JP2010018512A - Crystallized glass - Google Patents

Crystallized glass Download PDF

Info

Publication number
JP2010018512A
JP2010018512A JP2009072895A JP2009072895A JP2010018512A JP 2010018512 A JP2010018512 A JP 2010018512A JP 2009072895 A JP2009072895 A JP 2009072895A JP 2009072895 A JP2009072895 A JP 2009072895A JP 2010018512 A JP2010018512 A JP 2010018512A
Authority
JP
Japan
Prior art keywords
glass
crystallized glass
sio
thermal expansion
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009072895A
Other languages
Japanese (ja)
Inventor
Hirosuke Himei
裕助 姫井
Yoshio Hashibe
吉夫 橋部
Akihiko Sakamoto
明彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009072895A priority Critical patent/JP2010018512A/en
Publication of JP2010018512A publication Critical patent/JP2010018512A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide crystallized glass having an improved thermally-softened processability while maintaining thermal shock resistance. <P>SOLUTION: The crystallized glass contains Li<SB>2</SB>O-Al<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>-based crystal in an amount of 20-70 wt.%. In the crystallized glass, the difference between the average coefficients of linear thermal expansion of matrix glass and the Li<SB>2</SB>O-Al<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>-based crystal is ≥35×10<SP>-7</SP>/K in a temperature range of 30-380°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、調理器用ガラストッププレート、特にガスコンロのガラストッププレートや厨房設備の天板等の装飾材、さらには暖房器具の構成部材に用いることができ、かつ加熱による曲げ加工等の優れた熱軟化加工性を有する結晶化ガラスに関するものである。   The present invention can be used as a glass top plate for a cooker, in particular a decorative material such as a glass top plate of a gas stove or a top plate of a kitchen facility, and further a component of a heating appliance, and has excellent heat such as bending by heating. The present invention relates to crystallized glass having softening workability.

近年、厨房設備や暖房器具に用いる部材として、熱的耐久性、化学的耐久性、機械的強度等の特性、さらには意匠性に優れた材料が求められており、種々の結晶化ガラスが開発、提案されている。厨房設備としては、例えば調理器用ガラストッププレート、特にガスコンロのガラストッププレートや厨房設備の天板等の装飾材などが挙げられる。また、暖房器具に用いる部材としては、暖炉(ストーブ)の壁材や、暖炉(ストーブ)上の調理器用天板(暖炉の熱を利用した調理器に用いられる天板)などが挙げられる。調理器用天板は、結晶化ガラス板と金属板を組み合わせて使用されることもある。   In recent years, as materials used in kitchen equipment and heating appliances, materials with excellent thermal durability, chemical durability, mechanical strength, etc., as well as excellent design properties have been demanded, and various types of crystallized glass have been developed. ,Proposed. Examples of kitchen equipment include glass top plates for cooking appliances, in particular, decorative materials such as glass top plates of gas stoves and top plates of kitchen equipment. Moreover, as a member used for a heater, the wall material of a fireplace (stove), the top plate for cookers on a fireplace (stove) (top plate used for the cooker using the heat of a fireplace), etc. are mentioned. The cooking device top plate may be used in combination with a crystallized glass plate and a metal plate.

例えば、特許文献1には、軟化温度より高い温度で熱処理すると軟化変形しながら結晶が析出する結晶性ガラス小体の界面に無機顔料を付着させ、熱処理することにより融着一体化させ結晶を析出させるとともに、各ガラス小体界面に着色層を現出させてなる結晶化ガラス物品が開示されている。   For example, in Patent Document 1, an inorganic pigment is attached to the interface of a crystalline glass body where crystals are precipitated while softening and deforming when heat-treated at a temperature higher than the softening temperature, and the crystals are fused and integrated by heat treatment. In addition, a crystallized glass article is disclosed in which a colored layer appears at each glass body interface.

また、特許文献2には、軟化温度より高い温度で熱処理すると軟化変形しながら結晶が析出する板状結晶性ガラスの表面に異色の同材質のガラス小体を散在させることにより、熱処理後に融着一体化させてなる模様入り結晶化ガラス物品が開示されている。   Further, Patent Document 2 discloses that glass bodies of different colors of the same material are scattered on the surface of a plate-like crystalline glass on which crystals are precipitated while softening and deforming when heat-treated at a temperature higher than the softening temperature. An integrated patterned crystallized glass article is disclosed.

さらに、特許文献3には、黒色低膨張結晶化ガラスの表面に無機着色顔料を含むホウ珪酸ガラスフリットの装飾被膜を形成させてなる装飾低膨張結晶化ガラス板が開示されている。   Further, Patent Document 3 discloses a decorative low expansion crystallized glass plate in which a decorative coating of borosilicate glass frit containing an inorganic color pigment is formed on the surface of black low expansion crystallized glass.

特開平1−157432号公報JP-A-1-157432 特開平2−92840号公報Japanese Patent Laid-Open No. 2-92840 特開平9−183631号公報Japanese Patent Laid-Open No. 9-183631

特許文献1および2に開示されている結晶化ガラス物品は、結晶化度がそれぞれ30および15質量%と比較的小さい。そのため、軟化温度より高い温度で再加熱することでマトリクスガラスを軟化させ、所望の形状に曲げ加工を施すことができる。しかしながら、これらの結晶化ガラス物品は、それぞれ平均線熱膨張係数が大きいβ−ウォラストナイト(CaSiO)およびガーナイト(ZnAl)を含有するため、60×10−7/K以上の線熱膨張係数を示す。したがって、特許文献1および2における結晶化ガラス物品は高い線熱膨張係数を有するため、ガスコンロのトッププレートや厨房設備の天板、暖房器具の構成部材などに使用する場合、加熱に対する耐久性が不十分であり、破損などの問題が発生するおそれがある。 The crystallized glass articles disclosed in Patent Documents 1 and 2 have a relatively low crystallinity of 30 and 15% by mass, respectively. Therefore, the matrix glass can be softened by being reheated at a temperature higher than the softening temperature, and can be bent into a desired shape. However, since these crystallized glass articles contain β-wollastonite (CaSiO 3 ) and garnite (ZnAl 2 O 4 ), which have a large average linear thermal expansion coefficient, respectively, a line of 60 × 10 −7 / K or more. The coefficient of thermal expansion is shown. Therefore, since the crystallized glass articles in Patent Documents 1 and 2 have a high coefficient of linear thermal expansion, they are not durable against heating when used for a top plate of a gas stove, a top plate of a kitchen facility, a component of a heating appliance, or the like. Sufficient and may cause problems such as damage.

特許文献3に記載の結晶化ガラス物品は、熱的耐久性には問題ないが、結晶化度が高すぎるため再加熱によって軟化させることが困難であり、所望の形状に曲げ加工を施すことができない。そのため、結晶化前の結晶性ガラスの段階で加熱による軟化加工を施した後、結晶化のための熱処理を行なうことになり、結晶化前後の形状変動や寸法変動を避けることが困難である。また、結晶性ガラス自体の結晶性が高すぎるため、熱処理により結晶が過剰に析出してしまい、例えば、結晶性ガラス小体を融着一体化して意匠性の高い結晶化ガラス物品を得ることができない。   Although the crystallized glass article described in Patent Document 3 has no problem in thermal durability, it is difficult to be softened by reheating because the degree of crystallinity is too high, and a desired shape can be bent. Can not. Therefore, after softening by heating at the stage of crystalline glass before crystallization, heat treatment for crystallization is performed, and it is difficult to avoid shape variation and dimensional variation before and after crystallization. In addition, since the crystallinity of the crystalline glass itself is too high, the crystal is excessively precipitated by the heat treatment. For example, it is possible to obtain a crystallized glass article with high design by fusing and integrating the crystalline glass bodies. Can not.

したがって、本発明は、熱的耐久性、機械的強度、化学的耐久性を兼ね備え、加熱による軟化加工が可能であり、さらには意匠性に優れた結晶化ガラス物品を製造可能な結晶化ガラスを提供することを目的とする。   Therefore, the present invention provides a crystallized glass that has thermal durability, mechanical strength, and chemical durability, can be softened by heating, and can produce a crystallized glass article with excellent design. The purpose is to provide.

本発明者等は、鋭意検討の結果、線熱膨張係数の低下に対する寄与が大きい特定の結晶の含有量(結晶化度)を調整し、かつその結晶と残存マトリクスガラスの平均線熱膨張係数の差が所定値よりも大きくなるようにした結晶化ガラスにより、前記課題を解決できることを見出し、本発明として提案するものである。   As a result of intensive studies, the present inventors have adjusted the content (crystallinity) of a specific crystal that greatly contributes to the decrease in the coefficient of linear thermal expansion, and the average coefficient of linear thermal expansion of the crystal and the remaining matrix glass. The present inventors have found that the above problem can be solved by using crystallized glass whose difference is larger than a predetermined value, and proposes the present invention.

