JP2010017603A - Photocatalyst carrier and method of manufacturing the same - Google Patents

Photocatalyst carrier and method of manufacturing the same Download PDF

Info

Publication number
JP2010017603A
JP2010017603A JP2008177446A JP2008177446A JP2010017603A JP 2010017603 A JP2010017603 A JP 2010017603A JP 2008177446 A JP2008177446 A JP 2008177446A JP 2008177446 A JP2008177446 A JP 2008177446A JP 2010017603 A JP2010017603 A JP 2010017603A
Authority
JP
Japan
Prior art keywords
layer
tio
photocatalyst
solid solution
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008177446A
Other languages
Japanese (ja)
Other versions
JP4850876B2 (en
Inventor
Yasuhiro Akune
安博 阿久根
Takeya Furuta
健也 古田
Yoko Nakayama
陽子 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2008177446A priority Critical patent/JP4850876B2/en
Publication of JP2010017603A publication Critical patent/JP2010017603A/en
Application granted granted Critical
Publication of JP4850876B2 publication Critical patent/JP4850876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To upgrade an adhesive strength between a base and a TiO<SB>2</SB>photocatalyst layer to as high level as to make the adhesive strength sufficiently applicable to the use of a water cleaning filter exacting a high load resistance. <P>SOLUTION: Photocatalyst carriers E1, E2 and E3 each include a ceramic base A of Si material, an SiO<SB>2</SB>layer B i.e. an oxide film layer formed on the surface of the base A, a solid solution layer C i.e. an SiO<SB>2</SB>and TiO<SB>2</SB>diffusion layer formed on the surface of the SiO<SB>2</SB>layer B and a TiO<SB>2</SB>photocatalyst layer D formed on the surface of the solid solution material layer C. The method of manufacturing the photocatalyst carriers E1, E2 and E3 involves a primary pretreatment process to form the SiO<SB>2</SB>layer B by heating the base A to 1,000°C in the atmosphere, a secondary pretreatment process to form the solid solution layer C by applying a TiO<SB>2</SB>sol to the surface of the SiO<SB>2</SB>layer B and thermally treating the TiO<SB>2</SB>sol at 1,000°C in the atmosphere, and a catalyst carrying treatment process to form the TiO<SB>2</SB>photocatalyst layer D on the surface of the solid solution layer C by applying a TiO<SB>2</SB>slurry to the surface of the solid solution layer C and thermally treating the TiO<SB>2</SB>slurry at 600°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排ガス等の気体やメカニカルシール廃水等の液体を浄化処理するフィルタ等として使用される光触媒担持体であって、水処理非酸化物系セラミックス製の基体に酸化チタン(TiO)光触媒を担持させてなる光触媒担持体及びこれを製造する方法に関するものである。 The present invention relates to a photocatalyst carrier used as a filter or the like for purifying gas such as exhaust gas or liquid such as mechanical seal wastewater, and a titanium oxide (TiO 2 ) photocatalyst on a substrate made of water-treated non-oxide ceramics. And a method for producing the same.

TiO光触媒担持体としては、一般に、基体表面に有機系又は無機系の接着剤や界面活性剤を適宜にブレンドしたTiOゾルにディップコーティングした上、これに適宜の乾燥処理又は熱処理等を施すことにより、基体表面にTiO光触媒層を接着固定したものが周知である。 In general, the TiO 2 photocatalyst carrier is dip-coated with a TiO 2 sol in which an organic or inorganic adhesive or surfactant is appropriately blended on the surface of the substrate, and then subjected to appropriate drying or heat treatment. Thus, a substrate in which a TiO 2 photocatalyst layer is bonded and fixed to the substrate surface is well known.

しかし、このような一般的なTiO光触媒担持体は、基体とTiO光触媒層との接着強度が十分でなく、耐久性に問題があった。特に、水流との接触による負荷が大きい水浄化処理用フィルタとして使用する場合には、TiO光触媒層が剥がれ易く、長期に亘って良好な光触媒機能を発揮,維持することができない。すなわち、光触媒層が剥がれることにより光触媒機能が短期間のうちに低下,喪失する虞れがあった。なお、ディップコーティング材であるTiOゾルには、上記した如く、TiOゾルの安定性を高めるための界面活性剤や基体への接着性を高めるための接着剤が含まれているため、これらの界面活性剤や接着剤がTiO光触媒層の表面に滲出して、TiO光触媒層による光触媒機能(浄化機能)を低下させる虞れもある。 However, such a general TiO 2 photocatalyst carrier has a problem in durability because the adhesive strength between the substrate and the TiO 2 photocatalyst layer is not sufficient. In particular, when used as a water purification treatment filter having a large load due to contact with a water stream, the TiO 2 photocatalyst layer is easily peeled off, and a good photocatalytic function cannot be exhibited and maintained over a long period of time. That is, when the photocatalyst layer is peeled off, the photocatalytic function may be reduced or lost in a short period of time. Note that, as described above, the TiO 2 sol that is a dip coating material contains a surfactant for enhancing the stability of the TiO 2 sol and an adhesive for enhancing the adhesion to the substrate. There is a possibility that the surfactant or adhesive of the TiO 2 is oozed out on the surface of the TiO 2 photocatalyst layer and the photocatalytic function (purification function) by the TiO 2 photocatalyst layer is lowered.

そこで、従来からも、TiO光触媒層の接着強度を向上させるべく、種々の提案がなされている。例えば、SiC基体の表面をSiO/Alの複合酸化物であるムライトとなし、その表面上にTiO光触媒層を一般的な方法で形成してAl/TiOの界面とすることによって、TiO光触媒層の接着強度を高めるようにすること(例えば、特許文献1を参照)、又は基体をアモルファル過酸化チタンゾルであるペルオキソチタン酸水溶液にアナターゼ型TiO粒子を分散させたコーティング液にディッピングし、これを乾燥,焼成することによって、基体との濡れ性改善とTiO粒子間のバインダー的役割によりTiO光触媒層の密着性向上を図るようにすること(例えば、特許文献2を参照)が提案されている。 Therefore, various proposals have been made so far in order to improve the adhesive strength of the TiO 2 photocatalyst layer. For example, the surface of the SiC substrate is made of mullite which is a composite oxide of SiO 2 / Al 2 O 3 , and a TiO 2 photocatalyst layer is formed on the surface by a general method to obtain an interface of Al 2 O 3 / TiO 2 . By increasing the adhesion strength of the TiO 2 photocatalyst layer (see, for example, Patent Document 1), or dispersing the anatase-type TiO 2 particles in a peroxotitanate aqueous solution that is an amorphal titanium peroxide sol. The coating solution is dipped, dried and fired to improve the wettability with the substrate and to improve the adhesion of the TiO 2 photocatalyst layer by the binder role between the TiO 2 particles (for example, patents) Reference 2) has been proposed.

