JP2010020946A - Diamond electron source - Google Patents

Diamond electron source Download PDF

Info

Publication number
JP2010020946A
JP2010020946A JP2008178596A JP2008178596A JP2010020946A JP 2010020946 A JP2010020946 A JP 2010020946A JP 2008178596 A JP2008178596 A JP 2008178596A JP 2008178596 A JP2008178596 A JP 2008178596A JP 2010020946 A JP2010020946 A JP 2010020946A
Authority
JP
Japan
Prior art keywords
diamond
electron
electron source
single crystal
crystal diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008178596A
Other languages
Japanese (ja)
Inventor
Akihiko Ueda
暁彦 植田
Yoshihiro Akaha
良啓 赤羽
Yoshiki Nishibayashi
良樹 西林
Takahiro Imai
貴浩 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008178596A priority Critical patent/JP2010020946A/en
Publication of JP2010020946A publication Critical patent/JP2010020946A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diamond electron source which is used for an electron beam, electron beam equipment, and a vacuum tube especially used for an electron microscope and an electron beam exposure equipment in which diamond is used, and which has high brightness and narrow energy width. <P>SOLUTION: This electron source is the diamond electron source and uses a columnar single crystal diamond, and constituted of an electron emitting part 11 and an energization heating part 12. The electron emitting part includes a sharp-pointed protrusion of height of 10 μm or more and a tip curvature radius of 5 μm or less only at one place at the end face of a column. Impurities most contained in the single crystal diamond of the electron discharge part are nitrogen of which the concentration is 1×10<SP>17</SP>cm<SP>-3</SP>or more, and in which resistance between room temperature (25°C) terminals of the energization heating part is 500 Ω or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子顕微鏡、電子ビーム露光機などの電子線及び電子ビーム機器、進行波管、マイクロ波管など真空管に用いられるダイヤモンド電子源に関する。   The present invention relates to an electron beam and electron beam equipment such as an electron microscope and an electron beam exposure machine, a diamond electron source used for a vacuum tube such as a traveling wave tube and a microwave tube.

電子はマイナスの電荷を持ち、質量が極めて小さいため、電子を一方向に揃えて走らせた電子ビームは以下のような特徴を有している。
(1)電界や磁界で方向や収束度を制御できる。
(2)電界による加減速で広範囲なエネルギーが得られる。
(3)波長が短いため、細く絞り込むことができる。
このような特徴を活かした電子顕微鏡や、電子ビーム露光機が広く普及している。これらの陰極材料として、例えば、熱電子放射源としては安価なWフィラメントや、輝度の高い電子ビームが得られるLaB等の六ホウ化物がある。また、さらに高輝度でエネルギー幅の狭い陰極として、量子効果によるトンネル現象を利用した先鋭化Wや、電界によるショットキー効果を利用したZrO/Wが用いられている。
Since electrons have a negative charge and have a very small mass, an electron beam that is run with electrons aligned in one direction has the following characteristics.
(1) The direction and convergence can be controlled by an electric field or a magnetic field.
(2) A wide range of energy can be obtained by acceleration / deceleration by an electric field.
(3) Since the wavelength is short, it can be narrowed down.
Electron microscopes and electron beam exposure machines that make use of these characteristics are widely used. As these cathode materials, there are, for example, an inexpensive W filament as a thermionic radiation source, and hexaboride such as LaB 6 from which an electron beam with high luminance can be obtained. Further, sharpening W using a tunnel phenomenon due to a quantum effect and ZrO / W utilizing a Schottky effect due to an electric field are used as a cathode having higher brightness and a narrow energy width.

しかしながら、Wフィラメントは安価である反面、寿命が100時間程度と極端に短いために、フィラメントが切れた場合、真空槽を大気開放したり、電子ビームの光軸を調整したりする等の交換作業を頻繁に行わねばならないといった問題がある。LaBはWフィラメントと比較して寿命が1000時間程度と長いが、比較的高輝度ビームが得られる装置で使用されているために、交換作業は装置メーカーが行う場合が多く、コストがかかるといった問題がある。より高輝度が得られる先鋭化Wや、寿命が1年程度と比較的長いZrO/Wについても交換コストが高く問題がある。 However, the W filament is inexpensive, but its life is extremely short, about 100 hours. Therefore, when the filament breaks, replacement work such as opening the vacuum chamber to the atmosphere or adjusting the optical axis of the electron beam. There is a problem that must be done frequently. LaB 6 has a long life of about 1000 hours as compared with W filament, but since it is used in a device that can obtain a relatively high-intensity beam, the replacement work is often performed by the device manufacturer, which is costly. There's a problem. There is also a problem in that the replacement cost is high for sharpened W that can provide higher luminance and ZrO / W that has a relatively long life of about one year.

電子顕微鏡においてはLSIプロセスにおける測長検査などナノサイズの微細構造を高精度に観察したいという要求があることや、電子ビーム露光機においては10nm未満の細線描画が可能な装置の開発が進んできていることから、さらに高輝度でエネルギー幅が狭い陰極が求められている。   In the electron microscope, there is a demand for observing a nano-sized fine structure with high accuracy, such as a length measurement inspection in an LSI process, and in an electron beam exposure machine, development of an apparatus capable of drawing a thin line of less than 10 nm has progressed. Therefore, there is a demand for a cathode having higher luminance and a narrow energy width.

このような期待に応える材料の一つとして、ダイヤモンドがある。ダイヤモンドには非特許文献1あるいは非特許文献2に記載されているように電子親和力が負(NEA:Negative Electron Affinity)の状態、あるいは仕事関数が小さい金属と比較しても小さな正(PEA:Positive Electron Affinity)の状態が存在する。この非常に稀な物性を活かせば、WフィラメントやLaB、あるいはZrO/Wのように1400℃を超える高熱の必要なしに高電流密度電子放射が可能であるので、エネルギー幅を狭く抑えることができ、長寿命も期待できる。また、非特許文献3に記載のような先端径10nmが得られる微細加工技術があるので高輝度化についても問題ない。ダイヤモンドについては、上記電子親和力を有することが判明して以来、非特許文献4や特許文献1のような電子源がこれまでに提案されてきた。 One material that meets these expectations is diamond. As described in Non-Patent Document 1 or Non-Patent Document 2, diamond has a negative electron affinity (NEA) state, or a small positive (PEA: Positive) value compared to a metal having a small work function. Electron Affinity) exists. Utilizing this very rare physical property enables high current density electron emission without the need for high heat exceeding 1400 ° C. like W filament, LaB 6 , or ZrO / W, so that the energy width can be kept narrow. And a long life expectancy. Further, since there is a fine processing technique that can obtain a tip diameter of 10 nm as described in Non-Patent Document 3, there is no problem with increasing the brightness. Since diamond was found to have the above-mentioned electron affinity, electron sources such as Non-Patent Document 4 and Patent Document 1 have been proposed so far.

F.J.Himpsel et al., Phys. Rev.B., Vol.20,Number 2(1979) 624−627F. J. et al. Himpsel et al. Phys. Rev. B. , Vol. 20, Number 2 (1979) 624-627 J.Ristein et al.,New Diamond and Frontier Carbon Technology,Vol.10,No.6,(2000) 363−382J. et al. Ristein et al. , New Diamond and Frontier Carbon Technology, Vol. 10, no. 6, (2000) 363-382 Y.Nishibayashi et al.,SEI Technical Review, 57, (2004) 31−36Y. Nishibayashi et al. , SEI Technical Review, 57, (2004) 31-36. W.B. Choi et al.,J.Vac.Sci.Technol.B14(3),(1996)2050−2055W. B. Choi et al. , J .; Vac. Sci. Technol. B14 (3), (1996) 2050-2055 特開平4−67527号公報Japanese Patent Laid-Open No. 4-67527

しかしながら、上記のダイヤモンドを用いた電子源を広く普及している電子顕微鏡や電子ビーム露光機で使用する場合、それぞれに問題がある。すなわち、非特許文献3に記載のような電子放出点が複数並べられた構造では面電子源となるために、収束させて微細ビームとするのは困難であり、また、装置への実装も容易ではない。非特許文献4に記載のものでは先端が鋭いMoにダイヤモンドをコーティングしており、形状としては問題ないが、多結晶であるために個体差や電気特性のばらつきが問題である。特許文献1で提案されている構造も面電子源であるために収束ビームを得るのは困難であり、また、装置への実装も容易ではない。   However, when the electron source using the diamond is used in widely used electron microscopes and electron beam exposure machines, there are respective problems. That is, since a structure in which a plurality of electron emission points are arranged as described in Non-Patent Document 3 is a surface electron source, it is difficult to converge and form a fine beam, and it is easy to mount on an apparatus. is not. In the non-patent document 4, Mo having a sharp tip is coated with diamond and there is no problem in shape, but since it is polycrystalline, individual differences and variations in electrical characteristics are problematic. Since the structure proposed in Patent Document 1 is also a surface electron source, it is difficult to obtain a convergent beam, and it is not easy to mount it on an apparatus.

そこで、本発明は、かかる事情に鑑みてなされたものであり、電子線及び電子ビーム機器や真空管、特に、電子顕微鏡や電子ビーム露光機に使用される、ダイヤモンドを用いた高輝度でエネルギー幅が狭いダイヤモンド電子源を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and is used for electron beams and electron beam equipment and vacuum tubes, in particular, electron microscopes and electron beam exposure machines. The aim is to provide a narrow diamond electron source.

