JP2010017476A - Compressor, and oxygen concentrator using the same - Google Patents

Compressor, and oxygen concentrator using the same Download PDF

Info

Publication number
JP2010017476A
JP2010017476A JP2008182968A JP2008182968A JP2010017476A JP 2010017476 A JP2010017476 A JP 2010017476A JP 2008182968 A JP2008182968 A JP 2008182968A JP 2008182968 A JP2008182968 A JP 2008182968A JP 2010017476 A JP2010017476 A JP 2010017476A
Authority
JP
Japan
Prior art keywords
oxygen
compressor
air
eccentric cam
cylinder chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008182968A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
洋志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2008182968A priority Critical patent/JP2010017476A/en
Publication of JP2010017476A publication Critical patent/JP2010017476A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor capable of being substantially made small in size miniaturized and light in weight, and being simultaneously made low in noise and vibration, and to provide an oxygen concentrator. <P>SOLUTION: The compressor includes a set of a first piston, a first eccentric cam and a first cylinder chamber, a set of a second piston, a second eccentric cam and a second cylinder chamber, a set of a third piston, a third eccentric cam and a third cylinder chamber, and a set of a fourth piston, a fourth eccentric cam and a fourth cylinder chamber, and a piping manifold, an intake air filter and an exhaust muffler are integrally structured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コンプレッサ及びこれを用いた酸素濃縮装置に係り、特に圧力スイング吸着方式による医療用の携帯式の酸素濃縮装置に関する。   The present invention relates to a compressor and an oxygen concentrator using the compressor, and more particularly to a medical portable oxygen concentrator using a pressure swing adsorption method.

空気中の酸素を透過させて、窒素を選択的に吸着するゼオライトを吸着剤として用いることで酸素を生成する圧力スイング吸着法による酸素濃縮装置が医療用として実用化されている。   An oxygen concentrator using a pressure swing adsorption method in which oxygen is generated by using, as an adsorbent, a zeolite that permeates oxygen in the air and selectively adsorbs nitrogen has been put into practical use for medical purposes.

この方式の酸素濃縮装置によれば、空気取入口から取り込んだ原料空気を圧縮手段であるコンプレッサで圧縮して圧縮空気を発生し、吸着剤を内蔵した吸着筒に対して圧縮空気を供給することで、酸素を生成し、生成された酸素をタンクに貯めておき、減圧弁や流量設定器を介してタンクから所定流量の酸素を供給可能な状態にすることで、鼻カニューラ等を介して患者に対する酸素吸入ができるように構成されている。   According to this type of oxygen concentrator, the raw material air taken in from the air intake is compressed by a compressor as a compression means to generate compressed air, and the compressed air is supplied to an adsorption cylinder containing an adsorbent. Then, oxygen is generated, the generated oxygen is stored in the tank, and the oxygen can be supplied at a predetermined flow rate from the tank via the pressure reducing valve and the flow rate setting device. It is configured to allow oxygen inhalation.

このように構成される酸素濃縮装置を、例えばAC電源(商用電源)の備わっている場所に設置しておけば、例えば肺機能が低下した在宅酸素療法患者は、就寝中でも安全に酸素を吸うことができるようになり安眠できることとなる。特に、就寝中も使用する場合には、酸素濃縮装置は騒音発生が極めて少ないことが好ましい。可能であれば室内の空調設備から発生する騒音レベル以下となることが望ましい。   If the oxygen concentrator configured in this way is installed in a place equipped with, for example, an AC power supply (commercial power supply), for example, home oxygen therapy patients with reduced lung function can safely absorb oxygen even while sleeping. Will be able to sleep well. In particular, when used even while sleeping, it is preferable that the oxygen concentrator generates very little noise. If possible, it is desirable that the noise level is less than the level generated by the indoor air conditioning equipment.

一方、慢性気管支炎等の呼吸器疾患の患者の治療法として有効となる長期酸素吸入療法に使用される酸素濃縮装置は、一般的には可搬型ではない。すなわち、患者が外出先に持ち出せるように構成されていない。そこで、患者がやむなく外出する場合には、酸素ボンベを搭載したカートを押しながら、その酸素ボンベから濃縮酸素を吸うようにしている。この酸素ボンベに対する酸素供給は専用設備にて行なわなければならず、患者のQOL(クオリティ・オブ・ライフ)を少なからず損なうものであった。   On the other hand, an oxygen concentrator used for long-term oxygen inhalation therapy that is effective as a treatment method for patients with respiratory diseases such as chronic bronchitis is generally not portable. That is, it is not configured so that the patient can be taken out. Therefore, when the patient is forced to go out, concentrated oxygen is sucked from the oxygen cylinder while pushing the cart equipped with the oxygen cylinder. Oxygen supply to the oxygen cylinder had to be performed by a dedicated facility, and the patient's QOL (Quality of Life) was considerably impaired.

そこで、電池駆動されるコンプレッサを使用した可搬型や移動型の酸素濃縮装置が提案されている(特許文献1、特許文献2)。   Therefore, portable and mobile oxygen concentrators using battery-driven compressors have been proposed (Patent Documents 1 and 2).

また、圧縮空気を発生する圧縮手段と減圧空気を発生する減圧手段とを備えたコンプレッサを採用する場合には、特に一体化されたコンプレッサの振動、酸素濃縮プロセスにおける均圧工程時によって発生する振動を低減することを目的とし、減圧手段と切換弁との流路間に外気と連通する減圧空気破壊弁設け、更に均圧工程時と同期して減圧空気破壊弁を開状態にすることで、減圧手段と切換弁との流路内に外気が入り込むことによりコンプレッサの振動防止と低電力化を図る技術が提案されている(特許文献3)。   In addition, when a compressor having a compression means for generating compressed air and a pressure reduction means for generating reduced pressure air is employed, vibration of the integrated compressor, vibration generated by the pressure equalization process in the oxygen concentration process, in particular. For reducing the pressure, a reduced pressure air break valve that communicates with the outside air is provided between the flow path between the pressure reducing means and the switching valve, and the reduced pressure air break valve is opened in synchronization with the pressure equalizing step. A technique has been proposed in which outside air enters the flow path between the pressure reducing means and the switching valve to prevent vibration of the compressor and reduce power consumption (Patent Document 3).

また、圧縮空気と減圧空気を発生するコンプレッサを、その入口側に夫々接続することで圧縮空気を筒体の内部に導入し、筒体内に充填された吸着剤により窒素を吸着して酸素を分離生成し、その出口側から生成酸素を供給するとともに、吸着剤が窒素で飽和したときに減圧空気を導入して、窒素を吸着筒体の外部に排出させるための2本の吸着筒体と、2本の吸着筒体の入口側とコンプレッサとの間に接続されることで、圧縮空気流路と減圧空気流路と閉流路とに交互に切り換えるための2組の3方向切換弁と、2本の吸着筒体のいずれかが最高内圧値になったことを検出する圧力センサと、2本の吸着筒体の出口側の間で分岐配管されるとともに、圧力センサで最高内圧値が検出されると2本の吸着筒体の間の均等圧化を行うように開状態にされる均等圧弁と、減圧空気発生部と3方向切換弁の減圧空気流路との間に接続されるとともに均等圧化を行うときに開状態にしされることで流路内の圧力を制御する減圧空気破壊弁とを備え、消音器を介して排気を行う空気破壊弁を備えた酸素濃縮装置が提案されている。   In addition, by connecting a compressor that generates compressed air and reduced pressure air to the inlet side of each, compressed air is introduced into the cylinder, and nitrogen is adsorbed by an adsorbent filled in the cylinder to separate oxygen. Two adsorbing cylinders for generating and supplying generated oxygen from the outlet side, introducing reduced pressure air when the adsorbent is saturated with nitrogen, and discharging nitrogen to the outside of the adsorbing cylinder; Two sets of three-way switching valves for switching alternately between the compressed air flow path, the reduced pressure air flow path, and the closed flow path by being connected between the inlet side of the two adsorption cylinders and the compressor; A branch pipe is connected between the pressure sensor that detects that one of the two adsorption cylinders has reached the maximum internal pressure value and the outlet side of the two adsorption cylinders, and the maximum internal pressure value is detected by the pressure sensor. When opened, it is open so as to equalize the pressure between the two adsorption cylinders. The pressure in the flow path is controlled by opening the pressure equalizing valve, the pressure reducing air generating section, and the pressure reducing air flow path of the three-way switching valve. There has been proposed an oxygen concentrator equipped with an air destruction valve that includes an air destruction valve that exhausts through a silencer.

さらに、コンプレッサの小型軽量化を図るために1組の水平対向ピストンを設ける提案も成されている。また、配管マニホルドを用いた酸素濃縮装置も提案されている(特許文献4)。
特開2002−121010号公報 特開2000−79165号公報 特開2005−111016号公報 特表2008−515593号公報
Further, a proposal has been made to provide a pair of horizontally opposed pistons in order to reduce the size and weight of the compressor. An oxygen concentrator using a piping manifold has also been proposed (Patent Document 4).
JP 2002-121010 A JP 2000-79165 A JP 2005-1111016 A Special table 2008-515593

上記のように構成される酸素濃縮装置を小型軽量化するときに最も障害となる構成として、最も大きくかつ重いコンプレッサが挙げられる。このコンプレッサは圧縮空気と減圧空気とを発生しなければならない事情から、小型軽量化を図ることは非常に困難であるとされていた。さらに、通常コンプレッサは運転時に騒音と振動が発生する問題があることから、低騒音化と低振動化も重要となる。   The largest and heavier compressor can be cited as a configuration that becomes the most obstacle when reducing the size and weight of the oxygen concentrator configured as described above. It has been said that it is very difficult to reduce the size and weight of this compressor because it has to generate compressed air and decompressed air. Furthermore, since the compressor usually has a problem of generating noise and vibration during operation, it is important to reduce noise and vibration.

したがって、本発明は上記の事情に鑑みてなされたものであり、大幅な小型軽量化と低騒音化と低振動化を同時に達成でき、省スペース化が可能なコンプレッサ及び酸素濃縮装置の提供を目的としている。   Therefore, the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a compressor and an oxygen concentrator that can achieve a significant reduction in size and weight, noise, and vibration at the same time, and can save space. It is said.

上述した課題を解決し、目的を達成するために、本発明のコンプレッサは、1組の第1のピストンと第1の偏心カムと第1のシリンダ室と、1組の第2のピストンと第2の偏心カムと第2のシリンダ室と、1組の第3のピストンと第3の偏心カムと第3のシリンダ室と、1組の第4のピストンと第4の偏心カムと第4のシリンダ室とを備え、配管マニホルドと、吸気フィルタと、排気マフラとを一体化したことを特徴としている。   In order to solve the above-described problems and achieve the object, a compressor according to the present invention includes a set of first pistons, a first eccentric cam, a first cylinder chamber, a set of second pistons, and a first piston. Two eccentric cams, a second cylinder chamber, a set of third pistons, a third eccentric cam, a third cylinder chamber, a set of fourth pistons, a fourth eccentric cam, and a fourth It has a cylinder chamber and is characterized by integrating a pipe manifold, an intake filter, and an exhaust muffler.

さらに、本発明の酸素濃縮装置は、圧縮空気となる原料空気を濾過するフィルタ組立体と、圧縮空気中から窒素を選択的に吸着して酸素を生成するゼオライトの吸着剤を収納した一対の吸着筒と、前記吸着筒に対してコンプレッサからの圧縮空気と減圧空気とを交互に供給するように流路を切り換えることで前記吸着剤による前記生成及び浄化を行う切換弁と、前記浄化後の減圧空気の排気時の消音を行う消音器と、前記生成された酸素を貯めておく容器と、前記モータの駆動を含む電力供給を行うための充電式電池と、を備えた酸素濃縮装置であって、前記コンプレッサは、1組の第1のピストンと第1の偏心カムと第1のシリンダ室と、1組の第2のピストンと第2の偏心カムと第2のシリンダ室と、1組の第3のピストンと第3の偏心カムと第3のシリンダ室と、1組の第4のピストンと第4の偏心カムと第4のシリンダ室とを備え、配管マニホルドと、吸気フィルタと、排気マフラとを一体化したことを特徴としている。   Furthermore, the oxygen concentrator of the present invention includes a pair of adsorption units containing a filter assembly for filtering raw air that becomes compressed air and a zeolite adsorbent that selectively adsorbs nitrogen from the compressed air to generate oxygen. A switching valve that performs the generation and purification by the adsorbent by switching the flow path so that compressed air and reduced pressure air from the compressor are alternately supplied to the adsorption cylinder, and the reduced pressure after the purification An oxygen concentrator comprising: a silencer that silences air when exhausted; a container that stores the generated oxygen; and a rechargeable battery that supplies power including driving the motor. The compressor includes a set of a first piston, a first eccentric cam, a first cylinder chamber, a set of a second piston, a second eccentric cam, a second cylinder chamber, and a set of 3rd piston and 3rd eccentricity And a third cylinder chamber, a set of a fourth piston, a fourth eccentric cam, and a fourth cylinder chamber, and a pipe manifold, an intake filter, and an exhaust muffler are integrated. It is said.