即ち、第一に、本発明の結晶化ガラスは、LiO−Al−SiO系結晶を20〜70質量%含有する結晶化ガラスであって、当該結晶化ガラスにおけるマトリクスガラスとLiO−Al−SiO系結晶の30〜380℃における平均線熱膨張係数の差が35×10−7/K以上であることを特徴とする。 That is, first, the crystallized glass of the present invention is a crystallized glass containing 20 to 70% by mass of Li 2 O—Al 2 O 3 —SiO 2 -based crystals, the difference in the average linear thermal expansion coefficient at 30 to 380 ° C. of li 2 O-Al 2 O 3 -SiO 2 based crystal is characterized in that it is 35 × 10 -7 / K or more.

LiO−Al−SiO系結晶は、異方的な熱膨張特性を有する、即ち結晶軸によって線熱膨張係数が異なることが知られている。そのため、LiO−Al−SiO系結晶を含有する結晶化ガラスでは、結晶化処理の冷却過程において、LiO−Al−SiO系結晶の負膨張軸側と正膨張を有するマトリクスガラスとの界面にせん断応力が発生する。それに伴って、LiO−Al−SiO系結晶とマトリクスガラス界面に空隙が生じる。当該空隙により、結晶化ガラスにおけるマトリクスガラスおよびLiO−Al−SiO系結晶の正膨張の寄与が低減され、LiO−Al−SiO系結晶の負膨張軸の寄与が強調される。この効果は、マトリクスガラスとLiO−Al−SiO系結晶の平均線熱膨張係数の差が大きい程(あるいは、マトリクスガラスの平均線熱膨張係数とLiO−Al−SiO系結晶の負膨張軸線熱膨張係数の差が大きい程)顕著である。 It is known that Li 2 O—Al 2 O 3 —SiO 2 -based crystals have anisotropic thermal expansion characteristics, that is, the linear thermal expansion coefficient varies depending on the crystal axis. Therefore, in the crystallized glass containing Li 2 O—Al 2 O 3 —SiO 2 -based crystal, in the cooling process of the crystallization treatment, the negative expansion axis side of the Li 2 O—Al 2 O 3 —SiO 2 -based crystal and Shear stress is generated at the interface with the matrix glass having positive expansion. Along with that, voids are generated at the interface between the Li 2 O—Al 2 O 3 —SiO 2 crystal and the matrix glass. The void reduces the positive expansion contribution of the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal in the crystallized glass, and the negative expansion axis of the Li 2 O—Al 2 O 3 —SiO 2 based crystal. The contribution of is emphasized. This effect is more effective when the difference in average linear thermal expansion coefficient between the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal is larger (or the average linear thermal expansion coefficient of the matrix glass and Li 2 O—Al 2 O The greater the difference in the coefficient of thermal expansion of the negative expansion axis of the 3 -SiO 2 crystal, the more significant it is.

一般的に、結晶化ガラスの線熱膨張係数は、結晶およびマトリクスガラス各々の平均線熱膨張係数と体積分率によって加成的に決定されるが、本発明によると、加成則から予測される線熱膨張係数よりも低い線熱膨張係数を有する結晶化ガラスを得ることが可能となる。   In general, the linear thermal expansion coefficient of crystallized glass is additively determined by the average linear thermal expansion coefficient and volume fraction of each of crystal and matrix glass, but according to the present invention, it is predicted from the additive law. It is possible to obtain crystallized glass having a linear thermal expansion coefficient lower than the linear thermal expansion coefficient.

また、本発明の結晶化ガラスには、LiO−Al−SiO系結晶とマトリクスガラス界面に既述のような空隙が存在するため、比熱が高いという特徴も有する。したがって、本発明の結晶化ガラスは、例えば暖房器具の構成部材として用いた場合、高い保温効果を得ることができる。 In addition, the crystallized glass of the present invention has a feature that the specific heat is high because the voids as described above exist at the interface between the Li 2 O—Al 2 O 3 —SiO 2 crystal and the matrix glass. Therefore, when the crystallized glass of the present invention is used as, for example, a structural member of a heating appliance, a high heat retention effect can be obtained.

また、本発明の結晶化ガラスは、結晶化処理によりLiO−Al−SiO系結晶の析出結晶量を20〜70質量%としたものであり、熱的耐久性や機械的強度、化学的耐久性が損なわれず、かつ再加熱による軟化加工が可能である。また、結晶化前の結晶性ガラス小体を、熱処理によって融着一体化するとともに結晶を析出させることも可能である。したがって、本発明の結晶化ガラスは、所望の形状を有し、意匠性に優れた調理器用トッププレート、特にガスコンロトッププレート、厨房器具天板、テーブルトップ等の厨房設備装飾材や暖房器具の構成部材、その他の各種内外装材として好適である。 Moreover, the crystallized glass of the present invention has a crystallized amount of precipitated crystals of Li 2 O—Al 2 O 3 —SiO 2 based crystal of 20 to 70% by mass, and has thermal durability and mechanical properties. Strength and chemical durability are not impaired, and softening processing by reheating is possible. In addition, the crystalline glass body before crystallization can be fused and integrated by heat treatment and crystals can be precipitated. Therefore, the crystallized glass of the present invention has a desired shape and is excellent in design, such as a cooking appliance top plate, particularly a gas stove top plate, a kitchen utensil top plate, a table top, etc. It is suitable as a member and other various interior / exterior materials.

第二に、本発明の結晶化ガラスは、30〜380℃における線熱膨張係数が30×10−7/K以下であることを特徴とする。ここで、30〜380℃における線熱膨張係数はディラトメータを用いて測定した値を指す。 Secondly, the crystallized glass of the present invention has a linear thermal expansion coefficient at 30 to 380 ° C. of 30 × 10 −7 / K or less. Here, the linear thermal expansion coefficient in 30-380 degreeC points out the value measured using the dilatometer.

第三に、本発明の結晶化ガラスは、LiO−Al−SiO系結晶の平均粒径が1μm以上であることを特徴とする。 Third, the crystallized glass of the present invention is characterized in that the average particle size of the Li 2 O—Al 2 O 3 —SiO 2 based crystal is 1 μm or more.

第四に、本発明の結晶化ガラスは、屈伏温度が950℃以下であることを特徴とする。ここで、屈伏温度はディラトメータを用いて測定した値をいう。   Fourth, the crystallized glass of the present invention is characterized in that the yield temperature is 950 ° C. or lower. Here, the yield temperature is a value measured using a dilatometer.

第五に、本発明の結晶化ガラスは、質量%で、SiO 55〜72%、Al 14〜30%、LiO 1.5〜5%、KO 1〜10%、TiO 0〜5%、ZrO 0〜4%、TiO+ZrO 0〜7%、ZnO 0〜10%、MgO 0〜3%、CaO 0〜2.5%、BaO 0〜5%、B 0〜7%、NaO 0〜2%、P 0〜0.8%の組成を含有することを特徴とする。 Fifth, the crystallized glass of the present invention, in mass%, SiO 2 55~72%, Al 2 O 3 14~30%, Li 2 O 1.5~5%, K 2 O 1~10%, TiO 2 0-5%, ZrO 2 0-4%, TiO 2 + ZrO 2 0-7%, ZnO 0-10%, MgO 0-3%, CaO 0-2.5%, BaO 0-5%, B It contains 2 O 3 0-7%, Na 2 O 0-2%, and P 2 O 5 0-0.8%.

上記組成を含有する結晶化ガラスは、β−石英固溶体やβ−スポジュメン固溶体などのLiO−Al−SiO系結晶を主結晶として含有するため、低膨張かつ高い熱的耐久性を有するという特徴を有している。また、再加熱による軟化変形が生じるのに必要な量のマトリクスガラスが残存する結晶化ガラスとすることが可能となる。さらに、本発明の結晶化ガラスの前駆体である結晶性ガラスが適度な結晶性を有するため、結晶性ガラス小体を熱処理によって融着一体化させつつ結晶を析出させることも可能である。 The crystallized glass containing the above composition contains Li 2 O—Al 2 O 3 —SiO 2 -based crystals such as β-quartz solid solution and β-spodumene solid solution as the main crystal, so it has low expansion and high thermal durability. It has the feature of having. In addition, it is possible to obtain a crystallized glass in which an amount of matrix glass necessary for softening deformation due to reheating remains. Furthermore, since the crystalline glass that is the precursor of the crystallized glass of the present invention has appropriate crystallinity, it is possible to precipitate crystals while fusing and integrating the crystalline glass bodies by heat treatment.

第六に、本発明の結晶化ガラスは、調理器用トッププレート、厨房設備装飾材または暖房器具の構成部材に用いられることを特徴とする。   Sixth, the crystallized glass of the present invention is characterized in that it is used for a cooking appliance top plate, a kitchen equipment decoration material, or a component of a heating appliance.

