶縁層 31A 内層 31B 中間層 31C 外層
31D 主要部 31DI 内側主要部31DO 外側主要部 31E 傾斜端部
31F エポキシベルマウス
32 導体接続スリーブ
100 superconducting cable
10 core
11 Former 12 Superconducting conductor 13 Insulating layer
13A Pencil down part 14 Outer conductor layer 15 Protective layer
20 Insulated pipe
21 Inner pipe 22 Outer pipe 23 Anticorrosion layer
30 Intermediate connection
31 Reinforcing insulation layer 31A Inner layer 31B Middle layer 31C Outer layer
31D Main part 31DI Inner main part 31DO Outer main part 31E Inclined end
31F Epoxy bell mouth
32 Conductor connection sleeve

Claims (7)

超電導導体と、超電導導体と接続対象とをつなぐ導体接続部と、超電導導体を部分的に露出させて覆う絶縁層と、少なくとも導体接続部、露出した超電導導体および絶縁層の端部を覆う補強絶縁層とを有する超電導ケーブルの接続部であって、
前記補強絶縁層には、直流電界分布を制御するように、局部的に抵抗率が相違する箇所を設けたことを特徴とする超電導ケーブルの接続部。
A superconducting conductor, a conductor connecting part connecting the superconducting conductor and the connection target, an insulating layer covering the superconducting conductor partially exposed, and a reinforced insulation covering at least the conductor connecting part, the exposed superconducting conductor and the end of the insulating layer A superconducting cable connection having a layer,
A superconducting cable connecting portion, wherein the reinforcing insulating layer is provided with a portion having a locally different resistivity so as to control a DC electric field distribution.
前記補強絶縁層のうち、直流電界が高くなる箇所の抵抗率を他の箇所の抵抗率よりも低くしたことを特徴とする請求項1に記載の超電導ケーブルの接続部。   The superconducting cable connection part according to claim 1, wherein, in the reinforcing insulating layer, the resistivity at a location where the direct-current electric field becomes higher is lower than the resistivity at other locations. 前記補強絶縁層のうち、直流電界が高くなる箇所を、他の箇所の抵抗率よりも高く、かつ直流耐電圧特性の高い材料で構成したことを特徴とする請求項1に記載の超電導ケーブルの接続部。   2. The superconducting cable according to claim 1, wherein in the reinforcing insulating layer, a portion where the DC electric field is high is made of a material having a higher resistivity than that of the other portion and having a high DC withstand voltage characteristic. Connection part. 前記直流電界が高くなる箇所は、導体接続部の直上、絶縁層の端部をテーパー状に形成したペンシルダウン部の外側および絶縁層の外側に形成されるストレスコーンの立ち上がり部近傍の少なくとも1箇所であることを特徴とする請求項2または3に記載の超電導ケーブルの接続部。   The location where the DC electric field is high is at least one location immediately above the conductor connection portion, outside the pencil down portion where the end portion of the insulating layer is tapered, and near the rising portion of the stress cone formed outside the insulating layer The connection part of a superconducting cable according to claim 2 or 3, wherein 前記の局部的な抵抗率の相違は、絶縁紙とプラスチックフィルムからなる複合紙と絶縁紙との組合せにより形成されていることを特徴とする請求項1〜4のいずれかに記載の超電導ケーブルの接続部。   5. The superconducting cable according to claim 1, wherein the difference in local resistivity is formed by a combination of insulating paper, a composite paper made of a plastic film, and insulating paper. Connection part. 前記の局部的な抵抗率の相違は、絶縁紙とプラスチックフィルムからなる複合紙の厚さに対するプラスチックフィルムの厚さの比率kが異なる複合紙の組合せにより形成されていることを特徴とする請求項1〜4のいずれかに記載の超電導ケーブルの接続部。   The difference in local resistivity is formed by a combination of composite papers having different ratios k of the thickness of the plastic film to the thickness of the composite paper made of insulating paper and plastic film. The connection part of the superconducting cable in any one of 1-4. 前記比率kが60%以上の複合紙を用いていることを特徴とする請求項6に記載の超電導ケーブルの接続部。   The superconducting cable connection portion according to claim 6, wherein composite paper having the ratio k of 60% or more is used.
JP2005140429A 2005-05-12 2005-05-12 Connecting part of superconductive cable Pending JP2006320115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140429A JP2006320115A (en) 2005-05-12 2005-05-12 Connecting part of superconductive cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140429A JP2006320115A (en) 2005-05-12 2005-05-12 Connecting part of superconductive cable