特開2003−053194号公報JP 2003-053194 A 特開2004−351381号公報JP 2004-351181 A

しかし、前者においては、数十nm程度と思われるSiCの自然酸化膜であるSiOとAl膜とで基体界面が構成され、その上面に50〜150μmのAl膜があり、更にその上面に酸化物とはいえ異物質であるTiO膜があるため、水浄化処理用フィルタのように負荷の大きな用途においてはTiO光触媒層の接着強度が十分であるとはいい難い。また、後者の場合には、TiO膜のクラック対策としては有効であると思われるが、SiCのような非酸化系セラミックスの基体に対してはTiO光触媒層の接着強度が十分ではない。このように、何れの場合にも、SiC等の非酸化系セラミックスからなる基体とTiO光触媒層との接着強度を、水浄化処理用フィルタのような負荷抵抗の大きな用途においては十分に確保することができない。 However, in the former, substrate interface between the SiO 2 and Al 2 O 3 film is a natural oxide film of SiC appears to several tens of nm is formed, there is an Al 2 O 3 film of 50~150μm on its upper surface In addition, since there is a TiO 2 film which is a different substance although it is an oxide on its upper surface, it is difficult to say that the adhesive strength of the TiO 2 photocatalyst layer is sufficient in applications with a heavy load such as a filter for water purification treatment. . In the latter case, it is considered effective as a countermeasure against cracks in the TiO 2 film, but the adhesion strength of the TiO 2 photocatalyst layer is not sufficient for a non-oxidized ceramic substrate such as SiC. As described above, in any case, the adhesive strength between the base made of non-oxidized ceramics such as SiC and the TiO 2 photocatalyst layer is sufficiently ensured in applications with a large load resistance such as a filter for water purification treatment. I can't.

本発明は、非酸化系セラミックスからなる基体とTiO光触媒層との接着強度を、水浄化処理用フィルタのような負荷抵抗の大きな用途にも十分適用できる程度にまで向上させることができる光触媒担持体を提供すると共に、これを容易に製造することができる方法を提供することを目的とするものである。 INDUSTRIAL APPLICABILITY The present invention provides a photocatalyst-supporting material capable of improving the adhesive strength between a non-oxidizing ceramic substrate and a TiO 2 photocatalyst layer to such an extent that it can be sufficiently applied to a use with a large load resistance such as a filter for water purification treatment. An object of the present invention is to provide a body and a method capable of easily manufacturing the body.

本発明は、上記の目的を達成すべく、非酸化物系セラミックスからなる基体と、これを大気中で加熱して酸化処理することによって基体表面に形成された酸化膜層と、この酸化膜層上に形成された当該酸化膜成分及びTiOからなる固溶体層と、この固溶体層上に形成されたTiO光触媒層とからなることを特徴とする光触媒担持体を提案する。好ましい実施の形態にあって、かかる光触媒担持体は、SiC等のSi質のセラミック基体と、基体表面に形成された酸化膜層たるSiO層と、SiO層上に形成されたSiO及びTiOの拡散層である固溶体層と、固溶体層上に形成されたTiO光触媒層とからなる。基体の形態は、当該光触媒担持体の用途に応じて適宜であり、水浄化処理用フィルタ等として使用する場合においては一般に多孔質体が好適する。酸化膜層の厚みは1〜10μmであることが好ましく、固溶体層の厚みは1〜10μmであることが好ましい。また、TiO光触媒層の厚みは1〜10μmであることが好ましい。かかる光触媒担持体は、負荷の大きな水浄化処理用フィルタ(例えば、メカニカルシールからの廃水(フラッシング水,クエンチング水等)の浄化処理装置用フィルタ)として、特に好適に使用することができる。 In order to achieve the above object, the present invention provides a substrate made of non-oxide ceramics, an oxide film layer formed on the surface of the substrate by heating the substrate in the atmosphere, and the oxide film layer. A photocatalyst carrier comprising a solid solution layer made of the oxide film component and TiO 2 formed thereon and a TiO 2 photocatalyst layer formed on the solid solution layer is proposed. In the preferred embodiment, such photocatalyst carrier includes a ceramic substrate Si quality such as SiC, and the SiO 2 layer serving as oxide film layer formed on the substrate surface, SiO 2 and formed on the SiO 2 layer a solid solution layer is a diffusion layer of TiO 2, consisting of a TiO 2 photocatalyst layer formed on the solid solution layer. The form of the substrate is appropriate depending on the use of the photocatalyst carrier, and a porous body is generally preferred when used as a water purification treatment filter or the like. The thickness of the oxide film layer is preferably 1 to 10 μm, and the thickness of the solid solution layer is preferably 1 to 10 μm. Further, it is preferable that the thickness of the TiO 2 photocatalyst layer is 1 to 10 [mu] m. Such a photocatalyst carrier can be particularly suitably used as a water purification treatment filter with a large load (for example, a purification treatment device filter for waste water (flushing water, quenching water, etc.) from a mechanical seal).