本発明の結晶化ガラスにおいて、LiO−Al−SiO系結晶の含有量は20〜70質量%であり、好ましくは30〜60質量%である。LiO−Al−SiO系結晶の含有量が20質量%未満の場合は、結晶化ガラスの熱膨張係数が大きくなる傾向があり、目標とする熱的耐久性が得られにくくなる。一方、結晶の含有量が70質量%を超えると、再加熱による軟化が生じにくくなり、曲げ加工などの軟化加工が困難になりやすい。また、前駆体である結晶化ガラスの結晶性が高くなり過ぎて、熱処理により結晶が過剰に析出してしまい、例えば、結晶性ガラス小体を融着一体化して意匠性の高い結晶化ガラス物品を得ることができなくなる。さらに、結晶性ガラスの焼成温度が、例えば1300℃以上といった高温になりやすく、通常の焼成炉を使用した製造に適さなくなるといった問題が生じやすい。 In the crystallized glass of the present invention, the content of Li 2 O—Al 2 O 3 —SiO 2 -based crystal is 20 to 70% by mass, preferably 30 to 60% by mass. When the content of the Li 2 O—Al 2 O 3 —SiO 2 -based crystal is less than 20% by mass, the thermal expansion coefficient of the crystallized glass tends to increase, making it difficult to obtain the target thermal durability. Become. On the other hand, if the crystal content exceeds 70% by mass, softening due to reheating hardly occurs, and softening such as bending tends to be difficult. In addition, the crystallinity of the crystallized glass that is the precursor becomes too high, and crystals are excessively precipitated by the heat treatment. For example, a crystallized glass article having high design properties by fusing and integrating the crystalline glass bodies You will not be able to get. Furthermore, the firing temperature of the crystalline glass tends to be a high temperature, for example, 1300 ° C. or more, and the problem that it becomes unsuitable for production using a normal firing furnace tends to occur.

本発明の結晶化ガラスにおいて、マトリクスガラスとLiO−Al−SiO系結晶の30〜380℃における平均線熱膨張係数の差は、35×10−7/K以上であり、好ましくは40×10−7/K以上、より好ましくは50×10−7/K以上である。平均線熱膨張係数の差が35×10−7/K未満である場合、マトリクスガラスとLiO−Al−SiO系結晶粒子の界面に発生する応力が小さすぎて界面に空隙が形成されにくくなる。その結果、結晶化ガラスの線熱膨張係数が低下しにくくなる。また、比熱が小さくなり、例えば暖房器具の構成部材として用いた場合に、十分な保温効果を得ることができなくなる。なお、上限については特に限定されないが、マトリクスガラスとLiO−Al−SiO系結晶の平均線熱膨張係数の差が大きすぎる場合は、熱による破損が発生しやすくなる、また、結晶粒子とマトリクスガラスの界面においてクラックが発生しやすくなり、結晶化ガラスの機械的強度が低下する傾向があるため、現実的には70×10−7/K以下であることが好ましい。 In the crystallized glass of the present invention, the difference in average linear thermal expansion coefficient at 30 to 380 ° C. between the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal is 35 × 10 −7 / K or more, Preferably it is 40 * 10 < -7 > / K or more, More preferably, it is 50 * 10 < -7 > / K or more. When the difference in average linear thermal expansion coefficient is less than 35 × 10 −7 / K, the stress generated at the interface between the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal particles is too small, and there is a void at the interface. Is difficult to form. As a result, the linear thermal expansion coefficient of crystallized glass is unlikely to decrease. Moreover, specific heat becomes small, and when it is used, for example as a structural member of a heater, a sufficient heat retaining effect cannot be obtained. The upper limit is not particularly limited, but if the difference in average linear thermal expansion coefficient between the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 -based crystal is too large, damage due to heat tends to occur. Since cracks are likely to occur at the interface between the crystal particles and the matrix glass, and the mechanical strength of the crystallized glass tends to decrease, it is preferably 70 × 10 −7 / K or less in practice.

本発明の結晶化ガラスの線熱膨張係数は、好ましくは30×10−7/K以下、より好ましくは20×10−7/K以下である。例えば、ガスレンジガラストップにおいては、ガスフレームの影響により、最も高温になるバーナー口の温度は200℃以上になる。一方、バーナー口から離れたガラストッププレート外周は低温のままであるため、当該箇所に引張り応力が発生し破損するおそれがある。結晶化ガラスの線熱膨張係数が30×10−7/Kより大きいと、ガラストッププレート外周における発生応力が約30MPa以上となり破損の確率が大きくなる。したがって、結晶化ガラスの線熱膨張係数を30×10−7/K以下とすることにより、ガラストッププレート外周に発生する応力が結晶化ガラスの破壊許容応力以下になり、熱による破損が起こりにくくなる。また、本発明の結晶化ガラスを暖房器具の構成部材として用いる場合にも同様に、温度分布が生じて応力が発生するため、上記の線熱膨張係数の範囲とすることで破損を防止することができる。なお、下限については特に限定されないが、低すぎる場合は、結晶化ガラスにおけるLiO−Al−SiO系結晶の含有量が過剰となるため、再加熱による軟化が生じにくくなり、結果として、曲げ加工などの軟化加工が困難になる傾向がある。このような観点から、結晶化ガラスの線熱膨張係数は現実的には−10×10−7/K以上であることが好ましい。 The linear thermal expansion coefficient of the crystallized glass of the present invention is preferably 30 × 10 −7 / K or less, more preferably 20 × 10 −7 / K or less. For example, in the gas range glass top, the highest temperature of the burner port becomes 200 ° C. or more due to the influence of the gas flame. On the other hand, since the outer periphery of the glass top plate away from the burner port remains at a low temperature, there is a possibility that tensile stress is generated at the location and the glass top plate is damaged. If the linear thermal expansion coefficient of the crystallized glass is greater than 30 × 10 −7 / K, the generated stress on the outer periphery of the glass top plate becomes about 30 MPa or more, and the probability of breakage increases. Therefore, by setting the linear thermal expansion coefficient of the crystallized glass to 30 × 10 −7 / K or less, the stress generated on the outer periphery of the glass top plate becomes less than the fracture allowable stress of the crystallized glass and is not easily damaged by heat. Become. Similarly, when the crystallized glass of the present invention is used as a structural member of a heating appliance, temperature distribution is generated and stress is generated. Therefore, breakage is prevented by setting the above range of linear thermal expansion coefficient. Can do. Although there is no particular limitation on the lower limit, if too low, since the content of Li 2 O-Al 2 O 3 -SiO 2 based crystallized in the crystallization glass becomes excessive softening due to reheating is hardly caused, As a result, softening processing such as bending tends to be difficult. From such a viewpoint, the linear thermal expansion coefficient of the crystallized glass is practically preferably −10 × 10 −7 / K or more.

本発明の結晶化ガラスにおいて、LiO−Al−SiO系結晶粒子の平均粒径は、好ましくは1μm以上、より好ましくは5μm以上である。LiO−Al−SiO系結晶粒子の平均粒径が1μm未満の場合、結晶粒子とマトリクスガラスの界面に発生する応力の影響が小さくなり、結晶粒子とマトリクスガラスの界面に空隙が形成されにくくなる。そのため、結晶化ガラスの線熱膨張係数が低下しにくくなったり、比熱が小さくなる傾向がある。なお、上限については特に限定されないが、LiO−Al−SiO系結晶粒子の平均粒径が大きすぎる場合は、結晶粒子とマトリクスガラスの界面においてクラックが発生しやすくなり、結晶化ガラスの機械的強度が低下する傾向があるため、現実的には300μm以下であることが好ましい。 In the crystallized glass of the present invention, the average particle size of Li 2 O—Al 2 O 3 —SiO 2 -based crystal particles is preferably 1 μm or more, more preferably 5 μm or more. When the average particle size of Li 2 O—Al 2 O 3 —SiO 2 -based crystal particles is less than 1 μm, the influence of stress generated at the interface between the crystal particles and the matrix glass is reduced, and voids are formed at the interface between the crystal particles and the matrix glass. Is difficult to form. Therefore, there is a tendency that the linear thermal expansion coefficient of the crystallized glass is difficult to decrease or the specific heat is reduced. The upper limit is not particularly limited, but if the average particle size of the Li 2 O—Al 2 O 3 —SiO 2 crystal particles is too large, cracks are likely to occur at the interface between the crystal particles and the matrix glass, and the crystal Since the mechanical strength of the vitrified glass tends to be lowered, it is practically preferably 300 μm or less.

本発明の結晶化ガラスにおいて、LiO−Al−SiO系結晶の30〜380℃における平均線熱膨張係数は、好ましくは−80×10−7〜15×10−7/K、より好ましくは−50〜5×10−7/Kである。ここで、LiO−Al−SiO系結晶の平均線熱膨張係数は、実施例に記載の方法によって算出される。LiO−Al−SiO系結晶の平均線熱膨張係数が−80×10−7/K未満である場合、結晶粒子とマトリクスガラスの界面に発生する応力が大きくなりすぎて、界面にクラックが発生しやすくなり、その結果、結晶化ガラスの機械的強度が低下する傾向がある。一方、LiO−Al−SiO系結晶の平均線熱膨張係数が15×10−7/Kを超える場合、結晶粒子とマトリクスガラスの界面に発生する応力が小さすぎて、両者の界面に空隙が形成されにくくなり、結果として、結晶化ガラスの線熱膨張係数が低下しにくくなったり、比熱が小さくなったりする。 In the crystallized glass of the present invention, the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal at 30 to 380 ° C. is preferably −80 × 10 −7 to 15 × 10 −7 / K. More preferably, it is −50 to 5 × 10 −7 / K. Here, the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 -based crystal is calculated by the method described in the examples. When the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal is less than −80 × 10 −7 / K, the stress generated at the interface between the crystal particles and the matrix glass becomes too large, Cracks are likely to occur at the interface, and as a result, the mechanical strength of the crystallized glass tends to decrease. On the other hand, when the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal exceeds 15 × 10 −7 / K, the stress generated at the interface between the crystal particles and the matrix glass is too small. As a result, the linear thermal expansion coefficient of the crystallized glass is hardly lowered or the specific heat is reduced.