上記課題を解決するために、本発明によるダイヤモンド電子源は、柱形の単結晶ダイヤモンドを用いた電子源であって、電子放出部と通電加熱部とで構成され、電子放出部は柱の端面に高さ10μm以上且つ先端曲率半径5μm以下の先鋭突起を一ヶ所のみ有し、電子放出部の単結晶ダイヤモンド中に最も多く含まれる不純物は窒素でその窒素濃度が1×1017cm−3以上であり、通電加熱部の室温端子間抵抗は500Ω以下であることを特徴とする。
本発明は以下に記載する通りの構成を備えたダイヤモンド電子源である。
In order to solve the above-mentioned problems, a diamond electron source according to the present invention is an electron source using columnar single crystal diamond, and is composed of an electron emission portion and a current heating portion, and the electron emission portion is an end face of the column. Has a single sharp protrusion with a height of 10 μm or more and a tip radius of curvature of 5 μm or less, and the impurity contained most in the single crystal diamond of the electron emission portion is nitrogen, and the nitrogen concentration is 1 × 10 17 cm −3 or more. The room temperature terminal resistance of the energization heating unit is 500Ω or less.
The present invention is a diamond electron source having a configuration as described below.

(1)柱形の単結晶ダイヤモンドを用いた電子源であって、電子放出部と通電加熱部で構成され、該電子放出部は柱の端面に高さ10μm以上且つ先端曲率半径5μm以下の先鋭突起を一ヶ所にのみ有し、該電子放出部の単結晶ダイヤモンド中に最も多く含まれる不純物は窒素であって該窒素の濃度は1×1017cm−3以上であり、該通電加熱部の室温(25℃)端子間抵抗は500Ω以下であることを特徴とする、ダイヤモンド電子源。
(2)上記電子放出部は、Ib型単結晶ダイヤモンドであることを特徴とする、(1)に記載のダイヤモンド電子源。
(3)上記通電加熱部は、単結晶ダイヤモンドの表面上に、不純物としてリンを最も多く含み、そのリン濃度が1×1016cm−3以上であるダイヤモンド薄膜を有することを特徴とする、(1)又は(2)に記載のダイヤモンド電子源。
(4)上記通電加熱部の単結晶ダイヤモンドが、不純物としてホウ素を最も多く含み、そのホウ素濃度が1×1018cm−3以上である単結晶ダイヤモンドであることを特徴とする、(1)〜(3)のいずれかに記載のダイヤモンド電子源。
(5)上記通電加熱部の単結晶ダイヤモンドは、その表面から深さ10μmまでの間にイオン注入層が形成されていることを特徴とする、(1)〜(3)のいずれかに記載のダイヤモンド電子源。
(6)上記通電加熱部の単結晶ダイヤモンドは、その表面近傍のダイヤモンド結晶構造が破壊されることによって形成された電気伝導層を有することを特徴とする、(1)〜(3)のいずれかに記載のダイヤモンド電子源。
(7)上記通電加熱部の単結晶ダイヤモンドは、その表面上に金属又は半導体の導電性薄膜を有することを特徴とする、(1)〜(3)のいずれかに記載のダイヤモンド電子源。
(8)使用前に10−4Pa以下の真空中で700℃以上1400℃以下の温度で加熱処理したことを特徴とする、(1)〜(7)のいずれかに記載のダイヤモンド電子源。
(1) An electron source using columnar single crystal diamond, which is composed of an electron emission portion and a current heating portion, and the electron emission portion is sharp with a height of 10 μm or more and a tip curvature radius of 5 μm or less on the end face of the column. The single-crystal diamond of the electron emission portion has a protrusion at only one location, and the most contained impurity is nitrogen, and the concentration of the nitrogen is 1 × 10 17 cm −3 or more. A diamond electron source having a room temperature (25 ° C.) terminal resistance of 500Ω or less.
(2) The diamond electron source according to (1), wherein the electron emission portion is an Ib type single crystal diamond.
(3) The energization heating unit has a diamond thin film containing the most phosphorus as an impurity and having a phosphorus concentration of 1 × 10 16 cm −3 or more on the surface of the single crystal diamond. The diamond electron source according to 1) or (2).
(4) The single-crystal diamond of the energization heating unit is single-crystal diamond containing the most boron as an impurity and having a boron concentration of 1 × 10 18 cm −3 or more. The diamond electron source according to any one of (3).
(5) The single crystal diamond of the energization heating unit has an ion implantation layer formed between the surface and a depth of 10 μm, according to any one of (1) to (3) Diamond electron source.
(6) Any one of (1) to (3), wherein the single crystal diamond of the energization heating portion has an electrically conductive layer formed by destroying a diamond crystal structure near the surface thereof. The diamond electron source described in 1.
(7) The diamond electron source according to any one of (1) to (3), wherein the single crystal diamond of the energization heating unit has a metal or semiconductor conductive thin film on a surface thereof.
(8) The diamond electron source according to any one of (1) to (7), wherein heat treatment is performed at a temperature of 700 ° C. or higher and 1400 ° C. or lower in a vacuum of 10 −4 Pa or lower before use.

本発明によれば、真空管、電子ビーム分析装置、加速器、殺菌用電子線照射装置、X線発生装置、樹脂用照射装置、電子ビーム加熱装置など電子線を使う全ての機器に使用可能であり、安定に電子放出して大電流かつ高輝度なダイヤモンド電子源が実現される。本発明のダイヤモンド電子源を使用すれば、高倍率観察が可能な電子顕微鏡や、微細パターンを高スループットで描画可能な電子ビーム露光機が実現される。
また、通電加熱部の単結晶ダイヤモンド表面上に、最も多く含まれる不純物はリンでそのリン濃度が1×1016cm−3以上であるダイヤモンド薄膜を形成するのが好ましい。リンドープダイヤモンド薄膜はn型半導体であるので、給電端子から供給された電子を電子放出部11のダイヤモンドの伝導帯にスムーズに輸送することができる結果、電子放出がより容易となる。
According to the present invention, it can be used for all devices using electron beams such as vacuum tubes, electron beam analyzers, accelerators, sterilizing electron beam irradiation devices, X-ray generators, resin irradiation devices, electron beam heating devices, A diamond electron source having a large current and high brightness can be realized by emitting electrons stably. If the diamond electron source of the present invention is used, an electron microscope capable of high-magnification observation and an electron beam exposure machine capable of drawing fine patterns with high throughput can be realized.
Further, it is preferable to form a diamond thin film having a phosphorus concentration of 1 × 10 16 cm −3 or more on the surface of the single crystal diamond of the energization heating portion with phosphorus being the most abundant impurity. Since the phosphorus-doped diamond thin film is an n-type semiconductor, the electrons supplied from the power supply terminal can be smoothly transported to the diamond conduction band of the electron emission portion 11, and as a result, the electron emission becomes easier.

本発明のダイヤモンド電子源は単結晶を使用するので、形状制御性や不純物濃度制御性が良く量産時の性能ばらつきが少ない。また、柱状で端面に先鋭突起を一ヶ所のみ有するために、電子顕微鏡や電子ビーム露光装置で使用されているZrO/WやLaB等の電子源と互換性が高く普及が容易である。通電加熱部の室温端子間抵抗は500Ω以下と低いので、ZrO/WやLaB等を加熱するフィラメント電源で電子源全体の加熱が可能であり、加熱で放出電流の安定化に必要な電子放出部に付着した水分等の除去を容易に行うことができ、安定した電子放出が実現できる。通電加熱部は電子放出部に電子を供給する役割もあり、電子源動作中に通電で供給された電子の一部は電子放出部に流れる。通電加熱部と電子放出部は少なくとも加熱時には電気的に接続した状態である。電子放出部の単結晶ダイヤモンド中に最も多く含まれる不純物は窒素でその窒素濃度は1×1017cm−3以上であり、加熱時に窒素が活性化してダイヤモンドの伝導帯に十分な数の電子を出すので電子放出が容易である。電子放出部は高さ10μm以上且つ先端曲率半径5μm以下の先鋭突起を有しているので、先端に電界を与えることによって電子ビームの引き出しが容易である。 Since the diamond electron source of the present invention uses a single crystal, the shape controllability and impurity concentration controllability are good, and the performance variation during mass production is small. Further, since it is columnar and has only one sharp projection on the end face, it is highly compatible with electron sources such as ZrO / W and LaB 6 used in electron microscopes and electron beam exposure apparatuses, and is easily spread. Since the resistance between the room temperature terminals of the energization heating part is as low as 500Ω or less, the entire electron source can be heated with a filament power source that heats ZrO / W, LaB 6 and the like, and the electron emission necessary for stabilizing the emission current by heating The moisture adhering to the part can be easily removed, and stable electron emission can be realized. The energization heating unit also serves to supply electrons to the electron emission unit, and a part of the electrons supplied by energization during the operation of the electron source flows to the electron emission unit. The energization heating unit and the electron emission unit are in an electrically connected state at least during heating. Nitrogen is the most abundant impurity in the single crystal diamond in the electron emission region, and the nitrogen concentration is 1 × 10 17 cm −3 or more, and when activated, the nitrogen is activated to generate a sufficient number of electrons in the conduction band of diamond. It is easy to emit electrons. Since the electron emission portion has a sharp protrusion having a height of 10 μm or more and a tip curvature radius of 5 μm or less, the electron beam can be easily drawn by applying an electric field to the tip.