また、本発明は、このような光触媒担持体を好適に製造する方法を提案する。すなわち、本発明は、非酸化物系セラミックスからなる基体を大気中で加熱して酸化処理することによって基体表面に酸化膜層を形成する一次前処理工程と、酸化膜層が形成された基体を、酸化膜層上にTiOスラリをコーティングした上で、大気中で熱処理することにより、酸化膜層上に当該酸化膜成分及びTiOの固溶体層を形成する二次前処理工程と、固溶体層が形成された基体を、固溶体層上にTiO粉末の水スラリ(光触媒活性を低下させる虞れのある接着剤,分散剤等の添加剤を一切含まないもの)をコーティングした上で、熱処理することにより、固溶体層上にTiO光触媒層を形成する触媒担持処理工程とからなることを特徴とする光触媒担持体の製造方法を提案する。好ましい実施の形態にあって、かかる製造方法は、SiC等のSi質のセラミック基体(好ましくは多孔質体)を大気中において800〜1200℃(最適には1000℃)で加熱して酸化することによって、基体表面に酸化膜層であるSiO層を形成する一次前処理工程と、SiO層が形成された基体を、SiO層上にTiO濃度を0.5〜5%とするTiOゾル(接着剤,分散剤等の添加剤を含む市販のTiOゾルを希釈したものが使用できる)をコーティングした上で大気中において800〜1200℃(最適には1000℃)で熱処理することにより、SiO層上にSiO及びTiOの拡散層である固溶体層を形成する二次前処理工程と、固溶体層が形成された基体を、固溶体層上にTiO粉末を純水に分散させてなるTiOスラリをコーティングした上で、TiOの結晶形態がルチル型に転移しない条件(より好ましくは、TiOの結晶形態がルチル型に転移せず且つTiO結晶粒が肥大化することなく光触媒活性を最大限発揮されうる条件)で熱処理することにより、固溶体層上にTiO光触媒層を形成する触媒担持処理工程とからなる。触媒担持処理工程において使用するTiOスラリとしては、純水100部にTiO粉末5〜15部を分散させたものを使用することが好ましい。TiO粉末としては、例えば、一次粒子径21nm,比表面積50m/gのアナターゼ型を主成分とするものを使用することが好ましい。触媒担持処理工程における熱処理温度は、TiOの結晶形態がルチル型に転移する直前の温度(一般に、400〜700℃)に設定することが好ましく、最適には、TiOの結晶形態がルチル型に転移せず且つTiO結晶粒が肥大化することなく光触媒活性を最大限発揮されうる温度条件である600℃に設定しておくことが好ましい。 The present invention also proposes a method for suitably producing such a photocatalyst carrier. That is, the present invention provides a primary pretreatment step of forming an oxide film layer on the surface of the substrate by heating and oxidizing the substrate made of non-oxide ceramics in the atmosphere, and a substrate on which the oxide film layer is formed. A secondary pretreatment step of forming a solid solution layer of the oxide film component and TiO 2 on the oxide film layer by coating a TiO 2 slurry on the oxide film layer and then heat-treating in the air; and a solid solution layer The substrate on which is formed is coated on a solid solution layer with a water slurry of TiO 2 powder (which does not contain any additives such as adhesives and dispersants that may reduce the photocatalytic activity) and then heat-treated. Thus, a method for producing a photocatalyst carrier comprising a catalyst carrying treatment step of forming a TiO 2 photocatalyst layer on a solid solution layer is proposed. In a preferred embodiment, such a production method includes oxidizing a Si ceramic substrate (preferably a porous body) such as SiC at 800 to 1200 ° C. (optimally 1000 ° C.) in the atmosphere. TiO 2 having a TiO 2 concentration of 0.5 to 5% on the SiO 2 layer by a primary pretreatment step of forming an SiO 2 layer as an oxide film layer on the surface of the substrate and a substrate on which the SiO 2 layer is formed 2 sol 800 to 1200 ° C. to a heat treatment at (1000 ° C. optimally) in the atmosphere on the (adhesive, obtained by diluting the commercially available TiO 2 sol containing additives such as dispersants can be used) was coated Accordingly, a secondary pre-treatment step of forming a solid solution layer is a diffusion layer of SiO 2 and TiO 2 on the SiO 2 layer, a substrate solid solution layer is formed, pure water of TiO 2 powder on the solid solution layer On coated with TiO 2 slurry is dispersed, the crystalline form of TiO 2 is condition (more preferably not transferred to rutile, and TiO 2 crystal grains crystalline forms of TiO 2 is not transferred to the rutile bloated And a catalyst supporting treatment step of forming a TiO 2 photocatalyst layer on the solid solution layer by performing a heat treatment under conditions that allow the photocatalytic activity to be maximized without being performed. As the TiO 2 slurry used in the catalyst supporting treatment step, it is preferable to use a slurry obtained by dispersing 5 to 15 parts of TiO 2 powder in 100 parts of pure water. As the TiO 2 powder, for example, a powder mainly composed of an anatase type having a primary particle diameter of 21 nm and a specific surface area of 50 m 2 / g is preferably used. The heat treatment temperature in the catalyst supporting treatment step is preferably set to a temperature (generally 400 to 700 ° C.) immediately before the crystal form of TiO 2 changes to the rutile type, and optimally, the crystal form of TiO 2 is the rutile type. It is preferable that the temperature is set to 600 ° C., which is a temperature condition at which the photocatalytic activity can be exerted to the maximum without transitioning to TiO 2 and without enlarging the TiO 2 crystal grains.

本発明の光触媒担持体によれば、基体とTiO光触媒層とを酸化膜層及び固溶体層を介して接着させており、これらの層相互の界面が一種の傾斜材組成となっているため、TiO光触媒層の接着強度を大幅に向上させ得て、大きな負荷がかかる水浄化処理用フィルタ等の用途においても、長期に亘ってTiO光触媒層の剥離を防止しつつ良好な光触媒機能を発揮させることができる。しかも、TiO光触媒層が接着剤,分散剤の添加剤を含有しないことから、TiO光触媒層形成時の熱処理温度を適正に設定することにより、優れた光触媒活性を発揮することができる。また、本発明の方法によれば、このような光触媒担持体を容易且つ良好に製造することができる。 According to the photocatalyst carrier of the present invention, the substrate and the TiO 2 photocatalyst layer are bonded via the oxide film layer and the solid solution layer, and the interface between these layers is a kind of gradient material composition. The adhesive strength of the TiO 2 photocatalyst layer can be greatly improved, and even in applications such as filters for water purification treatment that require a large load, the TiO 2 photocatalyst layer exhibits a good photocatalytic function over a long period of time while preventing the TiO 2 photocatalyst layer from peeling off. Can be made. Moreover, TiO 2 photocatalyst layer is adhesive, since it does not contain additives dispersing agents, by setting the heat treatment temperature for TiO 2 photocatalyst layer formed properly, it is possible to exhibit excellent photocatalytic activity. Moreover, according to the method of the present invention, such a photocatalyst carrier can be manufactured easily and satisfactorily.