本発明の結晶化ガラスの屈伏温度は、好ましくは950℃以下、より好ましくは900℃以下である。結晶化ガラスの屈伏温度が950℃を超える場合、再加熱による軟化が生じにくくなるため、曲げ加工などの軟化加工の精度が低下しやすくなる。   The yield temperature of the crystallized glass of the present invention is preferably 950 ° C. or lower, more preferably 900 ° C. or lower. When the yield temperature of the crystallized glass exceeds 950 ° C., softening due to reheating becomes difficult to occur, so that the accuracy of softening processing such as bending processing tends to be lowered.

本発明の結晶化ガラスのガラス転移温度は600〜800℃であることが好ましい。結晶化ガラスのガラス転移温度が600℃未満であると、マトリクスガラスの粘性が低くなりすぎ、結晶相との熱膨張特性の差が大きくなるため、結果として熱による破損が発生しやすくなる。一方、結晶化ガラスのガラス転移温度が800℃を超えると、再加熱による軟化が生じにくくなるため、曲げ加工などの軟化加工の精度が低下しやすくなる。   The glass transition temperature of the crystallized glass of the present invention is preferably 600 to 800 ° C. When the glass transition temperature of the crystallized glass is less than 600 ° C., the viscosity of the matrix glass becomes too low, and the difference in thermal expansion characteristics from the crystal phase becomes large. As a result, breakage due to heat tends to occur. On the other hand, when the glass transition temperature of the crystallized glass exceeds 800 ° C., softening due to reheating hardly occurs, so that the accuracy of softening processing such as bending processing tends to be lowered.

本発明の結晶化ガラスは、質量%で、SiO 55〜72%、Al 14〜30%、LiO 1.5〜5%、KO 1〜10%、TiO 0〜5%、ZrO 0〜4%、TiO+ZrO 0〜7%、ZnO 0〜10%、MgO 0〜3%、CaO 0〜2.5%、BaO 0〜5%、B 0〜7%、NaO 0〜2%、P 0〜0.8%の組成を含有することが好ましい。 Crystallized glass of the present invention, in mass%, SiO 2 55~72%, Al 2 O 3 14~30%, Li 2 O 1.5~5%, K 2 O 1~10%, TiO 2 0~ 5%, ZrO 2 0-4%, TiO 2 + ZrO 2 0-7%, ZnO 0-10%, MgO 0-3%, CaO 0-2.5%, BaO 0-5%, B 2 O 3 0 ~7%, Na 2 O 0~2% , preferably contains the composition of P 2 O 5 0~0.8%.

各成分の含有量をこのように限定した理由は次の通りである。   The reason for limiting the content of each component in this way is as follows.

SiOは結晶化ガラスの主たる構成成分であるとともに結晶構成成分でもある。その含有量は55〜72%、好ましくは60〜70%である。SiOの含有量が55%よりも少ないと、LiO−Al−SiO系結晶の析出が不安定になる。一方、SiOの含有量が72%よりも多いと、ガラスの溶融性が低下しガラスの成形が困難になるとともに、結晶化ガラスの軟化温度が高くなり、再加熱による軟化加工が困難になる傾向がある。さらに、マトリクスガラスの線熱膨張係数が低下してLiO−Al−SiO系結晶の平均線熱膨張係数との差が小さくなり、両者の界面に発生する応力が小さすぎて空隙が形成されにくくなる。その結果、結晶化ガラスの線熱膨張係数の低下が生じにくくなったり、比熱が小さくなったりする。 SiO 2 is a main constituent of crystallized glass and a crystal constituent. Its content is 55-72%, preferably 60-70%. When the content of SiO 2 is less than 55%, precipitation of Li 2 O—Al 2 O 3 —SiO 2 -based crystals becomes unstable. On the other hand, when the content of SiO 2 is more than 72%, the melting property of the glass is lowered and it becomes difficult to form the glass, and the softening temperature of the crystallized glass is increased, and the softening process by reheating becomes difficult. Tend. Furthermore, the linear thermal expansion coefficient of the matrix glass decreases, the difference from the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal becomes small, and the stress generated at the interface between the two is too small. It becomes difficult to form voids. As a result, it becomes difficult for the linear thermal expansion coefficient of the crystallized glass to decrease, and the specific heat becomes small.

Alは結晶構成成分であり、その含有量は14〜30%、好ましくは16〜25%である。Al含有量が14%より少ないと、LiO−Al−SiO系結晶が粗大化して、結晶化ガラスの機械的強度が低下する傾向がある。一方、Al含有量が30%より多くなると、ガラスの溶融性が低下するだけではなく、液相温度が高くなりすぎてガラス成形時に失透が生じやすくなる。 Al 2 O 3 is a crystal component, and its content is 14 to 30%, preferably 16 to 25%. If the Al 2 O 3 content is less than 14%, the Li 2 O—Al 2 O 3 —SiO 2 -based crystal is coarsened, and the mechanical strength of the crystallized glass tends to decrease. On the other hand, when the Al 2 O 3 content is more than 30%, not only the meltability of the glass is lowered, but also the liquidus temperature becomes too high and devitrification is likely to occur during glass forming.

LiOは結晶構成成分であり、その含有量は1.5〜5%、好ましくは1.8〜3.5%である。LiOの含有量が1.5%より少ないと、均一なLiO−Al−SiO系結晶が得られにくくなり、結晶化ガラスとして不安定になりやすい。一方、LiOの含有量が5%より多くなると、結晶化度が高くなりすぎて結晶化ガラスの再加熱により軟化しにくくなり、曲げ加工などの軟化加工が困難になったり、結晶性ガラス小体を融着一体化して意匠性の高い結晶化ガラス物品を得ることができなくなる。 Li 2 O is a crystal component, and its content is 1.5 to 5%, preferably 1.8 to 3.5%. When the content of Li 2 O is less than 1.5%, uniform Li 2 O—Al 2 O 3 —SiO 2 -based crystals are difficult to obtain, and the crystallized glass tends to be unstable. On the other hand, when the content of Li 2 O exceeds 5%, the degree of crystallinity becomes too high and it becomes difficult to soften by reheating the crystallized glass, and it becomes difficult to perform softening processing such as bending, or crystalline glass. It becomes impossible to obtain a crystallized glass article with high design by fusing and integrating the small bodies.

Oは結晶化度を制御し、それにより結晶化ガラスの軟化温度を調整し、再加熱による軟化加工性に影響を与える成分である。その含有量は1〜10%、好ましくは2〜7%である。KOの含有量が1%未満であると、結晶化ガラスの結晶化度が高くなりすぎて、再加熱による軟化加工性が悪化したり、結晶性ガラス小体を融着一体化して意匠性の高い結晶化ガラス物品を得ることができなくなる。一方、KOの含有量が10%を超えると、LiO−Al−SiO系結晶の析出が抑制されるため、低膨張の結晶化ガラスとなりにくくなる。 K 2 O is a component that controls the degree of crystallinity, thereby adjusting the softening temperature of the crystallized glass and affecting the softening workability by reheating. Its content is 1 to 10%, preferably 2 to 7%. If the content of K 2 O is less than 1%, the crystallinity of the crystallized glass becomes too high, the softening processability by reheating deteriorates, or the crystalline glass body is fused and integrated. It becomes impossible to obtain a crystallized glass article having high properties. On the other hand, when the content of K 2 O exceeds 10%, precipitation of Li 2 O—Al 2 O 3 —SiO 2 -based crystals is suppressed, and thus it becomes difficult to obtain a low expansion crystallized glass.