本発明のダイヤモンド電子源の電子放出部は、Ib型単結晶ダイヤモンドであっても良い。Ib型はほとんどの窒素原子が炭素原子を孤立置換した状態であり、ドナーとして加熱時に最も活性化しやすい状態であるので、より多くの電子を伝導帯に出すために電子放出がより容易となる。   The electron emission portion of the diamond electron source of the present invention may be an Ib type single crystal diamond. The type Ib is a state in which most of the nitrogen atoms are substituted by carbon atoms, and is most easily activated when heated as a donor, so that more electrons are emitted to the conduction band, so that electron emission becomes easier.

以下、添付図面を参照して、本発明に係るダイヤモンド電子源の好適な実施形態について詳細に説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。   Hereinafter, preferred embodiments of a diamond electron source according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are assigned to the same elements, and duplicate descriptions are omitted. Further, the dimensional ratios in the drawings do not necessarily match those described.

図1は、本発明によるダイヤモンド電子源の一実施形態を示す立体図である。ダイヤモンド電子源10は、柱形の単結晶ダイヤモンドが素材として用いられ、50μm×50μm×100μm以上、1mm×1mm×5mm以下の直方体空間に収まる形状である。この範囲内の大きさであることによって、点電子源であるLaBやZrO/Wなどの従来の電子源と互換性を有する結果、広範囲の電子ビーム装置においてダイヤモンド電子源の使用が可能となる。 FIG. 1 is a three-dimensional view showing an embodiment of a diamond electron source according to the present invention. The diamond electron source 10 uses columnar single crystal diamond as a material, and has a shape that fits in a rectangular parallelepiped space of 50 μm × 50 μm × 100 μm or more and 1 mm × 1 mm × 5 mm or less. The size within this range allows compatibility with conventional electron sources such as point electron sources such as LaB 6 and ZrO / W, so that a diamond electron source can be used in a wide range of electron beam devices. .

ダイヤモンド電子源10は、電子放出部11と通電加熱部12とで構成される。電子放出部11は先鋭な突起を一ヶ所有する。突起の高さは10μm以上且つ先端曲率半径5μm以下が好ましく、先端に電界を与えることによって電子ビームの引き出しが容易である。突起先端に電界が集中し易くなるように、突起に向かって先細りの形状であることが好ましい。突起形状はより好ましくは高さ15μm以上かつ先端曲率半径2μm以下であり、これにより従来電子源ZrO/Wを上回る輝度の実現が可能である。   The diamond electron source 10 includes an electron emission unit 11 and an energization heating unit 12. The electron emission part 11 has one sharp protrusion. The height of the projection is preferably 10 μm or more and the radius of curvature of the tip is 5 μm or less. By applying an electric field to the tip, the electron beam can be easily extracted. The shape is preferably tapered toward the protrusion so that the electric field is easily concentrated on the tip of the protrusion. More preferably, the protrusion shape has a height of 15 μm or more and a tip curvature radius of 2 μm or less, which makes it possible to achieve a luminance higher than that of the conventional electron source ZrO / W.

また、電子放出部11の単結晶ダイヤモンド中に最も多く含まれる不純物は窒素でその窒素濃度は1×1017cm−3以上である。これにより、加熱時に窒素が活性化してダイヤモンドの伝導帯に十分な数の電子を出すので電子放出が容易である。窒素濃度はより好ましくは2×1018cm−3以上であり、これにより従来電子源ZrO/Wを上回る輝度の実現が可能である。電子放出部11はIb型単結晶ダイヤモンドであることにより大電流の電子放出が可能である。Ib型はほとんどの窒素原子が炭素原子を孤立置換した状態であり、ドナーとして加熱時に最も活性化しやすい混入状態である。従って、より多くの電子を伝導帯に出すために電子放出がより容易となる。 Moreover, the impurity contained most in the single crystal diamond of the electron emission part 11 is nitrogen, and the nitrogen concentration is 1 × 10 17 cm −3 or more. This facilitates electron emission because nitrogen is activated during heating and emits a sufficient number of electrons to the conduction band of diamond. The nitrogen concentration is more preferably 2 × 10 18 cm −3 or more, which makes it possible to achieve a luminance exceeding that of the conventional electron source ZrO / W. The electron emission part 11 is an Ib type single crystal diamond, and can emit a large current. Type Ib is a state in which most of the nitrogen atoms are substituted by carbon atoms, and is a mixed state that is most easily activated as a donor during heating. Therefore, electron emission is easier because more electrons are emitted to the conduction band.

本発明においては、通電加熱部12は室温(25℃)での端子間抵抗は500Ω以下である。
本発明における端子間抵抗とは、図2のダイヤモンド電子源モジュール20に示すように、本発明のダイヤモンド電子源10を給電端子21及びセラミックベース22を含む部品からなるモジュール23の給電端子21で挟持した時の給電端子21間の抵抗である。給電端子21は抵抗がほぼ無視できる金属製であり、ダイヤモンド電子源10との電気的接触を良くするために、グラファイト等比較的やわらかいスペーサを噛ましても良い。このように低い端子間抵抗を有することによって、電子ビーム装置のZrO/WやLaB等を加熱するフィラメント電源でダイヤモンド電子源全体の加熱が可能である。加熱することにより放出電流の安定化に必要な電子放出部に付着した水分等の除去を容易に行うことができ、また電子放出部11の突起への真空中に残留する分子等の付着も少ないので、安定した電子放出が実現できる。加熱温度は400℃以上1450℃以下で動作可能であるが、より好ましくは、600℃以上1200℃以下である。温度が低すぎると十分な電子放出電流は得られず、温度が高すぎるとダイヤモンド表面のグラファイト化が進んで寿命が短くなる。
In the present invention, the electric heating unit 12 has a resistance between terminals of 500Ω or less at room temperature (25 ° C.).
As shown in the diamond electron source module 20 of FIG. 2, the inter-terminal resistance in the present invention is sandwiched between the power supply terminal 21 of the module 23 composed of components including the power supply terminal 21 and the ceramic base 22. This is the resistance between the power supply terminals 21 at the time. The power supply terminal 21 is made of a metal whose resistance is almost negligible, and in order to improve electrical contact with the diamond electron source 10, a relatively soft spacer such as graphite may be bitten. By having such a low inter-terminal resistance, the entire diamond electron source can be heated with a filament power source that heats ZrO / W, LaB 6 and the like of the electron beam apparatus. By heating, moisture attached to the electron emission portion necessary for stabilization of the emission current can be easily removed, and adhesion of molecules remaining in the vacuum to the protrusions of the electron emission portion 11 is also small. Therefore, stable electron emission can be realized. The operation is possible at a heating temperature of 400 ° C. or higher and 1450 ° C. or lower, more preferably 600 ° C. or higher and 1200 ° C. or lower. If the temperature is too low, a sufficient electron emission current cannot be obtained. If the temperature is too high, graphitization of the diamond surface proceeds and the life is shortened.

次に、通電加熱部12の室温端子間抵抗500Ω以下を実現するための具体的な方法を例示するが、本発明はこれらに限定されるものではない。下記の方法を適用して得られた通電加熱部はダイヤモンドを使用した電子源において大電流かつ安定な電子放出を実現することができる。
(1)通電加熱部の単結晶ダイヤモンドの表面にリンを不純物として含むダイヤモンド薄膜を形成する方法。
(2)通電加熱部の単結晶ダイヤモンドとしてホウ素を不純物として含む単結晶ダイヤモンドを用いる方法。
(3)通電加熱部の単結晶ダイヤモンドの表面にイオン注入層を形成する方法。
(4)通電加熱部の単結晶ダイヤモンドの表面近傍の結晶構造を破壊して電気伝導層を形成する方法。
(5)通電加熱部の単結晶ダイヤモンドの表面に金属又は半導体の導電性薄膜を形成する方法。
以下では、上記(1)〜(5)の各方法について詳細に説明する。
Next, although the concrete method for implement | achieving the room temperature terminal resistance of 500 ohms or less of the electricity heating part 12 is illustrated, this invention is not limited to these. The energization heating unit obtained by applying the following method can realize a large current and stable electron emission in an electron source using diamond.
(1) A method of forming a diamond thin film containing phosphorus as an impurity on the surface of single-crystal diamond in a current-heating section.
(2) A method in which single crystal diamond containing boron as an impurity is used as the single crystal diamond in the current heating section.
(3) A method of forming an ion implantation layer on the surface of the single crystal diamond of the energization heating unit.
(4) A method of forming an electrically conductive layer by destroying the crystal structure in the vicinity of the surface of the single crystal diamond in the energization heating section.
(5) A method of forming a metal or semiconductor conductive thin film on the surface of the single crystal diamond of the energization heating unit.
Below, each method of said (1)-(5) is demonstrated in detail.