実施例として、図1に示す如く、SiC多孔質材からなる基体Aと、その表面に形成された酸化膜層であるSiO層Bと、SiO層B上に形成されたSiO及びTiOの拡散層である固溶体層Cと、固溶体層C上に形成されたTiO光触媒層Dとからなる光触媒担持体E1〜E3を製作した。 As an example, as shown in FIG. 1, a substrate A made of a SiC porous material, an SiO 2 layer B which is an oxide film layer formed on the surface thereof, and SiO 2 and TiO formed on the SiO 2 layer B Photocatalyst carriers E1 to E3 comprising a solid solution layer C as a diffusion layer 2 and a TiO 2 photocatalyst layer D formed on the solid solution layer C were produced.

すなわち、実施例1として、次のような前処理工程及び光触媒担持工程により光触媒担持体E1を製作した。   That is, as Example 1, the photocatalyst carrier E1 was manufactured by the following pretreatment process and photocatalyst support process.

(一次前処理工程)
基体Aを大気中で1000℃,1時間の条件で加熱して酸化することにより、基体Aの表面にSiO層を形成した。基体AとSiO層Bとの境界にはSiC酸化拡散層aが形成されており、SiO層Bは自然酸化膜に比して強固なものとなっている。
(Primary pretreatment process)
The substrate A was heated and oxidized in the atmosphere at 1000 ° C. for 1 hour to form a SiO 2 layer on the surface of the substrate A. A SiC oxide diffusion layer a is formed at the boundary between the substrate A and the SiO 2 layer B, and the SiO 2 layer B is stronger than the natural oxide film.

(二次前処理工程)
上記のように酸化処理された基体Aを、SiO層B上にTiOスラリをディップコーティング,乾燥した上で、大気中で1000℃,1時間の条件で熱処理して、SiO層B上にSiO及びTiOが拡散する固溶体層Cを形成した。TiOスラリとしては、TiO濃度10%の市販TiOゾル(テイカ株式会社製「TKC−303」)をTiO濃度が2%となるように希釈したものを使用した。
(Secondary pretreatment process)
The substrate A oxidized as described above is dip-coated with TiO 2 slurry on the SiO 2 layer B, dried, and then heat-treated in the atmosphere at 1000 ° C. for 1 hour to form the SiO 2 layer B on the SiO 2 layer B. A solid solution layer C in which SiO 2 and TiO 2 diffuse was formed. As the TiO 2 slurry, a commercially available TiO 2 sol having a TiO 2 concentration of 10% (“TKC-303” manufactured by Teika Co., Ltd.) diluted to a TiO 2 concentration of 2% was used.

(光触媒担持工程)
固溶体層Cが形成された基体Aを、固溶体層C上にTiOスラリをディップコーティング,乾燥した上で、600℃,1時間の条件で熱処理して、固溶体層C上にTiO光触媒層Dが形成された光触媒担持体E1を得た。TiOスラリは、一次粒子径21nm,比表面積50m/gのルチル型を含みアナターゼ型を主成分とするTiO粉末を純水に分散させた水スラリであり、TiO粉末30gを純水270gに添加してボールミル(又はビーズミル)により16時間攪拌することによって得られたものである。なお、TiO粉末についてX線回折パターン(X線:Cu/30kV/30mA,ゴニオメータ:RINT2000広角ゴニオメータ,アタッチメント:標準試料ボルダー,フィルタ:不使用,インシデントノモクロ:不使用,カウンタモノクロメータ:固定モノクロメータ,発散スリット:1°,発散縦制限スリット:10.00mm,散乱スリット:1°,受光スリット:0.15mm,モノクロ受光スリット:なし,カウンタ:シンチレーションカウンタ,走査モード:連続,スキャンスピード:2.000°/min,サンプリング幅:0.020°,走査軸:2θ/θ,走査範囲:10.000〜90.000°,θオフセット:0.000°)を測定したところ、図2に示す如く、熱処理後のX線回折パターン(同図(A))と熱処理前のX線回折パターン(同図(B))とは殆ど変化がなく、上記温度(600℃)の熱処理によってはTiO結晶子が増大しないことが確認されている。
(Photocatalyst loading process)
The substrate A on which the solid solution layer C is formed is dip-coated with TiO 2 slurry on the solid solution layer C, dried, and then heat-treated at 600 ° C. for 1 hour, so that the TiO 2 photocatalyst layer D is formed on the solid solution layer C. A photocatalyst carrier E1 was obtained. TiO 2 slurry, the primary particle diameter of 21 nm, a water slurry of TiO 2 powder was dispersed in pure water as a main component an anatase type include rutile specific surface area 50 m 2 / g, pure water of TiO 2 powder 30g It was obtained by adding to 270 g and stirring for 16 hours with a ball mill (or bead mill). TiO 2 powder X-ray diffraction pattern (X-ray: Cu / 30 kV / 30 mA, goniometer: RINT2000 wide-angle goniometer, attachment: standard sample boulder, filter: not used, incident nomograph: not used, counter monochromator: fixed monochrome Meter, divergence slit: 1 °, divergence length limiting slit: 10.00 mm, scattering slit: 1 °, light receiving slit: 0.15 mm, monochrome light receiving slit: none, counter: scintillation counter, scanning mode: continuous, scan speed: 2 .000 ° / min, sampling width: 0.020 °, scanning axis: 2θ / θ, scanning range: 10.000 to 90.000 °, θ offset: 0.000 °) are measured and shown in FIG. As shown above, the X-ray diffraction pattern after heat treatment ((A) in the figure) and before heat treatment X-ray diffraction pattern (FIG. (B)) hardly changes and, in the heat treatment of the above temperature (600 ° C.) has been confirmed that the TiO 2 crystallites does not increase.