本発明によれば、コンプレッサを水平対向2筒式として、配管マニホルド、吸気フィルタ、排気マフラを一体構造とすることで、省スペース化が可能で小型軽量化を実現することができ、かつ運転時において各ピストンが互いに振動を打ち消すので低騒音化と低振動化を同時に達成できるコンプレッサ及びこれを用いた酸素濃縮装置が提供できる。   According to the present invention, the compressor is a horizontally opposed two-cylinder type, and the piping manifold, the intake filter, and the exhaust muffler are integrated, so that space can be saved, and a small size and light weight can be realized. The pistons cancel each other out, so that a compressor capable of simultaneously achieving low noise and low vibration and an oxygen concentrator using the compressor can be provided.

以下に、本発明の好適な一実施形態について添付の図面を参照して、特に携帯型の酸素濃縮装置を実施例の一例として述べる。ここで、本発明は様々な修正と変更が可能であり、その内の特定の事例が図面に図示されており、以下に詳細に記述されることになる。しかしながら、これらに限定されず請求の範囲に規定された範囲で種々の構成が可能であることは言うまでもない。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings, in particular, a portable oxygen concentrator as an example. Here, the present invention is susceptible to various modifications and changes, of which specific examples are illustrated in the drawings and will be described in detail below. However, it is needless to say that the present invention is not limited to these, and various configurations are possible within the scope defined in the claims.

図1(a)は、酸素生成原理を説明する流路配管図、(b)は圧縮空気による圧縮空気力変動吸着法(PSA)と圧縮空気と減圧空気による正減圧空気力変動吸着法(VPSA)における圧力変動を時間経過とともに図示した図表、(c)は、圧力変動吸着法(PSA)と正減圧空気力変動吸着法(VPSA)における窒素吸着量を圧力とともに図示した図表である。   FIG. 1A is a flow path piping diagram illustrating the principle of oxygen generation, and FIG. 1B is a compressed aerodynamic fluctuation adsorption method (PSA) using compressed air and a positive depressurization aerodynamic fluctuation adsorption method (VPSA) using compressed air and reduced pressure air. (C) is a chart illustrating the amount of nitrogen adsorption in the pressure fluctuation adsorption method (PSA) and the positive pressure reduction aerodynamic fluctuation adsorption method (VPSA) together with the pressure.

図1において、圧縮空気のみによる正圧変動吸着法(PSA)と圧縮空気と減圧空気による正負圧変動吸着法(VPSA)について簡単に述べる。図1(a)において、外部空気を導入してコンプレッサ1で圧縮された原料空気は、一方の3方向切換弁109aを経て第1吸着筒体108a中に導入される。第1吸着筒体108aには触媒のゼオライトが内蔵されており、ゼオライトにより窒素が吸着され酸素が分離生成されることになる。   In FIG. 1, a positive pressure fluctuation adsorption method (PSA) using only compressed air and a positive / negative pressure fluctuation adsorption method (VPSA) using compressed air and reduced pressure air will be briefly described. In FIG. 1 (a), the raw air compressed by the compressor 1 by introducing external air is introduced into the first adsorption cylinder 108a through one of the three-way switching valves 109a. The first adsorption cylinder 108a contains a catalyst zeolite, and nitrogen is adsorbed by the zeolite and oxygen is separated and produced.

このようにして分離生成された酸素は、不図示の逆止弁を通り、製品タンクに流れる。この第1吸着筒体108aの内圧が高まると、3方向切換弁109aが排気側に切り換えられることで、排気が行われる。これに合い前後して均等圧弁107が開かれて、第1吸着筒体108a中で濃縮された一部の酸素を使用して、第2吸着筒体108bの洗浄を行う均圧工程に移行する。   The oxygen thus generated and separated flows through a check valve (not shown) and flows into the product tank. When the internal pressure of the first adsorption cylinder 108a increases, the three-way switching valve 109a is switched to the exhaust side, whereby exhaust is performed. Before and after this, the equal pressure valve 107 is opened, and the process proceeds to a pressure equalization process for cleaning the second adsorption cylinder 108b using a part of the oxygen concentrated in the first adsorption cylinder 108a. .

次に、第1吸着筒体108aの脱着工程(窒素や水分の排出)と第2吸着筒体108bへの圧縮空気の取入れを行うために3方切換弁109bが開かれて、第2吸着筒体108bに流れ込んだ圧縮空気により分離生成された酸素が不図示の逆止弁を介して製品タンク中に流れる。その後、所定の圧力となったことが不図示の圧力センサで検出されると均等圧弁107が所定時間開かれて、次に第2吸着筒体108aの洗浄及び均圧工程が行われる。また均等圧弁107が開かれることで、第2の吸着筒体108bで分離生成された酸素が第1の吸着筒体108aの出口部に送り込まれて、内蔵のゼオライトの浄化が行なわれる。以上のような各工程を所定タイミングで繰り返し行うことで、連続した酸素の安定供給を行う。   Next, the three-way switching valve 109b is opened to perform the desorption process (discharge of nitrogen and moisture) of the first adsorption cylinder 108a and intake of compressed air into the second adsorption cylinder 108b, and the second adsorption cylinder Oxygen separated and generated by the compressed air flowing into the body 108b flows into the product tank through a check valve (not shown). Thereafter, when it is detected by a pressure sensor (not shown) that the predetermined pressure has been reached, the equal pressure valve 107 is opened for a predetermined time, and then the second adsorption cylinder 108a is cleaned and pressure equalized. Further, when the equal pressure valve 107 is opened, oxygen separated and generated by the second adsorption cylinder 108b is sent to the outlet of the first adsorption cylinder 108a, and the built-in zeolite is purified. By repeating the above steps at a predetermined timing, continuous stable supply of oxygen is performed.

以上のように2本の各吸着筒体に対して圧縮空気を2個の3方切換弁を切り換えて供給するときに、図1(b)で実線で図示した圧力変化となるように、圧縮空気のみを吸着筒体内に送り窒素を吸着させ、脱着操作を略大気圧下で行う方法は正圧変動吸着法(PSA)と呼ばれている。一方、図1(b)において破線で図示したように圧縮空気に加えて負圧(真空)まで減圧することで、より積極的に内蔵のゼオライトの洗浄を行う方法は正負圧変動吸着法(VPSA)と呼ばれている。この方法は積極的に内蔵のゼオライトの洗浄を行うことができるので、上記の正圧変動吸着法よりも優れている。   As described above, when the compressed air is supplied to each of the two adsorption cylinders by switching the two three-way switching valves, the compression is performed so that the pressure change illustrated by the solid line in FIG. A method in which only air is sent into the adsorption cylinder to adsorb nitrogen and the desorption operation is performed at substantially atmospheric pressure is called a positive pressure fluctuation adsorption method (PSA). On the other hand, as shown by a broken line in FIG. 1B, a method of more positively washing the built-in zeolite by reducing the pressure to a negative pressure (vacuum) in addition to the compressed air is a positive / negative pressure fluctuation adsorption method (VPSA). )is called. Since this method can positively wash the built-in zeolite, it is superior to the positive pressure fluctuation adsorption method.

図1(c)に示したように、正圧変動吸着法による窒素吸着量は、正負圧変動吸着法に比べ、同じ圧差でも窒素吸着量は減少する。このため、圧縮空気と減圧された減圧空気の双方を送気できるコンプレッサを使用すると良い。または、圧縮空気発生用と減圧空気発生専用のコンプレッサを2台設ける必要があるので大型化を回避できない。このため、例えば携帯用の小型酸素濃縮装置に組み入れることは到底不可能になる。   As shown in FIG. 1 (c), the amount of nitrogen adsorbed by the positive pressure fluctuation adsorption method is smaller than that of the positive / negative pressure fluctuation adsorption method even if the pressure difference is the same. For this reason, it is good to use the compressor which can send both compressed air and pressure-reduced pressure-reduced air. Or, since it is necessary to provide two compressors for generating compressed air and for generating reduced pressure air, an increase in size cannot be avoided. For this reason, for example, it cannot be incorporated into a portable small oxygen concentrator.

そこで、以下に上記の正負圧変動吸着法に基づいて構成された携帯用の小型の酸素濃縮装置300を一例として述べる。   Therefore, a portable small-sized oxygen concentrator 300 configured based on the positive / negative pressure fluctuation adsorption method will be described below as an example.

<酸素濃縮装置300の全体構成の説明>
図2は、本発明の一実施形態である酸素濃縮装置300の内部構成を図示するために要部を破断して示した正面図である。この装置300は不図示の鼻カニューラとともに使用されるとともに、総重量が約2〜4kgで2リットルのペットボトルに略近い上下方に細長い縦長の外観形状を備えている。
<Description of Overall Configuration of Oxygen Concentrator 300>
FIG. 2 is a front view showing a principal part in a cutaway manner in order to illustrate the internal configuration of the oxygen concentrator 300 according to one embodiment of the present invention. The device 300 is used together with a nasal cannula (not shown), and has a vertically long and slender external shape that is approximately 2 to 4 kg in total and substantially close to a 2 liter plastic bottle.

このように縦長構成とすることで、不図示の携帯用バッグ上方の開口部からに挿入できるようになり、挿入後にホックを設けた蓋が操作パネル305を覆うようにして固定することで脱落防止される状態となる。また、携帯用バッグに固定された吊り下げベルトを肩から掛けるようにして、例えば外出時に邪魔にならないようにして携帯できるように構成されている。また、吊り下げベルトには肩パッドが固定されており肩に負担とならないようにするとともに、携帯用バッグの正面にはチューブを接続した鼻カニューラを収納するパウチが設けられている。なお、携帯用バッグは、合成皮革乃至ウレタン引布製とすることができるとともに、後述する吸気口を塞がないように開口部が形成される。   By adopting such a vertically long configuration, it can be inserted from an opening above the portable bag (not shown), and the lid provided with a hook after the insertion is fixed so as to cover the operation panel 305 to prevent dropping. It will be in a state to be. In addition, a hanging belt fixed to the portable bag is hung from the shoulder so that it can be carried without disturbing when going out, for example. In addition, a shoulder pad is fixed to the suspension belt so as not to be a burden on the shoulder, and a pouch for storing a nasal cannula connected with a tube is provided on the front surface of the portable bag. The portable bag can be made of synthetic leather or urethane-coated cloth, and an opening is formed so as not to block an air inlet described later.

以上のようにペットボトルに略近い縦長の外観形状を備えているので、携帯用バッグのパウチ内に鼻カニューラと折り曲げたチューブを収納した未使用の状態では、他人が一瞥しただけでは酸素濃縮装置300であることが簡単には知られないこととなる。   As described above, it has a vertically long shape that is almost the same as that of a plastic bottle, so in an unused state in which a nasal cannula and a bent tube are stored in a pouch of a portable bag, the oxygen concentrator can be used only by someone else. 300 is not easily known.

また、軽量化、省エネを徹底的に追求したことで電気代をさらに安くする一方で、付属の着脱可能かつ繰り返し充電可能な外部電池と、繰り返し充電可能な内蔵された充電電池228と家庭用商用(AC)電源の3系統で使用できるようにしている。また、特に内蔵電池228および外部電池は、停電時におけるバックアップ電源としても使用できるので安心して使えることになる。さらに、電池節約のために吸気に同調して酸素を送り出す「同調モード」に切り替えることができる機能を備えている。   In addition, while thoroughly pursuing weight saving and energy saving, the electricity bill is further reduced, while the attached external battery that can be attached and detached and can be repeatedly charged, the built-in rechargeable battery 228 that can be repeatedly charged, and commercial for home use. (AC) It can be used with three power supply systems. In particular, the built-in battery 228 and the external battery can be used with confidence because they can be used as a backup power source in the event of a power failure. Furthermore, it has a function that can be switched to a “tuning mode” in which oxygen is sent in synchronism with intake air in order to save battery power.