TiOとZrOは、一般的にLiO−Al−SiO系結晶析出の際に核となる成分として知られているが、本発明においては必須の成分ではない。しかしながら、本発明の結晶化ガラスにTiOとZrOのいずれか、またはその両者を加えた場合、LiO−Al−SiO系結晶とともにルチル結晶(TiO)、ジルコニア結晶(ZrO)、またはジルコニウムチタネート結晶(ZrTiO)が析出する。これらの結晶は、いずれもLiO−Al−SiO系結晶およびマトリクスガラスと比較して高屈折率であるため、白色度の高い結晶化ガラスとすることができる。TiOの含有量は5%以下である。また、ZrOの含有量は4%以下、好ましくは2.5%以下である。また、両者の合量は7%以下であることが好ましい。両者の合量が7%を超えるか、または各々単独で上記の範囲の上限を超えると、結晶化速度が速くなりすぎて失透しやすくなる。下限については、特に限定されないが、上記の効果を得るためには、TiOとZrOの少なくとも1種を1%以上含有することが好ましい。一方、TiOおよびZrOを含有しない場合、前記の高屈折率結晶が析出しないために、透光性を有する結晶化ガラスが得られる。 TiO 2 and ZrO 2 are generally known as components that become nuclei during Li 2 O—Al 2 O 3 —SiO 2 -based crystal precipitation, but are not essential components in the present invention. However, when either or both of TiO 2 and ZrO 2 are added to the crystallized glass of the present invention, a rutile crystal (TiO 2 ) and a zirconia crystal (Li 2 O—Al 2 O 3 —SiO 2 -based crystal) ZrO 2 ) or zirconium titanate crystals (ZrTiO 4 ) are precipitated. Since these crystals have a higher refractive index than Li 2 O—Al 2 O 3 —SiO 2 -based crystals and matrix glass, they can be crystallized glass with high whiteness. The content of TiO 2 is 5% or less. Further, the content of ZrO 2 is 4% or less, preferably 2.5% or less. Moreover, it is preferable that the total amount of both is 7% or less. If the total amount of both exceeds 7% or exceeds the upper limit of the above range by itself, the crystallization rate becomes too fast and devitrification tends to occur. The lower limit is not particularly limited, in order to obtain the above effect, it is preferable to contain at least one of the TiO 2 and ZrO 2 or 1%. On the other hand, when TiO 2 and ZrO 2 are not contained, the above-described high refractive index crystal does not precipitate, so that a crystallized glass having translucency can be obtained.

本発明の結晶化ガラスにZnOを加えた場合、LiO−Al−SiO系結晶とともにガーナイト結晶(ZnAl)が析出する。ガーナイト結晶はLiO−Al−SiO系結晶およびマトリクスガラスと比較して高屈折率であるため、白色度の高い結晶化ガラスを得ることができる。また、ガーナイト結晶に固溶し得る着色剤(例えば、金属酸化物粉末又は無機顔料粉末)からなる層をガラス表面に設けることにより、着色の鮮明な結晶化ガラスを得ることができる。ZnOの含有量は10%以下、好ましくは6%以下である。ZnOの含有量が10%を超えると、ガーナイト結晶の析出量が多くなりすぎて、主結晶であるLiO−Al−SiO系結晶が析出しにくくなり、結果として、結晶化後の熱膨張係数が大きくなりやすい。また、ガーナイト結晶を析出させ着色効果を得るためには、ZnOの含有量を1%以上、さらには2%以上とすることが好ましい。一方、ZnOを加えない場合、ガーナイト結晶が析出しないため、透光性を有する結晶化ガラスが得られる。 When ZnO is added to the crystallized glass of the present invention, garnite crystals (ZnAl 2 O 4 ) are precipitated together with Li 2 O—Al 2 O 3 —SiO 2 based crystals. Since garnite crystals have a higher refractive index than Li 2 O—Al 2 O 3 —SiO 2 -based crystals and matrix glass, crystallized glass with high whiteness can be obtained. Further, by providing a layer made of a colorant (for example, a metal oxide powder or an inorganic pigment powder) that can be dissolved in a garnite crystal on the glass surface, a crystallized glass with clear coloring can be obtained. The content of ZnO is 10% or less, preferably 6% or less. If the ZnO content exceeds 10%, the amount of garnite crystals precipitated becomes too large, and the main crystal, Li 2 O—Al 2 O 3 —SiO 2 crystal, becomes difficult to precipitate, resulting in crystallization. The later thermal expansion coefficient tends to increase. In order to precipitate garnite crystals and obtain a coloring effect, the content of ZnO is preferably 1% or more, more preferably 2% or more. On the other hand, when ZnO is not added, a garnite crystal does not precipitate, so that a crystallized glass having translucency can be obtained.

MgO、CaO、BaO、BおよびNaOはいずれも結晶化ガラスの軟化温度を低下させるのに有効な成分であるが、前記範囲を超えると所望の結晶が析出しにくくなる。なお、前記効果を得るためには、これらの成分のうち少なくとも1種を1%以上含有することが好ましい。 MgO, CaO, BaO, B 2 O 3 and Na 2 O are all effective components for lowering the softening temperature of the crystallized glass. However, if the above range is exceeded, it becomes difficult to deposit desired crystals. In addition, in order to acquire the said effect, it is preferable to contain 1% or more of at least 1 sort (s) among these components.

は結晶粒子サイズを細かくする作用を有するが、0.8%よりも多くなると失透性が強くなる。下限は特に限定されないが、前記効果を得るためには、Pを0.1%以上含有することが好ましい。 P 2 O 5 has the effect of reducing the crystal grain size, but when it exceeds 0.8%, devitrification becomes strong. The lower limit is not particularly limited, in order to obtain the above effect, it is preferable to contain P 2 O 5 0.1% or more.

なお、これ以外に、清澄剤としてSnOを0〜1%、好ましくは0.1〜0.5%加えることもできる。また、その他の清澄剤としてAs、Sbを、清澄剤の合量が5%を超えない範囲で加えることもできる。 In addition, SnO 2 can be added as a clarifier in an amount of 0 to 1%, preferably 0.1 to 0.5%. Further, As 2 O 3 and Sb 2 O 3 can be added as other clarifiers in a range where the total amount of the clarifier does not exceed 5%.

さらに、前記組成中に着色成分を加えることにより、着色結晶性ガラスをベースとした結晶化ガラスを得ることができる。着色成分の含有量は、結晶性ガラス組成中に5%以下、好ましくは1%以下である。着色成分の含有量が5%を超えると、得られる結晶化ガラスの着色の度合いが強くなりすぎて風合いが損なわれるおそれがある。また、ガラス組成におけるその他の成分の含有量が相対的に減少するため、結晶化ガラスの各物性に悪影響を与える、例えば結晶化度の低下により線熱膨張係数が上昇する、などの問題が生じる傾向がある。下限については特に限定されないが、十分な着色の効果を得るために0.01%以上とすることが好ましい。   Furthermore, a crystallized glass based on a colored crystalline glass can be obtained by adding a coloring component to the composition. The content of the coloring component is 5% or less, preferably 1% or less in the crystalline glass composition. When content of a coloring component exceeds 5%, there exists a possibility that the degree of coloring of the crystallized glass obtained may become too strong, and a texture may be impaired. In addition, since the content of other components in the glass composition is relatively reduced, there are problems such as adversely affecting each physical property of the crystallized glass, for example, increasing the linear thermal expansion coefficient due to a decrease in crystallinity. Tend. The lower limit is not particularly limited, but is preferably 0.01% or more in order to obtain a sufficient coloring effect.

着色成分としては、酸化コバルト、酸化ニッケル、酸化鉄、酸化バナジウムなどの遷移金属酸化物、または酸化プラセオジム、酸化ネオジム、酸化セリウムなどの希土類酸化物が用いられる。これらは単独で用いても良く、2種以上を混合して用いることも可能である。   As the coloring component, transition metal oxides such as cobalt oxide, nickel oxide, iron oxide, and vanadium oxide, or rare earth oxides such as praseodymium oxide, neodymium oxide, and cerium oxide are used. These may be used alone or in combination of two or more.

なお、本発明の結晶化ガラスは、例えば、板状、棒状、管状に成形して用いたり、結晶化ガラスの前駆体である結晶性ガラス小体を熱処理により融着一体化して作製することも可能である。   The crystallized glass of the present invention can be produced, for example, by forming into a plate shape, a rod shape, or a tube shape, or by fusing and integrating a crystalline glass body that is a precursor of crystallized glass by heat treatment. Is possible.

(実施例1〜3)
(a)結晶化ガラス試料の作製
表1中に示す各ガラス組成を有するように調合した原料を均一に混合した後、白金坩堝を用いて1600〜1650℃で12時間溶融した。溶融したガラスをカーボン板上に流し出し、5mm厚の板状に成形した後、電気炉で700℃から室温まで100℃/hの速度で降温することによって徐冷し、板状ガラスを得た。
(Examples 1-3)
(A) Preparation of crystallized glass sample The raw materials prepared so as to have the glass compositions shown in Table 1 were uniformly mixed, and then melted at 1600 to 1650 ° C for 12 hours using a platinum crucible. The molten glass was poured onto a carbon plate, formed into a 5 mm thick plate, and then slowly cooled by lowering the temperature from 700 ° C. to room temperature at a rate of 100 ° C./h in an electric furnace to obtain a plate glass. .

次に、上記の板状ガラスを電気炉に入れ、100℃/hの速度で室温から750℃まで昇温した後、そのまま1時間保持し、さらに100℃/hの速度で表1に示した所定の焼成温度まで昇温した後、そのまま1時間保持した。その後、電気炉内で100℃/hの速度で室温まで冷却することによって結晶化ガラス試料を作製した。   Next, the plate glass was put into an electric furnace, heated from room temperature to 750 ° C. at a rate of 100 ° C./h, held for 1 hour, and further shown in Table 1 at a rate of 100 ° C./h. After raising the temperature to a predetermined firing temperature, the temperature was maintained for 1 hour. Then, the crystallized glass sample was produced by cooling to room temperature at a rate of 100 ° C./h in an electric furnace.

(b)各結晶化ガラス試料の特性
得られた結晶化ガラス試料の特性を表1に示す。各特性は、以下の通りに評価した。
(B) Characteristics of each crystallized glass sample Table 1 shows the characteristics of the crystallized glass sample obtained. Each characteristic was evaluated as follows.