<単結晶ダイヤモンドの表面にリンを不純物として含むダイヤモンド薄膜を形成する方法>
この方法では、通電加熱部12の単結晶ダイヤモンド表面上に、不純物としてリンを最も多く含み、そのリン濃度が1×1016cm−3以上であるダイヤモンド薄膜を、マイクロ波プラズマCVDもしくはDCプラズマCVDで形成する。リンドープダイヤモンド薄膜はn型半導体であるので、給電端子から供給された電子を電子放出部11のダイヤモンドの伝導帯にスムーズに輸送することができる結果、電子放出がより容易となる。
<Method of forming a diamond thin film containing phosphorus as an impurity on the surface of single crystal diamond>
In this method, a diamond thin film containing the largest amount of phosphorus as an impurity and having a phosphorus concentration of 1 × 10 16 cm −3 or more is formed on the surface of the single crystal diamond of the energization heating unit 12 by microwave plasma CVD or DC plasma CVD. Form with. Since the phosphorus-doped diamond thin film is an n-type semiconductor, electrons supplied from the power supply terminal can be smoothly transported to the diamond conduction band of the electron emission portion 11, resulting in easier electron emission.

<単結晶ダイヤモンドとしてホウ素を不純物として含む単結晶ダイヤモンドを用いる方法>
この方法では、通電加熱部12の単結晶ダイヤモンドを、不純物としてホウ素を最も多く含み、そのホウ素濃度が1×1018cm−3以上のものとする。
なお、端子間抵抗は温度上昇と共にホウ素が活性化して低下するために動作温度では10Ω以下となる。この場合、図3に示すように窒素濃度が1×1017cm−3以上である電子放出部11と、ホウ素濃度が1×1018cm−3以上である通電加熱部12とが同時にひとつの柱形単結晶ダイヤモンド30に存在することになる。このようなダイヤモンド単結晶は、例えば高温高圧合成法で作製することができる。この手法で単結晶合成する際、合成条件を選択してホウ素が混入する成長セクタとホウ素はほとんど混入せずに窒素が混入するセクタを同時に成長させることが可能である。二つのセクタが入るように柱形素材を切り出すことで所望のダイヤモンド単結晶が得られる。通電加熱部12を形成する工程が無いので、歩留まりを高くすることができる。
<Method of using single crystal diamond containing boron as an impurity as single crystal diamond>
In this method, the single crystal diamond of the energization heating unit 12 contains boron as an impurity most, and the boron concentration is 1 × 10 18 cm −3 or more.
The inter-terminal resistance becomes 10Ω or less at the operating temperature because boron is activated and lowered as the temperature rises. In this case, as shown in FIG. 3, the electron emission section 11 having a nitrogen concentration of 1 × 10 17 cm −3 or more and the energization heating section 12 having a boron concentration of 1 × 10 18 cm −3 or more are simultaneously provided as one. It exists in the columnar single crystal diamond 30. Such a diamond single crystal can be produced by, for example, a high-temperature high-pressure synthesis method. When a single crystal is synthesized by this method, it is possible to simultaneously grow a growth sector in which boron is mixed and a sector in which nitrogen is mixed with almost no boron mixed by selecting a synthesis condition. A desired diamond single crystal can be obtained by cutting out a columnar material so that two sectors can enter. Since there is no process for forming the energization heating unit 12, the yield can be increased.

<単結晶ダイヤモンドの表面にイオン注入層を形成する方法>
この方法では、単結晶ダイヤモンドの表面から深さ10μmまでの間にイオン注入層41を形成する。
イオン注入方法は、例えば図4に示すように、柱形単結晶ダイヤモンド素材40が通電可熱部12側の端面から見て四角柱である場合は、給電端子21で挟持する2面と他の2面のうち少なくともどちらか1面にイオン注入層41を形成して、給電端子21間の導通をとる。イオン注入条件は、イオン種はホウ素、イオウ、リン、リチウム等で、加速エネルギーは10keV〜10MeV、ドーズ量は1×1014〜2×1016cm−2が好適に使用可能で、アニール条件は、真空度1×10−4Pa以下、温度1000〜1450℃、時間10〜60分が好適に使用可能である。安定した通電加熱部12の抵抗が得られるために、試料間での電子放出条件のばらつきを少なくすることができる。
<Method of forming an ion implantation layer on the surface of single crystal diamond>
In this method, the ion implantation layer 41 is formed between the surface of the single crystal diamond and a depth of 10 μm.
For example, as shown in FIG. 4, when the columnar single crystal diamond material 40 is a square column as viewed from the end surface on the energization heatable portion 12 side, the two surfaces sandwiched by the power supply terminal 21 and other surfaces are used. An ion implantation layer 41 is formed on at least one of the two surfaces to establish conduction between the power supply terminals 21. As the ion implantation conditions, the ion species are boron, sulfur, phosphorus, lithium, etc., the acceleration energy is preferably 10 keV to 10 MeV, and the dose amount is 1 × 10 14 to 2 × 10 16 cm −2. The degree of vacuum is 1 × 10 −4 Pa or less, the temperature is 1000 to 1450 ° C., and the time is 10 to 60 minutes. Since stable resistance of the energization heating unit 12 can be obtained, variations in electron emission conditions between samples can be reduced.

<通電加熱部の単結晶ダイヤモンドの表面の結晶構造を破壊して電気伝導層を形成する方法>
この方法では、例えば図5に示すように、単結晶ダイヤモンドの表面近傍のダイヤモンド結晶構造を破壊して電気伝導層51を形成する。
電気伝導層51の形成方法は、柱形単結晶ダイヤモンド素材50が通電可熱部12側の端面から見て四角柱である場合は、給電端子21で挟持する2面と他の2面のうち少なくともどちらか1面を集束イオンビーム加工装置等のイオンビームを利用して表面近傍のダイヤモンド結晶構造を破壊して、給電端子21間の導通をとる。イオンビーム照射条件は、イオン種はガリウム、加速エネルギーは40keV以下でドーズ量は1×1017cm−2以上が好適に使用可能である。安定した通電加熱部12の抵抗が得られるために、試料間での電子放出条件のばらつきを少なくすることができる。
<Method of forming an electrically conductive layer by destroying the crystal structure of the surface of the single crystal diamond in the energization heating section>
In this method, for example, as shown in FIG. 5, the diamond crystal structure in the vicinity of the surface of the single crystal diamond is broken to form the electrically conductive layer 51.
When the columnar single crystal diamond material 50 is a quadrangular prism as viewed from the end face on the energization heatable portion 12 side, the electric conductive layer 51 is formed by two surfaces sandwiched by the power supply terminal 21 and the other two surfaces. At least one of the surfaces is made conductive between the power supply terminals 21 by destroying the diamond crystal structure in the vicinity of the surface using an ion beam such as a focused ion beam processing apparatus. As ion beam irradiation conditions, gallium ion species, acceleration energy of 40 keV or less, and a dose of 1 × 10 17 cm −2 or more can be suitably used. Since stable resistance of the energization heating unit 12 can be obtained, variations in electron emission conditions between samples can be reduced.

<通電加熱部の単結晶ダイヤモンドの表面に金属又は半導体の導電性薄膜を形成する方法>
この方法では、例えば図6に示すように、単結晶ダイヤモンドの表面上に金属もしくは半導体の導電性薄膜61を形成する。
導電性薄膜61の形成方法は、柱形単結晶ダイヤモンド素材60を通電可熱部12側の端面から見て四角柱である場合は、給電端子21で挟持する2面と他の2面のうち少なくともどちらか1面上に金属薄膜もしくは半導体薄膜を形成し、給電端子21間の導通をとる。金属薄膜であれば、チタン、タングステンやモリブデン等の耐熱金属をスパッタや電子ビーム蒸着で形成するのが良く、半導体薄膜であれば、不純物を高濃度にドーピングした抵抗が低いシリコンやシリコンカーバイド等をCVDで形成するのが良い。安定した通電加熱部12の抵抗が得られるために、試料間での電子放出条件のばらつきを少なくすることができる。
<Method of forming a conductive thin film of metal or semiconductor on the surface of single crystal diamond in the energization heating section>
In this method, as shown in FIG. 6, for example, a conductive thin film 61 of metal or semiconductor is formed on the surface of single crystal diamond.
When the columnar single crystal diamond material 60 is a quadrangular prism as viewed from the end face on the energization heatable portion 12 side, the conductive thin film 61 is formed by two surfaces sandwiched by the power supply terminal 21 and the other two surfaces. A metal thin film or a semiconductor thin film is formed on at least one of the surfaces, and conduction between the feeding terminals 21 is established. For metal thin films, heat-resistant metals such as titanium, tungsten, and molybdenum are preferably formed by sputtering or electron beam evaporation. For semiconductor thin films, silicon, silicon carbide, or the like having low resistance doped with impurities at a high concentration is used. It is good to form by CVD. Since stable resistance of the energization heating unit 12 can be obtained, variations in electron emission conditions between samples can be reduced.

