JP2010019747A - Electric current detecting device - Google Patents

Electric current detecting device Download PDF

Info

Publication number
JP2010019747A
JP2010019747A JP2008181775A JP2008181775A JP2010019747A JP 2010019747 A JP2010019747 A JP 2010019747A JP 2008181775 A JP2008181775 A JP 2008181775A JP 2008181775 A JP2008181775 A JP 2008181775A JP 2010019747 A JP2010019747 A JP 2010019747A
Authority
JP
Japan
Prior art keywords
current path
magnetic flux
current
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008181775A
Other languages
Japanese (ja)
Other versions
JP5153491B2 (en
Inventor
Taisuke Kawaguchi
泰典 川口
Shinichi Hashio
真一 橋尾
Yasuhiro Sugimori
康弘 杉森
Yoshiaki Makino
芳昭 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008181775A priority Critical patent/JP5153491B2/en
Publication of JP2010019747A publication Critical patent/JP2010019747A/en
Application granted granted Critical
Publication of JP5153491B2 publication Critical patent/JP5153491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric current detector which suppresses the effect of a magnetic flux generated by a current flowing through an adjacent other current path on a magnetic flux detector installed for each current path, and accurately detects the current flowing through the current path. <P>SOLUTION: In this current detecting device, a first current path 7a and a second current path 7b are flat-plate-shaped conductors and are disposed in the state wherein the first current path 7a and the second current path 7b are lined up on the same plane, and the magnetic flux detectors 6a and 6b are disposed in positions P and Q where lines of magnetic force of magnetic fields generated respectively from the first current path 7a and the second current path 7b by the current flowing through the first current path 7a and the second current path 7b intersect perpendicularly each other, so that directions of detection of the magnetic flux which perpendicularly intersect two directions of detection of the magnetic flux by detectors 6a and 6b, agree with the direction of the line of magnetic force of the magnetic field generated from the first current path 7a, and with that of the line of magnetic force of the magnetic field generated from the second current path 7b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、3相モータ等の複数の電流路に流れる電流を、各電流路近傍に設けられた磁束検出器を用いて検出する電流検出装置に関する。   The present invention relates to a current detection device that detects a current flowing in a plurality of current paths such as a three-phase motor using a magnetic flux detector provided in the vicinity of each current path.

3相モータ等の各相の電流路に流れる電流を検出するのに、従来からコアレス電流センサが用いられている。このコアレス電流センサは、電流が流れることによって電流路の周辺に発生する磁束を高感度かつ高精度で検出して電流値変換するものであり、コアを備える電流検出センサに比べて装置の小型化及びローコスト化が図れる。   Conventionally, a coreless current sensor has been used to detect a current flowing in a current path of each phase such as a three-phase motor. This coreless current sensor detects the magnetic flux generated around the current path when current flows with high sensitivity and high accuracy, and converts the current value. The size of the device is smaller than that of the current detection sensor with a core. In addition, the cost can be reduced.

しかし、コアレス電流センサは高感度であるために、隣接する他の相の電流路に流れる電流によって発生する磁束の影響を受け易く、このため検出された電流値に対してソフトウエア演算による補正処理を加える必要がある。   However, since the coreless current sensor is highly sensitive, it is easily affected by the magnetic flux generated by the current flowing in the current paths of other adjacent phases, and therefore the detected current value is corrected by software calculation. Need to be added.

これに対して、複数の電流路のうちの第1の電流路に流れる電流を検出するために設けた第1の電流路近傍の磁束を検出する電流センサと、複数の電流路のうちの上記電流センサに磁気干渉を与えうる位置に配置された第2の電流路に対する、上記電流センサへの磁気干渉を低減させる磁気シールドと、を備えた電流検出装置が提案されている(例えば、特許文献1参照)。   On the other hand, a current sensor for detecting a magnetic flux in the vicinity of the first current path provided to detect a current flowing in the first current path among the plurality of current paths, and the above-mentioned among the plurality of current paths There has been proposed a current detection device including a magnetic shield that reduces magnetic interference to the current sensor with respect to a second current path arranged at a position where magnetic interference can be given to the current sensor (for example, Patent Literature 1). 1).

この電流検出装置によれば、磁気干渉の低減のために電流路に対して施される磁気シールドのサイズや厚みが小さいため、より少ないスペース内で各電流路を流れる電流を高感度検出できる利点が得られる。   According to this current detection device, the size and thickness of the magnetic shield applied to the current path in order to reduce magnetic interference is small, so that the current flowing through each current path can be detected with high sensitivity in a smaller space. Is obtained.

また、デルタ接続や中性点接地のスター接続の巻線を持つ3相モータでは、流れる電流の和がゼロとなる3相交流電流のうち、2本(2相)の電流路に流れる交流電流を2個の磁束検出器を用いて検出することにより、マイクロコンピュータによって3本の電流路に流れる(3相各相の)交流電流を検出する電流検出装置が提案されている(例えば、特許文献2参照)。
特開2006‐112698号公報 特開2007‐303988号公報
Also, in a three-phase motor with a delta connection or neutral grounded star connection winding, the AC current that flows through two (two-phase) current paths out of the three-phase AC current that causes the sum of the flowing currents to be zero Is detected using two magnetic flux detectors, and a current detection device that detects an alternating current (each phase of three phases) flowing in three current paths by a microcomputer has been proposed (for example, Patent Documents). 2).
JP 2006-112698 A JP 2007-303988 A

しかしながら、特許文献1に記載の電流検出装置では、電流路ごとに設けられた磁気検出器に対して磁気干渉を回避するための磁気シールドを別途配置する必要がある。このためこの磁気シールド設置分だけコスト高になるほか、製造工程の増加及びこれによる量産性の低下を招くなどの不都合があった。   However, in the current detection device described in Patent Document 1, it is necessary to separately arrange a magnetic shield for avoiding magnetic interference with respect to the magnetic detector provided for each current path. For this reason, there are inconveniences such as an increase in manufacturing process and a decrease in mass productivity due to an increase in cost due to the installation of the magnetic shield.

また、特許文献2に記載の電流検出器では、2相分の磁束検出出力からマイクロコンピュータを利用して3相分の複雑な電流値演算を行う必要があった。   Moreover, in the current detector described in Patent Document 2, it is necessary to perform a complex current value calculation for three phases using a microcomputer from the magnetic flux detection output for two phases.