また、上記の縦長の外観形状を有する密閉カバーを構成する主筐体302を射出成形樹脂部品である耐衝撃性を有する熱可塑性樹脂である例えばABS樹脂製とすることでデザイン的な自由度を確保している。さらに吸着剤を充填した2本の吸着筒を含む他の構成部品についても極力軽量化するとともに、最も重量の大きなコンプレッサ1については、1組の第1のピストンと、第1のピストンの夫々を、気密状態で往復移動可能に案内する1組の第1のシリンダ室と、1組の第2のピストンと、第2のピストンの夫々を、気密状態で往復移動可能に案内する1組の第2のシリンダ室とをクランク軸体の端部から見て十字式に配列することで、大幅な小型軽量化を実現することで、総重量が約2kg程度の軽量化を達成している。また、図中の二点鎖線で示した防音室303も軽量化のために耐衝撃性の熱可塑性樹脂、例えばABS樹脂製としている。   Further, the main casing 302 constituting the hermetic cover having the vertically long external shape is made of, for example, ABS resin, which is a thermoplastic resin having impact resistance, which is an injection-molded resin part. Secured. Further, the other components including the two adsorbing cylinders filled with the adsorbent are reduced in weight as much as possible, and for the compressor 1 having the largest weight, a pair of the first piston and the first piston are used. , A set of first cylinder chambers for guiding reciprocating movement in an airtight state, a set of second pistons, and a second piston for guiding the reciprocating movement of each of the second pistons in an airtight state. By arranging the two cylinder chambers in a cross shape when viewed from the end of the crankshaft body, a significant reduction in size and weight is achieved, thereby achieving a weight reduction of about 2 kg in total weight. In addition, the soundproof chamber 303 indicated by a two-dot chain line in the drawing is also made of an impact-resistant thermoplastic resin, for example, an ABS resin for weight reduction.

操作パネル305は、例えば約10度の角度で斜め前方向に形成されており、その上に左から順に、電源スイッチ306と、この上の7セグメントの数字でLEDまたは液晶表示を行う酸素流量他の表示部204と、樹脂製部品の酸素出口307と、樹脂製カバー付きまたはカバー無しの上下2個の酸素流用設定ボタン308、308が配置されている。また酸素出口307の上方には、酸素出口307に形成された段差部に対して気密状態に係合されるとともに、着脱自在に設けられる樹脂製の不図示のカプラが設けられている。このカプラには鼻カニューラ等のフレキシブルなチューブの開口部が連通するようにセットされる。   The operation panel 305 is formed, for example, obliquely forward at an angle of about 10 degrees. From the left on the operation panel 305, the power switch 306 and the oxygen flow rate or the like for performing LED or liquid crystal display with the upper 7-segment numbers. Display unit 204, resin component oxygen outlet 307, and upper and lower oxygen flow setting buttons 308, 308 with or without a resin cover. Above the oxygen outlet 307, a resin-made coupler (not shown) is provided which is engaged with a stepped portion formed in the oxygen outlet 307 in an airtight state and is detachably provided. The coupler is set so that an opening of a flexible tube such as a nasal cannula communicates with the coupler.

上記の携帯用バッグに装置300を装填したときに、日本人の標準身長(160〜170cm)の患者が起立状態で両手を下げた腰部分に略該当する高さ付近において、身体の外側となるように操作パネル305は斜めに形成される。よって、例えば、立ったままの姿勢で酸素濃縮装置300の運転操作を無理なく行なうことができる。さらに、酸素出口307を中央に配置し、左右対称位置に各ダイヤルが配置されているので、左利きの人であっても何ら違和感なく操作できるように配慮されている。   When the above-mentioned portable bag is loaded with the device 300, the patient is outside the body at a height approximately corresponding to the waist where a Japanese standard height (160-170 cm) patient stands with both hands lowered. As described above, the operation panel 305 is formed obliquely. Therefore, for example, the operation of the oxygen concentrator 300 can be performed without difficulty while standing. Furthermore, since the oxygen outlet 307 is arranged at the center and the dials are arranged at symmetrical positions, even a left-handed person can be operated without any sense of incongruity.

なお、鼻カニューラに接続されたチューブの全長は、例えば60cm以内とすることで特に携帯時に邪魔にならないようにできる。また、患者が生活する同じ部屋内で移動する範囲に略相当する全長としたものを別途準備しておけば、酸素濃縮装置300を室内の片隅に固定した状態での使用が可能となる。なお、底面の四隅に4つのゴム足(不図示)を固定しておき、床面上に設置して使用するときに横滑りを防止するとともに簡単には倒れないようにしても良い。   Note that the total length of the tube connected to the nasal cannula is, for example, within 60 cm, so that it is not disturbed especially when being carried. Also, if a device having a full length substantially corresponding to the range of movement in the same room where the patient lives is prepared separately, the oxygen concentrator 300 can be used in a state of being fixed to one corner of the room. In addition, four rubber feet (not shown) may be fixed to the four corners of the bottom surface to prevent a side slip when used on the floor surface and not to easily fall down.

次に、主筐体302の背面側の上方には外気を内部に導入するために図示のように横長に形成された吸気口302aが形成されている。また、主筐体302の右側面には、酸素を生成した後に、外部に排気を行う外部に開口した排気口302bが形成されている。   Next, an air inlet 302a that is formed in a horizontally long shape as shown in the drawing is formed above the back side of the main housing 302 to introduce outside air into the inside. In addition, an exhaust port 302b that opens to the outside after oxygen is generated is formed on the right side surface of the main housing 302.

また、副筐体となる防音室303は、主筐体302と一体成形または別部材として設けられる壁部材309から形成されており、防音室303の内部の壁面に敷設される防音材311を設けることで、コンプレッサ1から発生する運転音を効果的に吸収するようにしている。この防音材311は、図示のように主筐体302の内部の壁面及び後述する各種電磁弁109、115、117を覆うように設けることで、オンオフ時の運転音を効果的に吸収できるようにしている。   The soundproof chamber 303 serving as a sub-housing is formed from a wall member 309 that is integrally formed with the main housing 302 or provided as a separate member, and is provided with a soundproof material 311 laid on the inner wall surface of the soundproof chamber 303. Thus, the operation sound generated from the compressor 1 is effectively absorbed. The soundproofing material 311 is provided so as to cover the inner wall surface of the main housing 302 and various solenoid valves 109, 115, and 117, which will be described later, as shown in the figure, so that the operation sound at the on / off time can be effectively absorbed. ing.

この防音材311は、その繊維径が1〜4ミクロンのポリオレフィレン系繊維(好ましくは、ポリプロピレン繊維)と、繊維径が20〜30ミクロンのポリオレフィレン系繊維(好ましくは、ポリプロピレン繊維)とからなる不織布を用いることができる。このような不織布を用いて軽量に構成することができ、かつ防音吸音効果が飛躍的に上がることが確認された。   The soundproofing material 311 includes a polyolefin fiber (preferably polypropylene fiber) having a fiber diameter of 1 to 4 microns, and a polyolefin fiber (preferably polypropylene fiber) having a fiber diameter of 20 to 30 microns. The nonwoven fabric which consists of can be used. It was confirmed that such a nonwoven fabric can be used to make it lightweight and the soundproof and sound absorbing effect can be dramatically improved.

コンプレッサ1は、例えば0.5〜2mm厚のアルミニウム板部材をコの字状に曲げ加工して得られた不図示の取付板に固定した後に、ラバーブッシュを含む防振ゴムを介して防音室303の内部に固定される。このコンプレッサ1に一体的に設けられたフィルタ組立体に対して上記の吸気口302aからの原料空気を導入するためのフレキシブルな配管24が、防音室303に穿設された貫通孔を通過するように設けられている。   The compressor 1 is fixed to a mounting plate (not shown) obtained by bending, for example, an aluminum plate member having a thickness of 0.5 to 2 mm into a U-shape, and then a soundproof chamber via a vibration-proof rubber including a rubber bush. It is fixed inside 303. The flexible pipe 24 for introducing the raw air from the intake port 302a to the filter assembly provided integrally with the compressor 1 passes through the through hole formed in the soundproof chamber 303. Is provided.

また、コンプレッサ1で圧縮されることで温度上昇した圧縮空気を冷却するための放熱管55が配管24を介して接続されている。この放熱管55は、例えば銅製またはアルミニウム製の長尺の管を、図示のようにコイル状に巻いて表面積を大きくするように構成されており、温度上昇された圧縮空気が放熱管55の管の内部を通過する過程で、近傍に配置された軸流ファンを含む放熱ファン330の送風により冷却されるように構成されている。   Further, a heat radiating pipe 55 for cooling the compressed air whose temperature has been increased by being compressed by the compressor 1 is connected via the pipe 24. The heat radiating pipe 55 is configured such that a long pipe made of, for example, copper or aluminum is wound in a coil shape as shown in the drawing to increase the surface area. In the process of passing through the interior of the fan, it is configured to be cooled by blowing air from the heat radiating fan 330 including an axial fan disposed in the vicinity.

また、放熱ファン330の送風は上記の排気口302bへ向けて排気される。一方、放熱ファン330の送風は後述する消音器からの排気も同様に積極的に行うことから、不図示の別の貫通孔を介して防音室303内に外気を導入し、上記の放熱及び排気を行うように構成されている。   Further, the air blown from the heat radiating fan 330 is exhausted toward the exhaust port 302b. On the other hand, since air from the heat radiating fan 330 is also actively exhausted from a silencer, which will be described later, outside air is introduced into the soundproof chamber 303 through another through hole (not shown), and the above heat radiation and exhaust are performed. Is configured to do.

一方、外部電池コネクタ131、ACアダプタコネクタ130、133が主筐体302の左側面に設けられており、図示のACアダプタのACケーブル端部のコネクタがACアダプタコネクタ130に挿入されて酸素濃縮装置300へのACアダプタ(交流100V)からの電力供給を行うようにしている。また、繰り返し充電可能な外部電池のコネクタを外部電池コネクタ131にセットすることで、外出時、室内(屋内)等での移動時などにおいて、最大で2時間程度の電池駆動を可能にしている。   On the other hand, the external battery connector 131 and the AC adapter connectors 130 and 133 are provided on the left side surface of the main housing 302, and the connector at the end of the AC cable of the illustrated AC adapter is inserted into the AC adapter connector 130 to provide an oxygen concentrator. Power is supplied from an AC adapter (AC 100V) to 300. In addition, by setting the external battery connector that can be repeatedly charged to the external battery connector 131, the battery can be driven for up to about 2 hours when going out or moving indoors (indoors).

さらに、繰り返し充電可能なリチウムイオン電池である内蔵電池228は、図示のように最下位置に配置されており、装置全体の重心位置を低くしている。以上のように、AC電源(商用電源)、外部電池、内蔵電池の3系統の電源とするとともに、使用する電源の優先順位をAC電源、外部電池、内蔵電池に自動切り換えすることで、特に内蔵電池228の温存化を図れるようにしている。   Further, the built-in battery 228, which is a lithium ion battery that can be repeatedly charged, is disposed at the lowest position as shown in the figure, and the center of gravity of the entire apparatus is lowered. As described above, the AC power supply (commercial power supply), external battery, and built-in battery have three power sources, and the priority of the power source to be used is automatically switched to the AC power supply, external battery, and built-in battery. The battery 228 can be preserved.

一方、収納されたゼオライトの吸着剤中に圧縮空気を透過させ、吸着剤で窒素を選択的に吸着して酸素を生成するための一対の吸着筒108a、108bは、図示のように防音室303と主筐体302の間の空間に縦方向に並列に設けられている。さらに、生成された酸素を貯める製品タンク111は、防音室303の上方に配置されている。   On the other hand, a pair of adsorption cylinders 108a and 108b for allowing compressed air to permeate through the adsorbent of zeolite contained therein and selectively adsorbing nitrogen with the adsorbent to generate oxygen are provided as shown in FIG. And the main housing 302 are provided in parallel in the vertical direction. Further, the product tank 111 that stores the generated oxygen is disposed above the soundproof chamber 303.

上記の電源スイッチ306のオン位置に相当する位置には、緑と赤に点灯する例えば発光LEDを内蔵した運転状態ランプ(不図示)が設けられている。また、電池残量モニタが設けられる機種もある。中央に位置する酸素出口307は、図示のように全ての囲い部分が操作パネル305の操作面から奥側(図面の裏面側)に引っ込むように設けられている。この酸素出口307の上には「点検」の文字またはこれに相当するキャラクター表示を横に印刷した警報表示部が設けられる機種もある。さらに警報表示部の下方には緑と赤と黄色とに点灯する例えば発光LEDを内蔵した酸素ランプが設けられる機種もある。   At a position corresponding to the ON position of the power switch 306, for example, an operation state lamp (not shown) having a built-in light emitting LED that is lit in green and red is provided. There is also a model in which a battery remaining amount monitor is provided. The oxygen outlet 307 located in the center is provided so that all the enclosed portions are retracted from the operation surface of the operation panel 305 to the back side (the back side in the drawing) as illustrated. On some oxygen outlets 307, there is also a model in which an alarm display unit in which a character “inspection” or a character display corresponding thereto is printed horizontally is provided. Further, there is a model in which an oxygen lamp having a built-in light emitting LED, for example, which is lit in green, red and yellow is provided below the alarm display section.