ダイヤモンド電子源10は、10−4Pa以下の真空中で700℃以上1400℃以下の温度で加熱処理することにより、より安定した電子放出を実現することが好ましい。この真空加熱処理で表面の吸着物等が脱離しさらに安定な表面原子構造になるために、安定した電子放出が実現する。従って、動作前に真空中から取り出せば、実施した真空加熱処理は無効となる。加熱方法としては、ダイヤモンド電子源モジュール20の状態で給電端子21間に電流を流して通電加熱することが好ましい。また加熱条件としては、10−5Pa以下の真空中で800℃以上1100℃以下の温度がより好ましい。この加熱処理では十分な脱ガス速度が得られ、且つ長時間放置しても表面が黒鉛化することが無いので実用的である。 The diamond electron source 10 is preferably heat-treated at a temperature of 700 ° C. or higher and 1400 ° C. or lower in a vacuum of 10 −4 Pa or lower to realize more stable electron emission. Since the adsorbate on the surface is desorbed by this vacuum heat treatment and a more stable surface atomic structure is obtained, stable electron emission is realized. Therefore, if it is taken out from the vacuum before the operation, the performed vacuum heat treatment becomes invalid. As a heating method, it is preferable that current is supplied between the power supply terminals 21 in the state of the diamond electron source module 20 to conduct current heating. Moreover, as heating conditions, the temperature of 800 degreeC or more and 1100 degrees C or less is more preferable in the vacuum of 10 < -5 > Pa or less. This heat treatment is practical because a sufficient degassing rate is obtained and the surface does not graphitize even if left for a long time.

本発明は、電子放出部の単結晶ダイヤモンドとして、最も多く含まれている不純物が窒素であり、その窒素濃度が1×1017cm−3以上である単結晶ダイヤモンドを用いることを特徴としている。
この様な単結晶ダイヤモンドは、窒素はダイヤモンドにとってn型ドーパントであるにも拘わらず不純物準位が1.4eV以上と深く室温では絶縁体であるために、電子源材料として使い辛く注目されてこなかった。しかしながら、本発明者らによる鋭意研究の結果、ひとつの単結晶ダイヤモンドを電子放出部と通電加熱部とに分けて、通電加熱部の室温抵抗が低い単結晶ダイヤモンドを用いるか、あるいは通電加熱部の室温抵抗を下げる加工を施すことで、通電加熱でダイヤモンド電子源全体の加熱できるようになり、電子放出部の窒素を電気的に活性化させ、伝導帯に出た電子を突起先端の電界で引き出して電子放出を得るというこれまでになかった電子源構造を見出したものである。これにより安価で大量に人工合成できる窒素ドープ単結晶ダイヤモンドが電子源に利用できるようになり、これまで実現できなかった、主に電子ビーム装置で使用するZrO/W電子源やLaB電子源と互換性のあるダイヤモンド点電子源の量産が可能となった。
The present invention is characterized in that, as the single crystal diamond of the electron emission portion, the most contained impurity is nitrogen, and the single crystal diamond whose nitrogen concentration is 1 × 10 17 cm −3 or more is used.
Such a single crystal diamond is not attracting much attention as an electron source material because nitrogen is an n-type dopant for diamond, and its impurity level is as deep as 1.4 eV or more and is an insulator at room temperature. It was. However, as a result of earnest research by the present inventors, one single crystal diamond is divided into an electron emission portion and an electric heating portion, and the single crystal diamond having a low room temperature resistance of the electric heating portion is used, or the electric heating portion By applying a process that lowers the room temperature resistance, the entire diamond electron source can be heated by energization heating, electrically activates the nitrogen in the electron emission region, and draws electrons emitted from the conduction band by the electric field at the tip of the protrusion. Thus, an unprecedented electron source structure for obtaining electron emission has been found. As a result, nitrogen-doped single crystal diamond that can be artificially synthesized in large quantities at low cost can be used as an electron source, and a ZrO / W electron source or a LaB 6 electron source mainly used in an electron beam apparatus, which could not be realized so far, Mass production of compatible diamond point electron sources is now possible.

本発明のダイヤモンド電子源について、実施例に基づいてさらに具体的に説明する。
[実施例1]
まず、図1に示すようなダイヤモンド電子源a1を作製した。サイズは底面が0.6mm角で高さは2.5mm、底面から2.2mm上方より先細りの角錐台形状となっており、端面のサイズは30μm角である。突起の高さは30μmで先端の曲率半径は0.5μmとした。底面から2.0mm上方を境として上部は電子放出部、下部は通電加熱部である。電子放出部の単結晶ダイヤモンド中に最も多く含まれる不純物は窒素であり窒素濃度は3×1018cm−3、通電加熱部の単結晶ダイヤモンド中に最も多く含まれる不純物はホウ素でありホウ素濃度は2×1019cm−3であるような図3に示す単結晶ダイヤモンド素材を使用した。そして、ダイヤモンド電子源a1を図2に示すようなダイヤモンド電子源モジュールに組み込んだ。室温(25℃)における端子間抵抗は250Ωであった。ダイヤモンド電子源モジュールを従来電子源が加熱できるフィラメント電源を有する評価装置に組み込んで電子ビームを評価したところ、ダイヤモンド電子源の温度1,000℃、突起先端と引出電極間の距離400μm、引出電極アパーチャ径500μmφ、引出電圧3.5kVにおいて、角電流密度0.4mA/srが得られた。
The diamond electron source of the present invention will be described more specifically based on examples.
[Example 1]
First, a diamond electron source a1 as shown in FIG. 1 was produced. The size of the bottom surface is 0.6 mm square, the height is 2.5 mm, the shape is a truncated pyramid shape that tapers 2.2 mm from the bottom, and the size of the end surface is 30 μm square. The height of the protrusion was 30 μm and the radius of curvature at the tip was 0.5 μm. The upper part is an electron emission part and the lower part is an energization heating part with 2.0 mm above the bottom as a boundary. The most abundant impurity contained in the single crystal diamond in the electron emission portion is nitrogen and the nitrogen concentration is 3 × 10 18 cm −3 , and the most abundant impurity contained in the single crystal diamond in the current heating portion is boron and the boron concentration is The single crystal diamond material shown in FIG. 3 as 2 × 10 19 cm −3 was used. Then, the diamond electron source a1 was incorporated in a diamond electron source module as shown in FIG. The resistance between terminals at room temperature (25 ° C.) was 250Ω. When the electron beam was evaluated by incorporating the diamond electron source module into a conventional evaluation apparatus having a filament power source that can be heated by the electron source, the temperature of the diamond electron source was 1,000 ° C., the distance between the protrusion tip and the extraction electrode was 400 μm, and the extraction electrode aperture was At a diameter of 500 μmφ and an extraction voltage of 3.5 kV, an angular current density of 0.4 mA / sr was obtained.

ダイヤモンド電子源a1から、電子放出部の単結晶ダイヤモンドをIb型に変更してダイヤモンド電子源a2を作製した。同様に評価したところ、角電流密度0.5mA/srが得られた。ダイヤモンド電子源a1をベースに、通電加熱部の単結晶ダイヤモンドの表面上に、最も多く含まれる不純物がリンであり、そのリン濃度が5×1019cm−3のダイヤモンド薄膜2μmをマイクロ波プラズマCVDで形成してダイヤモンド電子源a3を作製した。同様に評価したところ、角電流密度0.5mA/srが得られた。
ダイヤモンド電子源a1〜a3を評価装置に組み込み、10−5Pa以下の真空度、1050℃の温度で20時間加熱した後電子ビームを評価した。その結果、10時間のビーム安定性は1%rmsとなり、真空加熱処理無しで評価したときの5%rmsより良くなった。
The diamond electron source a2 was produced by changing the single-crystal diamond in the electron emission portion from the diamond electron source a1 to the Ib type. When evaluated in the same manner, an angular current density of 0.5 mA / sr was obtained. Based on the diamond electron source a1, on the surface of the single crystal diamond of the energization heating part, the most abundant impurity is phosphorus, and a diamond thin film of 2 μm having a phosphorus concentration of 5 × 10 19 cm −3 is formed by microwave plasma CVD. Thus, a diamond electron source a3 was produced. When evaluated in the same manner, an angular current density of 0.5 mA / sr was obtained.
The diamond electron sources a1 to a3 were incorporated in an evaluation apparatus, and the electron beam was evaluated after heating at a vacuum degree of 10 −5 Pa or less and a temperature of 1050 ° C. for 20 hours. As a result, the beam stability for 10 hours was 1% rms, which was better than 5% rms when evaluated without vacuum heat treatment.

[比較例1]
ダイヤモンド電子源a1から、突起の形状を高さ9μmに変更してダイヤモンド電子源a4を、窒素濃度を5×1016cm−3に変更してダイヤモンド電子源a5を、ホウ素濃度を1×1017cm−3にし端子間抵抗を1kΩに変更してダイヤモンド電子源a6をそれぞれ作製した。同様に評価したが、ダイヤモンド電子源a4及びa5は、従来電子源のZrO/W電子源を下回る角電流密度しか得られなかった。ダイヤモンド電子源a6は評価装置のフィラメント電源では加熱することができず電子ビームは引き出せなかった。
[Comparative Example 1]
From the diamond electron source a1, the shape of the protrusion was changed to a height of 9 μm, the diamond electron source a4 was changed, the nitrogen concentration was changed to 5 × 10 16 cm −3 , the diamond electron source a5 was changed to a boron concentration of 1 × 10 17 A diamond electron source a6 was prepared by changing the resistance between terminals to 1 cm and changing to 3 cm- 3 . Although similarly evaluated, the diamond electron sources a4 and a5 were able to obtain only an angular current density lower than that of the conventional electron source ZrO / W electron source. The diamond electron source a6 could not be heated by the filament power source of the evaluation apparatus, and the electron beam could not be extracted.