Publications (1)

Publication Number Publication Date
JP2006320115A true JP2006320115A (en) 2006-11-24

Family

ID=37540256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140429A Pending JP2006320115A (en) 2005-05-12 2005-05-12 Connecting part of superconductive cable

Country Status (1)

Country Link
JP (1) JP2006320115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020970A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Connecting structure of superconductive cable core
JP2010186733A (en) * 2009-01-15 2010-08-26 Sumitomo Electric Ind Ltd Connecting part of superconducting cable, and superconducting cable line using it
KR20160044961A (en) * 2014-10-16 2016-04-26 한국전기연구원 Insulating structure superconducting DC cable joint box

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152293A (en) * 1974-05-29 1975-12-08
JPS62221814A (en) * 1986-03-19 1987-09-29 日立電線株式会社 Molded joint for dc plastic cable
JPH11224546A (en) * 1998-02-03 1999-08-17 Sumitomo Electric Ind Ltd Solid cable, its manufacture and its transmission line
JP2005011669A (en) * 2003-06-19 2005-01-13 Sumitomo Electric Ind Ltd Joint structure of superconducting cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152293A (en) * 1974-05-29 1975-12-08
JPS62221814A (en) * 1986-03-19 1987-09-29 日立電線株式会社 Molded joint for dc plastic cable
JPH11224546A (en) * 1998-02-03 1999-08-17 Sumitomo Electric Ind Ltd Solid cable, its manufacture and its transmission line
JP2005011669A (en) * 2003-06-19 2005-01-13 Sumitomo Electric Ind Ltd Joint structure of superconducting cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020970A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Connecting structure of superconductive cable core
JP4751424B2 (en) * 2008-07-09 2011-08-17 住友電気工業株式会社 Superconducting cable core connection structure
JP2010186733A (en) * 2009-01-15 2010-08-26 Sumitomo Electric Ind Ltd Connecting part of superconducting cable, and superconducting cable line using it
KR20160044961A (en) * 2014-10-16 2016-04-26 한국전기연구원 Insulating structure superconducting DC cable joint box
KR101668307B1 (en) * 2014-10-16 2016-10-21 한국전기연구원 Insulating structure superconducting DC cable joint box

Similar Documents

Publication Publication Date Title
US6988915B2 (en) Terminal structure of direct electric current multilayer structure superconducting cable and DC superconducting cable line
CN101142637B (en) Superconductive cable
KR101306519B1 (en) Superconducting cable core and superconducting cable
JPWO2013157513A1 (en) Superconducting cable connection structure
KR20060113407A (en) Superconductor cable
JP6210537B2 (en) Superconducting cable connection structure, superconducting cable, current terminal structure at the end of superconducting cable
JP4374613B2 (en) Intermediate connection structure of superconducting cable
JP2011045169A (en) Intermediate connection structure of superconducting cable
CN101142636B (en) Superconductive cable and DC power transmission using the superconductive cable
JP5390297B2 (en) Superconducting cable connection and superconducting cable line using the same
WO2006041070A1 (en) Superconducting cable connection structure
JP2006320115A (en) Connecting part of superconductive cable
JP2006012775A (en) Superconductive cable
JP4947434B2 (en) Superconducting conductor
JP4716160B2 (en) Superconducting cable
JP2007149359A (en) Connection part of superconductive cable
JP5252323B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP4716164B2 (en) Superconducting cable
JP2003187651A (en) High-temperature superconducting cable
JP2013178960A (en) Connection member
JP2007166893A (en) Electric lead wire for connecting superconducting device with device at room temperature
WO2007116519A1 (en) Superconducting cable
JP2000067663A (en) Superconductive conductor
JP2008220102A (en) Terminal structure of superconducting cable
JP2008118006A (en) Method for manufacturing superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608