そして、上下の酸素流量設定ボタン308、308はフラットスイッチとして設けられており操作パネル305の操作面と略同一面となるように設けられている。この酸素流用設定ボタン308は、90%程度以上に濃縮された酸素を毎分当たり0.25L(リットル)から最大で5Lまで0.25L段階または0.01L段階で押圧操作する度に、酸素流量が設定できるように構成されており、上方の酸素流量表示部309で表示するようにしている。   The upper and lower oxygen flow rate setting buttons 308 and 308 are provided as flat switches so as to be substantially flush with the operation surface of the operation panel 305. Each time the oxygen flow setting button 308 is operated to push oxygen concentrated to about 90% or more from 0.25 L (liter) per minute to 5 L at the 0.25 L step or 0.01 L step, the oxygen flow rate Can be set, and is displayed on the upper oxygen flow rate display unit 309.

以上のように酸素生成能力を変えて運転することが可能である。また、濃縮酸素を呼吸同調により断続供給状態で運転中であることを点灯または点滅表示により患者に知らせるために設けられる同調ランプを設ける機種もある。また、呼吸に同期して点滅表示することにより患者に知らせるために設けられる動作インジケータを設けた機種もある。   As described above, it is possible to operate by changing the oxygen generation capacity. In addition, there is a model provided with a tuning lamp provided to notify the patient by lighting or blinking that the concentrated oxygen is being operated in an intermittent supply state by breathing synchronization. There is also a model provided with an operation indicator provided for informing a patient by blinking in synchronization with respiration.

以上のように操作パネル305に配置された各操作部は使用上の安全性および高齢者の使用を前提として必要最小限度の操作で主な機能を全て操作できる。具体的には、表示部204の電池残量表示部は、電源オンで約2秒間全点灯する。その後に、内蔵電池228または外部充電式電池の残量が100%であると、発光LEDを内蔵したランプが緑色に点灯(連続して光る)するとともに、複数段階(例えば、5段階)の表示部の全てが点灯表示される。また、電池残量が満充電に対して所定割合(例えば、20%)減る度に、順次消灯するとともに点灯数が次第に少なくなり、残り1つの点灯状態になるとオレンジ色等の注意色で点灯して、内蔵のブザーまたは音声ガイドで警告できるように構成されている。   As described above, each of the operation units arranged on the operation panel 305 can operate all main functions with minimum necessary operations on the premise of safety in use and use by the elderly. Specifically, the remaining battery capacity display section of the display section 204 is fully lit for about 2 seconds when the power is turned on. After that, if the remaining amount of the internal battery 228 or the external rechargeable battery is 100%, the lamp with the built-in light-emitting LED lights in green (continuously shines) and displays in multiple levels (for example, 5 levels) All the parts are lit up. In addition, each time the remaining battery level is reduced by a predetermined percentage (for example, 20%) with respect to full charge, the lights are turned off sequentially and the number of lights is gradually reduced. And can be alerted with a built-in buzzer or voice guide.

そして、充電式電池の残量が満充電に対して所定割合の例えば10%以下になると発光LEDを内蔵したランプが赤色等の警報色に間欠的に光るように点滅するとともに、所定間隔、例えば、5分おきに内蔵のブザーまたは音声ガイドでその旨を警告するようにして、特に外出時や停電時における電池駆動モードでの使用上の安全性を確保している。なお、内蔵電池228と外部充電式電池の電池残量表示部を、内蔵電池228と外部充電式電池のそれぞれに対応するように別々に表示し、視認しやすいようにしてもよい。   Then, when the remaining amount of the rechargeable battery becomes 10% or less of a predetermined ratio with respect to the full charge, the lamp incorporating the light emitting LED blinks so as to shine intermittently in an alarm color such as red, and at a predetermined interval, for example, A warning is provided with a built-in buzzer or voice guide every 5 minutes, ensuring safety in use in the battery drive mode especially when going out or during a power failure. Note that the remaining battery capacity display portions of the internal battery 228 and the external rechargeable battery may be displayed separately so as to correspond to the internal battery 228 and the external rechargeable battery, respectively, so that they can be easily viewed.

また、警報表示部には「点検」の文字を印刷しておき、酸素濃度が低下したときに内蔵のランプが点灯して知らせるようにしても良い。また装置側の異常発生時にはブザーも鳴り音声ガイドとともに知らせるようにしても良い。また、停電で装置が停止したときには、点滅して知らせる一方で、ブザーおよび音声ガイドで特に視覚障害者に対して確実に知らせることができるようにしても良い。また、酸素ランプは、酸素が正常に酸素吸入されているときには内蔵のLEDが緑色に点灯する。また、酸素が出ていないときあるいは酸素濃度が低下したときには消灯する。そして、同調モード(呼吸同調モード)で、一定時間、例えば30秒程度呼吸状態を検出できなかった時に警報色である赤色に点灯し、ブザーを鳴らすとともに音声ガイドで知らせるようにしても良い。   In addition, “inspection” may be printed on the alarm display unit so that a built-in lamp is turned on when the oxygen concentration is lowered. Further, when an abnormality occurs on the apparatus side, a buzzer may sound and be notified with a voice guide. In addition, when the apparatus stops due to a power failure, while blinking and informing, it may be possible to be surely informed to a visually handicapped person with a buzzer and a voice guide. In the oxygen lamp, the built-in LED is lit in green when oxygen is normally inhaled. Further, the light is turned off when oxygen is not emitted or when the oxygen concentration is lowered. Then, in the synchronization mode (breathing synchronization mode), when the respiratory state cannot be detected for a certain time, for example, about 30 seconds, it may be lit in red as an alarm color, and a buzzer may be sounded and notified by a voice guide.

また、吸気に同期して濃縮酸素供給を行う同調モードで運転中の場合にはその旨を患者に視認させるために呼吸パターン(酸素出力)に実質的に同期して緑色に点灯または点滅して知らせるようにして、患者は正常に濃縮酸素が供給されていることを確認できるようにしても良い。   In addition, when driving in a synchronized mode in which concentrated oxygen is supplied in synchronization with inspiration, the indicator lights up or blinks in green substantially in synchronization with the breathing pattern (oxygen output) in order to make the patient visually recognize that fact. As a notification, the patient may be able to confirm that concentrated oxygen is being supplied normally.

一方、電源スイッチ306をオンすると、ブザーが鳴り、全てのランプが2秒間緑色に点灯する初期セルフチェックを行い、電池駆動モードで使用するときには、その後に5段階の表示部において残量に応じて点灯表示しても良い。患者は医師の処方にしたがって酸素流量設定ボタン308の増減操作を行い、所定流量に設定すると酸素供給が開始されることとなる。なお、通常に酸素濃縮装置300を停止させた場合には、一時記憶装置に前回の動作条件(酸素流量、同調モードの有無)が記憶されることとなる。このため、初期セルフチェックの後に、酸素流量設定ボタン308を押さない場合には、自動的に前回の動作条件で濃縮酸素の供給を行なうように構成されている。なお、その旨(前回と同一動作条件等)を音声ガイドで合わせて知らせるようにしても良い。停止時に電源スイッチ306をオフすると、酸素ランプも消灯し、しばらくの間、運転ランプが点滅した後に自動的に終了するようにしても良い。   On the other hand, when the power switch 306 is turned on, an initial self-check is performed in which a buzzer sounds and all the lamps are lit green for 2 seconds. It may be lit. The patient performs an increase / decrease operation of the oxygen flow rate setting button 308 in accordance with the doctor's prescription, and the oxygen supply is started when the predetermined flow rate is set. In addition, when the oxygen concentrator 300 is normally stopped, the previous operation conditions (oxygen flow rate, presence / absence of the synchronization mode) are stored in the temporary storage device. For this reason, if the oxygen flow rate setting button 308 is not pressed after the initial self-check, the concentrated oxygen is automatically supplied under the previous operating conditions. Note that the fact (the same operating condition as the previous time) may be notified by voice guidance. When the power switch 306 is turned off at the time of stop, the oxygen lamp is also turned off, and the operation lamp may be automatically terminated after blinking for a while.

<酸素濃縮装置300の流路配管およびブロック図の説明>
図3は、酸素濃縮装置300のブロック図を兼ねて図示した流路配管図、図4は、コンプレッサ1の配管系統の詳細の模式図、図5は、コンプレッサ1の上部ハウジング3、下部ハウジング4内のマニホルド(配管系統)の詳細図である。
<Explanation of flow path piping and block diagram of oxygen concentrator 300>
3 is a flow path piping diagram that also serves as a block diagram of the oxygen concentrator 300, FIG. 4 is a schematic diagram of details of the piping system of the compressor 1, and FIG. 5 is an upper housing 3 and a lower housing 4 of the compressor 1. It is a detailed view of the inside manifold (piping system).

図3〜図5において、既に説明済みの構成部品については同様の符号を附して説明を割愛すると、図中の二重線は空気、酸素、窒素ガスの流路となる配管24であり、概ね配管24a〜24lで示されている。また、細い実線は電源供給または電気信号の配線を示している。なお、図4において破線で示している配管24c、24h、24i、24j、24k、24lは、実際は、いずれも図5に示すようにマニホルドで形成されているため、チューブ、金属パイプ等は用いられていない。   In FIG. 3 to FIG. 5, component parts that have already been described are denoted by the same reference numerals and description thereof is omitted, and the double line in the figure is a pipe 24 serving as a flow path for air, oxygen, and nitrogen gas, Generally indicated by the pipes 24a to 24l. A thin solid line indicates power supply or electric signal wiring. Note that the pipes 24c, 24h, 24i, 24j, 24k, and 24l shown by broken lines in FIG. 4 are actually formed of manifolds as shown in FIG. 5, so tubes, metal pipes, and the like are used. Not.

ここで、以下の説明では、コンプレッサ1として圧縮空気発生部1aと減圧空気発生部1bとフィルタ組立体7と消音器6とを一体化構成したものを用いる場合について述べる。また、外気を吸気口302a、フィルタ320を介して内部に導入し、排気口302bを介して外部に排出する主筐体302については密閉容器として図中において概ね破線で図示されている。   Here, in the following description, a case where a compressor 1 in which a compressed air generator 1a, a decompressed air generator 1b, a filter assembly 7, and a silencer 6 are integrated is described. In addition, the main housing 302 that introduces outside air into the inside through the air inlet 302a and the filter 320 and discharges it outside through the air outlet 302b is shown as a hermetically sealed container in FIG.

図3において、導入空気の流れに沿って順次述べる。主筐体302の内部に吸気口302a、フィルタ320を介して原料空気が導入された後にフィルタ組立体7を備えた加圧吸入タンク7aに矢印F方向に導入される。濾過された原料空気は、マニホルドとして形成された配管24iを経てコンプレッサ1の加圧室1aに入る。   In FIG. 3, description will be made sequentially along the flow of the introduced air. After the raw material air is introduced into the main housing 302 through the air inlet 302a and the filter 320, it is introduced into the pressurized suction tank 7a provided with the filter assembly 7 in the direction of arrow F. The filtered raw material air enters the pressurizing chamber 1a of the compressor 1 through a pipe 24i formed as a manifold.

次に、原料空気はコンプレッサ1の加圧室1aで加圧された圧縮空気となるが、このとき温度上昇した状態でマニホルドとして形成された配管24j、加圧バッファタンク7bを経て配管24cに送り出されるので、好ましくはこの配管24cを放熱効果に優れた上記の放熱管55に接続し、コンプレッサ1全体を冷却するための送風ファン330からの送風を利用して冷却するように設けられている。このように圧縮空気を冷却することで、高温では機能低下してしまう吸着剤であるゼオライトが窒素の吸着により酸素を生成するための吸着剤として十分に機能できるようになるので、酸素を90%程度以上にまで濃縮できることとなる。   Next, the raw material air becomes compressed air pressurized in the pressurizing chamber 1a of the compressor 1. At this time, the temperature rises and is sent to the pipe 24c through the pipe 24j formed as a manifold and the pressurized buffer tank 7b. Therefore, the pipe 24c is preferably connected to the heat radiating pipe 55 having an excellent heat radiating effect, and is cooled by using the air blown from the blower fan 330 for cooling the compressor 1 as a whole. By cooling the compressed air in this way, zeolite, which is an adsorbent whose function is reduced at high temperatures, can sufficiently function as an adsorbent for generating oxygen by adsorption of nitrogen. It can be concentrated to a degree or more.