本発明は、上述した課題に鑑みてなされたものであり、その目的は、電流路ごとに設置した磁束検出器に対し、隣接する他の電流路に流れる電流によって発生した磁束の影響を抑え、電流路に流れる電流を精度よく検出できる電流検出器を提供することにある。   The present invention has been made in view of the above-described problems, and its purpose is to suppress the influence of magnetic flux generated by the current flowing in another adjacent current path with respect to the magnetic flux detector installed for each current path, An object of the present invention is to provide a current detector that can accurately detect a current flowing in a current path.

前述した目的を達成するために、本発明に係る電流検出装置は、下記(1)、(2)及び(3)を特徴としている。
(1) 第1の電流路と、
第2の電流路と、
磁束を検出する磁束検出方向が一方向に限られる一つの磁束検出器と、
前記一つの磁束検出器が検出した磁束に基づいて、前記第1の電流路及び前記第2の電流路の少なくとも一方に流れる電流の電流値を検出する電流検出センサ本体と、
を備え、
前記第1の電流路と前記第2の電流路は、平板形状の導体であって且つ、同一平面上に並ぶ状態で配置され、
前記一つの磁束検出器は、前記第1の電流路及び前記第2の電流路を流れる電流によって該第1の電流路及び該第2の電流路からそれぞれ発生する磁界の磁力線の方向が直交する位置に、該第1の電流路から発生する磁界の磁力線の向きまたは該第2の電流路から発生する磁界の磁力線の向きに前記磁束検出方向が一致するよう、配置される、
こと。
(2) 第1の電流路と、
第2の電流路と、
磁束を検出する磁束検出方向が一方向に限られる第1の磁束検出器と、
磁束を検出する磁束検出方向が一方向に限られる第2の磁束検出器と、
前記第1の磁束検出器及び前記第2の磁束検出器が検出した磁束に基づいて、前記第1の電流路及び前記第2の電流路に流れる電流の電流値を検出する電流検出センサ本体と、
を備え、
前記第1の電流路と前記第2の電流路は、平板形状の導体であって且つ、同一平面上に並ぶ状態で配置され、
前記第1の磁束検出器は、前記第1の電流路及び前記第2の電流路を流れる電流によって該第1の電流路及び該第2の電流路からそれぞれ発生する磁界の磁力線が直交する第1の位置に、該第1の電流路から発生する磁界の磁力線の向きに前記磁束検出方向が一致するよう、配置され、
前記第2の磁束検出器は、前記第1の電流路及び前記第2の電流路を流れる電流によって該第1の電流路及び該第2の電流路からそれぞれ発生する磁界の磁力線が直交する、前記第1の位置とは異なる第2の位置に、該第2の電流路から発生する磁界の磁力線の向きに前記磁束検出方向が一致するよう、配置される、
こと。
(3) 第1の電流路と、
第2の電流路と、
磁束を検出する磁束検出方向が直交する二方向に限られる一つの磁束検出器と、
前記一つの磁束検出器が検出した磁束に基づいて、前記第1の電流路及び前記第2の電流路のそれぞれに流れる電流の電流値を検出する電流検出センサ本体と、
を備え、
前記第1の電流路と前記第2の電流路は、平板形状の導体であって且つ、同一平面上に並ぶ状態で配置され、
前記一つの磁束検出器は、前記第1の電流路及び前記第2の電流路を流れる電流によって該第1の電流路及び該第2の電流路からそれぞれ発生する磁界の磁力線が直交する位置に、該第1の電流路から発生する磁界の磁力線の向き及び該第2の電流路から発生する磁界の磁力線の向きに、前記磁束検出方向が一致するよう、配置される、
こと。
In order to achieve the above-described object, the current detection device according to the present invention is characterized by the following (1), (2), and (3).
(1) a first current path;
A second current path;
One magnetic flux detector in which the magnetic flux detection direction for detecting the magnetic flux is limited to one direction;
A current detection sensor main body for detecting a current value of a current flowing in at least one of the first current path and the second current path based on the magnetic flux detected by the one magnetic flux detector;
With
The first current path and the second current path are flat-plate conductors and are arranged in a line on the same plane,
In the one magnetic flux detector, the directions of magnetic lines of magnetic force generated from the first current path and the second current path are orthogonal to each other by the current flowing through the first current path and the second current path, respectively. The magnetic flux detection direction is arranged at a position such that the direction of the magnetic field lines of the magnetic field generated from the first current path or the direction of the magnetic field lines of the magnetic field generated from the second current path matches.
thing.
(2) a first current path;
A second current path;
A first magnetic flux detector in which a magnetic flux detection direction for detecting magnetic flux is limited to one direction;
A second magnetic flux detector in which the magnetic flux detection direction for detecting the magnetic flux is limited to one direction;
A current detection sensor main body for detecting a current value of a current flowing through the first current path and the second current path based on the magnetic flux detected by the first magnetic flux detector and the second magnetic flux detector; ,
With
The first current path and the second current path are flat-plate conductors and are arranged in a line on the same plane,
In the first magnetic flux detector, magnetic field lines of magnetic fields generated from the first current path and the second current path, respectively, by currents flowing through the first current path and the second current path are orthogonal to each other. 1 is arranged so that the magnetic flux detection direction coincides with the direction of the magnetic field lines of the magnetic field generated from the first current path,
In the second magnetic flux detector, the magnetic field lines of the magnetic fields generated from the first current path and the second current path, respectively, by the current flowing through the first current path and the second current path are orthogonal to each other. The magnetic flux detection direction is arranged at a second position different from the first position so that the magnetic flux detection direction coincides with the direction of the magnetic force lines of the magnetic field generated from the second current path.
thing.
(3) a first current path;
A second current path;
One magnetic flux detector limited to two directions in which magnetic flux detection directions for detecting magnetic flux are orthogonal,
A current detection sensor main body for detecting a current value of a current flowing through each of the first current path and the second current path based on the magnetic flux detected by the one magnetic flux detector;
With
The first current path and the second current path are flat-plate conductors and are arranged in a line on the same plane,
The one magnetic flux detector is located at a position where magnetic field lines of magnetic fields generated from the first current path and the second current path are orthogonal to each other by currents flowing through the first current path and the second current path, respectively. The magnetic flux detection direction is arranged so as to match the direction of the magnetic field lines of the magnetic field generated from the first current path and the direction of the magnetic field lines of the magnetic field generated from the second current path.
thing.