実施例2として、光触媒担持工程における熱処理条件を400℃,1時間とした点を除いて実施例1と同一の工程により、光触媒担持体E2を得た。   As Example 2, a photocatalyst carrier E2 was obtained by the same process as Example 1 except that the heat treatment conditions in the photocatalyst carrying process were 400 ° C. and 1 hour.

実施例3として、光触媒担持工程における熱処理条件を700℃,1時間とした点を除いて実施例1と同一の工程により、光触媒担持体E3を得た。   As Example 3, a photocatalyst carrier E3 was obtained by the same process as Example 1 except that the heat treatment condition in the photocatalyst carrying process was 700 ° C. and 1 hour.

また、比較例として、次のような光触媒担持体E4〜E9を製作した。なお、各光触媒担持体E4〜E9における基体は実施例1〜3と同一のものが使用されている。   Moreover, the following photocatalyst carriers E4 to E9 were manufactured as comparative examples. In addition, the same thing as Examples 1-3 is used for the base | substrate in each photocatalyst carrier E4-E9.

すなわち、比較例1として、基体をTiOゾルにディッピング,乾燥した上、400℃,1時間の条件で熱処理することによって、基体表面にTiO光触媒層が形成された光触媒担持体E4を得た。TiOゾルとしては、TiO濃度10%の市販TiOゾル(テイカ株式会社製「TKC−303」)を使用した。 That is, as Comparative Example 1, the substrate was dipped in TiO 2 sol, dried, and then heat-treated at 400 ° C. for 1 hour to obtain a photocatalyst carrier E4 having a TiO 2 photocatalyst layer formed on the surface of the substrate. . As the TiO 2 sol, a commercially available TiO 2 sol having a TiO 2 concentration of 10% (“TKC-303” manufactured by Teika Co., Ltd.) was used.

比較例2として、基体表面にTiOゾルをディップコーティングする前に基体を大気中400℃で酸化処理した点を除いて、比較例1と同一工程により光触媒担持体E5を得た。 As Comparative Example 2, a photocatalyst carrier E5 was obtained by the same process as Comparative Example 1, except that the substrate was oxidized at 400 ° C. in the atmosphere before dip coating of the TiO 2 sol on the substrate surface.

比較例3として、一次前処理及び二次前処理を行わない点を除いて実施例1と同一の工程(光触媒担持工程)により光触媒担持体E6を得た。   As Comparative Example 3, a photocatalyst carrier E6 was obtained by the same process (photocatalyst carrying process) as Example 1 except that the primary pretreatment and the secondary pretreatment were not performed.

比較例4として、二次前処理を行わない点を除いて実施例2と同一の工程(二次前処理工程及び光触媒担持工程)により光触媒担持体E7を得た。   As Comparative Example 4, a photocatalyst carrier E7 was obtained by the same steps (secondary pretreatment step and photocatalyst carrying step) as Example 2 except that the secondary pretreatment was not performed.

比較例5として、二次前処理を行わない点を除いて実施例1と同一の工程(二次前処理工程及び光触媒担持工程)により光触媒担持体E8を得た。   As Comparative Example 5, a photocatalyst carrier E8 was obtained by the same steps (secondary pretreatment step and photocatalyst carrying step) as Example 1 except that the secondary pretreatment was not performed.

比較例6として、二次前処理を行わない点を除いて実施例3と同一の工程(二次前処理工程及び光触媒担持工程)により光触媒担持体E9を得た。   As Comparative Example 6, a photocatalyst carrier E9 was obtained by the same steps (secondary pretreatment step and photocatalyst carrying step) as Example 3 except that the secondary pretreatment was not performed.

上記のようにして得られた各光触媒担持体E1〜E9について、TiO光触媒層の接着強度ないし光触媒性能を比較,確認すべく、次のような超音波試験及び脱色試験を行った。 For each of the photocatalyst carriers E1 to E9 obtained as described above, the following ultrasonic test and decoloration test were performed in order to compare and confirm the adhesive strength or photocatalytic performance of the TiO 2 photocatalyst layer.

すなわち、超音波試験においては、各光触媒担持体E1〜E9から縦横60mm,厚み30mの正方形試験片を採取して、これをビーカ(容量500mL)内の水(400mL)にいれ、このビーカに超音波洗浄機を使用して30分間超音波(周波数28kHz)を印加し、各試験片におけるTiO光触媒層の剥離量を測定した。剥離量は、超音波試験前後の試験片重量差から剥離重量(=試験前の試験片重量−試験後の試験片重量)を求めて、試験前の試験片重量に対する比率(=(剥離重量/試験前の試験片重量)×100%)で示したものである。その結果は、表1に示す通りであった。 That is, in the ultrasonic test, a square test piece having a length and width of 60 mm and a thickness of 30 m is collected from each of the photocatalyst carriers E1 to E9 and placed in water (400 mL) in a beaker (capacity 500 mL). An ultrasonic wave (frequency 28 kHz) was applied for 30 minutes using a sonic cleaner, and the amount of TiO 2 photocatalyst layer peeled from each test piece was measured. The peel amount is obtained by calculating the peel weight (= test piece weight before test−test piece weight after test) from the difference in test piece weight before and after the ultrasonic test, and the ratio to the test piece weight before the test (= (peel weight / Test piece weight before test) × 100%). The results were as shown in Table 1.

表1に示す超音波試験結果から理解されるように、実施例の光触媒担持体E1〜E3は、比較例の光触媒担持体E4〜E9の何れに比しても、剥離量が極めて少なく、特に光触媒担持工程における熱処理温度を600℃とした実施例1の光触媒担持体E1においては光触媒層Dの剥離は認められなかった。また、比較例1〜3の光触媒担持体E4〜E6と比較例4〜6の光触媒担持体E7〜E9との比較及び比較例4〜6の光触媒担持体E7〜E9と実施例1〜3の光触媒担持体E1〜E3との比較から、前処理工程が光触媒層の接着強度向上に極めて有効であることが理解される。   As can be understood from the ultrasonic test results shown in Table 1, the photocatalyst carrier E1 to E3 of the example has an extremely small amount of peeling compared to any of the photocatalyst carrier E4 to E9 of the comparative example. In the photocatalyst carrier E1 of Example 1 in which the heat treatment temperature in the photocatalyst carrying step was 600 ° C., no peeling of the photocatalyst layer D was observed. Further, the comparison between the photocatalyst carriers E4 to E6 of Comparative Examples 1 to 3 and the photocatalyst carriers E7 to E9 of Comparative Examples 4 to 6 and the photocatalyst carriers E7 to E9 of Comparative Examples 4 to 6 and Examples 1 to 3 From comparison with the photocatalyst carriers E1 to E3, it is understood that the pretreatment process is extremely effective for improving the adhesive strength of the photocatalyst layer.