[実施例2]
まず、図1に示すようなダイヤモンド電子源b1を作製した。サイズは底面が0.6mm角で高さは2.5mm、底面から2.2mm上方より先細りの角錐台形状となっており、端面のサイズは30μm角である。突起の高さは30μmで先端の曲率半径は0.5μmとした。底面から2.0mm上方を境として上部は電子放出部、下部は通電加熱部である。電子放出部の単結晶ダイヤモンド中に最も多く含まれる不純物は窒素であり窒素濃度は3×1018cm−3であるような単結晶ダイヤモンドを使用した。通電加熱部には、単結晶ダイヤモンド表面から深さ2μmの間にホウ素をイオン注入・アニールして図4に示すようなイオン注入層を形成した。そして、ダイヤモンド電子源b1を図2に示すようなダイヤモンド電子源モジュールに組み込んだ。室温(25℃)における端子間抵抗は50Ωであった。ダイヤモンド電子源モジュールを従来電子源が加熱できるフィラメント電源を有する評価装置に組み込んで電子ビームを評価したところ、ダイヤモンド電子源の温度1,000℃、突起先端と引出電極間の距離400μm、引出電極アパーチャ径500μmφ、引出電圧3.5kVにおいて、角電流密度0.4mA/srが得られた。
[Example 2]
First, a diamond electron source b1 as shown in FIG. 1 was produced. The size of the bottom surface is 0.6 mm square, the height is 2.5 mm, the shape is a truncated pyramid shape that tapers 2.2 mm from the bottom, and the size of the end surface is 30 μm square. The height of the protrusion was 30 μm and the radius of curvature at the tip was 0.5 μm. The upper part is an electron emission part and the lower part is an energization heating part with 2.0 mm above the bottom as a boundary. The single crystal diamond in which the most contained impurity in the single crystal diamond in the electron emission portion is nitrogen and the nitrogen concentration is 3 × 10 18 cm −3 was used. In the current heating section, boron was ion-implanted and annealed at a depth of 2 μm from the single crystal diamond surface to form an ion-implanted layer as shown in FIG. Then, the diamond electron source b1 was incorporated in a diamond electron source module as shown in FIG. The resistance between terminals at room temperature (25 ° C.) was 50Ω. When the electron beam was evaluated by incorporating the diamond electron source module into a conventional evaluation apparatus having a filament power source that can be heated by the electron source, the temperature of the diamond electron source was 1,000 ° C., the distance between the protrusion tip and the extraction electrode was 400 μm, and the extraction electrode aperture was At a diameter of 500 μmφ and an extraction voltage of 3.5 kV, an angular current density of 0.4 mA / sr was obtained.

ダイヤモンド電子源b1から、電子放出部の単結晶ダイヤモンドをIb型に変更してダイヤモンド電子源b2を作製した。同様に評価したところ、角電流密度0.5mA/srが得られた。ダイヤモンド電子源b1をベースに、通電加熱部の単結晶ダイヤモンドの表面上に、最も多く含まれる不純物はリンでありリン濃度が5×1019cm−3のダイヤモンド薄膜2μmをマイクロ波プラズマCVDで形成してダイヤモンド電子源b3を作製した。同様に評価したところ、角電流密度0.5mA/srが得られた。
ダイヤモンド電子源b1〜b3を評価装置に組み込み、10−5Pa以下の真空度、1050℃の温度で20時間加熱した後電子ビームを評価した。その結果、10時間のビーム安定性は1%rmsとなり、真空加熱処理無しで評価したときの5%rmsより良くなった。
A diamond electron source b2 was produced by changing the single-crystal diamond in the electron emission portion from the diamond electron source b1 to the Ib type. When evaluated in the same manner, an angular current density of 0.5 mA / sr was obtained. Based on the diamond electron source b1, a diamond thin film of 2 μm having a phosphorus concentration of 5 × 10 19 cm −3 is formed by microwave plasma CVD on the surface of the single-crystal diamond in the energization / heating section. Thus, a diamond electron source b3 was produced. When evaluated in the same manner, an angular current density of 0.5 mA / sr was obtained.
The diamond electron sources b1 to b3 were incorporated in an evaluation apparatus, and the electron beam was evaluated after heating at a vacuum degree of 10 −5 Pa or less and a temperature of 1050 ° C. for 20 hours. As a result, the beam stability for 10 hours was 1% rms, which was better than 5% rms when evaluated without vacuum heat treatment.

[比較例2]
ダイヤモンド電子源b1から、突起の形状を高さ9μmに変更してダイヤモンド電子源b4を、窒素濃度を5×1016cm−3に変更してダイヤモンド電子源b5を、イオン注入層形成時のイオン注入ドーズ量を少なくすることで端子間抵抗を1kΩに変更してダイヤモンド電子源b6をそれぞれ作製した。同様に評価したが、ダイヤモンド電子源b4及びb5は、従来電子源のZrO/W電子源を下回る角電流密度しか得られなかった。ダイヤモンド電子源b6は評価装置のフィラメント電源では加熱することができず電子ビームは引き出せなかった。
[Comparative Example 2]
From the diamond electron source b1, the shape of the protrusion is changed to a height of 9 μm, the diamond electron source b4 is changed, the nitrogen concentration is changed to 5 × 10 16 cm −3 , and the diamond electron source b5 is changed from the ion at the time of ion implantation layer formation. The diamond electron source b6 was produced by changing the inter-terminal resistance to 1 kΩ by reducing the implantation dose. Although similarly evaluated, the diamond electron sources b4 and b5 were able to obtain only an angular current density lower than the ZrO / W electron source of the conventional electron source. The diamond electron source b6 could not be heated by the filament power source of the evaluation apparatus, and the electron beam could not be extracted.

[実施例3]
まず、図1に示すようなダイヤモンド電子源c1を作製した。サイズは底面が0.6mm角で高さは2.5mm、底面から2.2mm上方より先細りの角錐台形状となっており、端面のサイズは30μm角である。突起の高さは30μmで先端の曲率半径は0.5μmとした。底面から2.0mm上方を境として上部は電子放出部、下部は通電加熱部である。電子放出部の単結晶ダイヤモンド中に最も多く含まれる不純物は窒素であり窒素濃度は3×1018cm−3であるような単結晶ダイヤモンドを使用した。通電加熱部には、集束イオンビーム加工装置で、イオン種はガリウム、加速エネルギー30kV、ドーズ量1.5×1018cm−2の条件で単結晶ダイヤモンド表面の結晶構造を破壊して作製した図5に示すような電気伝導層を形成した。そして、ダイヤモンド電子源c1を図2に示すようなダイヤモンド電子源モジュールに組み込んだ。室温(25℃)における端子間抵抗は10Ωであった。ダイヤモンド電子源モジュールを従来電子源が加熱できるフィラメント電源を有する評価装置に組み込んで電子ビームを評価したところ、ダイヤモンド電子源の温度1,000℃、突起先端と引出電極間の距離400μm、引出電極アパーチャ径500μmφ、引出電圧3.5kVにおいて、角電流密度0.4mA/srが得られた。
[Example 3]
First, a diamond electron source c1 as shown in FIG. 1 was produced. The size of the bottom surface is 0.6 mm square, the height is 2.5 mm, the shape is a truncated pyramid shape that tapers 2.2 mm from the bottom, and the size of the end surface is 30 μm square. The height of the protrusion was 30 μm and the radius of curvature at the tip was 0.5 μm. The upper part is an electron emission part and the lower part is an energization heating part with 2.0 mm above the bottom as a boundary. The single crystal diamond in which the most contained impurity in the single crystal diamond in the electron emission portion is nitrogen and the nitrogen concentration is 3 × 10 18 cm −3 was used. The energization heating unit is a focused ion beam processing apparatus, and is produced by destroying the crystal structure of the surface of a single crystal diamond under the conditions of ion species gallium, acceleration energy 30 kV, dose amount 1.5 × 10 18 cm −2 . An electrically conductive layer as shown in FIG. Then, the diamond electron source c1 was incorporated in a diamond electron source module as shown in FIG. The resistance between terminals at room temperature (25 ° C.) was 10Ω. When the electron beam was evaluated by incorporating the diamond electron source module into a conventional evaluation apparatus having a filament power source that can be heated by the electron source, the temperature of the diamond electron source was 1,000 ° C., the distance between the protrusion tip and the extraction electrode was 400 μm, and the extraction electrode aperture was At a diameter of 500 μmφ and an extraction voltage of 3.5 kV, an angular current density of 0.4 mA / sr was obtained.