各結晶化ガラス試料の30〜380℃における平均線熱膨張係数、ガラス転移温度および屈伏温度は、ディラトメータ(Bruker AXS製 TD5010)を用いて測定した。   The average linear thermal expansion coefficient, glass transition temperature, and yield temperature at 30 to 380 ° C. of each crystallized glass sample were measured using a dilatometer (TD5010 manufactured by Bruker AXS).

各結晶化ガラス試料における析出結晶の解析は、X線回折装置(リガク製 RINT2100)を用いて行なった。   The analysis of the precipitated crystal in each crystallized glass sample was performed using an X-ray diffractometer (RINT2100 manufactured by Rigaku).

各結晶化ガラス試料における結晶の析出状態は、走査型電子顕微鏡(日立ハイテクノロジーズ製 S−4300SE)を用いて観察した。結晶粒子とマトリクスガラスのコントラストを明瞭にするため、結晶化ガラス試料の破断面をフッ酸(2質量%−25℃)で4分間エッチングした。また、結晶相およびマトリクスガラスの組成(Liを除く)は、本走査型電子顕微鏡に付属のエネルギー分散型X線分析装置(堀場製作所製 EMAX Energy EX−250)を用いて分析した。析出結晶の平均粒子径は、無作為に選んだ観察領域の電子顕微鏡画像における結晶の粒子径を画像処理システム(三谷商事製 WinRoof Ver.5)を用いて計測し、その平均値を求めることにより決定した。体積結晶化度(vol%)は、その画像解析結果から求められた結晶相の面積割合を体積割合に換算することにより決定した。   The crystal precipitation state in each crystallized glass sample was observed using a scanning electron microscope (S-4300SE, manufactured by Hitachi High-Technologies Corporation). In order to clarify the contrast between the crystal particles and the matrix glass, the fracture surface of the crystallized glass sample was etched with hydrofluoric acid (2% by mass-25 ° C.) for 4 minutes. The composition of the crystal phase and matrix glass (excluding Li) was analyzed using an energy dispersive X-ray analyzer (EMAX Energy EX-250 manufactured by Horiba, Ltd.) attached to the scanning electron microscope. The average particle size of the precipitated crystals is determined by measuring the particle size of the crystals in an electron microscope image of a randomly selected observation region using an image processing system (WinRoof Ver. 5 manufactured by Mitani Corp.) and calculating the average value. Were determined. The volume crystallinity (vol%) was determined by converting the area ratio of the crystal phase obtained from the image analysis result into a volume ratio.

(c)マトリクスガラスと結晶の平均線熱膨張係数の差
下記の手順によって算出されるマトリクスガラスと結晶各々の平均線熱膨張係数から両者の差を算出した。
(C) Difference in average linear thermal expansion coefficient between matrix glass and crystal The difference between both was calculated from the average linear thermal expansion coefficient of each of the matrix glass and the crystal calculated by the following procedure.

(結晶相の平均線熱膨張係数)
まず、LiO−Al−SiO系結晶中のSiO量x(モル%)を以下の手順により決定した。β−石英固溶体およびβ−スポジュメン固溶体結晶中のSiO量と結晶格子における特定の面間隔との間には、比例関係が成立することが報告されている(日本化学会誌(1974年)、505−510頁、および、Japan Analyst Vol.22(1973年)、745−751頁)。これより、β−石英固溶体およびβ−スポジュメン固溶体結晶におけるSiO量x(モル%)は、それぞれ下記の式で表すことができる。
(Average linear thermal expansion coefficient of crystal phase)
First, the SiO 2 amount x (mol%) in the Li 2 O—Al 2 O 3 —SiO 2 based crystal was determined by the following procedure. It has been reported that a proportional relationship is established between the amount of SiO 2 in β-quartz solid solution and β-spodumene solid solution crystals and a specific interplanar spacing in the crystal lattice (The Chemical Society of Japan (1974), 505. -510, and Japan Analyst Vol. 22 (1973), pages 745-751). From this, the SiO 2 amount x (mol%) in the β-quartz solid solution and β-spodumene solid solution crystals can be expressed by the following formulas, respectively.

β−石英固溶体: x=(0.1004−d(406))/6.752E−5
β−スポジュメン固溶体:x=(0.1286−d(217))/1.009E−4
ここで、d(406)およびd(217)は、それぞれβ−石英固溶体(六方晶)およびβ−スポジュメン固溶体(正方晶)の結晶格子における(406)面および(217)面の面間隔(nm)を表す。
β-quartz solid solution: x = (0.1004-d (406)) / 6.752E-5
β-spodumene solid solution: x = (0.1286-d (217)) / 1.009E-4
Here, d (406) and d (217) are the interplanar spacing (nm) between the (406) plane and the (217) plane in the crystal lattice of β-quartz solid solution (hexagonal crystal) and β-spodumene solid solution (tetragonal crystal), respectively. ).

また、xは下記の関係式を用いることにより、結晶組成をLiO・Al・nSiOと表した場合のモル比nに換算することができる。 Further, x is by using the following relationship can be converted to crystal composition molar ratio n when expressed as Li 2 O · Al 2 O 3 · nSiO 2.

n=2x/(100−x)
X線回折法によって求めたLiO−Al−SiO系結晶の面間隔を用いて、上記の式から各結晶相におけるSiO量x(モル%)およびSiOのモル比nを決定した。
n = 2x / (100-x)
Using the interplanar spacing of the Li 2 O—Al 2 O 3 —SiO 2 -based crystal determined by the X-ray diffraction method, the molar ratio n of SiO 2 amount x (mol%) and SiO 2 in each crystal phase from the above formula. It was determined.

続いて、以下の手順によってLiO−Al−SiO系結晶の平均線熱膨張係数を決定した。LiO−Al−SiO系結晶の熱膨張係数は、結晶中のSiOのモル比nと相関関係があることが報告されている(Glastechn.Ber.40(1967年)、385頁、および、J.Amer.Ceram.Soc.51(1968年)、651頁)。これより、β−石英固溶体およびβ−スポジュメン固溶体結晶の平均線熱膨張係数とSiOのモル比nとの関係はそれぞれ下記の式で表される。 Subsequently, the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal was determined by the following procedure. It has been reported that the thermal expansion coefficient of Li 2 O—Al 2 O 3 —SiO 2 -based crystal is correlated with the molar ratio n of SiO 2 in the crystal (Glastechn. Ber. 40 (1967)). 385, and J. Amer. Ceram. Soc. 51 (1968), 651). Accordingly, the relationship between the average linear thermal expansion coefficient of the β-quartz solid solution and the β-spodumene solid solution crystal and the molar ratio n of SiO 2 is expressed by the following equations, respectively.

β−石英固溶体:
n<3の場合
(平均線熱膨張係数)=(84.131n−218.18)×10−7
3≦n≦10の場合
(平均線熱膨張係数)=−11.5×10−7
10<n<14の場合
(平均線熱膨張係数)=(40.115n−403.28)×10−7
β−スポジュメン固溶体:
4≦n≦7の場合
(平均線熱膨張係数)=(−0.0581n+1.3829n−12.284n+37.632)×10−7
前記X線回折法によって決定したLiO−Al−SiO系結晶におけるSiOのモル比nを用いて、上記の式から結晶相の平均線熱膨張係数を決定した。
β-quartz solid solution:
When n <3 (Average linear thermal expansion coefficient) = (84.131n-218.18) × 10 −7
In the case of 3 ≦ n ≦ 10 (Average linear thermal expansion coefficient) = − 11.5 × 10 −7
When 10 <n <14 (Average linear thermal expansion coefficient) = (40.115 n−403.28) × 10 −7
β-spodumene solid solution:
When 4 ≦ n ≦ 7 (Average linear thermal expansion coefficient) = (− 0.0581 n 3 +1.3829 n 2 −12.284n + 37.632) × 10 −7
The average linear thermal expansion coefficient of the crystal phase was determined from the above formula using the molar ratio n of SiO 2 in the Li 2 O—Al 2 O 3 —SiO 2 -based crystal determined by the X-ray diffraction method.

(マトリクスガラスの平均線熱膨張係数)
まず、マトリクスガラスの組成を決定するために、結晶化ガラスの体積結晶化度、および結晶相とマトリクスガラスの密度から質量結晶化度を算出した。ここで、結晶相の密度としては、粉末X線回折データファイル(ICDD)に報告されている類似のモル比nを有する結晶の密度を用いた。また、マトリクスガラスの密度としては、結晶化ガラスの前駆体である結晶性ガラスの密度を用いた。
(Average linear thermal expansion coefficient of matrix glass)
First, in order to determine the composition of the matrix glass, the mass crystallinity was calculated from the volume crystallinity of the crystallized glass and the density of the crystal phase and the matrix glass. Here, as the density of the crystal phase, the density of crystals having a similar molar ratio n reported in the powder X-ray diffraction data file (ICDD) was used. Further, as the density of the matrix glass, the density of the crystalline glass that is a precursor of the crystallized glass was used.