次に、圧縮空気は、配管24dを介して縦方向に並列に2本分が上記のように配置された第1吸着筒体108aと第2吸着筒体108bに対して交互に供給されることになる。また、減圧空気は配管24h、減圧バッファタンク6b、マニホルドとして形成された配管24kを介して減圧空気発生部1bに導入される。このため切換弁である3方向切換弁109a、109bが図示のように接続されている。これらの3方向切換弁109a、109bと、さらに第1吸着筒体108aと第2吸着筒体108bの不要ガスを脱離させるための浄化工程を行うために、3方向切換弁109a、109bに対して配管24fが図示のように接続されている。また、配管24fの下流側はコンプレッサ1の減圧空気発生部1bに接続されており、この減圧空気発生部1bには、マニホルドとして形成された配管24lを経て、排気時の消音を行い排気口302bから外部への排気を行うための消音器6を備えた減圧排気タンク6aが接続されている。   Next, the compressed air is alternately supplied to the first adsorption cylinder body 108a and the second adsorption cylinder body 108b arranged as described above in parallel in the vertical direction via the pipe 24d. become. Further, the decompressed air is introduced into the decompressed air generating unit 1b through the piping 24h, the decompression buffer tank 6b, and the piping 24k formed as a manifold. For this reason, the three-way switching valves 109a and 109b, which are switching valves, are connected as shown in the figure. In order to perform a purification process for desorbing unnecessary gases from these three-way switching valves 109a and 109b and the first and second adsorption cylinders 108a and 108b, the three-way switching valves 109a and 109b A pipe 24f is connected as shown. Further, the downstream side of the pipe 24f is connected to a reduced pressure air generating part 1b of the compressor 1, and the reduced pressure air generating part 1b is silenced during exhaust through a pipe 24l formed as a manifold, and the exhaust port 302b. A decompression exhaust tank 6a having a silencer 6 for exhausting air from the outside to the outside is connected.

以上の第1吸着筒体108aと第2吸着筒体108b内に夫々貯蔵されている触媒吸着剤であるゼオライトは、Si203/Al2O3比が2.0〜3.0であるX型ゼオライトであり、かつこのAl2O3の四面体単位の少なくとも88%以上をリチウムカチオンと結合させたものを用いることで、単位重量当たりの窒素の吸着量を増やせるようにしている。特に1mm未満の顆粒測定値を有するとともに、四面体単位の少なくとも88%以上をリチウムカチオンと融合させたものが好ましい。   The zeolite which is the catalyst adsorbent stored in the first adsorption cylinder 108a and the second adsorption cylinder 108b, respectively, is an X-type zeolite having a Si203 / Al2O3 ratio of 2.0 to 3.0, In addition, the amount of nitrogen adsorbed per unit weight can be increased by using at least 88% or more of the tetrahedral unit of Al2O3 combined with a lithium cation. In particular, a granule measurement value of less than 1 mm and a fusion of at least 88% or more of tetrahedral units with a lithium cation are preferred.

このようなゼオライトを使用することで、同じ酸素を生成するために必要となる原料空気の使用量を削減できるようになる。この結果、圧縮空気と減圧空気とを発生するためのコンプレッサ1をより小型のタイプとすることができ、一層の低騒音化を図ることができる。   By using such a zeolite, it becomes possible to reduce the amount of raw material air required to produce the same oxygen. As a result, the compressor 1 for generating the compressed air and the decompressed air can be of a smaller type, and further noise reduction can be achieved.

一方、第1吸着筒体108aと第2吸着筒体108bの上方の出口側には逆止弁と、絞り弁と開閉弁とからなる均等圧弁107が図示のように分岐接続されている。また、均等圧弁107の下流側には、合流する配管24wが接続されており、分離生成された90%程度以上の濃度の酸素を貯蔵するための容器となる製品タンク111が、図示のように配管24に接続されている。また、各吸着筒体内の圧力を検出する不図示の圧力センサが配管されている。   On the other hand, an equal pressure valve 107 including a check valve, a throttle valve, and an on-off valve is branched and connected to the outlet side above the first adsorption cylinder 108a and the second adsorption cylinder 108b as shown in the figure. Further, a pipe 24w to be joined is connected to the downstream side of the equal pressure valve 107, and a product tank 111 serving as a container for storing the separated and produced oxygen having a concentration of about 90% or more is shown in the figure. It is connected to the pipe 24. Further, a pressure sensor (not shown) for detecting the pressure in each adsorption cylinder is provided.

この製品タンク111の下流側には、出口側の酸素の圧力を一定に自動調整する所謂レギュレータである圧力調整器112が配管されている。この圧力調整器112の下流側には、ジルコニア式あるいは超音波式の酸素濃度センサ114が配管24eを介して接続されており、酸素濃度の検出を間欠(10〜30分毎)または連続で行うようにしている。この下流側には上記の酸素流量設定ボタン308に連動して開閉する比例開度弁115が接続されており、その下流側には酸素流量センサ116がさらに接続されている。またこのセンサ116の下流には呼吸同調制御のための減圧空気回路基板を介してデマンド弁117が接続されており、滅菌フィルタ119を経て、酸素濃縮装置300の酸素出口307対して接続されている。以上の構成により、鼻カニューレ314等を経て患者に対する最大流量5L/分で約90%程度以上に濃縮された酸素の吸入が可能になる。   On the downstream side of the product tank 111, a pressure regulator 112, which is a so-called regulator that automatically adjusts the pressure of oxygen on the outlet side to be constant, is piped. A zirconia type or ultrasonic type oxygen concentration sensor 114 is connected to the downstream side of the pressure regulator 112 via a pipe 24e, and the oxygen concentration is detected intermittently (every 10 to 30 minutes) or continuously. I am doing so. A proportional opening valve 115 that opens and closes in conjunction with the oxygen flow rate setting button 308 is connected to the downstream side, and an oxygen flow rate sensor 116 is further connected to the downstream side. A demand valve 117 is connected downstream of the sensor 116 via a reduced pressure air circuit board for breathing synchronization control, and is connected to an oxygen outlet 307 of the oxygen concentrator 300 through a sterilization filter 119. . With the above configuration, it is possible to inhale oxygen concentrated to about 90% or more through the nasal cannula 314 and the like at a maximum flow rate of 5 L / min.

次に、電源系統は、AC(商用交流)電源を所定直流電圧に整流するスイッチングレギュレータ式のACアダプタ319に接続されたAC電源のコネクタ130を中継して接続されるACアダプタ319と、主筐体302の底部に内蔵される内蔵電池228と、上記のコネクタ131を介して着脱自在可能に設けられる外部電池227と電源制御回路226から構成されている。内蔵電池228および外部電池227は、繰り返し充電可能な2次電池であり、内蔵電池228は電源制御回路226からの電力供給を受けて充電される。なお、内蔵電池228は、少なくとも500回(数100回程度)程度の繰り返し充放電が可能で、電池残量、使用充放電サイクル数、劣化程度、出力電圧等のマネジメント機能を有するものが使用され、電池残量、残充電容量、充放電回数を外部の携帯端末などで確認可能なマネジメント機能を有するものが好ましい。また、外部電池227については、コネクタ131を介する接続状態において、電源制御回路226からの電力供給を受けて充電することもできるが、通常は別途準備される電池充電器を用いて繰り返し充電されることになる。または、専用設計された電池充電器を一体化した外部電池227として準備しても良い。   Next, the power supply system includes an AC adapter 319 connected via an AC power connector 130 connected to a switching regulator type AC adapter 319 that rectifies an AC (commercial AC) power supply to a predetermined DC voltage, and a main housing. A built-in battery 228 built in the bottom of the body 302, an external battery 227 detachably provided via the connector 131, and a power supply control circuit 226 are included. The built-in battery 228 and the external battery 227 are rechargeable secondary batteries, and the built-in battery 228 is charged by receiving power from the power supply control circuit 226. The built-in battery 228 can be repeatedly charged and discharged at least about 500 times (several hundreds times) and has a management function such as the remaining battery capacity, the number of charge / discharge cycles used, the degree of deterioration, and the output voltage. It is preferable to have a management function capable of confirming the remaining battery capacity, remaining charge capacity, and number of charge / discharge cycles with an external portable terminal. In addition, the external battery 227 can be charged by receiving power from the power supply control circuit 226 in a connected state via the connector 131, but is normally repeatedly charged using a separately prepared battery charger. It will be. Or you may prepare as the external battery 227 which integrated the battery charger designed exclusively.

以上の電源系統の構成において、酸素濃縮装置300はACアダプタ319からの電力供給を受けて作動する第1電力供給状態と、内蔵電池228からの電力供給を受けて作動する第2電力供給状態と、外部電池からの電力供給を受けて作動する第3電力供給状態との3系統の電力供給状態の内の一つに自動切換えされて使用される。   In the configuration of the power supply system described above, the oxygen concentrator 300 is operated by receiving power from the AC adapter 319, and is operated by receiving power from the built-in battery 228. The power supply state is automatically switched to one of three power supply states, ie, a third power supply state that operates by receiving power supply from an external battery.

この自動切換えのための優先順位は上記の第1電力供給状態、第3電力供給状態、第2電力供給状態の順序で自動決定するように中央制御部200により電源制御回路226が制御される。また、電源制御回路226には、IDタグコード識別回路がさらに接続される場合があり、携帯時に充電式電池切れとなる事態を防止できるようにしている。すなわち、携帯時に充電式電池切れとなる事態を防止するためには、複数の充電式電池228を接続すると良いが、このように複数の電池を接続すると電源切替の手段が複雑になるし、また個別に電力消費をモニタすることができなくなる。   The power supply control circuit 226 is controlled by the central controller 200 so that the priority for this automatic switching is automatically determined in the order of the first power supply state, the third power supply state, and the second power supply state. In addition, an ID tag code identification circuit may be further connected to the power supply control circuit 226 so that a situation where the rechargeable battery runs out when being carried can be prevented. That is, in order to prevent a situation where the rechargeable battery runs out when being carried, it is preferable to connect a plurality of rechargeable batteries 228. However, connecting a plurality of batteries in this way complicates the means for switching the power source. It becomes impossible to monitor power consumption individually.

そこで複数の充電式電池228、...228の内で、放電済の電池からフル充電された充電式電池に自動的に切り換える制御を可能にするために個別に識別IDタグコード及び充電状態検出手段を設けておき、放電済の電池を確認可能にしてフル充電された電池に切り換えるようにしている。さらにまた、電池使用したい時間に合致させて、接続する電池の数を自由に選択し、利便性を高めるようにしている。   Therefore, among a plurality of rechargeable batteries 228,... 228, an identification ID tag code and a charge state detection are individually performed to enable control to automatically switch from a discharged battery to a fully charged rechargeable battery. Means are provided so that a discharged battery can be confirmed and switched to a fully charged battery. Furthermore, the number of batteries to be connected is freely selected according to the time when the battery is desired to be used, thereby improving convenience.

さらに内蔵の内蔵電池228については酸素濃縮装置300の低重心化を図るために底面に配設される。一方、外部電池227は例えば患者の衣類のポケット内に収容しておき、適宜接続することで外出時などで使用することが可能になる。この外部電池227には上記の充電残量表示部が設けられているので残り使用時間を音声ガイドとともに知ることができる。   Further, the built-in battery 228 is disposed on the bottom surface in order to lower the center of gravity of the oxygen concentrator 300. On the other hand, the external battery 227 is housed in, for example, a pocket of a patient's clothing, and can be used when going out by connecting it appropriately. Since the external battery 227 is provided with the remaining charge display section, the remaining usage time can be known together with the voice guide.

ACアダプタ319は、周波数の違いの影響および電圧の変動を受けずに所定直流電圧を発生することが可能であり、かつまた小型軽量に構成できるスイッチングレギュレータ式が良いが、通常のシリーズ式でも良い。また、内蔵電池228および外部電池227は充電時のメモリ効果が少なく再充電時にも満杯充電できるリチウムイオン、リチウム水素イオン2次電池が良いが、従来からのニッカド電池やニッケル水素電池でも良い。さらに、緊急時に備えて、どこでも入手可能な単2乾電池のボックスとして外部電池を構成しても良いことになる。   The AC adapter 319 is preferably a switching regulator type that can generate a predetermined DC voltage without being affected by the difference in frequency and voltage fluctuation, and can be configured to be small and light, but may also be a normal series type. . In addition, the internal battery 228 and the external battery 227 are preferably lithium ion or lithium hydrogen ion secondary batteries that have little memory effect during charging and can be fully charged even during recharging, but may be conventional nickel cadmium batteries or nickel metal hydride batteries. Further, in preparation for an emergency, the external battery may be configured as a box of AA dry batteries available anywhere.

また、中央制御部200は、生成する酸素量に応じた、最適な動作モードに切り替えるプログラムが記憶されており、多くの酸素生成をする場合は自動的にコンプレッサ1、送風ファン330を高速駆動し、少ない酸素生成時の場合には低速に回転駆動する制御を行うモータ制御部201、ファンモータ制御部を介して夫々行うことで、特に、内蔵電池228を温存させるようにしている。この結果、外部電池227を充電し忘れた場合であっても突然の外出時や停電時等の対応が可能になる。   The central control unit 200 stores a program for switching to an optimal operation mode according to the amount of oxygen to be generated. When generating a large amount of oxygen, the central control unit 200 automatically drives the compressor 1 and the blower fan 330 at high speed. In the case of generating a small amount of oxygen, the built-in battery 228 is particularly conserved by performing the control through the motor control unit 201 and the fan motor control unit that perform the rotational drive at a low speed. As a result, even when the external battery 227 is forgotten to be charged, it is possible to cope with sudden outings or power outages.