上記(1)または(2)の構成の電流検出装置によれば、磁束検出器は、磁束検出方向と向きが平行な磁束を発生する少なくとも一方の電流路からの磁束を検出することができる。このため、電流路に設置した磁束検出器に対し、他の電流路に流れる電流によって発生した磁束が上記磁束検出器の検出動作に影響を与えることを回避することができるとともに、従来のように磁気シールドを設けたりコンピュータによる面倒な演算処理を行ったりすることなく、簡易な構成で、各電流路に流れる電流を磁束検出器によって高精度かつ高感度に検出することができる。
上記(3)の構成の電流検出装置によれば、上記一つの磁束検出器により、第1の電流路から発生する磁束と第1の電流路に近い第2の電流路から発生する磁束のうち、上記磁束検出器の磁束検出方向に一致する2方向の磁束のみをともに高感度検出することができる。このため、第2の電流路から発生する磁束のうち一方の上記磁束検出方向に一致しない磁束が、第1の電流路から発生する磁束の検出値に影響を与えることはなく、また、第1の電流路から発生する磁束のうちもう一方の上記磁束検出方向に一致しない磁束が、第2の電流路から発生する磁束の検出値に影響を与えることはない。このため、従来のように磁気シールドを設けたりコンピュータによる面倒な演算処理を行ったりすることなく、簡易な構成で、各電流路に流れる電流を磁束検出器によって高精度かつ高感度に検出することができる。
According to the current detection device having the above configuration (1) or (2), the magnetic flux detector can detect the magnetic flux from at least one current path that generates a magnetic flux whose direction is parallel to the magnetic flux detection direction. For this reason, it is possible to avoid that the magnetic flux generated by the current flowing in the other current path has an influence on the detection operation of the magnetic flux detector as compared with the conventional magnetic flux detector installed in the current path. The current flowing through each current path can be detected with high accuracy and high sensitivity by a magnetic flux detector with a simple configuration without providing a magnetic shield or performing complicated calculation processing by a computer.
According to the current detection device having the configuration of (3) above, of the magnetic flux generated from the first current path and the magnetic flux generated from the second current path close to the first current path by the one magnetic flux detector. Both the magnetic fluxes in the two directions that coincide with the magnetic flux detection direction of the magnetic flux detector can be detected with high sensitivity. For this reason, the magnetic flux that does not coincide with one of the magnetic flux detection directions among the magnetic fluxes generated from the second current path does not affect the detected value of the magnetic flux generated from the first current path. Among the magnetic fluxes generated from the current path, the magnetic flux that does not coincide with the other magnetic flux detection direction does not affect the detected value of the magnetic flux generated from the second current path. For this reason, it is possible to detect the current flowing in each current path with high accuracy and high sensitivity by a magnetic flux detector with a simple configuration without providing a magnetic shield or performing complicated calculation processing by a computer as in the past. Can do.

本発明によれば、電流路ごとに設置した磁束検出器に対し、隣接する他の電流路に流れる電流によって発生した磁束の影響を抑え、電流路に流れる電流を精度よく検出できる。   ADVANTAGE OF THE INVENTION According to this invention, with respect to the magnetic flux detector installed for every electric current path, the influence of the magnetic flux which generate | occur | produced by the electric current which flows into another adjacent electric current path is suppressed, and the electric current which flows into an electric current path can be detected accurately.

以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための最良の形態を添付の図面を参照して説明することにより、本発明の詳細は、更に明確化されるであろう。   The present invention has been briefly described above. Furthermore, the details of the present invention will be further clarified by describing the best mode for carrying out the invention described below with reference to the accompanying drawings.

以下に、本発明にかかる電流検出装置の好適な実施形態について、図面を参照しながら詳細に説明する。なお、本実施形態の電流検出装置として、3相モータの駆動回路を例にして、各相の電流路に流れる電流を磁束検出器を用いて検出する場合について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a current detection device according to the present invention will be described in detail with reference to the drawings. In addition, the case where the electric current which flows into the current path of each phase is detected using a magnetic flux detector is explained as an example of the current detection device of this embodiment using a drive circuit of a three-phase motor.

ここで、図1は、本発明に係る実施の形態の電流検出装置を上面視した回路構成図である。図2は、図1の回路構成図をII−II方向から視た断面図である。図3は、図1の電流検出器を含む3相モータ駆動回路を示す回路図である。   Here, FIG. 1 is a circuit configuration diagram of a top view of the current detection device according to the embodiment of the present invention. 2 is a cross-sectional view of the circuit configuration diagram of FIG. 1 viewed from the II-II direction. FIG. 3 is a circuit diagram showing a three-phase motor drive circuit including the current detector of FIG.

図3に示すように、3相モータ駆動回路は、直流電源1と、インバータ2と、3相(交流)モータ3と、モータ制御部(マイクロコンピュータ)4と、ドライブ回路5と、電流検出装置6と、を備えている。これらのうちインバータ2はバッテリなどの直流電源から受けた直流電圧をU相、V相、W相の3相の交流電圧に変換し、交流の3相モータを所定の制御回転数で駆動する。なお、インバータ2は3相モータ3の回生制動時に発生する電力を直流電源1に返すようにも機能する。   As shown in FIG. 3, the three-phase motor drive circuit includes a DC power source 1, an inverter 2, a three-phase (AC) motor 3, a motor control unit (microcomputer) 4, a drive circuit 5, and a current detection device. 6 are provided. Of these, the inverter 2 converts a DC voltage received from a DC power source such as a battery into a three-phase AC voltage of U phase, V phase, and W phase, and drives an AC three-phase motor at a predetermined control rotational speed. The inverter 2 also functions to return the electric power generated during the regenerative braking of the three-phase motor 3 to the DC power source 1.

3相モータ3はインバータ2が出力する3相交流電力を受けて駆動され、例えば電気自動車等の駆動源として用いられる。この3相モータ3には回転数情報をU相、V相、W層ごとに検出するレゾルバ(回転角度センサ)が設けられている。モータ制御部4は、レゾルバによって検出された3相モータの回転数情報と、上記電流検出装置6を構成する第1の磁束検出器6a及び第2の磁束検出器6bの磁束検出値から得られたU相、V相、W相ごとの電流値とに基づき、ドライブ回路5を制御する。ドライブ回路5はモータ制御部4からの制御出力を受けて、インバータ2を構成するスイッチング素子のスイッチタイミングを制御し、インバータ2出力の各相電流を決定し、3相モータ3を所定の回転数に駆動制御する。   The three-phase motor 3 is driven by receiving the three-phase AC power output from the inverter 2, and is used as a drive source for an electric vehicle, for example. The three-phase motor 3 is provided with a resolver (rotation angle sensor) that detects rotation speed information for each of the U phase, the V phase, and the W layer. The motor control unit 4 is obtained from the rotational speed information of the three-phase motor detected by the resolver and the magnetic flux detection values of the first magnetic flux detector 6a and the second magnetic flux detector 6b constituting the current detection device 6. The drive circuit 5 is controlled based on the current values for the U phase, V phase, and W phase. The drive circuit 5 receives the control output from the motor control unit 4, controls the switch timing of the switching elements constituting the inverter 2, determines each phase current of the inverter 2 output, and sets the three-phase motor 3 to a predetermined rotational speed. To drive control.