次いで、結晶性ガラスの各成分含有量(モル%)から結晶相の各成分含有量(モル%)を差し引くことによって、残存しているマトリクスガラスの各成分含有量(モル%)を決定した。ここで、エネルギー分散型X線分析の結果から、組成中のTiOとZrOは結晶相とマトリクスガラスに等モル量分配し、LiO、Al、SiO以外のその他の成分は全てマトリクスガラスに分配した。分配計算の際には、結晶相の質量%が前記の質量結晶化度と一致するようにLiOおよびAlの含有量を決定した。 Subsequently, each component content (mol%) of the remaining matrix glass was determined by subtracting each component content (mol%) of the crystal phase from each component content (mol%) of the crystalline glass. Here, from the results of energy dispersive X-ray analysis, TiO 2 and ZrO 2 in the composition are distributed in equimolar amounts to the crystal phase and the matrix glass, and other components other than Li 2 O, Al 2 O 3 , and SiO 2. Were all distributed in matrix glass. In the partition calculation, the contents of Li 2 O and Al 2 O 3 were determined so that the mass% of the crystal phase coincided with the mass crystallinity described above.

続いて、マトリクスガラスの平均線熱膨張係数を以下の手順により決定した。ガラスの線熱膨張係数と組成の間には加成則が成立することが知られており、各ガラス構成成分の加成因子も報告されている(GLASS SCIENCE AND TECHNOLOGY 9、Mathematical Approach to Glass、chapter 15−16)。   Subsequently, the average linear thermal expansion coefficient of the matrix glass was determined by the following procedure. It is known that an additivity rule is established between the linear thermal expansion coefficient and the composition of glass, and additivity factors of each glass component have also been reported (GLASS SCIENCE AND TECHNOLOGY 9, Mathematical Approach to Glass, chapter 15-16).

前記手順により決定したマトリクスガラスの組成を用いて、前記文献に記載の手順(AppenまたはGan Fu−Siの方法)に従い、マトリクスガラスの平均線熱膨張係数を決定した。なお、本手法で算出される結晶性ガラスの線熱膨張係数は、±1.5×10−7/K以内の精度で実測値と一致することを確認した。 Using the composition of the matrix glass determined by the above procedure, the average linear thermal expansion coefficient of the matrix glass was determined according to the procedure described in the literature (Appen or Gan Fu-Si method). It was confirmed that the linear thermal expansion coefficient of the crystalline glass calculated by this method coincided with the actual measurement value with an accuracy within ± 1.5 × 10 −7 / K.

以上の手順により求めた結晶相およびマトリクスガラスの平均線熱膨張係数から、両者の差を決定した。   The difference between the crystal phase and the average linear thermal expansion coefficient of the matrix glass determined by the above procedure was determined.

(d)結晶化ガラスの平均線熱膨張係数理論値
結晶化ガラスの平均線熱膨張係数理論値は、結晶およびマトリクスガラスの平均線熱膨張係数と体積結晶化度を用いて加成則に基づき下記の式により算出した。
(D) Theoretical value of average linear thermal expansion coefficient of crystallized glass The average value of linear thermal expansion coefficient of crystallized glass is based on the addition rule using the average linear thermal expansion coefficient and volume crystallinity of crystal and matrix glass. It was calculated by the following formula.

(平均線熱膨張係数理論値)=((体積結晶化度)×(結晶の平均線熱膨張係数)+(100−(体積結晶化度))×(マトリクスガラスの平均線熱膨張係数))/100
(比較例1)
表1に示す組成となるようにガラス原料を調合し、溶融炉にて1600℃で溶融後、厚さ4mmの板状に成形して板状ガラスを作製した。次いで、得られた板状ガラスを表1に示す焼成条件で結晶化した後、室温まで放冷して結晶化ガラス試料を得た。得られたガラス試料について、実施例1と同様に物性評価を行った。結果を表1に示す。
(Theoretical value of average linear thermal expansion coefficient) = ((Volume crystallinity) × (Average linear thermal expansion coefficient of crystal) + (100− (Volume crystallinity)) × (Average linear thermal expansion coefficient of matrix glass)) / 100
(Comparative Example 1)
A glass raw material was prepared so as to have the composition shown in Table 1, and after melting at 1600 ° C. in a melting furnace, it was formed into a plate shape having a thickness of 4 mm to produce a plate glass. Subsequently, after crystallizing the obtained plate glass on the baking conditions shown in Table 1, it stood to cool to room temperature and obtained the crystallized glass sample. About the obtained glass sample, the physical-property evaluation was performed similarly to Example 1. FIG. The results are shown in Table 1.

表1から明らかなように、実施例1〜3の結晶化ガラス試料は、主結晶としてβ−スポジュメン固溶体が50質量%析出していた。また、マトリクスガラスと結晶の30〜380℃における平均線熱膨張係数の差は、いずれの試料においても35×10−7/Kよりも大きいために、得られた結晶化ガラス試料は30×10−7/K以下の低い良好な線膨張係数を示した。これらの線熱膨張係数は、結晶およびマトリクスガラス各々の平均線熱膨張係数と体積分率を用いて加成的に算出される線熱膨張係数よりも低かった。屈伏温度は、いずれの試料においても900℃以下であり、加熱による曲げ加工が可能であった。 As apparent from Table 1, in the crystallized glass samples of Examples 1 to 3, β-spodumene solid solution was precipitated as 50% by mass as the main crystal. Moreover, since the difference of the average linear thermal expansion coefficient in 30-380 degreeC of matrix glass and a crystal | crystallization is larger than 35x10 < -7 > / K in any sample, the obtained crystallized glass sample is 30x10. A low coefficient of linear expansion of −7 / K or less was shown. These linear thermal expansion coefficients were lower than the linear thermal expansion coefficients calculated additively using the average linear thermal expansion coefficient and volume fraction of the crystal and matrix glass, respectively. The yield temperature was 900 ° C. or lower in any sample, and bending by heating was possible.

一方、比較例1の結晶化ガラス試料は、線熱膨張係数が−1.0×10−7/Kであることから熱的耐久性は良好であるものの、結晶化度が70質量%より大きいために屈伏温度が検出されず、加熱による曲げ加工は不可能であった。 On the other hand, the crystallized glass sample of Comparative Example 1 has a linear thermal expansion coefficient of −1.0 × 10 −7 / K, so that the thermal durability is good, but the crystallinity is greater than 70% by mass. Therefore, the yield temperature was not detected, and bending by heating was impossible.

本発明の結晶化ガラスは、調理器用トッププレート、特にガスコンロトッププレート、または厨房器具天板、テーブルトップ等の厨房設備装飾材や、暖房器具の構成部材その他の各種内外装材として用いられる結晶化ガラス物品として好適である。   The crystallized glass of the present invention is a crystallized glass used as a cooking appliance top plate, particularly a gas stove top plate, a kitchen appliance top plate, a table top or other kitchen equipment decoration material, a component of a heating appliance, or other various interior and exterior materials. It is suitable as a glass article.

Claims (6)

LiO−Al−SiO系結晶を20〜70質量%含有する結晶化ガラスであって、当該結晶化ガラスにおけるマトリクスガラスとLiO−Al−SiO系結晶の30〜380℃における平均線熱膨張係数の差が35×10−7/K以上であることを特徴とする結晶化ガラス。 A crystallized glass containing 20 to 70% by mass of Li 2 O—Al 2 O 3 —SiO 2 based crystal, wherein the matrix glass in the crystallized glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal A crystallized glass characterized in that a difference in average linear thermal expansion coefficient at 30 to 380 ° C. is 35 × 10 −7 / K or more. 30〜380℃における線熱膨張係数が30×10−7/K以下であることを特徴とする請求項1に記載の結晶化ガラス。 The crystallized glass according to claim 1, wherein the linear thermal expansion coefficient at 30 to 380 ° C. is 30 × 10 −7 / K or less. LiO−Al−SiO系結晶の平均粒径が1μm以上であることを特徴とする請求項1または2に記載の結晶化ガラス。 3. The crystallized glass according to claim 1, wherein the Li 2 O—Al 2 O 3 —SiO 2 based crystal has an average particle size of 1 μm or more. 屈伏温度が950℃以下であることを特徴とする請求項1〜3のいずれかに記載の結晶化ガラス。   The crystallized glass according to any one of claims 1 to 3, wherein a yield temperature is 950 ° C or lower. 質量%で、SiO 55〜72%、Al 14〜30%、LiO 1.5〜5%、KO 1〜10%、TiO 0〜5%、ZrO 0〜4%、TiO+ZrO 0〜7%、ZnO 0〜10%、MgO 0〜3%、CaO 0〜2.5%、BaO 0〜5%、B 0〜7%、NaO 0〜2%、P 0〜0.8%の組成を含有することを特徴とする請求項1〜4のいずれかに記載の結晶化ガラス。 By mass%, SiO 2 55~72%, Al 2 O 3 14~30%, Li 2 O 1.5~5%, K 2 O 1~10%, TiO 2 0~5%, ZrO 2 0~4 %, TiO 2 + ZrO 2 0-7%, ZnO 0-10%, MgO 0-3%, CaO 0-2.5%, BaO 0-5%, B 2 O 3 0-7%, Na 2 O 0 The crystallized glass according to claim 1, comprising a composition of ˜2% and P 2 O 5 0-0.8%. 調理器用トッププレート、厨房設備装飾材または暖房器具の構成部材に用いられることを特徴とする請求項1〜5のいずれかに記載の結晶化ガラス。   The crystallized glass according to any one of claims 1 to 5, wherein the crystallized glass is used as a constituent member of a cooking appliance top plate, a kitchen equipment decoration material or a heating appliance.
JP2009072895A 2008-06-11 2009-03-24 Crystallized glass Pending JP2010018512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072895A JP2010018512A (en) 2008-06-11 2009-03-24 Crystallized glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008152931 2008-06-11
JP2009072895A JP2010018512A (en) 2008-06-11 2009-03-24 Crystallized glass