この中央制御部200には所定動作プログラムを記憶したROMが内蔵されるとともに、外部記憶装置210と、揮発メモリと一時記憶装置とリアルタイムクロックからなる回路207がさらに接続されており、外部コネクタ133を介して通信回線などと接続することで記憶内容へのアクセスが可能となるように構成されている。   The central control unit 200 incorporates a ROM that stores a predetermined operation program, and is further connected to an external storage device 210, a circuit 207 including a volatile memory, a temporary storage device, and a real-time clock. The stored contents can be accessed by connecting to a communication line or the like via the communication line.

また、上記の3方向切換弁109a、109bと均等圧弁107とをオンオフ制御することで、第1吸着筒体108aと第2吸着筒体108b内の不要ガスを脱離させるように制御する制御回路と、上記の酸素濃度センサ114と比例開度弁115と、流量センサ116とデマンド弁117とを駆動制御する流量制御部202が中央制御部200に接続されている。   In addition, a control circuit that controls to desorb unnecessary gas in the first adsorption cylinder body 108a and the second adsorption cylinder body 108b by performing on / off control of the three-way switching valves 109a and 109b and the equal pressure valve 107. The flow rate control unit 202 that drives and controls the oxygen concentration sensor 114, the proportional opening valve 115, the flow rate sensor 116, and the demand valve 117 is connected to the central control unit 200.

総重量が約400gのコンプレッサ1は、モータ制御部201に内蔵される可変速度制御部により正弦波駆動波形でアウターロータ式の電動モータ2を含む直流モータの駆動制御が行われることで運転音を低くしている。このコンプレッサ1は、各速度で運転可能であって、必要な圧縮空気の圧力レベルと流量を発生でき、僅かな騒音と振動しか出さず、僅かな熱しか発生せず、小型軽量であって僅かな電力消費で運転できるように構成されている。   The compressor 1 having a total weight of about 400 g is driven by a variable speed control unit built in the motor control unit 201 so that the driving sound of the DC motor including the outer rotor type electric motor 2 is controlled with a sinusoidal drive waveform. It is low. The compressor 1 can be operated at various speeds, can generate the necessary pressure level and flow rate of compressed air, generates only a little noise and vibration, generates only a little heat, is small and light, and has a little It is configured so that it can be operated with sufficient power consumption.

また、可変速度制御手段である可変速度制御器をモータ制御部201に備えることにより、患者の活動レベル、環境条件に基づいてコンプレッサ1の回転駆動速度を自在に変化させることができる。この結果、患者が座ったり、寝たりしている等、患者の酸素要求が比較的低いことがデマンド弁117によって呼吸同調に基づき判断されると、コンプレッサ1の駆動回転速度を自動的に落とすことができる。また、患者が立ったり、活動的であったり、後述するように酸素濃度の低い高地にいることがGPSで判断されたときなど、患者の酸素要求が比較的高く、酸素要求量が高まったと判断されると、回転速度を自動的に高めることができるように構成されている。   Further, by providing the motor control unit 201 with a variable speed controller that is a variable speed control means, the rotational drive speed of the compressor 1 can be freely changed based on the activity level and environmental conditions of the patient. As a result, when the demand valve 117 determines that the patient's oxygen demand is relatively low, such as when the patient is sitting or sleeping, based on respiratory synchronization, the drive rotational speed of the compressor 1 is automatically reduced. Can do. Also, the patient's oxygen demand is relatively high and the oxygen demand is increased, such as when the patient is standing, active, or when GPS determines that the patient is at a high altitude with a low oxygen concentration, as will be described later. If so, the rotational speed can be automatically increased.

以上のようなモータ制御によって装置300全体の消費電力が低減され、充電式電池での駆動時の寿命を延ばすことが可能になるとともに、充電式電池の重量と大きさを軽減し、コンプレッサ1の摩耗度を低めて寿命を延ばすことで信頼性を向上できる二次的効果を得ることも可能になる。   With the motor control as described above, the power consumption of the entire apparatus 300 is reduced, and it is possible to extend the life when driven by a rechargeable battery, while reducing the weight and size of the rechargeable battery. By reducing the degree of wear and extending the life, it is possible to obtain a secondary effect that can improve reliability.

このコンプレッサ1は、上記のように圧縮空気発生と減圧空気発生の機能を備えるものであり、取り出される酸素流量に応じて回転数が自動制御され、回転速度が500rpmから3000rpmの間で制御される。また、このコンプレッサ1は、空気を最大で150kPa程度にまで圧縮する性能を備えている。   This compressor 1 has functions of generating compressed air and generating reduced pressure air as described above, and the rotation speed is automatically controlled according to the oxygen flow rate to be taken out, and the rotation speed is controlled between 500 rpm and 3000 rpm. . The compressor 1 has a performance of compressing air up to about 150 kPa.

このコンプレッサ1を取り巻く操作温度は、0℃〜40℃であり、コンプレッサ1の駆動電圧は、自動車やトラックなどのシガーライターアダプタから得られる電源である直流12Vまたは24Vであって、電力使用量は、約30W程度である。このため、最悪の場合にはコネクタ131に接続して電源供給することもできる。また、上記の送風ファン330は、消費電力約3W程度であり、濃縮酸素流量に応じて回転数が変動し、騒音の低下、電力の低減に貢献するように構成されている。   The operating temperature surrounding this compressor 1 is 0 ° C. to 40 ° C., and the driving voltage of the compressor 1 is DC 12V or 24V which is a power source obtained from a cigarette lighter adapter such as an automobile or a truck, and the power consumption is , About 30W. For this reason, in the worst case, the power can be supplied by connecting to the connector 131. In addition, the blower fan 330 has a power consumption of about 3 W, and the number of revolutions varies according to the concentrated oxygen flow rate, and is configured to contribute to noise reduction and power reduction.

3方向切換弁109a、109bとしては、一般的に直動式と呼ばれる弁の動作を通電時の磁力で行う電磁弁が使用可能である。この種の電磁弁は電気の力だけで主弁を動作させるため消費電力が高いという問題点がある。そこで、3方向切換弁109a、109bとしてパイロット式3方向切換弁を使用することもできる。このパイロット式3方向切換弁によれば、僅かな消費電力とコンプレッサ1からの空気圧を有効利用して動作させることが出来るために、従来の8Wから0.5Wにまで低減されるので大幅な電力低減が図れることになる。   As the three-way switching valves 109a and 109b, electromagnetic valves that perform a valve operation generally called a direct acting type by a magnetic force during energization can be used. This type of solenoid valve has a problem of high power consumption because the main valve is operated only by electric power. Therefore, a pilot-type three-way switching valve can be used as the three-way switching valves 109a and 109b. According to this pilot-type three-way switching valve, since it can be operated by using a little power consumption and the air pressure from the compressor 1, it is reduced from the conventional 8W to 0.5W, so that a large amount of power is consumed. Reduction can be achieved.

以上の各構成部品は、低騒音化された酸素濃縮装置300の組立作業性および点検整備性の向上を配慮して図2に図示したように一方向から主に主筐体302をその取り付け部として固定できるように設計されている。すなわち、各種制御基板と、上記のように酸素の圧力を一定に自動調整する圧力調整器112と、圧力調整器112の下流側の酸素濃度センサ114と比例開度弁115と、酸素流量センサ116と呼吸同調制御のための減圧空気回路基板118に接続されるデマンド弁117を、全て一方向から固定できるように構成されている。特に振動または騒音発生の伴う構成部品は防音室303の内部において防音状態かつ防振状態で設けることで、圧縮空気の供給音と、外部空気の導入音と、原料空気を作るための濾過空気の導入音と周期的に発生する排気音が外部に漏れないようにして騒音低減を図っている。また、3方向切換弁の作動音は上記のように防音シート311で覆うことで防音している。さらに主筐体302は、その吸気口302aを介して内部に導入し、排気口302bを介して外部に排出する必要最小限の開口を備えた密閉カバーとして構成されることから、さらなる騒音低減を図ることが可能になる。   Each of the above-described components is mainly attached to the main casing 302 from one direction as shown in FIG. 2 in consideration of improvement in assembly workability and serviceability of the oxygen concentrator 300 with reduced noise. Designed to be fixed as. That is, various control boards, the pressure regulator 112 that automatically adjusts the oxygen pressure to be constant as described above, the oxygen concentration sensor 114, the proportional opening valve 115 on the downstream side of the pressure regulator 112, and the oxygen flow rate sensor 116. All the demand valves 117 connected to the reduced pressure air circuit board 118 for breathing synchronization control can be fixed from one direction. In particular, components that generate vibration or noise are provided in the soundproof room 303 in a soundproof and vibration-proof state so that compressed air supply sound, external air introduction sound, and filtered air for producing raw air can be obtained. Noise is reduced by preventing the introduction sound and the periodically generated exhaust sound from leaking outside. Further, the operation sound of the three-way switching valve is soundproofed by covering with the soundproof sheet 311 as described above. Further, the main casing 302 is configured as a hermetic cover having a minimum necessary opening that is introduced into the inside through the air inlet 302a and discharged to the outside through the air outlet 302b, thereby further reducing noise. It becomes possible to plan.

<コンプレッサ1の構成>
図6は、コンプレッサ1の外観斜視図である。本図において、上面左側にフィルタ組立体7を備えた加圧吸入タンク7a、その右側には真空ヘッド9が通しボルト40、40及び不図示のナットとネジを用いて固定されている。下面左側には加圧タンク7bが上部ハウジング3、下部ハウジング4を挟んで加圧吸入タンク7aと対向して通しボルト40、40及び不図示のナットとネジを用いて固定されている。下面右側には真空ヘッド9が上部ハウジング3、下部ハウジング4を挟んで上部の真空ヘッド9と対向して通しボルト40、40及び不図示のナットとネジを用いて固定されている。
<Configuration of compressor 1>
FIG. 6 is an external perspective view of the compressor 1. In this figure, a pressurized suction tank 7a having a filter assembly 7 on the left side of the upper surface, and a vacuum head 9 is fixed to the right side thereof with through bolts 40 and 40 and nuts and screws (not shown). On the left side of the lower surface, a pressurized tank 7b is fixed by using through bolts 40 and 40 and nuts and screws (not shown) so as to face the pressurized suction tank 7a across the upper housing 3 and the lower housing 4. On the right side of the lower surface, a vacuum head 9 is fixed by using through bolts 40 and 40 and nuts and screws (not shown) so as to face the upper vacuum head 9 across the upper housing 3 and the lower housing 4.

また、手前側面左側には加圧ヘッド8、手前側面右側には排気マフラ(消音器)6を備えた真空排気タンク6aが通しボルト40、40及び不図示のナットとネジを用いて固定されている。向こう側面左側には加圧ヘッド8が手前側面左側には加圧ヘッド8と対向して通しボルト40、40及び不図示のナットとネジを用いて固定されている。また、向こう側面右側には真空吸入タンク6bが真空排気タンク6aと対向して通しボルト40、40及び不図示のナットとネジを用いて固定されている。こうして、コンプレッサを水平対向2筒式として、配管マニホルドと吸気フィルタと排気マフラとを一体化した構造となっている。     A vacuum exhaust tank 6a having a pressure head 8 on the left side of the front side and an exhaust muffler (silencer) 6 on the right side of the front side is fixed using through bolts 40 and 40 and nuts and screws (not shown). Yes. The pressure head 8 is fixed to the left side of the opposite side surface by using through bolts 40 and 40 and nuts and screws (not shown) facing the pressure head 8 on the left side of the front side surface. A vacuum suction tank 6b is fixed to the right side of the other side using through bolts 40 and 40 and nuts and screws (not shown) so as to face the vacuum exhaust tank 6a. In this way, the compressor is a horizontally opposed two-cylinder type, and the piping manifold, the intake filter, and the exhaust muffler are integrated.

コンプレッサ1は、減圧空気を発生する減圧室1bと、圧縮空気を発生する加圧室1aと、モータ2で回転駆動される破線図示のクランク軸体11とを備えている。また、クランク軸体11の長手方向に沿う寸法Hを極限まで小さくするとともに、その横断面形状が図示のような正四角形となる上下面と左右面とを有する上部ハウジング3、下部ハウジング4に対して後述の構成部品を取り付けるように構成されている。フィルタ組立体7の内部にはコイル状の焼結体または特殊繊維から形成されたフィルタ部(不図示)を設けられている。   The compressor 1 includes a decompression chamber 1 b that generates decompressed air, a pressurization chamber 1 a that generates compressed air, and a crankshaft body 11 illustrated by a broken line that is rotationally driven by a motor 2. Further, the dimension H along the longitudinal direction of the crankshaft body 11 is made as small as possible, and the upper housing 3 and the lower housing 4 having the upper and lower surfaces and the left and right surfaces whose cross-sectional shape is a regular square as shown in the figure. It is configured to attach the following components. Inside the filter assembly 7 is provided a filter portion (not shown) formed of a coiled sintered body or special fibers.