ところで、電流検出装置6を構成する磁束検出器6a、6b及び電流検出センサ本体8a、8bは、図1及び図2に示す通り、インバータ2と3相モータ3とを結ぶ各相(U相、V相、W相)の平板状の電流路(バスバー)7a、7b、7cの近傍にそれぞれ設けられる。これらの電流路7a、7b、7cは断面形状及びサイズが同じであり、互いに所定距離をおいて一つの平面内に並設されている。電流検出センサ本体8a、8bの表面には、磁界(磁束)を検出する回路(例えば、ホール効果を利用したホール素子、ホール素子とアンプ回路を内蔵したホールIC、磁気抵抗効果を利用した磁気抵抗(MR)素子、フラックスゲート(磁気変調)型磁気センサなど)によって構成される上記磁束検出器6a、6bが配置されている。そして、磁束検出器6a、6bは、磁束を検出することができる磁束検出方向が直交する二方向に限られるものであって(図2では、磁束検出器6a、6bを起点に延びている黒塗りの矢印が、磁束検出方向Xを示し、この黒塗りの矢印に直交する方向の白塗りの矢印が磁束検出方向Yを示している)、該磁束検出器6a、6bが配置されている位置において、これらの上記磁束検出方向X、Yと一致する各電流路7a〜7cからの磁束のみの検出が可能になっている。   By the way, the magnetic flux detectors 6a and 6b and the current detection sensor main bodies 8a and 8b constituting the current detection device 6 are connected to each phase (U-phase, U-phase, etc.) connecting the inverter 2 and the three-phase motor 3 as shown in FIGS. V-phase and W-phase) flat plate current paths (bus bars) 7a, 7b, and 7c are provided in the vicinity. These current paths 7a, 7b, and 7c have the same cross-sectional shape and size, and are arranged in parallel in one plane at a predetermined distance. On the surface of the current detection sensor bodies 8a and 8b, a circuit for detecting a magnetic field (magnetic flux) (for example, a Hall element using a Hall effect, a Hall IC incorporating a Hall element and an amplifier circuit, a magnetoresistance using a magnetoresistance effect) The magnetic flux detectors 6a and 6b configured by (MR) elements, fluxgate (magnetic modulation) type magnetic sensors, etc.) are arranged. The magnetic flux detectors 6a and 6b are limited to two directions in which the magnetic flux detection directions capable of detecting the magnetic flux are orthogonal to each other (in FIG. 2, black lines extending from the magnetic flux detectors 6a and 6b as starting points). A solid arrow indicates the magnetic flux detection direction X, and a white arrow in a direction perpendicular to the black arrow indicates the magnetic flux detection direction Y), and the position where the magnetic flux detectors 6a and 6b are disposed. , It is possible to detect only the magnetic flux from each of the current paths 7a to 7c coinciding with the magnetic flux detection directions X and Y.

各電流路7a、7b、7cの近傍に配置された磁束検出器6a、6bはそれぞれ、図2に示すように、電流路7aと電流路7bの間及び電流路7bと電流路7cの間であって、電流路7bの左右対象の位置に配置されている。より具体的には、第1の磁束検出器6aは第1の電流路7a及び第2の電流路7bから発生する磁界の磁力線が垂直に交差する位置(交点)Pに配置され、上記第2の磁束検出器6bは第2の電流路7b及び第3の電流路7cから発生する磁界の磁力線が垂直に交差する位置(交点)Qに配置されている。各電流路7a、7b、7cは、同一平面状に一定距離Lをおいて配置されている。   As shown in FIG. 2, the magnetic flux detectors 6a and 6b arranged in the vicinity of the current paths 7a, 7b and 7c are respectively between the current path 7a and the current path 7b and between the current path 7b and the current path 7c. Thus, the current path 7b is disposed at the left and right target positions. More specifically, the first magnetic flux detector 6a is disposed at a position (intersection) P where magnetic field lines of magnetic fields generated from the first current path 7a and the second current path 7b intersect perpendicularly, and the second The magnetic flux detector 6b is arranged at a position (intersection) Q where magnetic field lines of magnetic fields generated from the second current path 7b and the third current path 7c intersect perpendicularly. The current paths 7a, 7b, and 7c are arranged at a constant distance L on the same plane.

また、交点P、Qに配置される磁束検出器6a、6bは、該磁束検出器6a、6bによって磁界を検出する上記直交する2方向X、Yがそれぞれ、第2の電流路7b及び第3の電流路7cそれぞれから発生する磁界の磁力線の向きと一致する配置となっている。なお、本発明の実施形態では、磁束検出器6a、6bを配置する位置および該磁束検出器6a、6bが磁束を検出する向きを調整するために、該磁束検出器6a、6bを表面に設置する電流検出センサ本体8a、8bの形状を適宜変形している。具体的には、図2に示すように、電流検出センサ本体8a、8bの厚みを調整することによって該磁束検出器6a、6bを配置する電流路からの高さを調整したり、あるいは電流検出センサ本体8a、8bの表面を面取りすることによって該磁束検出器6a、6bが磁束を検出する向きを調整する。   Further, the magnetic flux detectors 6a and 6b disposed at the intersections P and Q have the two orthogonal directions X and Y for detecting the magnetic field by the magnetic flux detectors 6a and 6b, respectively. In this arrangement, the direction of the magnetic field lines of the magnetic field generated from each of the current paths 7c coincides. In the embodiment of the present invention, the magnetic flux detectors 6a and 6b are installed on the surface in order to adjust the position where the magnetic flux detectors 6a and 6b are arranged and the direction in which the magnetic flux detectors 6a and 6b detect the magnetic flux. The shape of the current detection sensor bodies 8a and 8b to be changed is appropriately changed. Specifically, as shown in FIG. 2, the height from the current path in which the magnetic flux detectors 6a and 6b are arranged is adjusted by adjusting the thickness of the current detection sensor bodies 8a and 8b, or the current detection is performed. By chamfering the surfaces of the sensor bodies 8a and 8b, the direction in which the magnetic flux detectors 6a and 6b detect the magnetic flux is adjusted.