また、走査型電子顕微鏡(SEM)により超音波試験後の各試験片について観察したところ、比較例の光触媒担持体E4〜E9では、程度の差はあるものの、何れもTiO光触媒層表面にクラックが生じており、TiO光触媒層が剥離して基体骨格が露出している部分が認められたが、実施例1〜3の光触媒担持体E1〜E3では、このようなクラックや基体骨格の露出は認められなかった。 In addition, when the specimens after the ultrasonic test were observed with a scanning electron microscope (SEM), the photocatalyst carriers E4 to E9 of the comparative examples had cracks on the surface of the TiO 2 photocatalyst layer, although there were some differences. has occurred, but the portion is TiO 2 photocatalyst layer has to the base skeleton is exposed peeling was observed, the photocatalyst carrier E1~E3 of examples 1 to 3, exposure of such cracks and the substrate skeleton Was not recognized.

脱色試験では、濃度7.5ppmのメチレンブルー水溶液100Lを収容する原水タンクと水浄化装置とを連結する循環水路において、マクネットポンプによりメチレンブルー水溶液を循環させ、水浄化装置から原水タンクへの返戻水の透過率(メチレンブルー吸収波長665nmでの透過率)が90%となる(メチレンブルー水溶液が目視でほぼ透明となる)までの時間(脱色時間)を測定した。水浄化装置は、水浄化処理用フィルタである光触媒担持体を充填した9本の水路管(呼び径1インチ,長さ714mmのPFAチューブであって、UV照度計測定で波長254nmのUV光を約70%透過するUV光高透過性チューブ)を16本のUVランプ(20W)により照射するようにしたものであり、メチレンブルー水溶液が水路管内の光触媒担持体を通過する間において浄化処理(脱色処理)されるように構成されている。透過率測定器としては、セントラル化学(株)製の可視・紫外分光光度計「DR/4000U」を使用した。   In the decolorization test, a methylene blue aqueous solution is circulated by a Macnet pump in a circulation channel connecting a raw water tank containing 100 L of a methylene blue aqueous solution having a concentration of 7.5 ppm and a water purification device, and water returned to the raw water tank from the water purification device is circulated. The time until the transmittance (transmittance at a methylene blue absorption wavelength of 665 nm) reached 90% (the methylene blue aqueous solution became almost transparent visually) (decolorization time) was measured. The water purification device is composed of nine water pipes (nominal diameter 1 inch, length 714 mm PFA tubes filled with a photocatalyst carrier which is a filter for water purification treatment, and UV light having a wavelength of 254 nm is measured by a UV illuminance meter. It is designed to irradiate 16% UV lamp (20W) with about 70% transparent UV light transmission tube), and purify treatment (decolorization treatment) while the methylene blue aqueous solution passes through the photocatalyst support in the water pipe. ). As a transmittance measuring instrument, a visible / ultraviolet spectrophotometer “DR / 4000U” manufactured by Central Chemical Co., Ltd. was used.

而して、脱色試験は、各光触媒担持体E1〜E9を上記各水路管内に充填した上、メチレンブルー水溶液の循環流量を異にして3回に分けて行い、第1回目の脱色試験ではメチレンブルー水溶液の循環流量を5L/minとして、第2回目の脱色試験では当該循環流量を第1回目の2倍(10L/min)として、更に第3回目の脱色試験では当該循環流量を第1回目と同一(5L/min)として、夫々脱色時間を測定した。また、各脱色試験後において、水路管から光触媒担持体を取り出して重量を測定することによって、TiO光触媒層の累積剥離量を求めた。すなわち、累積剥離量は、第1回目の脱色試験については((第1回目の脱色試験前の光触媒担持体重量−第1回目の脱色試験後の光触媒担持体重量)/第1回目の脱色試験前の光触媒担持体重量)×100%)であり、第2回目の脱色試験については((第1回目の脱色試験前の光触媒担持体重量−第2回目の脱色試験後の光触媒担持体重量)/第1回目の脱色試験前の光触媒担持体重量)×100%)であり、第3回目の脱色試験については((第1回目の脱色試験前の光触媒担持体重量−第3回目の脱色試験後の光触媒担持体重量)/第1回目の脱色試験前の光触媒担持体重量)×100%)である。 Thus, the decolorization test was carried out in three times with the photocatalyst carriers E1 to E9 being filled in the above-mentioned water channel pipes, and the circulation flow rate of the methylene blue aqueous solution was different. In the first decolorization test, the methylene blue aqueous solution The circulation flow rate is 5 L / min, the circulation flow rate is doubled (10 L / min) in the second decolorization test, and the circulation flow rate is the same as in the first decoloration test. The decolorization time was measured as (5 L / min). Further, after each decolorization test, the photocatalyst carrier was taken out from the water pipe and the weight was measured, thereby obtaining the cumulative amount of TiO 2 photocatalyst layer. That is, the cumulative peeling amount is ((the weight of the photocatalyst carrier before the first decoloring test−the weight of the photocatalyst carrier after the first decoloring test)) / the first decoloring test. The weight of the previous photocatalyst carrier) × 100%), and for the second decoloration test ((photocatalyst carrier weight before the first decoloration test−photocatalyst carrier weight after the second decoloration test)) / Photocatalyst carrier weight before first decoloring test) × 100%), and for the third decoloring test ((photocatalyst carrier weight before first decoloring test−third decoloring test) The weight of the subsequent photocatalyst carrier) / the weight of the photocatalyst carrier before the first decolorization test) × 100%).