Publications (1)

Publication Number Publication Date
JP2010018512A true JP2010018512A (en) 2010-01-28

Family

ID=41703787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072895A Pending JP2010018512A (en) 2008-06-11 2009-03-24 Crystallized glass

Country Status (1)

Country Link
JP (1) JP2010018512A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150008106A (en) * 2012-04-13 2015-01-21 코닝 인코포레이티드 WHITE, OPAQUE, β-SPODUMENE/RUTILE GLASS-CERAMICS ; ARTICLES COMPRISING THE SAME ; AND METHODS FOR MAKING THE SAME
WO2015068393A1 (en) * 2013-11-06 2015-05-14 パナソニックIpマネジメント株式会社 Heating cooker
JP2016147805A (en) * 2010-02-22 2016-08-18 ショット アクチエンゲゼルシャフトSchott AG Transparent las glass ceramic produced using alternative environmentally acceptable fining agent
WO2020196171A1 (en) * 2019-03-22 2020-10-01 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
WO2020203308A1 (en) * 2019-04-01 2020-10-08 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
WO2020217792A1 (en) * 2019-04-23 2020-10-29 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
CN116282932A (en) * 2023-02-23 2023-06-23 清远南玻节能新材料有限公司 Frosted glass ceramic and preparation method thereof
CN116332516A (en) * 2023-02-24 2023-06-27 清远南玻节能新材料有限公司 Frosted glass ceramic, preparation method thereof and glass product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323237A (en) * 1989-06-19 1991-01-31 Nippon Sheet Glass Co Ltd Heat resistance transparent crystallized glass
JPH10226532A (en) * 1995-12-28 1998-08-25 Yamamura Glass Co Ltd Glass composition for magnetic disk substrate and magnetic disk substrate
JP2001172048A (en) * 1998-10-23 2001-06-26 Ohara Inc Negative thermal expandable glass ceramic and method for producing the same
JP2006044997A (en) * 2004-08-05 2006-02-16 Nippon Electric Glass Co Ltd CRYSTALLIZED TRANSPARENT Li2O-Al2O3-SiO2 GLASS
JP2006124228A (en) * 2004-10-28 2006-05-18 Nippon Electric Glass Co Ltd Polycrystalline powder
JP2007223884A (en) * 2005-10-07 2007-09-06 Ohara Inc Inorganic composition
JP2008254984A (en) * 2007-04-06 2008-10-23 Ohara Inc Inorganic composition article
JP2009018986A (en) * 2007-06-12 2009-01-29 Nippon Electric Glass Co Ltd Crystallized glass article, and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323237A (en) * 1989-06-19 1991-01-31 Nippon Sheet Glass Co Ltd Heat resistance transparent crystallized glass
JPH10226532A (en) * 1995-12-28 1998-08-25 Yamamura Glass Co Ltd Glass composition for magnetic disk substrate and magnetic disk substrate
JP2001172048A (en) * 1998-10-23 2001-06-26 Ohara Inc Negative thermal expandable glass ceramic and method for producing the same
JP2006044997A (en) * 2004-08-05 2006-02-16 Nippon Electric Glass Co Ltd CRYSTALLIZED TRANSPARENT Li2O-Al2O3-SiO2 GLASS
JP2006124228A (en) * 2004-10-28 2006-05-18 Nippon Electric Glass Co Ltd Polycrystalline powder
JP2007223884A (en) * 2005-10-07 2007-09-06 Ohara Inc Inorganic composition
JP2008254984A (en) * 2007-04-06 2008-10-23 Ohara Inc Inorganic composition article
JP2009018986A (en) * 2007-06-12 2009-01-29 Nippon Electric Glass Co Ltd Crystallized glass article, and method of manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016147805A (en) * 2010-02-22 2016-08-18 ショット アクチエンゲゼルシャフトSchott AG Transparent las glass ceramic produced using alternative environmentally acceptable fining agent
JP2019108273A (en) * 2010-02-22 2019-07-04 ショット アクチエンゲゼルシャフトSchott AG Transparent las glass ceramic produced using alternative environmentally acceptable fining agent
JP2018150230A (en) * 2012-04-13 2018-09-27 コーニング インコーポレイテッド WHITE, OPAQUE, β-SPODUMENE/RUTILE GLASS-CERAMIC, ARTICLES COMPRISING THE SAME AND METHODS FOR MAKING THE SAME
KR102145477B1 (en) * 2012-04-13 2020-08-19 코닝 인코포레이티드 WHITE, OPAQUE, β-SPODUMENE/RUTILE GLASS-CERAMICS; ARTICLES COMPRISING THE SAME; AND METHODS FOR MAKING THE SAME
JP2015520097A (en) * 2012-04-13 2015-07-16 コーニング インコーポレイテッド White opaque β-spodumene / rutile glass-ceramic, articles containing the same, and methods for making the same
KR20150008106A (en) * 2012-04-13 2015-01-21 코닝 인코포레이티드 WHITE, OPAQUE, β-SPODUMENE/RUTILE GLASS-CERAMICS ; ARTICLES COMPRISING THE SAME ; AND METHODS FOR MAKING THE SAME
JPWO2015068393A1 (en) * 2013-11-06 2017-03-09 パナソニックIpマネジメント株式会社 Cooker
US9863643B2 (en) 2013-11-06 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Heating cooker
WO2015068393A1 (en) * 2013-11-06 2015-05-14 パナソニックIpマネジメント株式会社 Heating cooker
WO2020196171A1 (en) * 2019-03-22 2020-10-01 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
JP2020189782A (en) * 2019-03-22 2020-11-26 日本電気硝子株式会社 Li2O-Al2O3-SiO2 BASED CRYSTALLIZED GLASS
WO2020203308A1 (en) * 2019-04-01 2020-10-08 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
JP2020196664A (en) * 2019-04-01 2020-12-10 日本電気硝子株式会社 Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
WO2020217792A1 (en) * 2019-04-23 2020-10-29 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
CN116282932A (en) * 2023-02-23 2023-06-23 清远南玻节能新材料有限公司 Frosted glass ceramic and preparation method thereof
CN116332516A (en) * 2023-02-24 2023-06-27 清远南玻节能新材料有限公司 Frosted glass ceramic, preparation method thereof and glass product

Similar Documents

Publication Publication Date Title
JP5365975B2 (en) Crystallized glass article and method for producing the same
CN109803937B (en) Glass-ceramics
JP6553129B2 (en) Transparent thin lithium aluminum silicate glass ceramic and its use
JP2010018512A (en) Crystallized glass
JP7458388B2 (en) Transparent β-quartz glass ceramic with low lithium content
JP5889297B2 (en) Transparent or transparent colored lithium aluminum silicate glass-ceramic material having a suitable coefficient of thermal expansion and use thereof
KR20200016358A (en) Transparent β-quartz glass-ceramic with low lithium content
KR20200018578A (en) Β-quartz glass-ceramic with high zinc content
CN104936914B (en) β-ceramics quartz glass with controlled transmittance graph and high oxidation iron and oxidation Theil indices;Include the product of the glass ceramics, glass precursor
CN1325412C (en) Nano-multicrystal phase glass ceramics and its production method
CN108821595A (en) A kind of high rigidity zero thermal expansion transparent glass-ceramics and preparation method thereof
JP2005325018A (en) Translucent or opaque colored glass ceramic product used as cooking surface and its use
JP6847861B2 (en) LAS glass-ceramic with improved microstructure and thermal expansion, transparent, essentially colorless and tin-clarified
JPH01308845A (en) Li2o-al2o3-sio2-based transparent crystallized glass for combustion apparatus window
JP2010116315A (en) Crystallized glass
CN1315747C (en) Glass ceramic containing fluorine phosphorus lithium aluminium silican and its preparation method
JP2012201526A (en) Crystallized glass article and method for manufacturing the same
JP2013067525A (en) Crystallized glass article
WO2019016338A1 (en) Beta-spodumene glass-ceramics that are white, opalescent, or opaque, with low titanium content, and tin-fined
JPH09188538A (en) Crystallized glass of lithium oxide-aluminum oxide-silicon oxide
JP7420810B2 (en) Copper aluminoborosilicate glass and its use
JPH1025128A (en) Glass for substrate
JPH06329439A (en) Li2o-al2o3-sio2 crystallized glass
JP2018203571A (en) Glass
CN102838278A (en) Negative thermal expansion microcrystalline glass and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131209