上述のように磁束検出器6a、6b及び電流路7a、7b、7cを配置することにより、磁束検出器6aは電流路7a、7bから発生する磁束のみを、磁束検出器6bは電流路7b、7cから発生する磁束のみを、それぞれ別々に高い感度で検出することができる。これを磁束検出器6a、6b付近の磁束を例に挙げて説明する。   By arranging the magnetic flux detectors 6a, 6b and the current paths 7a, 7b, 7c as described above, the magnetic flux detector 6a can only generate the magnetic flux generated from the current paths 7a, 7b, and the magnetic flux detector 6b can have the current paths 7b, Only the magnetic flux generated from 7c can be detected separately with high sensitivity. This will be described by taking the magnetic flux in the vicinity of the magnetic flux detectors 6a and 6b as an example.

電流路7a、7b、7cが存在する空間には、これらの電流路7a、7b、7cから発生する磁界の磁力線が交差する点(交点)がある。図2では、例えば電流路7aの回りに発生する磁界の磁力線のうち2本の磁力線をM1、M2、電流路7bの回りに発生する磁界の磁力線のうち2本の磁力線をM3、M4、電流路7cの回りに発生する磁界の磁力線をM5、M6とする。   In the space where the current paths 7a, 7b, and 7c exist, there is a point (intersection) where magnetic field lines of magnetic fields generated from these current paths 7a, 7b, and 7c intersect. In FIG. 2, for example, two magnetic lines of magnetic force generated around the current path 7a are M1 and M2, and two magnetic lines of magnetic field generated around the current path 7b are M3, M4 and current. The magnetic field lines of the magnetic field generated around the path 7c are M5 and M6.

これらの磁力線M1〜M6のうち、磁力線M1と磁力線M4が交点Pで垂直に交差し、磁力線M4と磁力線M5が交点Qで垂直に交差する。なお、電流路7a、7bがそれぞれ発生する図示しない他の磁力線も図示しない別の点で垂直に交差する。そして、交点に磁束検出器6aを設置し、この磁束検出器6aの直交する二つの磁束検出方向X、Yを磁力線M1及び磁力線M4の接線方向にそれぞれ一致させる。   Among these magnetic lines M1 to M6, the magnetic line M1 and the magnetic line M4 intersect perpendicularly at the intersection P, and the magnetic line M4 and the magnetic line M5 intersect perpendicularly at the intersection Q. It should be noted that other magnetic lines (not shown) generated by the current paths 7a and 7b also intersect perpendicularly at other points (not shown). And the magnetic flux detector 6a is installed in an intersection, and the two magnetic flux detection directions X and Y which this magnetic flux detector 6a orthogonally cross are made to correspond to the tangential direction of the magnetic force line M1 and the magnetic force line M4, respectively.

同様にして、交点Qに磁束検出器6bを設置し、この磁束検出器6bの直交する二つの磁束検出方向X、Yを磁界M4及び磁界M5における磁力線の接線方向にそれぞれ合致させる。これにより、磁気検出器6aは電流路7a及び電流路7bが発生する磁束をそれぞれ検出し、磁気検出器6bは電流路7b及び電流路7cが発生する磁束をそれぞれ検出する。   Similarly, the magnetic flux detector 6b is installed at the intersection point Q, and the two perpendicular magnetic flux detection directions X and Y of the magnetic flux detector 6b are matched with the tangential directions of the magnetic field lines in the magnetic field M4 and the magnetic field M5. Thereby, the magnetic detector 6a detects the magnetic flux generated by the current path 7a and the current path 7b, respectively, and the magnetic detector 6b detects the magnetic flux generated by the current path 7b and the current path 7c, respectively.

そして、上記のように磁束検出器6a、6bの磁束検出方向は磁界M1、M4、M5の磁力線の方向(接線方向)に上記のように一致するため、高感度で磁束検出することができる。つまり、各磁束検出器6a、6bの磁束検出方向が直交する2方向のみであるため、この2方向に一致しない磁力線の影響を受けず、従って、良好な検出感度が得られる。   As described above, the magnetic flux detection directions of the magnetic flux detectors 6a and 6b coincide with the magnetic field lines (tangential directions) of the magnetic fields M1, M4, and M5 as described above, so that magnetic flux detection can be performed with high sensitivity. That is, since the magnetic flux detection directions of the magnetic flux detectors 6a and 6b are only two directions orthogonal to each other, they are not affected by the lines of magnetic force that do not coincide with these two directions, and therefore good detection sensitivity can be obtained.

なお、磁気検出器6a、6bは電流路7bの左右対称の位置において、磁界中の同一の磁力線M4を検出している。このため、磁束検出器6a、6bによって検出される出力(磁界の強さ)は同一となる。しかし、磁束検出器6a、6bは周辺温度などの外部要因やその他の内部要因などに基づき個々に特性上のバラツキを持つ場合がある。この場合には、磁束検出器6a、6bの出力値を比較して、この比較結果(誤差分)を所定の演算式を用いて上記出力値に反映させることが望ましい。これにより、高い精度で磁束検出及び電流検出を行うことができる。   The magnetic detectors 6a and 6b detect the same magnetic field lines M4 in the magnetic field at symmetrical positions in the current path 7b. For this reason, the outputs (magnetic field strength) detected by the magnetic flux detectors 6a and 6b are the same. However, the magnetic flux detectors 6a and 6b may have individual characteristic variations based on external factors such as ambient temperature and other internal factors. In this case, it is desirable to compare the output values of the magnetic flux detectors 6a and 6b and reflect the comparison result (error) in the output value using a predetermined arithmetic expression. Thereby, magnetic flux detection and current detection can be performed with high accuracy.

前述においては、一つの磁束検出器(例えば、磁束検出器6a)の磁束検出方向が直交する二方向(X、Y方向)である場合について述べたが、一つの磁束検出器の磁束検出方向が一方向(例えば、X方向)として、この一方向に一致する方向の一の電流路(例えば、電流路7a)からの磁束のみを検出する構成としてもよい。この場合には、この一方向の磁束検出方向(X方向)に一致しない方向(例えば、Y方向)の他の電流路(例えば、電流路7b)からの磁束は検出しないので、その一の電流路(電流路7a)から発生する磁束のみを高感度検出することができる。   In the above description, the case where the magnetic flux detection direction of one magnetic flux detector (for example, magnetic flux detector 6a) is two directions (X and Y directions) orthogonal to each other has been described. As one direction (for example, X direction), it is good also as a structure which detects only the magnetic flux from one current path (for example, current path 7a) of the direction which corresponds to this one direction. In this case, magnetic flux from another current path (for example, current path 7b) in a direction (for example, Y direction) that does not coincide with the magnetic flux detection direction (X direction) of this one direction is not detected. Only the magnetic flux generated from the path (current path 7a) can be detected with high sensitivity.