脱色試験の結果は表1に示す通りであり、実施例の光触媒担持体E1〜E3では、循環流量の変化に拘わらずTiO光触媒層が剥離されず、脱色時間も殆ど変化がなかった。これに対して、比較例の光触媒担持体E4〜E9では、累積剥離量が脱色試験回数に応じて増加しており、脱色時間も脱色試験を重ねるに従って増大している。このことからも、超音波長試験の結果と同様に、前処理工程が光触媒機能向上に極めて有効であることが理解される。特に、実施例の光触媒担持体E1〜E3と比較例の光触媒担持体E4,E5とで第1回目の脱色時間が大きく異なるのは、光触媒担持体E4,E5においてTiO光触媒層形成に接着剤,分散剤等の添加剤を含むTiOゾルを使用したことによるものであり、第2回目及び第3回目の脱色時間が実施例の光触媒担持体E1〜E3において殆ど変化がないのに対し比較例の光触媒担持体E4〜E9では脱色試験を重ねるに従って増大しているのは、TiO光触媒層の剥離によるものであると考えられる。なお、脱色試験後の光触媒担持体E1〜E9についてSEM観察したところ、超音波試験後のSEM観察結果と一致した。 The results of the decolorization test are as shown in Table 1. In the photocatalyst carriers E1 to E3 of the examples, the TiO 2 photocatalyst layer was not peeled regardless of the change in the circulation flow rate, and the decolorization time hardly changed. On the other hand, in the photocatalyst carriers E4 to E9 of the comparative examples, the cumulative peel amount increases according to the number of decoloring tests, and the decoloring time also increases as the decoloring tests are repeated. From this, it is understood that the pretreatment process is extremely effective for improving the photocatalytic function, similarly to the result of the ultrasonic length test. In particular, the photocatalyst carriers E1 to E3 of the example and the photocatalyst carriers E4 and E5 of the comparative example differ greatly in the first decolorization time because the adhesive for forming the TiO 2 photocatalyst layer in the photocatalyst carriers E4 and E5 is different. This is due to the use of a TiO 2 sol containing additives such as a dispersant, and the second and third decolorization times are almost unchanged in the photocatalyst carriers E1 to E3 of the examples. In the photocatalyst carriers E4 to E9 in the example, it is considered that the increase in the decoloring test is due to the peeling of the TiO 2 photocatalyst layer. In addition, when SEM observation was carried out about the photocatalyst carrier E1-E9 after a decoloring test, it corresponded with the SEM observation result after an ultrasonic test.

Figure 2010017603
Figure 2010017603

本発明に係る光触媒担持体の一例(実施例1〜3)を示す要部の模式的断面図である。It is typical sectional drawing of the principal part which shows an example (Examples 1-3) of the photocatalyst carrier based on this invention. 実施例1の光触媒担持工程における熱処理前後のX線回折パターンである。2 is an X-ray diffraction pattern before and after heat treatment in the photocatalyst carrying step of Example 1. FIG.

符号の説明Explanation of symbols

A 基体
a SiC酸化拡散層
B 酸化膜層(SiO層)
C 固溶体層
D TiO光触媒層
E1 光触媒担持体
E2 光触媒担持体
E3 光触媒担持体
A substrate a SiC oxidation diffusion layer B oxide film layer (SiO 2 layer)
C solid solution layer D TiO 2 photocatalyst layer E1 photocatalyst carrier E2 photocatalyst carrier E3 photocatalyst carrier

Claims (7)

非酸化物系セラミックスからなる基体と、これを大気中で加熱して酸化処理することによって基体表面に形成された酸化膜層と、この酸化膜層上に形成された当該酸化膜成分及びTiOからなる固溶体層と、この固溶体層上に形成されたTiO光触媒層とからなることを特徴とする光触媒担持体。 A base made of non-oxide ceramic, an oxide film layer formed on the surface of the base by heating the base in the atmosphere, and the oxide film component and TiO 2 formed on the oxide film layer And a TiO 2 photocatalyst layer formed on the solid solution layer. Si質のセラミック基体と、基体表面に形成された酸化膜層たるSiO層と、SiO層上に形成されたSiO及びTiOの拡散層である固溶体層と、固溶体層上に形成されたTiO光触媒層とからなることを特徴とする、請求項1に記載する光触媒担持体。 Ceramic substrates Si quality, an oxide film layer serving SiO 2 layer formed on the substrate surface, and the solid solution layer is a diffusion layer of SiO 2 and TiO 2 was formed on the SiO 2 layer is formed on the solid solution layer The photocatalyst carrier according to claim 1, further comprising a TiO 2 photocatalyst layer. 固溶体層の厚みが1〜10μmであることを特徴とする、請求項1又は請求項2に記載する光触媒担持体。 The photocatalyst carrier according to claim 1 or 2, wherein the solid solution layer has a thickness of 1 to 10 µm. 水浄化処理用フィルタとして使用されるものであることを特徴とする、請求項1〜請求項3の何れかに記載する光触媒担持体。 The photocatalyst carrier according to any one of claims 1 to 3, wherein the photocatalyst carrier is used as a filter for water purification treatment. 請求項1〜請求項4の何れかに記載する光触媒担持体を製造する方法であって、
非酸化物系セラミックスからなる基体を大気中で加熱して酸化処理することによって基体表面に酸化膜層を形成する一次前処理工程と、酸化膜層が形成された基体を、酸化膜層上にTiOスラリをコーティングした上で、大気中で熱処理することにより、酸化膜層上に当該酸化膜成分及びTiOの固溶体層を形成する二次前処理工程と、固溶体層が形成された基体を、固溶体層上にTiO粉末の水スラリをコーティングした上で、熱処理することにより、固溶体層上にTiO光触媒層を形成する触媒担持処理工程とからなることを特徴とする光触媒担持体の製造方法。
A method for producing a photocatalyst carrier according to any one of claims 1 to 4,
A primary pretreatment process for forming an oxide film layer on the surface of the substrate by heating and oxidizing the substrate made of non-oxide ceramic in the atmosphere, and the substrate on which the oxide film layer is formed on the oxide film layer A secondary pretreatment step of forming a solid solution layer of the oxide film component and TiO 2 on the oxide film layer by coating with TiO 2 slurry and heat-treating in the atmosphere, and a substrate on which the solid solution layer is formed And a catalyst supporting treatment step of forming a TiO 2 photocatalyst layer on the solid solution layer by coating the solid solution layer with a water slurry of TiO 2 powder and then heat-treating it. Method.
Si質のセラミック基体を大気中において800〜1200℃に加熱して酸化処理することによって、基体表面に酸化膜層であるSiO層を形成する一次前処理工程と、SiO層が形成された基体を、SiO層上にTiO濃度を0.5〜5%とするTiOゾルをコーティングした上で、大気中において800〜1200℃で熱処理することにより、SiO層上にSiO及びTiOの拡散層である固溶体層を形成する二次前処理工程と、固溶体層が形成された基体を、固溶体層上にTiO粉末を純水に分散させてなるTiOスラリをコーティングした上で、TiOの結晶形態がルチル型に転移しない条件で熱処理することにより、固溶体層上にTiO光触媒層を形成する触媒担持処理工程とからなることを特徴とする、請求項5に記載する光触媒担持体の製造方法。 The Si 2 ceramic substrate was heated to 800 to 1200 ° C. in the atmosphere and oxidized to form a primary pretreatment step for forming an SiO 2 layer as an oxide film layer on the surface of the substrate, and an SiO 2 layer was formed. The substrate was coated with a TiO 2 sol having a TiO 2 concentration of 0.5 to 5% on the SiO 2 layer and then heat-treated at 800 to 1200 ° C. in the air, whereby SiO 2 and SiO 2 were formed on the SiO 2 layer. A secondary pretreatment step for forming a solid solution layer, which is a diffusion layer of TiO 2 , and a substrate on which the solid solution layer is formed, coated with a TiO 2 slurry in which TiO 2 powder is dispersed in pure water on the solid solution layer in, especially in that it consists by heat treatment under a condition that the crystalline form of TiO 2 is not transferred to the rutile type, the catalyst carrying process step for forming a TiO 2 photocatalyst layer on the solid solution layer To method for producing a photocatalyst carrier according to claim 5. 触媒担持処理工程における熱処理温度が400〜700℃であることを特徴とする、請求項5又は請求項6に記載する光触媒担持体の製造方法。 The method for producing a photocatalyst carrier according to claim 5 or 6, wherein the heat treatment temperature in the catalyst carrier treatment step is 400 to 700 ° C.
JP2008177446A 2008-07-08 2008-07-08 Photocatalyst carrier and method for producing the same Active JP4850876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177446A JP4850876B2 (en) 2008-07-08 2008-07-08 Photocatalyst carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177446A JP4850876B2 (en) 2008-07-08 2008-07-08 Photocatalyst carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010017603A true JP2010017603A (en) 2010-01-28
JP4850876B2 JP4850876B2 (en) 2012-01-11