ダイヤモンド電子源c1から、電子放出部の単結晶ダイヤモンドをIb型に変更してダイヤモンド電子源c2を作製した。同様に評価したところ、角電流密度0.5mA/srが得られた。ダイヤモンド電子源c1をベースに、通電加熱部の単結晶ダイヤモンドの表面上に、最も多く含まれる不純物はリンでありリン濃度が5×1019cm−3のダイヤモンド薄膜2μmをマイクロ波プラズマCVDで形成してダイヤモンド電子源c3を作製した。同様に評価したところ、角電流密度0.5mA/srが得られた。
ダイヤモンド電子源c1〜c3を評価装置に組み込み、10−5Pa以下の真空度、1050℃の温度で20時間加熱した後電子ビームを評価した。その結果、10時間のビーム安定性は1%rmsとなり、真空加熱処理無しで評価したときの5%rmsより良くなった。
From the diamond electron source c1, the single crystal diamond of the electron emission portion was changed to the Ib type to produce a diamond electron source c2. When evaluated in the same manner, an angular current density of 0.5 mA / sr was obtained. Based on the diamond electron source c1, a diamond thin film of 2 μm having a phosphorus concentration of 5 × 10 19 cm −3 is formed by microwave plasma CVD on the surface of the single-crystal diamond in the energization / heating section. Thus, a diamond electron source c3 was produced. When evaluated in the same manner, an angular current density of 0.5 mA / sr was obtained.
The diamond electron sources c1 to c3 were incorporated in an evaluation apparatus, and the electron beam was evaluated after heating at a vacuum degree of 10 −5 Pa or less and a temperature of 1050 ° C. for 20 hours. As a result, the beam stability for 10 hours was 1% rms, which was better than 5% rms when evaluated without vacuum heat treatment.

[比較例3]
ダイヤモンド電子源c1から、突起の形状を高さ9μmに変更してダイヤモンド電子源c4を、窒素濃度を5×1016cm−3に変更してダイヤモンド電子源c5を、集束イオンビームで単結晶表面を荒らす際のドーズ量を少なくすることで端子間抵抗を1kΩに変更してダイヤモンド電子源c6をそれぞれ作製した。同様に評価したが、ダイヤモンド電子源c4及びc5は、従来電子源のZrO/W電子源を下回る角電流密度しか得られなかった。ダイヤモンド電子源c6は評価装置のフィラメント電源では加熱することができず電子ビームは引き出せなかった。
[Comparative Example 3]
From the diamond electron source c1, the shape of the protrusions was changed to a height of 9 μm, the diamond electron source c4 was changed, the nitrogen concentration was changed to 5 × 10 16 cm −3 , and the diamond electron source c5 was changed to a single crystal surface with a focused ion beam. The diamond electron source c6 was produced by changing the inter-terminal resistance to 1 kΩ by reducing the dose when roughening the film. Although similarly evaluated, the diamond electron sources c4 and c5 were able to obtain only an angular current density lower than that of the conventional electron source ZrO / W electron source. The diamond electron source c6 could not be heated by the filament power source of the evaluation apparatus, and the electron beam could not be extracted.

[実施例4]
まず、図1に示すようなダイヤモンド電子源d1を作製した。サイズは底面が0.6mm角で高さは2.5mm、底面から2.2mm上方より先細りの角錐台形状となっており、端面のサイズは30μm角である。突起の高さは30μmで先端の曲率半径は0.5μmとした。底面から2.0mm上方を境として上部は電子放出部、下部は通電加熱部である。電子放出部の単結晶ダイヤモンド中に最も多く含まれる不純物は窒素であり窒素濃度は3×1018cm−3であるような単結晶ダイヤモンドを使用した。通電加熱部には、スパッタでチタン薄膜を100nmさらにその上にタングステン薄膜を1000nm形成して図6に示すような導電性薄膜を形成した。そして、ダイヤモンド電子源d1を図2に示すようなダイヤモンド電子源モジュールに組み込んだ。室温(25℃)における端子間抵抗は5Ωであった。ダイヤモンド電子源モジュールを従来電子源が加熱できるフィラメント電源を有する評価装置に組み込んで電子ビームを評価したところ、ダイヤモンド電子源の温度1,000℃、突起先端と引出電極間の距離400μm、引出電極アパーチャ径500μmφ、引出電圧3.5kVにおいて、角電流密度0.4mA/srが得られた。
[Example 4]
First, a diamond electron source d1 as shown in FIG. 1 was produced. The size of the bottom surface is 0.6 mm square, the height is 2.5 mm, the shape is a truncated pyramid shape that tapers 2.2 mm from the bottom, and the size of the end surface is 30 μm square. The height of the protrusion was 30 μm and the radius of curvature at the tip was 0.5 μm. The upper part is an electron emission part and the lower part is an energization heating part with 2.0 mm above the bottom as a boundary. The single crystal diamond in which the most contained impurity in the single crystal diamond in the electron emission portion is nitrogen and the nitrogen concentration is 3 × 10 18 cm −3 was used. A conductive thin film as shown in FIG. 6 was formed in the energization heating portion by sputtering to form a titanium thin film of 100 nm and a tungsten thin film of 1000 nm thereon. Then, the diamond electron source d1 was incorporated in a diamond electron source module as shown in FIG. The resistance between terminals at room temperature (25 ° C.) was 5Ω. When the electron beam was evaluated by incorporating the diamond electron source module into a conventional evaluation apparatus having a filament power source that can be heated by the electron source, the temperature of the diamond electron source was 1,000 ° C., the distance between the protrusion tip and the extraction electrode was 400 μm, and the extraction electrode aperture was At a diameter of 500 μmφ and an extraction voltage of 3.5 kV, an angular current density of 0.4 mA / sr was obtained.

ダイヤモンド電子源d1から、電子放出部の単結晶ダイヤモンドをIb型に変更してダイヤモンド電子源d2を作製した。同様に評価したところ、角電流密度0.5mA/srが得られた。ダイヤモンド電子源d1をベースに、通電加熱部の単結晶ダイヤモンドの表面上に、最も多く含まれる不純物はリンでありリン濃度が5×1019cm−3のダイヤモンド薄膜2μmをマイクロ波プラズマCVDで形成してダイヤモンド電子源d3を作製した。同様に評価したところ、角電流密度0.5mA/srが得られた。
ダイヤモンド電子源d1〜d3を評価装置に組み込み、10−5Pa以下の真空度、1050℃の温度で20時間加熱した後電子ビームを評価した。その結果、10時間のビーム安定性は1%rmsとなり、真空加熱処理無しで評価したときの5%rmsより良くなった。
The diamond electron source d2 was produced by changing the single-crystal diamond in the electron emission portion from the diamond electron source d1 to the Ib type. When evaluated in the same manner, an angular current density of 0.5 mA / sr was obtained. Based on the diamond electron source d1, on the surface of the single crystal diamond of the energization heating part, the most contained impurity is phosphorus, and a diamond thin film of 2 μm having a phosphorus concentration of 5 × 10 19 cm −3 is formed by microwave plasma CVD. Thus, a diamond electron source d3 was produced. When evaluated in the same manner, an angular current density of 0.5 mA / sr was obtained.
The diamond electron sources d1 to d3 were incorporated in an evaluation apparatus, and the electron beam was evaluated after heating for 20 hours at a vacuum degree of 10 −5 Pa or less and a temperature of 1050 ° C. As a result, the beam stability for 10 hours was 1% rms, which was better than 5% rms when evaluated without vacuum heat treatment.

[比較例4]
ダイヤモンド電子源d1から、突起の形状を高さ9μmに変更してダイヤモンド電子源d4を、窒素濃度を5×1016cm−3に変更してダイヤモンド電子源d5を、スパッタでチタン/タングステン薄膜を形成する際の膜厚を薄くすることで端子間抵抗を1kΩに変更してダイヤモンド電子源d6をそれぞれ作製した。同様に評価したが、ダイヤモンド電子源d4及びd5は、従来電子源のZrO/W電子源を下回る角電流密度しか得られなかった。ダイヤモンド電子源d6は評価装置のフィラメント電源では加熱することができず電子ビームは引き出せなかった。
[Comparative Example 4]
From the diamond electron source d1, the shape of the protrusion was changed to 9 μm in height, the diamond electron source d4 was changed, the nitrogen concentration was changed to 5 × 10 16 cm −3 , and the diamond electron source d5 was sputtered to form a titanium / tungsten thin film. The diamond electron source d6 was produced by reducing the inter-terminal resistance to 1 kΩ by reducing the film thickness at the time of formation. Although similarly evaluated, the diamond electron sources d4 and d5 were able to obtain only an angular current density lower than that of the conventional electron source ZrO / W electron source. The diamond electron source d6 could not be heated by the filament power source of the evaluation apparatus, and the electron beam could not be extracted.

本発明のダイヤモンド電子源の一実施形態を示す図である。It is a figure which shows one Embodiment of the diamond electron source of this invention. ダイヤモンド電子源モジュールを示す図である。It is a figure which shows a diamond electron source module. 本発明の、電子放出部と通電加熱部とからなるダイヤモンド電子源を示す図である。It is a figure which shows the diamond electron source which consists of an electron emission part of this invention, and an electricity heating part. 本発明の、通電加熱部にイオン注入層を形成したダイヤモンド電子源を示す図である。It is a figure which shows the diamond electron source which formed the ion implantation layer in the electricity heating part of this invention. 本発明の、通電加熱部にイオンビームを利用して電気伝導層を形成したダイヤモンド電子源を示す図である。It is a figure which shows the diamond electron source which formed the electroconductive layer using the ion beam to the electricity heating part of this invention. 本発明の、通電加熱部に導電性薄膜を形成したダイヤモンド電子源を示す図である。It is a figure which shows the diamond electron source which formed the electroconductive thin film in the electricity heating part of this invention.