次に、図7のコンプレッサ1を破線図示の減圧空気ヘッド8とともに示したアイソメトリック図法に基づくスケルトン図を参照して述べる。クランク軸体11の長手方向に直交する両側面となる上部ハウジング3、下部ハウジング4においてラジアル玉軸受の第1の軸受13と第2の軸受14とが固定されており、これらの第1の軸受13と第2の軸受14によりクランク軸体11が回転可能に軸支されている。また、ハウジングの一方の側面でモータ2が固定されており、クランク軸体11の第1の軸受13で軸支された一部をハウジングの外側に延設しており、モータ2の出力軸2aに継手12を介して接続している。また、第2の軸受14の近傍のハウジングの内部には、慣性モーメント部19fを形成したフライホイール19がクランク軸体11に固定されて設けられている。   Next, the compressor 1 of FIG. 7 will be described with reference to a skeleton diagram based on an isometric projection in which the compressor 1 shown in FIG. A first ball bearing 13 and a second ball bearing 14 of radial ball bearings are fixed to the upper housing 3 and the lower housing 4 which are both side surfaces orthogonal to the longitudinal direction of the crankshaft body 11, and these first bearings. The crankshaft 11 is rotatably supported by the 13 and the second bearing 14. Further, the motor 2 is fixed on one side surface of the housing, and a part of the crankshaft 11 that is pivotally supported by the first bearing 13 is extended to the outside of the housing, so that the output shaft 2a of the motor 2 is provided. Are connected via a joint 12. A flywheel 19 having an inertia moment portion 19 f is fixed to the crankshaft 11 inside the housing in the vicinity of the second bearing 14.

以上の構成により、モータ2への通電に伴いトルク変動がフライホイール19で吸収されつつ、クランク軸体11が例えば時計回転方向に連続的に回転駆動される。   With the above configuration, the crankshaft 11 is continuously rotated in the clockwise direction, for example, while the torque fluctuation is absorbed by the flywheel 19 as the motor 2 is energized.

第1のピストン25は、クランク軸体11に設けられた第1の偏心カム(不図示)で第1のコンロッド26で前後方向に往復運動(図で左右方向)し、第1のシリンダ室(不図示)内で案内される。第1のコンロッド26の中心軸(動作軸)はCL2で示している。また、第2のピストン27は、クランク軸体11に設けられた第2の偏心カム(不図示)で第2のコンロッド28で前後方向に往復運動(図で左右方向)し、第2のシリンダ室41c内で案内される。第2のコンロッド28の中心軸(動作軸)はCL3で示している。第1のコンロッド26の中心軸(動作軸)CL2と第2のコンロッド28の中心軸(動作軸)は僅かにずれているが、第1のピストン25と第2のピストン27の中心軸(動作軸)は、共通する第1の中心軸(同一の中心軸)CL1を有している。   The first piston 25 is reciprocated in the front-rear direction (left-right direction in the figure) by the first connecting rod 26 by a first eccentric cam (not shown) provided on the crankshaft body 11, and the first cylinder chamber ( (Not shown). The central axis (operation axis) of the first connecting rod 26 is indicated by CL2. The second piston 27 is reciprocated in the front-rear direction (left-right direction in the figure) by the second connecting rod 28 by a second eccentric cam (not shown) provided on the crankshaft body 11, and the second cylinder 27 Guided in the chamber 41c. The central axis (operation axis) of the second connecting rod 28 is indicated by CL3. Although the central axis (operation axis) CL2 of the first connecting rod 26 and the central axis (operation axis) of the second connecting rod 28 are slightly shifted, the central axes (operations) of the first piston 25 and the second piston 27 are moved. Axis) has a common first central axis (the same central axis) CL1.

第3のピストン29は、クランク軸体11に設けられた第3の偏心カム(不図示)で第3のコンロッド30で上下方向に往復運動し、第3のシリンダ室(不図示)内で案内される。第4のピストン31は、クランク軸体11に設けられた第4の偏心カム(不図示)で第4のコンロッド32で上下方向に往復運動し、第4のシリンダ室(不図示)内で案内される。第3のコンロッド30と第4のコンロッド32の中心軸(動作軸)は僅かにずれているが、第3のピストン29と第4のピストン31の中心軸(動作軸)は、共通する第2の中心軸(同一の中心軸)CL7を持っている。   The third piston 29 is reciprocated in the vertical direction by the third connecting rod 30 by a third eccentric cam (not shown) provided on the crankshaft body 11, and is guided in a third cylinder chamber (not shown). Is done. The fourth piston 31 is reciprocated up and down by a fourth connecting rod 32 by a fourth eccentric cam (not shown) provided on the crankshaft body 11, and is guided in a fourth cylinder chamber (not shown). Is done. Although the central axes (operation axes) of the third connecting rod 30 and the fourth connecting rod 32 are slightly shifted, the central axes (operation axes) of the third piston 29 and the fourth piston 31 are the same as the second axis. Center axis (same central axis) CL7.

以上の第1のピストン25、第2のピストン27、第3のピストン29、第4のピストン31は、同時に圧縮工程、吸気工程を行うようにすることで振動防止を図るようにしている。第1のピストンと一体形成された第1のコンロッド26はクランク軸体11に対してラジアル玉軸受15を介して軸支されている。第2のピストンと一体形成された第2のコンロッド28はクランク軸体11に対してラジアル玉軸受16を介して軸支されている。第3のピストンと一体形成された第3のコンロッド30はクランク軸体11に対してラジアル玉軸受18を介して軸支されている。   The first piston 25, the second piston 27, the third piston 29, and the fourth piston 31 described above are designed to prevent vibration by simultaneously performing a compression process and an intake process. The first connecting rod 26 formed integrally with the first piston is pivotally supported on the crankshaft 11 via a radial ball bearing 15. The second connecting rod 28 formed integrally with the second piston is pivotally supported on the crankshaft 11 via a radial ball bearing 16. The third connecting rod 30 formed integrally with the third piston is pivotally supported on the crankshaft 11 via a radial ball bearing 18.

第4のピストンと一体形成された第4のコンロッド32はクランク軸体11に対してラジアル玉軸受17を介して軸支されている。そして第1のコンロッド26、第2のコンロッド28は、中心軸CL2、中心軸CL3が上記の第1の中心軸CL1から距離A1a分が図示のようにオフセットされている。   The fourth connecting rod 32 formed integrally with the fourth piston is pivotally supported on the crankshaft 11 via a radial ball bearing 17. In the first connecting rod 26 and the second connecting rod 28, the center axis CL2 and the center axis CL3 are offset from the first center axis CL1 by a distance A1a as shown in the figure.

以上の構成により、各第1のピストン25、第2のピストン27の駆動時に発生する第1の中心軸CL1回りの回転モーメントは一切発生しないようにできる。なお、第1のピストン25、第2のピストン27、第3のピストン29、第4のピストン31のストロークは2〜5mm程度であるが、酸素出口307から2〜3L/分の90%以上の高濃度酸素が流れるようにできる。   With the above configuration, it is possible to prevent any rotational moment around the first central axis CL1 that is generated when the first piston 25 and the second piston 27 are driven. The strokes of the first piston 25, the second piston 27, the third piston 29, and the fourth piston 31 are about 2 to 5 mm, but 90% or more of 2-3 L / min from the oxygen outlet 307. High concentration oxygen can flow.

一方、第3のピストン29、第4のピストン31の夫々は上下方向に同じ軸方向に往復運動するようにシリンダ室(不図示)で案内され、第3のピストン29、第4のピストン31が同時に圧縮工程、吸気工程を行うようにしている。第3のピストン29、第4のピストン31に対応するシリンダ室(不図示)のそして第3のコンロッド30の中心軸CL5、第4のコンロッド32の中心軸CL6が上記の共通する第2の中心軸CL7から距離A1b分が図示のようにオフセットされている。このため、第3のピストン29、第4のピストン31の駆動時に発生する共通する第2の中心軸CL7回りの回転モーメントも一切発生しないこととなる。さらに、共通する第1の中心軸CL1と共通する第2の中心軸CL7は90度ずらせて交差している。このため、回転モーメントが水平面の回転モーメントが相殺されることとなる。   On the other hand, each of the third piston 29 and the fourth piston 31 is guided in a cylinder chamber (not shown) so as to reciprocate in the same axial direction in the vertical direction, and the third piston 29 and the fourth piston 31 are At the same time, the compression process and the intake process are performed. The third central axis CL5 of the third piston 29, the cylinder chamber (not shown) corresponding to the fourth piston 31, and the third connecting rod 30 and the central axis CL6 of the fourth connecting rod 32 are the above-described second center. The distance A1b is offset from the axis CL7 as shown. For this reason, the rotation moment around the common second central axis CL7 generated when the third piston 29 and the fourth piston 31 are driven is not generated at all. Further, the common first central axis CL1 and the common second central axis CL7 intersect each other with a 90 degree shift. For this reason, the rotational moment cancels the rotational moment of the horizontal plane.

図8は、加圧ヘッド8の要部の立体分解図である。真空ヘッド9についても各リード弁50、51の開閉方向以外には同様に構成される。本図において、既に説明済みの構成または部品については同様の符号を附して説明を割愛すると、下方からシリンダブロック41には、シリンダブロック41と同じ形状にプレス加工された第1のガスケット(不図示)が設けられている。第1のガスケットの上方には、この第1のガスケットと同じ外形形状と同じ穴部を穿設した下方部材43が設けられる。この下方部材43は、板厚1mm前後のステンレス板またはアルミニウム板からプレス加工することができる。この下方部材43には、小穴部43kと大穴部43gが設けられている。   FIG. 8 is a three-dimensional exploded view of the main part of the pressure head 8. The vacuum head 9 is similarly configured except for the opening and closing directions of the reed valves 50 and 51. In this figure, the same reference numerals are given to the components or parts that have already been described, and the description thereof is omitted. From the bottom, the first gasket (not shown) pressed into the cylinder block 41 in the same shape as the cylinder block 41 is applied. (Shown) is provided. A lower member 43 having the same outer shape and the same hole as the first gasket is provided above the first gasket. The lower member 43 can be pressed from a stainless plate or an aluminum plate having a thickness of about 1 mm. The lower member 43 is provided with a small hole portion 43k and a large hole portion 43g.

下方部材43の上には、リード弁部材44が設けられている。このリード弁部材44は、板厚0.3mm以下のステンレス板部材または燐青銅板部材からプレス加工されるとともに、各リード弁50、51はU字形状にその外形が打ち抜かれており破線図示の基部から弾性変形するように形成される。挿通する長ボルト49で組立時に、下方部材43の小穴部43kとリード弁50が同じ位置に、下方部材43の大穴部43gが同じ位置になるように形成されている。   A reed valve member 44 is provided on the lower member 43. The reed valve member 44 is pressed from a stainless steel plate member or phosphor bronze plate member having a plate thickness of 0.3 mm or less, and the respective reed valves 50 and 51 are stamped in a U shape, and the broken line is illustrated. It is formed so as to be elastically deformed from the base. When assembled with the long bolt 49 to be inserted, the small hole portion 43k of the lower member 43 and the reed valve 50 are formed at the same position, and the large hole portion 43g of the lower member 43 is formed at the same position.

このリード弁部材44の上の上方部材45は上記の下方部材43とともにリード弁部材44を上下から挟持するとともに、リード弁51がそれ以上上方に移動することを規制する規制部45kと穴部45gが形成及び穿設されている。挿通するネジで組立時に、上方部材45の小穴部45gとリード弁50が同じ位置に、上方部材45の規制部45kとリード弁51が同じ位置になるように形成されている。   The upper member 45 on the reed valve member 44 sandwiches the reed valve member 44 from above and below together with the lower member 43, and restricts the reed valve 51 from moving further upward and the hole 45g. Is formed and drilled. When assembling with a screw to be inserted, the small hole portion 45g of the upper member 45 and the reed valve 50 are formed at the same position, and the restricting portion 45k of the upper member 45 and the reed valve 51 are formed at the same position.