Family

ID=41703012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177446A Active JP4850876B2 (en) 2008-07-08 2008-07-08 Photocatalyst carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP4850876B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224445A (en) * 1994-12-20 1996-09-03 Hitachi Ltd Catalyst-containing heat shielding member and gas turbine using the same
JPH1036144A (en) * 1996-07-26 1998-02-10 Murakami Corp Antifogging element
JPH11342343A (en) * 1998-03-31 1999-12-14 Toshiba Lighting & Technology Corp Photocatalyst, lamp and luminaire
JP2004067480A (en) * 2002-08-09 2004-03-04 Ube Ind Ltd Material coated with ceramic thin film having gradient composition and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224445A (en) * 1994-12-20 1996-09-03 Hitachi Ltd Catalyst-containing heat shielding member and gas turbine using the same
JPH1036144A (en) * 1996-07-26 1998-02-10 Murakami Corp Antifogging element
JPH11342343A (en) * 1998-03-31 1999-12-14 Toshiba Lighting & Technology Corp Photocatalyst, lamp and luminaire
JP2004067480A (en) * 2002-08-09 2004-03-04 Ube Ind Ltd Material coated with ceramic thin film having gradient composition and method for manufacturing the same

Also Published As

Publication number Publication date
JP4850876B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
Mills et al. Thick titanium dioxide films for semiconductor photocatalysis
Addamo et al. Photocatalytic thin films of TiO2 formed by a sol–gel process using titanium tetraisopropoxide as the precursor
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
Adak et al. Non lithographic block copolymer directed self-assembled and plasma treated self-cleaning transparent coating for photovoltaic modules and other solar energy devices
JPH09228022A (en) Hydrophilic member and hydrophilicity maintaining method
Huertas et al. Sol-gel membrane modification for enhanced photocatalytic activity
JP5118067B2 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT
CN1958163B (en) Carrier of photocatalyst and manufacture process thereof
JP2008168277A (en) Method for synthesizing visible light-responsive photocatalyst
JP4850876B2 (en) Photocatalyst carrier and method for producing the same
JP4398105B2 (en) Ceramic membrane filter
JP2010142702A (en) Photocatalyst and method of manufacturing the same
JP3791067B2 (en) Photocatalyst composition and glass article
Adraider et al. Fabrication of titania coatings on stainless steel via laser-induced deposition of colloidal titanium oxide from sol–gel suspension
CN1330413C (en) Process for preparing TiO2 light catalytic transparent film
JP3885248B2 (en) Photocatalyst composition
Jiang et al. Diamond/β‐SiC Composite Films
Szołdra et al. Characterization and photocatalytic activity of TiO2 thin films prepared by sol-gel method for NOx degradation
JP2008221111A (en) Photocatalytic filter and its production method
JP4822245B2 (en) Power supply equipment
Ohara et al. Synthesis and characterization of brookite/anatase complex thin film
Hwang et al. Photoinduced superhydrophilicity in TiO2 thin films modified with WO3
JP2003335520A (en) METHOD FOR PRODUCING TITANIUM OXIDE WHISKER BY OXIDIZING Ti-V ALLOY FILM OR Ti-Mo ALLOY FILM
JPH10263412A (en) Photocatalyst composite substance and its production and photocataslyst produced by forming photocatalyst composite substance on substrate surface
Nocuń et al. Preparation and characterization of V 2 O 5 doped SiO 2-TiO 2 thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Ref document number: 4850876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3