10 ダイヤモンド電子源
11 電子放出部
12 通電加熱部
20 ダイヤモンド電子源モジュール
21 給電端子
22 セラミックベース
23 モジュール
30 柱形単結晶ダイヤモンド
40、50、60 柱形単結晶ダイヤモンド素材
41 イオン注入層
51 電気伝導層
61 導電性薄膜
DESCRIPTION OF SYMBOLS 10 Diamond electron source 11 Electron emission part 12 Current heating part 20 Diamond electron source module 21 Feed terminal 22 Ceramic base 23 Module 30 Columnar single crystal diamond 40, 50, 60 Columnar single crystal diamond material 41 Ion implantation layer 51 Electrical conduction layer 61 Conductive thin film

Claims (8)

柱形の単結晶ダイヤモンドを用いた電子源であって、電子放出部と通電加熱部とで構成され、該電子放出部は柱の端面に高さ10μm以上且つ先端曲率半径5μm以下の先鋭突起を一ヶ所にのみ有し、該電子放出部の単結晶ダイヤモンド中に最も多く含まれる不純物は窒素であって該窒素の濃度は1×1017cm−3以上であり、該通電加熱部の室温(25℃)端子間抵抗は500Ω以下であることを特徴とする、ダイヤモンド電子源。 An electron source using a columnar single crystal diamond, which is composed of an electron emission portion and an energization heating portion, and the electron emission portion has a sharp protrusion having a height of 10 μm or more and a tip curvature radius of 5 μm or less on the end face of the column. The impurity contained only in one place and contained most in the single crystal diamond of the electron emission portion is nitrogen, and the concentration of the nitrogen is 1 × 10 17 cm −3 or more, and the room temperature ( 25 ° C.) Diamond electron source characterized in that resistance between terminals is 500Ω or less. 上記電子放出部は、Ib型単結晶ダイヤモンドであることを特徴とする、請求項1に記載のダイヤモンド電子源。   The diamond electron source according to claim 1, wherein the electron emission portion is an Ib type single crystal diamond. 上記通電加熱部は、単結晶ダイヤモンドの表面上に、不純物としてリンを最も多く含み、そのリン濃度が1×1016cm−3以上であるダイヤモンド薄膜を有することを特徴とする、請求項1又は請求項2に記載のダイヤモンド電子源。 The current heating section has a diamond thin film containing the most phosphorus as an impurity and having a phosphorus concentration of 1 × 10 16 cm −3 or more on the surface of the single crystal diamond. The diamond electron source according to claim 2. 上記通電加熱部の単結晶ダイヤモンドが、不純物としてホウ素を最も多く含み、そのホウ素濃度が1×1018cm−3以上である単結晶ダイヤモンドであることを特徴とする、請求項1〜3のいずれかに記載のダイヤモンド電子源。 The single crystal diamond of the energization heating part is a single crystal diamond containing the most boron as an impurity and having a boron concentration of 1 × 10 18 cm −3 or more. A diamond electron source according to any one of the above. 上記通電加熱部の単結晶ダイヤモンドは、その表面から深さ10μmまでの間にイオン注入層が形成されていることを特徴とする、請求項1〜3のいずれかに記載のダイヤモンド電子源。   The diamond electron source according to any one of claims 1 to 3, wherein an ion-implanted layer is formed between the surface of the single-crystal diamond of the energization heating part and a depth of 10 µm. 上記通電加熱部の単結晶ダイヤモンドは、その表面近傍のダイヤモンド結晶構造が破壊されることによって形成された電気伝導層を有することを特徴とする、請求項1〜3のいずれかに記載のダイヤモンド電子源。   4. The diamond electron according to claim 1, wherein the single crystal diamond of the energization heating portion has an electrically conductive layer formed by breaking a diamond crystal structure in the vicinity of the surface thereof. 5. source. 上記通電加熱部の単結晶ダイヤモンドは、その表面上に金属又は半導体の導電性薄膜を有することを特徴とする、請求項1〜3のいずれかに記載のダイヤモンド電子源。   The diamond electron source according to any one of claims 1 to 3, wherein the single crystal diamond of the energization heating part has a metal or semiconductor conductive thin film on the surface thereof. 使用前に10−4Pa以下の真空中で700℃以上1400℃以下の温度で加熱処理したことを特徴とする、請求項1〜7のいずれかに記載のダイヤモンド電子源。 The diamond electron source according to any one of claims 1 to 7, wherein the diamond electron source is heat-treated in a vacuum of 10 -4 Pa or less at a temperature of 700 ° C or higher and 1400 ° C or lower before use.
JP2008178596A 2008-07-09 2008-07-09 Diamond electron source Pending JP2010020946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008178596A JP2010020946A (en) 2008-07-09 2008-07-09 Diamond electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008178596A JP2010020946A (en) 2008-07-09 2008-07-09 Diamond electron source

Publications (1)

Publication Number Publication Date
JP2010020946A true JP2010020946A (en) 2010-01-28

Family

ID=41705641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178596A Pending JP2010020946A (en) 2008-07-09 2008-07-09 Diamond electron source

Country Status (1)

Country Link
JP (1) JP2010020946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180070547A (en) * 2015-10-19 2018-06-26 스미토모덴키고교가부시키가이샤 Monocrystalline diamond, tool using the same, and manufacturing method of monocrystalline diamond

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794077A (en) * 1993-09-24 1995-04-07 Sumitomo Electric Ind Ltd Electronic device
JPH07272618A (en) * 1994-03-28 1995-10-20 Idemitsu Material Kk Manufacture of field emitter array
JP2004119018A (en) * 2002-09-20 2004-04-15 Japan Fine Ceramics Center Electron emission element
JP2004119019A (en) * 2002-09-20 2004-04-15 Japan Fine Ceramics Center Electron emission element
JP2005044634A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Electron source and its manufacturing method
WO2006135093A1 (en) * 2005-06-17 2006-12-21 Sumitomo Electric Industries, Ltd. Diamond electron emission cathode, electron emission source, electron microscope, and electron beam exposure device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794077A (en) * 1993-09-24 1995-04-07 Sumitomo Electric Ind Ltd Electronic device
JPH07272618A (en) * 1994-03-28 1995-10-20 Idemitsu Material Kk Manufacture of field emitter array
JP2004119018A (en) * 2002-09-20 2004-04-15 Japan Fine Ceramics Center Electron emission element
JP2004119019A (en) * 2002-09-20 2004-04-15 Japan Fine Ceramics Center Electron emission element
JP2005044634A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Electron source and its manufacturing method
WO2006135093A1 (en) * 2005-06-17 2006-12-21 Sumitomo Electric Industries, Ltd. Diamond electron emission cathode, electron emission source, electron microscope, and electron beam exposure device
WO2006135092A1 (en) * 2005-06-17 2006-12-21 Sumitomo Electric Industries, Ltd. Diamond electron emission cathode, electron emission source, electron microscope, and electron beam exposure device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180070547A (en) * 2015-10-19 2018-06-26 스미토모덴키고교가부시키가이샤 Monocrystalline diamond, tool using the same, and manufacturing method of monocrystalline diamond
KR102643918B1 (en) * 2015-10-19 2024-03-05 스미토모덴키고교가부시키가이샤 Single crystal diamond, tools using it, and manufacturing method of single crystal diamond

Similar Documents

Publication Publication Date Title
JP4868295B2 (en) Diamond electron emission cathode, electron emission source, electron microscope and electron beam exposure machine
KR102224612B1 (en) High-brightness boron-containing electron beam emitter for use in vacuum environments
EP2787522A1 (en) Electrode material with low work function and high chemical stability
CN100482582C (en) Carbon nano-tube preparation method and apparatus
JP2003282298A (en) Doping device
EP1592040A1 (en) Electron source
US11915920B2 (en) Emitter, electron gun in which same is used, electronic device in which same is used, and method for manufacturing same
JP2010251087A (en) Cold-cathode field emission electron gun
JP2010020946A (en) Diamond electron source
JPWO2008001805A1 (en) Diamond electron emission cathode, electron source, electron microscope and electron beam exposure machine
JP5363413B2 (en) Electron source
KR100588738B1 (en) Electron emitter and manufacturing method of electron emitter
JP2005032500A (en) Cold cathode, and electron source and electron beam apparatus using the cold cathode
JP2009187739A (en) Field emission type electron source and its manufacturing method
JP2010272504A (en) Electron source made of carbonaceous material and manufacturing method therefor
Choi et al. Development of diamond field-emitter arrays for free-electron lasers
JP2007265924A (en) Diamond electron source element
JP2008293879A (en) X-ray source and x-ray inspection device
JP2006196186A (en) Electron-emitting material and its manufacturing method, and field emission element and image drawing element using them
KR20200076641A (en) Cold cathode including graphene film and electron gun including same
JP2010238367A (en) High-efficiency diamond electron gun
Robertson 13 Nanocarbons for field emission devices
Turmyshev et al. Field emission properties of silicon nanowires
JP2008021535A (en) Electron emission source
Zhang et al. Non-aligned arrays of zinc oxide nanowires: fabrication and field emission properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120810