以上説明したように、本発明に係る実施の形態では、一つの磁束検出器6aを、第1の電流路7a及び第2の電流路7bを流れる電流によって第1の電流路7a及び第2の電流路7bからそれぞれ発生する磁界が直交する位置に、第1の電流路7aから発生する磁界の向きまたは第2の電流路7bから発生する磁界の向きに磁束検出方向が一致するように配置することにより、または第1の磁束検出器6aを、第1の電流路7a及び第2の電流路7bを流れる電流によって第1の電流路7a及び第2の電流路7bからそれぞれ発生する磁界が直交する第1の位置P(交点)に、第1の電流路7aから発生する磁界の向きに前磁束検出方向が一致するようにし、第2の磁束検出器6bを、第1の電流路7a及び第2の電流路7bを流れる電流によって第1の電流路7a及び第2の電流路7bからそれぞれ発生する磁界が直交する、第1の位置Pとは異なる第2の位置(交点)Qに、第2の電流路7bから発生する磁界の向きに磁束検出方向が一致するように配置することにより、磁束検出器6aは、磁束検出方向と向きが平行な磁束を発生する少なくとも一方の電流路7aからの磁束を検出することができる。このため、電流路7aに設置した磁束検出器6aに対し、他の電流路7bに流れる電流によって発生した磁束が磁束検出器6aの検出動作に影響を与えることを回避することができるとともに、従来のように磁気シールドを設けたりコンピュータによる面倒な演算処理を行ったりすることなく、簡易な構成で、各電流路に流れる電流を磁束検出器によって高精度かつ高感度に検出することができる。   As described above, in the embodiment according to the present invention, one magnetic flux detector 6a is connected to the first current path 7a and the second current path by the current flowing through the first current path 7a and the second current path 7b. Arranged at positions where the magnetic fields generated from the current paths 7b are orthogonal to each other so that the direction of the magnetic field generated from the first current path 7a or the direction of the magnetic field generated from the second current path 7b coincides. Or the first magnetic flux detector 6a causes the magnetic fields generated from the first current path 7a and the second current path 7b to be orthogonal to each other by the current flowing through the first current path 7a and the second current path 7b, respectively. The first magnetic flux detection direction is made to coincide with the direction of the magnetic field generated from the first current path 7a at the first position P (intersection point), and the second magnetic flux detector 6b is connected to the first current path 7a and In the current flowing through the second current path 7b Thus, the magnetic field generated from each of the first current path 7a and the second current path 7b is generated from the second current path 7b at a second position (intersection point) Q different from the first position P. The magnetic flux detector 6a can detect the magnetic flux from at least one current path 7a that generates a magnetic flux whose direction is parallel to the magnetic flux detection direction. it can. For this reason, it is possible to avoid the magnetic flux generated by the current flowing in the other current path 7b from affecting the detection operation of the magnetic flux detector 6a with respect to the magnetic flux detector 6a installed in the current path 7a. As described above, the current flowing through each current path can be detected with high accuracy and high sensitivity by a magnetic flux detector with a simple configuration without providing a magnetic shield or performing complicated calculation processing by a computer.

また、本発明に係る実施の形態では、一つの磁束検出器6aを、第1の電流路7a及び第2の電流路7bを流れる電流によって第1の電流路7a及び第2の電流路7bからそれぞれ発生する磁界が直交する位置に、第1の電流路7aから発生する磁界の向き及び第2の電流路7bから発生する磁界の向きに上記磁束検出方向が平行になるように配置することにより、上記一つの磁束検出器6aにより、第1の電流路7aから発生する磁束と第1の電流路7aに近い第2の電流路7bから発生する磁束のうち、磁束検出器6aの磁束検出方向に一致する2方向の磁束のみを共に高感度検出することができる。このため、第2の電流路7bから発生する磁束のうち一方の磁束検出方向に一致しない磁束が、第1の電流路7aから発生する磁束の検出値に影響を与えることはなく、また、第1の電流路7aから発生する磁束のうちもう一方の上記磁束検出方向に一致しない磁束が、第2の電流路7bから発生する磁束の検出値に影響を与えることはない。   In the embodiment according to the present invention, one magnetic flux detector 6a is connected from the first current path 7a and the second current path 7b by the current flowing through the first current path 7a and the second current path 7b. By arranging the magnetic flux detection directions parallel to the direction of the magnetic field generated from the first current path 7a and the direction of the magnetic field generated from the second current path 7b at positions where the generated magnetic fields are orthogonal to each other. Of the magnetic flux generated from the first current path 7a and the magnetic flux generated from the second current path 7b close to the first current path 7a by the one magnetic flux detector 6a, the magnetic flux detection direction of the magnetic flux detector 6a. Only the magnetic fluxes in the two directions that coincide with each other can be detected with high sensitivity. Therefore, a magnetic flux that does not coincide with one of the magnetic flux detection directions among the magnetic fluxes generated from the second current path 7b does not affect the detected value of the magnetic flux generated from the first current path 7a. Of the magnetic fluxes generated from one current path 7a, the magnetic flux that does not coincide with the other magnetic flux detection direction does not affect the detected value of the magnetic flux generated from the second current path 7b.