こうして、小穴部43k、リード弁51、規制部45kが1つの弁として作用する。また、大穴部43g、リード弁50、穴部45gが1つの弁として作用する。上方部材45の上には第2のガスケット(不図示)、さらにその上にヘッドブロック47が設けられ、これらは、それぞれネジ穴41b、43b、44b、45b、47bが設けられており、これらを挿通する長ボルト49を用いて組立てられる。こうして、リード弁、リード弁部材はヘッド独立型の複数のシート弁構造とされている。   In this way, the small hole portion 43k, the reed valve 51, and the restricting portion 45k act as one valve. The large hole portion 43g, the reed valve 50, and the hole portion 45g function as one valve. A second gasket (not shown) is provided on the upper member 45, and a head block 47 is provided thereon, and these are provided with screw holes 41b, 43b, 44b, 45b, 47b, respectively. It is assembled using long bolts 49 to be inserted. Thus, the reed valve and the reed valve member have a plurality of head independent seat valve structures.

図9は、第1のピストン29、31が吸気工程にある状態と、第1のピストン29、31が圧縮・排気工程にある状態を図示した模式図である。吸気工程においては弾性を有するリード弁50が撓み(リード弁51は撓まない)、圧縮・排気工程においては弾性を有するリード弁51が撓む(リード弁50は撓まない)。こうして、第1のピストン29、31が吸気工程にある状態では、リード弁50、51が規制部45kで移動規制されて動作できるようになり圧縮空気と減圧空気を発生できるようになる。   FIG. 9 is a schematic diagram illustrating a state in which the first pistons 29 and 31 are in the intake process and a state in which the first pistons 29 and 31 are in the compression / exhaust process. In the intake process, the elastic reed valve 50 is bent (the reed valve 51 is not bent), and in the compression / exhaust process, the elastic reed valve 51 is bent (the reed valve 50 is not bent). Thus, in a state where the first pistons 29 and 31 are in the intake process, the reed valves 50 and 51 can be operated by being restricted by the restricting portion 45k and can generate compressed air and decompressed air.

(a)は、酸素生成原理を説明する配管図、(b)は、圧縮空気による正圧変動吸着(PSA)と圧縮空気と減圧空気による正負圧変動吸着(VPSA)における圧力変動を時間経過とともに図示した図表、(c)は、正圧変動吸着と正負圧変動吸着における窒素吸着量を時間経過とともに図示した図表である。(a) is a piping diagram explaining the principle of oxygen generation, (b) is a graph showing pressure fluctuations in positive pressure fluctuation adsorption (PSA) by compressed air and positive and negative pressure fluctuation adsorption (VPSA) by compressed air and reduced pressure with time. The illustrated chart (c) is a chart illustrating the amount of nitrogen adsorption in the positive pressure fluctuation adsorption and the positive and negative pressure fluctuation adsorption with time. コンプレッサ1を内蔵した小型酸素濃縮装置300の内部構成を図示するために要部を破断して示した正面図である。It is the front view which fractured | ruptured and showed the principal part, in order to illustrate the internal structure of the small oxygen concentrator 300 incorporating the compressor 1. FIG. 酸素濃縮装置300のブロック図及びマニホルドの模式図である。FIG. 2 is a block diagram of an oxygen concentrator 300 and a schematic diagram of a manifold. コンプレッサ1の配管系統の詳細の模式図である。2 is a schematic diagram showing details of a piping system of the compressor 1. FIG. コンプレッサ1の上部ハウジング3、下部ハウジング4内のマニホルド(配管系統)の詳細図である。2 is a detailed view of a manifold (piping system) in an upper housing 3 and a lower housing 4 of the compressor 1. FIG. コンプレッサ1の外観斜視図である。1 is an external perspective view of a compressor 1. FIG. コンプレッサ1を減圧空気ヘッド8とともに図示したアイソメトリック図法に基づくスケルトン図である。FIG. 2 is a skeleton diagram based on an isometric projection illustrating the compressor 1 together with the reduced pressure air head 8. 加圧ヘッド8の要部の立体分解図である。3 is a three-dimensional exploded view of a main part of the pressure head 8. FIG. (a)は、吸気工程である状態を図示した模式図、(b)は圧縮・排気工程である状態を図示した模式図である。(a) is the schematic diagram which illustrated the state which is an intake process, (b) is the schematic diagram which illustrated the state which is a compression and exhaust process.

符号の説明Explanation of symbols

1 コンプレッサ
2 モータ
3 上部ハウジング
4 下部ハウジング
5 蓋部材
6 排気マフラ(消音器)
7 フィルタ組立体
8 加圧ヘッド
9 真空ヘッド
10 T字管
11 クランク軸体
12 継手
13、14、15、16、17、18 ラジアル玉軸受
19 フライホイール
20 偏心部材
22 配管継手
24 配管
25 第1のピストン
26 第1のコンロッド
27 第2のピストン
28 第2のコンロッド
29 第3のピストン
30 第3のコンロッド
31 第4のピストン
32 第4のコンロッド
40 通しボルト
41 シリンダブロック
43 下方部材
44 リード弁部材
45 上方部材
47 ヘッドブロック
48 皿ネジ
49 通しボルト
50、51 リード弁
52 隔壁
1 Compressor 2 Motor 3 Upper housing 4 Lower housing 5 Cover member 6 Exhaust muffler (silencer)
7 Filter assembly 8 Pressure head 9 Vacuum head 10 T-shaped tube 11 Crankshaft body 12 Joints 13, 14, 15, 16, 17, 18 Radial ball bearing 19 Flywheel 20 Eccentric member 22 Piping joint 24 Piping 25 First Piston 26 First connecting rod 27 Second piston 28 Second connecting rod 29 Third piston 30 Third connecting rod 31 Fourth piston 32 Fourth connecting rod 40 Through bolt 41 Cylinder block 43 Lower member 44 Reed valve member 45 Upper member 47 Head block 48 Countersunk screw 49 Through bolt 50, 51 Reed valve 52 Bulkhead

Claims (2)

1組の第1のピストンと第1の偏心カムと第1のシリンダ室と、1組の第2のピストンと第2の偏心カムと第2のシリンダ室と、1組の第3のピストンと第3の偏心カムと第3のシリンダ室と、1組の第4のピストンと第4の偏心カムと第4のシリンダ室と、を備えたコンプレッサであって、
配管マニホルドと、吸気フィルタと、排気マフラとをさらに一体化したことを特徴とするコンプレッサ。
A set of first pistons, a first eccentric cam, a first cylinder chamber, a set of second pistons, a second eccentric cam, a second cylinder chamber, and a set of third pistons; A compressor comprising a third eccentric cam, a third cylinder chamber, a set of a fourth piston, a fourth eccentric cam, and a fourth cylinder chamber,
A compressor characterized by further integrating a piping manifold, an intake filter, and an exhaust muffler.
圧縮空気となる原料空気を濾過するフィルタ組立体と、圧縮空気中から窒素を選択的に吸着して酸素を生成するゼオライトの吸着剤を収納した一対の吸着筒と、前記吸着筒に対してコンプレッサからの圧縮空気と減圧空気とを交互に供給するように流路を切り換えることで前記吸着剤による前記生成及び浄化を行う切換弁と、前記浄化後の減圧空気の排気時の消音を行う消音器と、前記生成された酸素を貯めておく容器と、前記モータの駆動を含む電力供給を行うための充電式電池と、を備えた酸素濃縮装置であって、
前記コンプレッサは、1組の第1のピストンと第1の偏心カムと第1のシリンダ室と、1組の第2のピストンと第2の偏心カムと第2のシリンダ室と、1組の第3のピストンと第3の偏心カムと第3のシリンダ室と、1組の第4のピストンと第4の偏心カムと第4のシリンダ室とを備え、配管マニホルドと、吸気フィルタと、排気マフラとをさらに一体化したことを特徴とするコンプレッサを用いた酸素濃縮装置。
A filter assembly for filtering raw air to be compressed air, a pair of adsorption cylinders containing an adsorbent of zeolite that selectively adsorbs nitrogen from the compressed air to generate oxygen, and a compressor for the adsorption cylinder A switching valve that performs the generation and purification by the adsorbent by switching the flow path so as to alternately supply compressed air and decompressed air from the air, and a silencer that silences the exhausted decompressed air after the purification And an oxygen concentrator comprising: a container for storing the generated oxygen; and a rechargeable battery for supplying power including driving of the motor,
The compressor includes a set of first pistons, a first eccentric cam, a first cylinder chamber, a set of second pistons, a second eccentric cam, a second cylinder chamber, and a set of first pistons. 3 pistons, a third eccentric cam, a third cylinder chamber, a set of a fourth piston, a fourth eccentric cam, and a fourth cylinder chamber, a pipe manifold, an intake filter, and an exhaust muffler And an oxygen concentrator using a compressor.
JP2008182968A 2008-07-14 2008-07-14 Compressor, and oxygen concentrator using the same Withdrawn JP2010017476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008182968A JP2010017476A (en) 2008-07-14 2008-07-14 Compressor, and oxygen concentrator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008182968A JP2010017476A (en) 2008-07-14 2008-07-14 Compressor, and oxygen concentrator using the same

Publications (1)

Publication Number Publication Date
JP2010017476A true JP2010017476A (en) 2010-01-28

Family

ID=41702939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008182968A Withdrawn JP2010017476A (en) 2008-07-14 2008-07-14 Compressor, and oxygen concentrator using the same

Country Status (1)

Country Link
JP (1) JP2010017476A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031793A (en) * 2010-07-30 2012-02-16 Terumo Corp Compressor and oxygen condensing apparatus
CN103842287A (en) * 2011-09-13 2014-06-04 皇家飞利浦有限公司 Oxygen concentrator with dynamic noise control
CN107297613A (en) * 2016-04-15 2017-10-27 中国石油天然气股份有限公司 Mounting tool and compressor
JP2019198818A (en) * 2018-05-16 2019-11-21 株式会社アドバン理研 Gas manufacturing apparatus
JP2020028860A (en) * 2018-08-23 2020-02-27 北越工業株式会社 Gas generation equipment
JP2021514778A (en) * 2018-03-07 2021-06-17 エンサイト エルエルシー R2R micro electromechanical gas concentrator
JP2022048233A (en) * 2018-05-16 2022-03-25 株式会社アドバン理研 Gas manufacturing apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031793A (en) * 2010-07-30 2012-02-16 Terumo Corp Compressor and oxygen condensing apparatus
CN103842287A (en) * 2011-09-13 2014-06-04 皇家飞利浦有限公司 Oxygen concentrator with dynamic noise control
JP2014531234A (en) * 2011-09-13 2014-11-27 コーニンクレッカ フィリップス エヌ ヴェ Oxygen concentrator with dynamic noise control
CN103842287B (en) * 2011-09-13 2017-10-27 皇家飞利浦有限公司 The oxygen concentrator controlled with dynamic noise
US10195390B2 (en) 2011-09-13 2019-02-05 Koninklijke Philips N.V. Oxygen concentrator with dynamic noise control
CN107297613A (en) * 2016-04-15 2017-10-27 中国石油天然气股份有限公司 Mounting tool and compressor
CN107297613B (en) * 2016-04-15 2024-04-30 中国石油天然气股份有限公司 Mounting tool and compressor
JP2021514778A (en) * 2018-03-07 2021-06-17 エンサイト エルエルシー R2R micro electromechanical gas concentrator
JP2019198818A (en) * 2018-05-16 2019-11-21 株式会社アドバン理研 Gas manufacturing apparatus
JP2022048233A (en) * 2018-05-16 2022-03-25 株式会社アドバン理研 Gas manufacturing apparatus
JP7051578B2 (en) 2018-05-16 2022-04-11 株式会社アドバン理研 Gas production equipment
JP2020028860A (en) * 2018-08-23 2020-02-27 北越工業株式会社 Gas generation equipment

Similar Documents

Publication Publication Date Title
JP5074160B2 (en) Oxygen concentrator
JP5064772B2 (en) Oxygen inhaler
JP5536318B2 (en) Compressor and oxygen concentrator using the same
JP2010017476A (en) Compressor, and oxygen concentrator using the same
JP2008136663A (en) Oxygen concentrator
JP3140847U (en) Oxygen concentrator
JP4980700B2 (en) Oxygen concentrator
JP5112679B2 (en) Oxygen concentrator
JP5250861B2 (en) Oxygen concentrator
JP5048313B2 (en) Oxygen concentrator
JP5148866B2 (en) Oxygen concentrator
JP2009178426A (en) Oxygen concentrator
JP2009178427A (en) Oxygen concentrator
JP2009125303A (en) Oxygen concentrator
JP2010017477A (en) Compressor and oxygen concentrator using the same
JP2009067617A (en) Oxygen concentrator
JP5209282B2 (en) Oxygen concentrator
JP5026775B2 (en) Oxygen concentrator
JP3140843U (en) Oxygen concentrator
JP5175480B2 (en) Oxygen concentrator
JP5064771B2 (en) Oxygen concentrator
JP5290567B2 (en) Oxygen concentrator
JP2008295851A (en) Oxygen concentrator
JP3140853U (en) Oxygen concentrator
JP3140846U (en) Oxygen concentrator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004