なお、上述した磁束検出器6a、6b及び電流路7a、7b、7cの配置では、電流路7aに設けられた電流検出センサ本体8aの磁束検出器7aに対して、該電流路7aに隣り合う他の電流路7bから発生する磁界が与える影響を排除することができるものの、該他の電流路7bに該電流路7aから離れる側にさらに隣り合う他の電流路7cから発生する磁界が磁束検出器7aに対して軽微ながら影響を与えることが想定される。このような影響を排除するために、磁束検出器6a、6bの磁束検出感度は、並列配置される電流路7a、7b、7cの間隔およびこれらの電流路7a、7b、7cに流れる電流の大きさ等に応じて適切に選定する、すなわち、ある磁束検出器7aが電流路7bを挟んで隣り合う他の磁束検出器7cから発生した磁界を検出しない程度の感度に設定することが好ましい。   In the arrangement of the magnetic flux detectors 6a, 6b and the current paths 7a, 7b, 7c described above, the magnetic flux detector 7a of the current detection sensor main body 8a provided in the current path 7a is adjacent to the current path 7a. Although the influence of the magnetic field generated from the other current path 7b can be eliminated, the magnetic field generated from another current path 7c further adjacent to the other current path 7b on the side away from the current path 7a is detected by the magnetic flux. It is assumed that the device 7a is slightly affected. In order to eliminate such influences, the magnetic flux detection sensitivities of the magnetic flux detectors 6a and 6b are determined based on the interval between the current paths 7a, 7b and 7c arranged in parallel and the magnitude of the current flowing through these current paths 7a, 7b and 7c. It is preferable to set the sensitivity appropriately so that a certain magnetic flux detector 7a does not detect a magnetic field generated from another magnetic flux detector 7c adjacent to the current path 7b.

本発明に係る実施の形態の電流検出装置を上面視した回路構成図である。It is the circuit block diagram which looked at the electric current detection apparatus of embodiment which concerns on this invention from the top. 図1の回路構成図をII−II方向から視た断面図である。It is sectional drawing which looked at the circuit block diagram of FIG. 1 from the II-II direction. 図1の電流検出器を含む3相モータ駆動回路を示す回路図である。FIG. 2 is a circuit diagram showing a three-phase motor driving circuit including the current detector of FIG. 1.

符号の説明Explanation of symbols

1 直流電源
2 インバータ
3 3相モータ
4 モータ制御部(コンピュータ)
5 ドライブ回路
6 電流検出装置
6a、6b 磁束検出器
7a、7b、7c 電流路(配線)
8a、8b 電流検出センサ本体(配線)
P、Q 交点
M1〜M6 磁界
X、Y 磁束検出方向
1 DC power supply 2 Inverter 3 Three-phase motor 4 Motor controller (computer)
5 Drive circuit 6 Current detection device 6a, 6b Magnetic flux detector 7a, 7b, 7c Current path (wiring)
8a, 8b Current detection sensor body (wiring)
P, Q Intersection M1-M6 Magnetic field X, Y Magnetic flux detection direction

Claims (3)

第1の電流路と、
第2の電流路と、
磁束を検出する磁束検出方向が一方向に限られる一つの磁束検出器と、
前記一つの磁束検出器が検出した磁束に基づいて、前記第1の電流路及び前記第2の電流路の少なくとも一方に流れる電流の電流値を検出する電流検出センサ本体と、
を備え、
前記第1の電流路と前記第2の電流路は、平板形状の導体であって且つ、同一平面上に並ぶ状態で配置され、
前記一つの磁束検出器は、前記第1の電流路及び前記第2の電流路を流れる電流によって該第1の電流路及び該第2の電流路からそれぞれ発生する磁界の磁力線の方向が直交する位置に、該第1の電流路から発生する磁界の磁力線の向きまたは該第2の電流路から発生する磁界の磁力線の向きに前記磁束検出方向が一致するよう、配置される、
ことを特徴とする電流検出装置。
A first current path;
A second current path;
One magnetic flux detector in which the magnetic flux detection direction for detecting the magnetic flux is limited to one direction;
A current detection sensor main body for detecting a current value of a current flowing in at least one of the first current path and the second current path based on the magnetic flux detected by the one magnetic flux detector;
With
The first current path and the second current path are flat-plate conductors and are arranged in a line on the same plane,
In the one magnetic flux detector, the directions of magnetic lines of magnetic force generated from the first current path and the second current path are orthogonal to each other by the current flowing through the first current path and the second current path, respectively. The magnetic flux detection direction is arranged at a position such that the direction of the magnetic field lines of the magnetic field generated from the first current path or the direction of the magnetic field lines of the magnetic field generated from the second current path matches.
A current detection device characterized by that.
第1の電流路と、
第2の電流路と、
磁束を検出する磁束検出方向が一方向に限られる第1の磁束検出器と、
磁束を検出する磁束検出方向が一方向に限られる第2の磁束検出器と、
前記第1の磁束検出器及び前記第2の磁束検出器が検出した磁束に基づいて、前記第1の電流路及び前記第2の電流路に流れる電流の電流値を検出する電流検出センサ本体と、
を備え、
前記第1の電流路と前記第2の電流路は、平板形状の導体であって且つ、同一平面上に並ぶ状態で配置され、
前記第1の磁束検出器は、前記第1の電流路及び前記第2の電流路を流れる電流によって該第1の電流路及び該第2の電流路からそれぞれ発生する磁界の磁力線が直交する第1の位置に、該第1の電流路から発生する磁界の磁力線の向きに前記磁束検出方向が一致するよう、配置され、
前記第2の磁束検出器は、前記第1の電流路及び前記第2の電流路を流れる電流によって該第1の電流路及び該第2の電流路からそれぞれ発生する磁界の磁力線が直交する、前記第1の位置とは異なる第2の位置に、該第2の電流路から発生する磁界の磁力線の向きに前記磁束検出方向が一致するよう、配置される、
ことを特徴とする電流検出装置。
A first current path;
A second current path;
A first magnetic flux detector in which a magnetic flux detection direction for detecting magnetic flux is limited to one direction;
A second magnetic flux detector in which the magnetic flux detection direction for detecting the magnetic flux is limited to one direction;
A current detection sensor main body for detecting a current value of a current flowing through the first current path and the second current path based on the magnetic flux detected by the first magnetic flux detector and the second magnetic flux detector; ,
With
The first current path and the second current path are flat-plate conductors and are arranged in a line on the same plane,
In the first magnetic flux detector, magnetic field lines of magnetic fields generated from the first current path and the second current path, respectively, by currents flowing through the first current path and the second current path are orthogonal to each other. 1 is arranged so that the magnetic flux detection direction coincides with the direction of the magnetic field lines of the magnetic field generated from the first current path,
In the second magnetic flux detector, the magnetic field lines of the magnetic fields generated from the first current path and the second current path, respectively, by the current flowing through the first current path and the second current path are orthogonal to each other. The magnetic flux detection direction is arranged at a second position different from the first position so that the magnetic flux detection direction coincides with the direction of the magnetic force lines of the magnetic field generated from the second current path.
A current detection device characterized by that.
第1の電流路と、
第2の電流路と、
磁束を検出する磁束検出方向が直交する二方向に限られる一つの磁束検出器と、
前記一つの磁束検出器が検出した磁束に基づいて、前記第1の電流路及び前記第2の電流路のそれぞれに流れる電流の電流値を検出する電流検出センサ本体と、
を備え、
前記第1の電流路と前記第2の電流路は、平板形状の導体であって且つ、同一平面上に並ぶ状態で配置され、
前記一つの磁束検出器は、前記第1の電流路及び前記第2の電流路を流れる電流によって該第1の電流路及び該第2の電流路からそれぞれ発生する磁界の磁力線が直交する位置に、該第1の電流路から発生する磁界の磁力線の向き及び該第2の電流路から発生する磁界の磁力線の向きに、前記磁束検出方向が一致するよう、配置される、
ことを特徴とする電流検出装置。
A first current path;
A second current path;
One magnetic flux detector limited to two directions in which magnetic flux detection directions for detecting magnetic flux are orthogonal,
A current detection sensor main body for detecting a current value of a current flowing through each of the first current path and the second current path based on the magnetic flux detected by the one magnetic flux detector;
With
The first current path and the second current path are flat-plate conductors and are arranged in a line on the same plane,
The one magnetic flux detector is located at a position where magnetic field lines of magnetic fields generated from the first current path and the second current path are orthogonal to each other by currents flowing through the first current path and the second current path, respectively. The magnetic flux detection direction is arranged so as to match the direction of the magnetic field lines of the magnetic field generated from the first current path and the direction of the magnetic field lines of the magnetic field generated from the second current path.
A current detection device characterized by that.
JP2008181775A 2008-07-11 2008-07-11 Current detector Expired - Fee Related JP5153491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008181775A JP5153491B2 (en) 2008-07-11 2008-07-11 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008181775A JP5153491B2 (en) 2008-07-11 2008-07-11 Current detector

Publications (2)

Publication Number Publication Date
JP2010019747A true JP2010019747A (en) 2010-01-28
JP5153491B2 JP5153491B2 (en) 2013-02-27

Family

ID=41704801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008181775A Expired - Fee Related JP5153491B2 (en) 2008-07-11 2008-07-11 Current detector

Country Status (1)

Country Link
JP (1) JP5153491B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093415A1 (en) 2010-01-29 2011-08-04 三井化学アグロ株式会社 Composition for control of animal parasites, and method for control of animal parasites
JP2012098205A (en) * 2010-11-04 2012-05-24 Fujitsu Ltd Current measurement method and magnetic sensor device
JP2012220237A (en) * 2011-04-05 2012-11-12 Toyota Motor Corp Current detector
US8878520B2 (en) 2012-05-16 2014-11-04 Alps Green Devices Co., Ltd. Current sensor
JP2015010923A (en) * 2013-06-28 2015-01-19 アルプス・グリーンデバイス株式会社 Current sensor
US9201101B2 (en) 2011-07-05 2015-12-01 Alps Green Devices Co., Ltd. Current sensor
JPWO2014050068A1 (en) * 2012-09-28 2016-08-22 アルプス・グリーンデバイス株式会社 Current sensor
JP2016200438A (en) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 Current sensor
CN109870602A (en) * 2017-12-05 2019-06-11 日立金属株式会社 Current sensor
CN111094999A (en) * 2017-10-06 2020-05-01 株式会社电装 Current sensor
JPWO2021156982A1 (en) * 2020-02-05 2021-08-12

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074783A (en) * 1999-09-02 2001-03-23 Yazaki Corp Current detector
WO2006090769A1 (en) * 2005-02-23 2006-08-31 Asahi Kasei Emd Corporation Current measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074783A (en) * 1999-09-02 2001-03-23 Yazaki Corp Current detector
WO2006090769A1 (en) * 2005-02-23 2006-08-31 Asahi Kasei Emd Corporation Current measuring instrument

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093415A1 (en) 2010-01-29 2011-08-04 三井化学アグロ株式会社 Composition for control of animal parasites, and method for control of animal parasites
JP2012098205A (en) * 2010-11-04 2012-05-24 Fujitsu Ltd Current measurement method and magnetic sensor device
JP2012220237A (en) * 2011-04-05 2012-11-12 Toyota Motor Corp Current detector
US9201101B2 (en) 2011-07-05 2015-12-01 Alps Green Devices Co., Ltd. Current sensor
US8878520B2 (en) 2012-05-16 2014-11-04 Alps Green Devices Co., Ltd. Current sensor
JPWO2014050068A1 (en) * 2012-09-28 2016-08-22 アルプス・グリーンデバイス株式会社 Current sensor
JP2015010923A (en) * 2013-06-28 2015-01-19 アルプス・グリーンデバイス株式会社 Current sensor
JP2016200438A (en) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 Current sensor
CN111094999A (en) * 2017-10-06 2020-05-01 株式会社电装 Current sensor
CN109870602A (en) * 2017-12-05 2019-06-11 日立金属株式会社 Current sensor
JP2019100923A (en) * 2017-12-05 2019-06-24 日立金属株式会社 Current sensor
JP7003609B2 (en) 2017-12-05 2022-01-20 日立金属株式会社 Current sensor
JPWO2021156982A1 (en) * 2020-02-05 2021-08-12
WO2021156982A1 (en) * 2020-02-05 2021-08-12 三菱電機株式会社 Current sensor and circuit breaker terminal cover

Also Published As

Publication number Publication date
JP5153491B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5153491B2 (en) Current detector
JP5153481B2 (en) Current detector
JP6350785B2 (en) Inverter device
EP3384584B1 (en) Linear hall device based field oriented motor control method and motor drive system
JP5632078B2 (en) Coreless current sensor structure, coreless current sensor, and current detection method
KR102042911B1 (en) Power converter and motor drive
JP5207085B2 (en) Current detector
CN104579044B (en) A kind of constant moment of force control method of ECM motors
US20160146860A1 (en) Current detector and current detection method
US20190041240A1 (en) Rotation Angle Detector and Torque Sensor
WO2012124417A1 (en) Current detection device
JP6710994B2 (en) Rotation angle detector
US10295571B2 (en) Bus bar module
JP2007303988A (en) Current detection device
JP2014182109A (en) Current detector
JP2014079048A (en) Power converter
JP5560225B2 (en) Current detector
JP6878083B2 (en) Current detector
WO2019054089A1 (en) Motor drive device, motor, and electric power steering device
JP7105942B1 (en) Control device
JP2017133865A (en) Current detection device and current detection method
JP2004328899A (en) Motor controller
JP2011185787A (en) Current detector
CN117665361A (en) Current detection device
JP2020183927A (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees