JP2010017299A - Blood pressure measuring method and blood pressure measuring apparatus using this method - Google Patents

Blood pressure measuring method and blood pressure measuring apparatus using this method Download PDF

Info

Publication number
JP2010017299A
JP2010017299A JP2008179152A JP2008179152A JP2010017299A JP 2010017299 A JP2010017299 A JP 2010017299A JP 2008179152 A JP2008179152 A JP 2008179152A JP 2008179152 A JP2008179152 A JP 2008179152A JP 2010017299 A JP2010017299 A JP 2010017299A
Authority
JP
Japan
Prior art keywords
blood pressure
waveform
pulse wave
squeezing
arterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008179152A
Other languages
Japanese (ja)
Inventor
Motoharu Hasegawa
元治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRYO JOHO KAIHATSU KENKYUSHO K
IRYO JOHO KAIHATSU KENKYUSHO KK
Original Assignee
IRYO JOHO KAIHATSU KENKYUSHO K
IRYO JOHO KAIHATSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRYO JOHO KAIHATSU KENKYUSHO K, IRYO JOHO KAIHATSU KENKYUSHO KK filed Critical IRYO JOHO KAIHATSU KENKYUSHO K
Priority to JP2008179152A priority Critical patent/JP2010017299A/en
Publication of JP2010017299A publication Critical patent/JP2010017299A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood pressure measuring method and a blood pressure measuring apparatus using the method by which a blood pressure can be measured at both of resting time and exercising time, especially, to provide the blood pressure measuring method and the blood pressure measuring apparatus using the method by which the same result as in the case that Korotkoff sounds are accurately measured can easily be acquired. <P>SOLUTION: This blood pressure measuring method has a pressed pulse wave measuring process (A), a specified frequency waveform extracting process (B), and a blood pressure value determining process (C). In this case, in the pressed pulse wave measuring process (A), a distortion sensor is arranged and fixed in a manner to be located on the inside of the cuff, and also, on the inside of the upper limb center of a human body. After the cuff is pressurized, the pressed pulse wave on the inside of the cuff is measured by the distortion sensor while decompressing the pressurization. In the specified frequency waveform extracting process (B), only pressed pulse waves of a specified frequency component for which the frequency becomes 100 Hz or lower are extracted from the pressed pulse wave which has been measured in the pressed pulse wave measuring process. In the blood pressure value determining process (C), a maximum blood pressure value or a minimum blood pressure value of the human body is determined conforming to the pressed pulse wave of the specified frequency component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、血圧計測方法及びその方法を用いた血圧計測装置に関し、特に、コロトコフ音による血圧測定と一致し、しかも安静時も運動時も共に血圧を測定することが可能な血圧計測方法及びその方法を用いた血圧計測装置に関する。   The present invention relates to a blood pressure measurement method and a blood pressure measurement device using the method, and in particular, a blood pressure measurement method that is consistent with blood pressure measurement by Korotkoff sound, and that can measure blood pressure both at rest and during exercise, and its The present invention relates to a blood pressure measurement device using the method.

現在、血圧計測方法としては、コロトコフ音(Korotkoff sound)を用いた計測方法が標準となっている。カフ帯を上腕に巻付け、該カフ帯内に空気を導入して、最高血圧を超えるカフ圧で血管を圧迫する。その後、徐々にカフ内の圧力を下げながら、カフ帯装着箇所から2〜3cmの距離だけ末梢側で、肘関伸展正中線稍内側に聴診器を当て、コロトコフ音を聞き取る。コロトコフ音の発生時が最高血圧であり、コロトコフ音の消滅時が最低血圧である。   At present, as a blood pressure measurement method, a measurement method using Korotkoff sound is standard. A cuff band is wrapped around the upper arm, air is introduced into the cuff band, and the blood vessel is compressed with a cuff pressure exceeding the maximum blood pressure. Then, while gradually lowering the pressure in the cuff, apply a stethoscope to the inner side of the elbow-line extension medial line at a distance of 2 to 3 cm from the cuff band attachment point and listen for Korotkoff sounds. The systolic blood pressure is when the Korotkoff sound occurs, and the systolic blood pressure is when the Korotkoff sound disappears.

しかしながら、生体には様々な音が発生し体内を伝搬している。また、測定環境も必ずしも静粛な環境とは限らないなど、コロトコフ音を常に正確に測定するには熟練した技術が必要であり、運動時などの動態中では熟練者でも正確な血圧測定は困難であった。   However, various sounds are generated in the living body and propagate through the body. In addition, the measurement environment is not necessarily a quiet environment, and skillful techniques are necessary to always measure Korotkoff sounds accurately. Even in the dynamics of exercise, it is difficult for an expert to accurately measure blood pressure. there were.

これに対し、本発明者は、特許文献1に示すように、カフ内側装着のセンサによる被圧迫脈波形に見られる突起波(脈波形において、先鋭な凸形と凹形な波形が生じた部分を言い、スパイク・シグナル(spike signal)とも呼ばれている。)に着目し、該突起の発生及び消失のタイミングとコロトコフ音の発生及び消失のタイミングを測定することで、最高血圧及び最低血圧を測定可能であることを示した。
特許第3842390号公報
On the other hand, as shown in Patent Document 1, the present inventor has a projection wave (a part in which a sharp convex shape and a concave waveform are generated in the pulse waveform, as seen in the waveform of the compressed pulse by the sensor attached to the cuff inside. Focusing on the spike signal), and measuring the timing of the occurrence and disappearance of the protrusion and the timing of the occurrence and disappearance of the Korotkoff sound, It was shown that it can be measured.
Japanese Patent No. 3842390

他方、コロトコフ音は、腕の太さ、血圧値、拍動の強弱、不整脈の有無、心不全の有無、異常血圧低下の有無などの被験者の特性や、聴診器の押圧力によっても変化するため、緻密に聴診しても、最高血圧及び最低血圧を正確に特定することは困難であった。   On the other hand, because the Korotkoff sound changes depending on the characteristics of the subject such as the thickness of the arm, blood pressure value, pulsation strength, presence or absence of arrhythmia, presence or absence of heart failure, abnormal blood pressure drop, etc., and the pressure of the stethoscope, Even with precise auscultation, it was difficult to accurately identify systolic blood pressure and diastolic blood pressure.

このため、本発明者は、特許文献2に示すように、生体とカフ帯との間に生体の拍動を検出するセンサーを配置し、被圧迫脈波を測定し、該被圧迫脈波に出現する突起の発生及び消失から最高血圧及び最低血圧を測定することを提示した。しかも、被圧迫脈波をより正確に測定することを可能とするため、金属薄板と、該金属薄板の一面側に取り付けられ、該金属薄板を通じて媒介伝達される拍動から圧力を検出するストレンゲージを用いることも提示した。
特開2006−280485号公報
For this reason, as shown in Patent Document 2, the present inventor arranges a sensor for detecting the pulsation of the living body between the living body and the cuff band, measures the compressed pulse wave, It was proposed to measure systolic blood pressure and diastolic blood pressure from the occurrence and disappearance of appearing protrusions. Moreover, in order to make it possible to measure the compressed pulse wave more accurately, a thin metal plate and a strain gauge that is attached to one surface of the thin metal plate and detects pressure from pulsation transmitted through the thin metal plate. It was also suggested to use.
JP 2006-280485 A

被圧迫脈波は、コロトコフ音よりも個人差が少ないと言う利点はあるものの、依然として正確なきしみ波形を特定することは困難であり、特に、動態中においては、運動による筋肉や骨の振動、血流などのノイズの影響を受け、突起の判別が困難であった。   Although the compressed pulse wave has the advantage that there are fewer individual differences than the Korotkoff sound, it is still difficult to specify an accurate squeak waveform, especially during movement, muscle and bone vibration due to exercise, It was difficult to distinguish protrusions due to the influence of noise such as blood flow.

本発明が解決しようとする課題は、上述したような問題を解決し、安静時も運動時も共に血圧を測定することが可能な血圧計測方法及びその方法を用いた血圧計測装置を提供することである。特に、コロトコフ音を正確に測定した場合と同様の結果を、容易に取得することが可能な血圧計測方法及びその方法を用いた血圧計測装置を提供することである。   The problem to be solved by the present invention is to provide a blood pressure measurement method capable of measuring the blood pressure both at rest and during exercise, and a blood pressure measurement device using the method, which solves the problems described above. It is. In particular, it is to provide a blood pressure measurement method and a blood pressure measurement device using the method, which can easily obtain the same result as when Korotkoff sound is accurately measured.

本発明者は、カフ内側に配置されるコロトコフ音マイクロフォン、動脈きしみ歪センサによる測定結果の波形の相関を調べるため、コロトコフ音の音響学的周波数分析によるコロトコフ音のバンドパスフィルタ周波数帯(band pass filter)の特定、カフ内側の被圧迫脈波の振動学的周波数分析による被圧迫脈波のバンドパスフィルタ周波数帯の特定を行った。
その結果、コロトコフ音は被圧迫脈波のバンドパスフィルタ周波数帯特性の動脈きしみが原因となって発生するものであり、両者のスパイク・シグナル(spike signal)は時間的対応で消長が一致することを確認した。
これにより、被圧迫脈波の動脈きしみ波形(Ac)から、コロトコフ音で測定した場合と同様の最高血圧及び最低血圧が容易に判別できること、しかも、動態中であっても静態時と同様に、安定な測定が可能であることを見出し、本発明を完成させたものである。
In order to investigate the correlation of the waveform of the measurement result obtained by the Korotkoff sound microphone and the arterial squeeze strain sensor disposed inside the cuff, the present inventor has determined the band pass filter frequency band (band pass filter frequency band) of the Korotkoff sound by the acoustic frequency analysis of the Korotkoff sound. filter), and the bandpass filter frequency band of the compressed pulse wave was analyzed by analyzing the vibrational frequency of the compressed pulse wave inside the cuff.
As a result, Korotkoff sounds are caused by arterial squeezing of the bandpass filter frequency band characteristics of the compressed pulse wave, and both spike signals (spike signals) must match in time. It was confirmed.
Thereby, from the arterial squeezing waveform (Ac) of the compressed pulse wave, it is possible to easily discriminate the same systolic blood pressure and diastolic blood pressure as measured by Korotkoff sound, and even during kinetics, as in the static state, The present inventors have found that stable measurement is possible and completed the present invention.

上記課題を解決するため、請求項1に係る発明は、カフの内側で、かつ、人体の上腕中央内側に位置するように、歪センサを配置固定し、カフを加圧後に減圧しながら該歪センサによりカフ内側の被圧迫脈波を計測する被圧迫脈波計測工程と、該被圧迫脈波計測工程で計測された被圧迫脈波から周波数が100Hz以下となる特定周波数成分の被圧迫脈波のみを抽出する、特定周波数波形抽出工程と、該特定周波数成分の被圧迫脈波に基づき、人体の最高血圧値又は最低血圧値を決定する血圧値決定工程とを有することを特徴とする血圧計測方法である。   In order to solve the above-mentioned problem, the invention according to claim 1 is arranged such that the strain sensor is arranged and fixed so as to be located inside the cuff and inside the center of the upper arm of the human body, and the strain is reduced while depressurizing the cuff. A compressed pulse wave measuring step for measuring a compressed pulse wave inside the cuff by a sensor, and a compressed pulse wave having a specific frequency component having a frequency of 100 Hz or less from the compressed pulse wave measured in the compressed pulse wave measuring step A blood pressure measurement comprising: a specific frequency waveform extracting step for extracting only a blood pressure; and a blood pressure value determining step for determining a maximum blood pressure value or a minimum blood pressure value of a human body based on a compressed pulse wave of the specific frequency component Is the method.

請求項2に係る発明は、請求項1に記載の血圧計測方法において、該特定周波数波形抽出工程は、周波数20〜70Hzの範囲に含まれる波形を抽出することを特徴とする。   The invention according to claim 2 is the blood pressure measurement method according to claim 1, wherein the specific frequency waveform extraction step extracts a waveform included in a frequency range of 20 to 70 Hz.

請求項3に係る発明は、請求項1又は2に記載の血圧計測方法において、該血圧値決定工程では、該特定周波数成分の被圧迫脈波の動脈きしみ波形(Ac)に基づき、人体の最高血圧値又は最低血圧値を決定することを特徴とする。   According to a third aspect of the present invention, in the blood pressure measurement method according to the first or second aspect, in the blood pressure value determining step, based on the arterial squeezing waveform (Ac) of the compressed pulse wave of the specific frequency component, It is characterized by determining a hypertension value or a minimum blood pressure value.

請求項4に係る発明は、請求項3に記載の血圧計測方法において、該血圧値決定工程では、該動脈きしみ波形(Ac)を、特定周波数成分の被圧迫脈波、あるいは該特定周波数成分の被圧迫脈波を、1次又は2次微分して得られる微分波形の少なくとも一つに基づき同定することを特徴とする。   According to a fourth aspect of the present invention, in the blood pressure measurement method according to the third aspect, in the blood pressure value determining step, the arterial squeezing waveform (Ac) is converted into a compressed pulse wave of a specific frequency component or the specific frequency component. The compressed pulse wave is identified based on at least one of differential waveforms obtained by first-order or second-order differentiation.

請求項5に係る発明は、請求項3又は4に記載の血圧計測方法において、該動脈きしみ波形のうち最初に検知されるものを第1動脈きしみ波形とし、該第1動脈きしみ波形時のカフ圧と、該第1動脈きしみ波形の一つ前の脈波に対応するカフ圧の中間値を、最高血圧値と決定することを特徴とする。   The invention according to claim 5 is the blood pressure measurement method according to claim 3 or 4, wherein the first detected arterial squeezing waveform is the first arterial squeezing waveform, and the cuff at the time of the first arterial squeezing waveform is used. An intermediate value between the pressure and the cuff pressure corresponding to the pulse wave immediately before the first arterial squeezing waveform is determined as the maximum blood pressure value.

請求項6に係る発明は、請求項3又は4に記載の血圧計測方法において、該動脈きしみ波形のうち最後に検知されるものを最終動脈きしみ波形とし、該最終動脈きしみ波形時のカフ圧と、該最終動脈きしみ波形の次の脈波に対応するカフ圧の中間値を、最低血圧値と決定することを特徴とする。   The invention according to claim 6 is the blood pressure measurement method according to claim 3 or 4, wherein the last detected arterial squeezing waveform is the final arterial squeezing waveform, and the cuff pressure at the time of the final arterial squeezing waveform is The intermediate value of the cuff pressure corresponding to the pulse wave next to the final arterial squeezing waveform is determined as the minimum blood pressure value.

請求項7に係る発明は、請求項1乃至6のいずれかに記載の血圧計測方法を用いた血圧計測装置である。   A seventh aspect of the present invention is a blood pressure measurement device using the blood pressure measurement method according to any one of the first to sixth aspects.

請求項1に係る発明により、カフ内側の被圧迫脈波から周波数が100Hz以下となる特定周波数成分の被圧迫脈波のみを抽出することにより、ノイズなしか極めて少ない被圧迫脈波の動脈きしみ波形を得ることができ、この特定周波数成分の被圧迫脈波に基づき、人体の最高血圧値又は最低血圧値を決定することで、コロトコフ音を用いて測定した場合と同じ最高血圧値又は最低血圧値血を得ることが可能となる。
しかも、本発明の血圧測定方法では、コロトコフ音による測定では不可能であった動態中の血圧測定が、静態時と同様に正確に行うことが可能となる。
By extracting only the compressed pulse wave having a specific frequency component having a frequency of 100 Hz or less from the compressed pulse wave inside the cuff, the arterial squeezing waveform of the compressed pulse wave with very little noise is obtained. By determining the maximum blood pressure value or minimum blood pressure value of the human body based on the compressed pulse wave of this specific frequency component, the same maximum blood pressure value or minimum blood pressure value as measured using the Korotkoff sound can be obtained. It becomes possible to obtain blood.
Moreover, in the blood pressure measurement method of the present invention, dynamic blood pressure measurement, which was impossible with Korotkoff sound measurement, can be accurately performed as in the static state.

請求項2に係る発明により、特定周波数波形抽出工程は、周波数20〜70Hzの範囲に含まれる波形を抽出するため、被圧迫脈波の内、コロトコフ音と消長が一致する動脈きしみ波形の特定が可能となる。つまり、コロトコフ音に対応する被圧迫脈波の振動源は、血管の軋みにあると想定され、被圧迫脈波のバンドパスフィルタ周波数帯が周波数20〜70Hzの範囲にあることを特定することにより、動脈きしみ波形にとってノイズとなる、運動時などの骨や筋肉の振動、血流音など、血管の軋み以外の生体内に発生しているノイズの多くを効果的に排除し、例えば、動態中での血圧計測も可能としている。   According to the invention according to claim 2, the specific frequency waveform extraction step extracts a waveform included in the frequency range of 20 to 70 Hz, so that the arterial squeezing waveform in which the Korotkoff sound and the decay length match among the compressed pulse waves can be specified. It becomes possible. That is, the vibration source of the compressed pulse wave corresponding to the Korotkoff sound is assumed to be in the stagnation of the blood vessel, and by specifying that the band pass filter frequency band of the compressed pulse wave is in the frequency range of 20 to 70 Hz. It effectively eliminates most of the noise generated in the body other than the itch of the blood vessel, such as vibration of bones and muscles during exercise, blood flow noise, etc. Blood pressure can be measured at

請求項3に係る発明により、血圧値決定工程では、特定周波数成分の被圧迫脈波の動脈きしみ波形(Ac)に基づき、人体の最高血圧値又は最低血圧値を決定するため、コロトコフ音で測定した場合と同様に、最高血圧及び最低血圧が容易に判別することが可能となる。また、コロトコフ音による測定方法では困難であった、動態中の最高血圧及び最低血圧の測定に対しても、静態時と同様に正確な測定が可能となる。   According to the invention of claim 3, in the blood pressure value determining step, measurement is performed with Korotkoff sound in order to determine the highest blood pressure value or the lowest blood pressure value of the human body based on the arterial squeezing waveform (Ac) of the compressed pulse wave of the specific frequency component. As in the case of the above, the maximum blood pressure and the minimum blood pressure can be easily discriminated. In addition, the measurement of the systolic blood pressure and the diastolic blood pressure during kinetics, which was difficult with the measurement method using the Korotkoff sound, can be accurately measured as in the static state.

請求項4に係る発明により、血圧値決定工程では、動脈きしみ波形(Ac)を、特定周波数成分の被圧迫脈波、あるいは該特定周波数成分の被圧迫脈波を1次又は2次微分して得られる微分波形の少なくとも一つに基づき同定するため、コロトコフ音に対応する被圧迫脈波である動脈きしみ波形(Ac)、特に、動脈きしみ波形におけるバンドパスフィルタ周波数帯のスパイク・シグナルを正確に特定でき、最高血圧値及び最低血圧値の正確な測定が可能となる。特に、被圧迫脈波の微分波形は、動脈きしみ波形のような急激な変動を、顕在化させることが可能であり、該微分波形を用いることで、より正確な動脈きしみ波形の測定ができる。   According to the invention of claim 4, in the blood pressure value determining step, the arterial squeezing waveform (Ac) is subjected to first- or second-order differentiation of the compressed pulse wave of the specific frequency component or the compressed pulse wave of the specific frequency component. In order to identify based on at least one of the obtained differential waveforms, an arterial squeezing waveform (Ac) which is a compressed pulse wave corresponding to the Korotkoff sound, in particular, a spike signal in the bandpass filter frequency band in the arterial squeezing waveform is accurately obtained. It can be specified, and the maximum blood pressure value and the minimum blood pressure value can be accurately measured. In particular, the differential waveform of the compressed pulse wave can make sharp fluctuations such as an arterial squeezing waveform manifest, and by using the differential waveform, a more accurate arterial squeezing waveform can be measured.

請求項5に係る発明により、動脈きしみ波形のうち最初に検知されるものを第1動脈きしみ波形とし、該第1動脈きしみ波形時のカフ圧と、該第1動脈きしみ波形の一つ前の脈波に対応するカフ圧とにより、最高血圧値を決定するため、コロトコフ音を用いて計測した場合の最高血圧値と一致する血圧計測が可能となる。   According to the invention of claim 5, the first detected arterial squeezing waveform is the first arterial squeezing waveform, the cuff pressure at the time of the first arterial squeezing waveform, and the previous one of the first arterial squeezing waveform. Since the systolic blood pressure value is determined based on the cuff pressure corresponding to the pulse wave, blood pressure measurement that matches the systolic blood pressure value measured using the Korotkoff sound can be performed.

請求項6に係る発明により、動脈きしみ波形のうち最後に検知されるものを最終動脈きしみ波形とし、該最終動脈きしみ波形時のカフ圧と、該最終動脈きしみ波形の次の脈波に対応するカフ圧とにより、最低血圧値を決定するため、コロトコフ音を用いて計測した場合の最低血圧値と一致する血圧計測が可能となる。   According to the invention of claim 6, the last detected arterial squeezing waveform is the final arterial squeezing waveform, and corresponds to the cuff pressure at the time of the final arterial squeezing waveform and the next pulse wave of the final arterial squeezing waveform. Since the minimum blood pressure value is determined based on the cuff pressure, blood pressure measurement that matches the minimum blood pressure value when measured using Korotkoff sounds is possible.

請求項7に係る発明により、請求項1乃至5のいずれかに記載の血圧計測方法を用いた血圧計測装置であるため、上述した請求項1乃至5の血圧計測方法の利便性を備えた血圧計測装置を提供することができる。   The invention according to claim 7 is a blood pressure measurement device using the blood pressure measurement method according to any one of claims 1 to 5, so that the blood pressure has the convenience of the blood pressure measurement method according to claims 1 to 5 described above. A measuring device can be provided.

以下、本発明を好適例を用いて詳細に説明する。
図1は、本発明に係る血圧計測方法の概略を示すフロー図である。
本発明に係る血圧計測方法は、まず、生体の動脈を圧迫する圧力を連続的に変化させながら被圧迫脈波を計測する。具体的には、カフの内側で、かつ、人体の上腕中央内側に位置するように、歪センサを配置固定し、カフを加圧後に減圧しながら該歪センサによりカフ内側の被圧迫脈波を計測する。このような被圧迫脈波を計測する工程を、本発明では被圧迫脈波計測工程(A)という。
Hereinafter, the present invention will be described in detail using preferred examples.
FIG. 1 is a flowchart showing an outline of a blood pressure measurement method according to the present invention.
In the blood pressure measurement method according to the present invention, first, the pulse wave to be compressed is measured while continuously changing the pressure for compressing the artery of the living body. Specifically, the strain sensor is arranged and fixed so that it is located inside the cuff and inside the center of the upper arm of the human body, and the pressure pulse inside the cuff is generated by the strain sensor while reducing the pressure after the cuff is pressurized. measure. In the present invention, the process of measuring such a compressed pulse wave is referred to as a compressed pulse wave measurement process (A).

次に、被圧迫脈波計測工程で計測された被圧迫脈波から、コロトコフ音に対応する被圧迫脈波の動脈きしみ波形を特定するため、被圧迫脈波のバンドパスフィルタ周波数帯を抽出する。具体的には、周波数が100Hz以下となる特定周波数成分の被圧迫脈波のみを抽出する(特定周波数波形抽出工程(B))。さらに、特定周波数波形抽出工程(B)における特定周波数成分の被圧迫脈波に基づき、人体の最高血圧値又は最低血圧値を決定する(血圧値決定工程(C))。
このように、本発明の血圧計測方法は、被圧迫脈波計測工程(A)、特定周波数波形抽出工程(B)、さらに、血圧値決定工程(C)を有することを特徴とする血圧計測方法である。
Next, in order to identify the arterial squeezing waveform of the compressed pulse wave corresponding to the Korotkoff sound from the compressed pulse wave measured in the compressed pulse wave measurement step, a band pass filter frequency band of the compressed pulse wave is extracted. . Specifically, only the compressed pulse wave having a specific frequency component having a frequency of 100 Hz or less is extracted (specific frequency waveform extracting step (B)). Furthermore, based on the compressed pulse wave of the specific frequency component in the specific frequency waveform extraction step (B), the maximum blood pressure value or the minimum blood pressure value of the human body is determined (blood pressure value determination step (C)).
Thus, the blood pressure measurement method of the present invention includes a pressure pulse wave measurement step (A), a specific frequency waveform extraction step (B), and a blood pressure value determination step (C). It is.

被圧迫脈波計測工程(A)における被圧迫脈波の計測は、圧迫手段であるカフと人体との間に配置された歪センサで計測される。歪センサについては、先に示した特許文献2にも開示されているストレンゲージが好適に利用可能である。しかも、ストレンゲージを利用することにより、生体外のノイズ音などの影響を排除し、生体を伝搬する振動、特に血管の軋みに関連する振動を、一層正確に検出することが可能となる。   The measurement of the compressed pulse wave in the compressed pulse wave measurement step (A) is performed by a strain sensor disposed between the cuff serving as the compression means and the human body. As the strain sensor, the strain gauge disclosed in Patent Document 2 described above can be suitably used. In addition, by using a strain gauge, it is possible to eliminate the influence of noise sound outside the living body, and to detect vibration propagating through the living body, particularly vibration related to stagnation of blood vessels, more accurately.

特定周波数波形抽出工程(B)とは、被圧迫脈波のバンドパスフィルタ周波数帯の特定工程とも言える。
本発明における「バンドパスフィルタ周波数帯」とは、各波形の動脈ひずみ波形に起因する周波数成分を抽出した波形を意味し、コロトコフ音については、音響学的周波数分析を行った結果、500Hz以下、特に50〜450Hz(50〜270Hz、270〜450Hz)の範囲に、バンドパスフィルタ周波数帯が存在する。
また、被圧迫脈波については、振動学的周波数分析を行った結果、100Hz以下、より好ましくは20〜70Hzの範囲にバンドパスフィルタ周波数帯が存在する。
The specific frequency waveform extraction step (B) can be said to be a step of specifying the bandpass filter frequency band of the compressed pulse wave.
The “bandpass filter frequency band” in the present invention means a waveform obtained by extracting a frequency component resulting from the arterial distortion waveform of each waveform, and for Korotkoff sounds, as a result of performing an acoustic frequency analysis, 500 Hz or less, In particular, a bandpass filter frequency band exists in the range of 50 to 450 Hz (50 to 270 Hz, 270 to 450 Hz).
Further, as a result of performing a vibrational frequency analysis on the compressed pulse wave, a band-pass filter frequency band exists in a range of 100 Hz or less, more preferably 20 to 70 Hz.

コロトコフ音の波形は、カフ圧が高圧から低圧に連続して変化していく過程における振動強度の経時的な変化により、Swan(I)点から(V)点まで5つに分類され、最高血圧はSwan(I)点となり、最低血圧はSwan(IV)点となる。   The Korotkoff sound waveform is classified into five from the Swan (I) point to the (V) point according to the change in vibration intensity over time in the process of the cuff pressure continuously changing from high pressure to low pressure. Becomes the Swan (I) point, and the minimum blood pressure becomes the Swan (IV) point.

図2〜4は、カフ圧が高圧から低圧に変化する過程で、Swan(I)から(V)及びその前後の脈波の一部について、コロトコフ音(Korotokoff sound)及び被圧迫脈波(Oppressed Pulse Wave)の周波数スペクトルを示したものである。特に、図2はSwan(I)の直前の段階の脈波(Swan(0))、図3はSwan(I)、そして、図4はSwan(IV)の状態を表示している。
なお、各グラフの太い線は、各段階における測定波形を示すが、図3及び図4における細い線は、図2の波形、つまり、動脈ひずみ波形ではないバックグラウンド(ノイズ)を示すものである。
FIGS. 2 to 4 show Korotokoff sound and oppressed pulse wave (Oppressed) for Swan (I) to (V) and part of the pulse wave before and after the cuff pressure is changed from high pressure to low pressure. The frequency spectrum of (Pulse Wave) is shown. In particular, FIG. 2 shows the pulse wave (Swan (0)) immediately before Swan (I), FIG. 3 shows the state of Swan (I), and FIG. 4 shows the state of Swan (IV).
The thick line in each graph shows the measured waveform at each stage, but the thin line in FIGS. 3 and 4 shows the waveform in FIG. 2, that is, the background (noise) that is not the arterial strain waveform. .

図5は、複数の被験者について、図2〜3に示すようなSwan(0)〜Swan(V)の各段階において周波数スペクトルを測定し、それを分析した結果から得られたコロトコフ音を特徴づける周波数の分布範囲と、被圧迫脈波の動脈きしみ波形を特徴づける周波数の分布範囲を示している。特に、Swan(0)点(Swan(I)の前段階)から(V)点までの間に、各波形の周波数の分布範囲がどのように変化するかを、参考までに示したものである。コロトコフ音の分布はSwanの各点毎に分散しており、(III)点では、4つの周波数領域の周波数の音が複合して発生していることが理解される。このため、コロトコフ音聴診法を用いて血圧測定することが熟練を要することが容易に理解される。   FIG. 5 characterizes the Korotkoff sounds obtained from the results of measuring and analyzing the frequency spectrum at each stage of Swan (0) to Swan (V) as shown in FIGS. The frequency distribution range and the frequency distribution range that characterizes the arterial squeezing waveform of the compressed pulse wave are shown. In particular, it shows for reference how the frequency distribution range of each waveform changes from the point Swan (0) (the previous stage of Swan (I)) to the point (V). . It is understood that the Korotkoff sound distribution is distributed at each point of the Swan, and at the point (III), sounds of frequencies in the four frequency regions are generated in combination. For this reason, it is easily understood that measuring blood pressure using the Korotkoff sound auscultation method requires skill.

これに対し、被圧迫脈波は100Hz以下の周波数の範囲で変化しており、この特定周波数成分の被圧迫脈波を計測することにより、コロトコフ音に対応したSwan(I)点から(V)点まで、特に、(0)点と(I)点,(IV)点と(V)点を正確に判別測定することが可能となる。   On the other hand, the compressed pulse wave changes in a frequency range of 100 Hz or less. By measuring the compressed pulse wave of this specific frequency component, from the Swan (I) point corresponding to the Korotkoff sound (V) In particular, it is possible to accurately discriminate and measure (0) point, (I) point, (IV) point, and (V) point.

次に、本発明の血圧計測方法における血圧値決定工程について説明する。
最高血圧値及び最低血圧値を決定する際に重要なポイントは、コロトコフ音の発生原因である動脈のきしみ(波形)を被圧迫脈波、特に、被圧迫脈波のバンドパスフィルタ周波数帯からどのように特定するかである。
Next, the blood pressure value determination step in the blood pressure measurement method of the present invention will be described.
An important point in determining the systolic blood pressure and diastolic blood pressure is to determine the squeezing (waveform) of the artery that is the cause of Korotkoff sound from the compressed pulse wave, especially the bandpass filter frequency band of the compressed pulse wave. How to identify.

図6〜8は、カフ加圧後減圧過程で記録されたに任意の安静時症例のチャート(chart)を示し、次の7チャンネルを表示している。
(1)Ac:被圧迫脈波
(2)Acl:被圧迫脈波から20〜70Hzの全周波数成分を抽出したもの
(3)Ach:被圧迫脈波から45〜65Hzの高周波数成分を抽出したもの
(4)Ks:コロトコフ音
(5)Ksl:コロトコフ音から50〜270Hzの全周波数成分を抽出したもの
(6)Ksh:コロトコフ音から270〜500Hzの高周波数成分を抽出したもの
(7)Cp:カフ圧(圧力値はグラフの上部に数値mmHgで表示している)
FIGS. 6-8 show charts of arbitrary resting cases recorded in the depressurization process after cuff pressurization, and display the next seven channels.
(1) Ac: compression pulse wave (2) Acl: all frequency components of 20 to 70 Hz extracted from the compression pulse wave (3) Ach: high frequency components of 45 to 65 Hz extracted from the compression pulse wave Things (4) Ks: Korotkoff sounds (5) Ksl: All frequency components of 50 to 270 Hz extracted from Korotkoff sounds (6) Ksh: High frequency components of 270 to 500 Hz extracted from Korotkoff sounds (7) Cp : Cuff pressure (Pressure value is indicated by numerical value mmHg at the top of the graph)

図6、ではカフ圧139mmHgの時点で、Ac(1段目)、Acl(2段目)及びAch(6段目)に、最初の先鋭凹凸スパイク(first pointed concave, convex spike)、所謂、動脈ひずみ波形が出現している。そして、約80ms遅れて、Ks(3段目)、Ksl(4段目)、及びKsh(5段目)にも、最初の先鋭凹凸スパイクが出現している。   In FIG. 6, when the cuff pressure is 139 mmHg, the first pointed concave, convex spike, the so-called arteries, is shown in Ac (first stage), Accl (second stage) and Ach (sixth stage). A distortion waveform appears. The first sharp spikes appear in Ks (third stage), Ksl (fourth stage), and Ksh (fifth stage) with a delay of about 80 ms.

図6〜8の波形の推移から、被圧迫脈波の動脈きしみ波形(Ac)とコロトコフ音(Ks)との消長は完全に一致することが理解される。
また、最高血圧値(Ps)は、図6に示すように、動脈きしみ波形(Ac)のうち最初に検知されるものを第1動脈きしみ波形(firstAcI,Swan(I)に該当する。)とし、該第1動脈きしみ波形時のカフ圧139mmHgと、該第1動脈きしみ波形の一つ前の脈波(preAcI,Swan(0)に該当する。)に対応するカフ圧145mmHgとにより決定される。
理論的に両者の中間値が採用でき、この場合は141mmHgとなる。
It can be understood from the transition of the waveforms of FIGS. 6 to 8 that the fluctuations of the arterial squeezing waveform (Ac) and the Korotkoff sound (Ks) of the compressed pulse wave completely coincide.
As shown in FIG. 6, the first detected blood pressure value (Ps) corresponds to the first arterial squeezing waveform (Ac), which corresponds to the first arterial squeezing waveform (Ac). The cuff pressure 139 mmHg at the time of the first arterial squeezing waveform and the cuff pressure 145 mmHg corresponding to the pulse wave immediately before the first arterial squeezing waveform (corresponding to preAcI, Swan (0)). .
Theoretically, an intermediate value between the two can be adopted, and in this case, 141 mmHg.

最低血圧値(Pd)は、図8に示すように、動脈きしみ波形(Ac)のうち最後に検知されるものを最終動脈きしみ波形(lastAcIV,Swan(IV)に該当する。)とし、該最終動脈きしみ波形時のカフ圧93mmHgと、該最終動脈きしみ波形の次の脈波(postAcIV,Swan(V)に該当する。)に対応するカフ圧90mmHgとにより決定される。
最低血圧値についても、最高血圧値と同様に理論的に両者の中間値を採用することができ、この場合は91mmHgと判断される。
As shown in FIG. 8, the last detected blood pressure value (Pd) is the final arterial squeezing waveform (corresponding to lastAcIV, Swan (IV)) of the arterial squeezing waveform (Ac). It is determined by the cuff pressure of 93 mmHg at the time of the arterial squeezing waveform and the cuff pressure of 90 mmHg corresponding to the next pulse wave of the final arterial squeezing waveform (corresponding to postAcIV, Swan (V)).
As for the minimum blood pressure value, as in the maximum blood pressure value, an intermediate value between the two can theoretically be adopted. In this case, it is determined to be 91 mmHg.

図6又は図8の波形の推移が示すように、コロトコフ音(Ks)が測定される前後で、既に、被圧迫脈波(Ac)には動脈きしみ波形が観測されていることから、被圧迫脈波の方がコロトコフ音よりも、より感度良く動脈きしみ波形を特定できることが理解される。しかも、被圧迫脈波(Ac)の特定周波数成分である20〜70Hzの周波数成分を抽出した波形(Acl)は、動脈きしみ波形の発生開始から終了まで、全体的には効率良く棒脈きしみ波形の抽出が出来ている。また、被圧迫脈波から45〜65Hzの周波数成分を抽出した波形(Ach)は、コロトコフ音が観測される範囲の動脈きしみ波形は同様に観測できているが、特に、途中の段階(Swan(II)〜(III)又は(IV)の範囲)では、Acl波形よりもAchはより特徴的に動脈きしみ波形を観測できていることが、容易に理解される。   As shown in the waveform transition of FIG. 6 or FIG. 8, the arterial squeezing waveform is already observed in the compressed pulse wave (Ac) before and after the Korotkoff sound (Ks) is measured. It is understood that the pulse wave can identify the arterial squeezing waveform with higher sensitivity than the Korotkoff sound. In addition, the waveform (Acl) obtained by extracting the frequency component of 20 to 70 Hz, which is the specific frequency component of the compressed pulse wave (Ac), is a bar vein squeak waveform as a whole efficiently from the start to the end of the arterial squeak waveform. Has been extracted. In addition, the waveform (Ach) obtained by extracting the frequency component of 45 to 65 Hz from the compressed pulse wave can be observed in the same manner as the arterial squeezing waveform in the range in which the Korotkoff sound is observed. In the range II) to (III) or (IV), it is easily understood that Ach can observe the arterial squeezing waveform more characteristicly than the Acl waveform.

次に、血圧値決定工程で動脈きしみ波形(Ac)バンドパスフィルタ周波数帯を1次又は2次微分して得られる微分波形に基づき、動脈きしみ波形を同定する方法について説明する。
図9〜11には、安静時について被圧迫脈波(Ac)を1段目に、被圧迫脈波(Ac)から20〜70Hzの周波数成分を抽出した波形(Acl)を4段目に表示している。2段目はAclを一次微分した一次微分脈波(Acldf1)、3段目はAclを二次微分した二次微分脈波(Acldf2)を示している。
Next, a method for identifying an arterial squeezing waveform based on a differential waveform obtained by first-order or second-order differentiation of the arterial squeezing waveform (Ac) bandpass filter frequency band in the blood pressure value determining step will be described.
FIGS. 9 to 11 show the compressed pulse wave (Ac) in the first stage and the waveform (Acl) obtained by extracting a frequency component of 20 to 70 Hz from the compressed pulse wave (Ac) in the fourth stage when resting. is doing. The second stage shows the first-order differential pulse wave (Acldf1) obtained by first-derivative of Acl, and the third stage shows the second-order differential pulse wave (Acldf2) obtained by second-order differentiation of Acl.

このようにAclを微分する理由は、動脈ひずみ脈波である先鋭凹凸スパイク(pointed concave and convex spike)の特性をより鮮明化し、個体による記録不良波形や、運動負荷時などのノイズ混入時においても、動脈ひずみ波形を正確に特定することを可能としたものである。   The reason for differentiating Acl in this way is that the characteristics of a pointed concave and convex spike, which is an arterial distorted pulse wave, have been made clearer, and even when a recording failure waveform due to an individual or noise such as exercise load is mixed. Thus, the arterial strain waveform can be specified accurately.

図9〜11に示すグラフの5〜9段目の5種類の矩形波形は、動脈ひずみ脈波を特定するための論理(logic)を示すものである。特に、「logic構築」と表示されている5〜7段目は、論理を構成するために必要な情報を提供するものである。具体的には、5段目は、被圧迫脈波(Ac)の特定周波数成分を抽出した波形(Acl)の振幅値が所定レベルを超えているか否かを論理判定した結果を示している。6段目は、一次微分脈波(Acldf1)の振幅値が所定レベルを超えているか否かを論理判定した結果を示している。そして、7段目は、二次微分脈波(Acldf2)の振幅値が所定レベルを超えているか否かを論理判定した結果を示している。   The five types of rectangular waveforms in the fifth to ninth stages of the graphs shown in FIGS. 9 to 11 indicate logic for specifying the arterial strain pulse wave. In particular, the fifth to seventh stages displayed as “logic construction” provide information necessary for configuring the logic. Specifically, the fifth row shows the result of logical determination as to whether or not the amplitude value of the waveform (Acl) obtained by extracting the specific frequency component of the compressed pulse wave (Ac) exceeds a predetermined level. The sixth row shows the result of logical determination as to whether or not the amplitude value of the primary differential pulse wave (Acldf1) exceeds a predetermined level. The seventh row shows the result of logical determination as to whether or not the amplitude value of the second-order differential pulse wave (Acldf2) exceeds a predetermined level.

8〜9段目は、最高血圧値(Ps)及び最低血圧値(Pd)を特定する論理診断結果を示したものである。これらは、5〜7段目のlogic構築で表示された情報を元に、論理判断された結果を示すものである。すなわち、フーリエ解析による当該Acl微分波形の周波数分布強度積分量が同様に解析され、Swan(0)点、Swan(IV)点の同様積分量と推計学的に異質であることの証明がなされた時、論理診断がなされる。   The 8th to 9th stages show logical diagnosis results for specifying the maximum blood pressure value (Ps) and the minimum blood pressure value (Pd). These indicate the logically determined results based on the information displayed in the 5th to 7th stage logic construction. In other words, the frequency distribution intensity integral of the Acl differential waveform by Fourier analysis was analyzed in the same way, and it was proved that it was stochastically different from the integral of the Swan (0) point and Swan (IV) point. Sometimes a logic diagnosis is made.

図9の、論理(logic)診断(8〜9段目)の結果により、第1動脈きしみ波形時のカフ圧を139mmHgと診断しており、また、図11により、最終動脈きしみ波形時のカフ圧を93mmHgと診断していることが理解される。
このように、本発明の血圧計測方法を用いることにより、最高又は最低血圧値を正確に論理診断することが可能となる。
The cuff pressure at the time of the first arterial squeezing waveform is diagnosed as 139 mmHg based on the result of the logic diagnosis (8th to 9th stages) in FIG. It is understood that the pressure is diagnosed as 93 mmHg.
Thus, by using the blood pressure measurement method of the present invention, it is possible to accurately logically diagnose the maximum or minimum blood pressure value.

次に、動態中の血圧値を測定するため、無端ベルト(treadmill)装置上で被験者に歩行から疾走運動(時速3,5,7,及び9(km/h))をさせ、被圧迫脈波を測定した。その測定した被圧迫脈波に基き、図9〜11で示したものと同様に、論理診断を行なった。図12〜13は、時速7(km/h)の負荷を与えた場合の測定結果及び論理診断結果を示している。これにより、第1動脈きしみ波形時のカフ圧を163mmHgと診断し、また、最終動脈きしみ波形時のカフ圧を100mmHgと診断していることが理解される。カフ圧は減圧中、脈動流下のため圧上下のゆらぎがあり、かつ下降している。この間のカフ圧のふるまいを時系列的にメモリーし、spike signalのカフ圧を読み取るソフトプログラムが内蔵されている。
この測定結果により、時速7km/hの動態中の最高血圧値は174mmHg、最低血圧値97mmHgと判定される。
Next, in order to measure the blood pressure value during kinetics, the subject made a sprinting motion from walking (3, 5, 7, and 9 (km / h) per hour) on an endless belt (treadmill) device, and the compressed pulse wave Was measured. Based on the measured compressed pulse wave, a logical diagnosis was performed in the same manner as shown in FIGS. 12 to 13 show measurement results and logic diagnosis results when a load of 7 (km / h) is applied per hour. Thereby, it is understood that the cuff pressure at the time of the first arterial squeezing waveform is diagnosed as 163 mmHg, and the cuff pressure at the time of the final arterial squeezing waveform is diagnosed as 100 mmHg. During the decompression, the cuff pressure fluctuates up and down due to the pulsating flow and falls. A cuff pressure behavior during this time is memorized in time series, and a software program that reads the spike signal cuff pressure is built in.
From this measurement result, it is determined that the maximum blood pressure value during the dynamics of 7 km / h is 174 mmHg and the minimum blood pressure value is 97 mmHg.

次に、安静時コロトコフ音(Ks)による最高血圧値(Ps)及び最低血圧値(Pd)の測定値(Ks診断)、被圧迫脈波(Ac)による最高血圧値(Ps)及び最低血圧値(Pd)の測定、(Ac診断)、並びに上述した論理(logic)診断による最高血圧値(Ps)及び最低血圧値(Pd)の測定結果(logic診断)とを、相互に比較し、同一性を評価した。   Next, measured values (Ks diagnosis) of systolic blood pressure value (Ps) and diastolic blood pressure value (Pd) by resting Korotkoff sound (Ks), systolic blood pressure value (Ps) and diastolic blood pressure value by compressed pulse wave (Ac) The measurement results of (Pd), (Ac diagnosis), and the measurement results (logic diagnosis) of the systolic blood pressure value (Ps) and the diastolic blood pressure value (Pd) by the above logic (logic) diagnosis are compared with each other, and the identity Evaluated.

被験対象の延べ総数は、年齢20才代〜70才代の146例であり、その内、安静時60例、運動負荷時86例を用いた。
安静時では、Ks診断とAc診断との対比結果を図14に、Ks診断とlogic診断との対比結果を図15に、さらに、logic診断とAc診断との対比結果を図16に、各々示す。
The total number of test subjects was 146 cases of ages 20 to 70 years old. Among them, 60 cases at rest and 86 cases at exercise were used.
At rest, FIG. 14 shows a comparison result between the Ks diagnosis and the Ac diagnosis, FIG. 15 shows a comparison result between the Ks diagnosis and the logic diagnosis, and FIG. 16 shows a comparison result between the logic diagnosis and the Ac diagnosis. .

最高血圧値(Ps)及び最低血圧値(Pd)を合わせた各対比結果の相関係数rは、図14がr=0.994、図15がr=0.991、及び図16がr=0.993となり、Ks(コロトコフ音)とAc(被圧迫脈波,特に、動脈きしみ波形)及びlogic診断(自動診断)は推計学的にほぼ完全一致した。   The correlation coefficient r of each comparison result combining the systolic blood pressure value (Ps) and the diastolic blood pressure value (Pd) is r = 0.994 in FIG. 14, r = 0.991 in FIG. 15, and r = 0.99 in FIG. It was 0.993, and Ks (Korotkoff sound), Ac (compressed pulse wave, in particular, arterial squeezing waveform), and logic diagnosis (automatic diagnosis) were almost completely in agreement.

また、運動負荷時については、上述した無端ベルト(treadmill)装置を用いた歩行から疾走運動(時速3,5,7,及び9(km/h))までをおこなった対象総数86例の結果に基いた、logic診断とAc診断との対比結果を図17に示す。   In addition, regarding exercise load, the results of 86 subjects who performed the above-described walking using the endless belt device (treadmill) to sprinting exercise (speeds 3, 5, 7, and 9 (km / h)). FIG. 17 shows a comparison result between the logic diagnosis and the Ac diagnosis.

最高血圧値(Ps)及び最低血圧値(Pd)を合わせた対比結果の相関係数rは、r=0.995となり、3〜9km/hに渡る無端ベルトによる運動負荷において、Ac(被圧迫脈波,特に、動脈きしみ波形)とlogic診断(自動診断)は推計学的にほぼ完全一致した。   The correlation coefficient r of the comparison result obtained by combining the maximum blood pressure value (Ps) and the minimum blood pressure value (Pd) is r = 0.995, and the ac (compressed) is applied in the exercise load by the endless belt over 3 to 9 km / h. The pulse wave (especially arterial squeezing waveform) and the logic diagnosis (automatic diagnosis) were almost perfectly matched.

次に、本発明の血圧計測方法を利用した血圧計測装置について説明する。
図18は、血圧測定装置の概略を示すブロック図であり、歪センサである圧力センサー1が検出する被圧迫脈波の波形信号aが制御回路4に入力される。
Next, a blood pressure measurement device using the blood pressure measurement method of the present invention will be described.
FIG. 18 is a block diagram showing an outline of the blood pressure measurement device, and a waveform signal a of a compressed pulse wave detected by the pressure sensor 1 that is a strain sensor is input to the control circuit 4.

制御回路4は、カフ帯2に接続されるポンプ等の加減圧手段3を駆動制御cし、空気dをカフ帯2に導入または導出して、カフ帯2の圧力を変化させる。
カフ帯2の圧力を検出するセンサーが別途設けられ、カフ帯2の圧力を計測した信号bが制御回路4に入力される。
The control circuit 4 drives and controls the pressure increasing / decreasing means 3 such as a pump connected to the cuff band 2 and introduces or leads air d into the cuff band 2 to change the pressure of the cuff band 2.
A sensor for detecting the pressure in the cuff band 2 is separately provided, and a signal b obtained by measuring the pressure in the cuff band 2 is input to the control circuit 4.

圧力センサー1は、上腕に巻きつけられたカフ帯2の内側で、上腕中央内側に配置され、生体の血管が圧迫により軋む振動などを観測している。
圧力センサー1からの波形は被圧迫脈波であり、制御回路4では、当該被圧迫脈波から周波数100Hz以下(又は20〜70Hzの範囲)の特定周波数成分が抽出される。
The pressure sensor 1 is disposed inside the upper arm center inside the cuff belt 2 wound around the upper arm, and observes vibrations of living body blood vessels that are squeezed by compression.
The waveform from the pressure sensor 1 is a compressed pulse wave, and the control circuit 4 extracts a specific frequency component having a frequency of 100 Hz or less (or a range of 20 to 70 Hz) from the compressed pulse wave.

制御回路からは、抽出された周波数成分の波形(被圧迫脈波のバンドパスフィルタ周波数帯)が出力される。また、制御回路では、被圧迫脈波のバンドパスフィルタ周波数帯に基づき、上述した血圧値決定工程の最高血圧値又は最低血圧値の判別方法を利用して、所定の血圧値が決定される。血圧値の決定に際して、必要なカフ圧を示す信号bが取得される。   From the control circuit, a waveform of the extracted frequency component (a bandpass filter frequency band of the compressed pulse wave) is output. Further, the control circuit determines a predetermined blood pressure value based on the bandpass filter frequency band of the compressed pulse wave using the determination method of the maximum blood pressure value or the minimum blood pressure value in the above-described blood pressure value determination step. In determining the blood pressure value, a signal b indicating a necessary cuff pressure is acquired.

制御回路4からは、圧力センサー1の生データやカフ帯2の圧力計測データ、さらには、被圧迫脈波のバンドパスフィルタ周波数帯や、周波数解析した周波数分布データなど各種データeを出力でき、ディスプレイやプリンタなどの表示出力手段に出力したり、別のコンピュータ等に送信し、種々の解析に利用することもできる。また、制御回路4内で自動的に最高血圧値や最低血圧値を決定し、その数値のみを出力信号eとして出力するとも可能である。   From the control circuit 4, various data e such as raw data of the pressure sensor 1, pressure measurement data of the cuff band 2, further, a band pass filter frequency band of the compressed pulse wave, and frequency distribution data obtained by frequency analysis can be output. The data can be output to display output means such as a display or a printer, or transmitted to another computer or the like for use in various analyses. It is also possible to automatically determine the systolic blood pressure value or the diastolic blood pressure value in the control circuit 4 and output only the numerical value as the output signal e.

以上のように、本発明によれば、安静時も運動時も共に血圧を測定することが可能な血圧測定方法及びその方法を用いた血圧測定装置を提供することができる。特に、コロトコフ音を正確に測定した場合と同様の結果を、容易に取得することが可能な血圧測定方法及びその方法を用いた血圧測定装置を提供することが可能となる。   As described above, according to the present invention, it is possible to provide a blood pressure measurement method capable of measuring blood pressure both at rest and during exercise, and a blood pressure measurement device using the method. In particular, it is possible to provide a blood pressure measurement method and a blood pressure measurement device using the method that can easily obtain the same result as when Korotkoff sound is accurately measured.

本発明の血圧測定方法のフロー図を示す。The flowchart of the blood-pressure measuring method of this invention is shown. Swan(0)におけるコロトコフ音(Korotokov sound)及び被圧迫脈波(Oppressed Pulse Wave)の周波数スペクトルを示すグラフである。It is a graph which shows the frequency spectrum of the Korotkoff sound (Korotokov sound) and the oppressed pulse wave (Oppressed Pulse Wave) in Swan (0). Swan(I)におけるコロトコフ音及び被圧迫脈波の周波数スペクトルを示すグラフである。It is a graph which shows the frequency spectrum of the Korotkoff sound in Swan (I) and the compressed pulse wave. Swan(IV)におけるコロトコフ音及び被圧迫脈波の周波数スペクトルを示すグラフである。It is a graph which shows the frequency spectrum of the Korotkoff sound in Swan (IV) and the compressed pulse wave. コロトコフ音と被圧迫脈波のスペクトル分析範囲を示す図である。It is a figure which shows the spectrum analysis range of a Korotkoff sound and a to-be-compressed pulse wave. 被圧迫脈波(Ac)とコロトコフ音(Ks)のカフ加圧後減圧過程における変化を示すグラフ(その1)である。It is a graph (the 1) which shows the change in the decompression process after the cuff pressurization of the to-be-compressed pulse wave (Ac) and the Korotkoff sound (Ks). 被圧迫脈波(Ac)とコロトコフ音(Ks)のカフ加圧後減圧過程における変化を示すグラフ(その2)である。It is a graph (the 2) which shows the change in the decompression process after the cuff pressurization of the to-be-compressed pulse wave (Ac) and the Korotkoff sound (Ks). 被圧迫脈波(Ac)とコロトコフ音(Ks)のカフ加圧後減圧過程における変化を示すグラフ(その3)である。It is a graph (the 3) which shows the change in the decompression process after the cuff pressurization of the to-be-compressed pulse wave (Ac) and the Korotkoff sound (Ks). 被圧迫脈波(Ac)とその微分波形、並びに論理(logic)診断を示すグラフ(その1)である。It is a graph (the 1) which shows a to-be-compressed pulse wave (Ac) and its differential waveform, and logic (logic) diagnosis. 被圧迫脈波(Ac)とその微分波形、並びに論理(logic)診断を示すグラフ(その2)である。It is a graph (the 2) which shows a to-be-compressed pulse wave (Ac) and its differential waveform, and logic (logic) diagnosis. 被圧迫脈波(Ac)とその微分波形、並びに論理(logic)診断を示すグラフ(その3)である。It is a graph (the 3) which shows a to-be-compressed pulse wave (Ac) and its differential waveform, and logic (logic) diagnosis. 動態中における被圧迫脈波(Ac)とその微分波形、並びに論理(logic)診断を示すグラフ(その1)である。It is the graph (the 1) which shows the to-be-compressed pulse wave (Ac) in dynamics, its differential waveform, and logic (logic) diagnosis. 動態中における被圧迫脈波(Ac)とその微分波形、並びに論理(logic)診断を示すグラフ(その2)である。It is the graph (the 2) which shows the to-be-compressed pulse wave (Ac) in dynamics, its differential waveform, and logic (logic) diagnosis. 安静時における、Ks診断とAc診断との対比結果を示すグラフである。It is a graph which shows the comparison result of Ks diagnosis and Ac diagnosis at the time of rest. 安静時における、Ks診断とlogic診断との対比結果を示すグラフである。It is a graph which shows the comparison result of Ks diagnosis and logic diagnosis at the time of rest. 安静時における、logic診断とAc診断との対比結果を示すグラフである。It is a graph which shows the comparison result of a logic diagnosis and an Ac diagnosis at the time of rest. 動態中における、logic診断とAc診断との対比結果を示すグラフである。It is a graph which shows the comparison result of logic diagnosis and Ac diagnosis in dynamics. 本発明の血圧測定装置の概略を示すブロック図である。It is a block diagram which shows the outline of the blood-pressure measuring apparatus of this invention.

符号の説明Explanation of symbols

1 圧力センサー
2 カフ帯
3 加減圧手段
4 制御回路
5 表示出力手段
DESCRIPTION OF SYMBOLS 1 Pressure sensor 2 Cuff belt 3 Pressure-reducing means 4 Control circuit 5 Display output means

Claims (7)

カフの内側で、かつ、人体の上腕中央内側に位置するように、歪センサを配置固定し、カフを加圧後に減圧しながら該歪センサによりカフ内側の被圧迫脈波を計測する被圧迫脈波計測工程と、
該被圧迫脈波計測工程で計測された被圧迫脈波から周波数が100Hz以下となる特定周波数成分の被圧迫脈波のみを抽出する、特定周波数波形抽出工程と、
該特定周波数成分の被圧迫脈波に基づき、人体の最高血圧値又は最低血圧値を決定する血圧値決定工程とを有することを特徴とする血圧計測方法。
A strain sensor is placed and fixed so that it is located inside the cuff and inside the upper arm center of the human body, and the pressure pulse measured by the strain sensor while measuring the pressure pulse wave inside the cuff while depressurizing the cuff. Wave measurement process,
A specific frequency waveform extracting step of extracting only the compressed pulse wave of a specific frequency component having a frequency of 100 Hz or less from the compressed pulse wave measured in the compressed pulse wave measurement step;
And a blood pressure value determining step for determining a maximum blood pressure value or a minimum blood pressure value of the human body based on the compressed pulse wave of the specific frequency component.
請求項1に記載の血圧計測方法において、該特定周波数波形抽出工程は、周波数20〜70Hzの範囲に含まれる波形を抽出することを特徴とする血圧計測方法。   2. The blood pressure measurement method according to claim 1, wherein the specific frequency waveform extraction step extracts a waveform included in a frequency range of 20 to 70 Hz. 請求項1又は2に記載の血圧計測方法において、該血圧値決定工程では、該特定周波数成分の被圧迫脈波の動脈きしみ波形(Ac)に基づき、人体の最高血圧値又は最低血圧値を決定することを特徴とする血圧計測方法。   3. The blood pressure measurement method according to claim 1, wherein, in the blood pressure value determination step, a maximum blood pressure value or a minimum blood pressure value of the human body is determined based on an arterial squeezing waveform (Ac) of the compressed pulse wave of the specific frequency component. A blood pressure measurement method characterized by: 請求項3に記載の血圧計測方法において、該血圧値決定工程では、該動脈きしみ波形(Ac)を、特定周波数成分の被圧迫脈波、あるいは該特定周波数成分の被圧迫脈波を1次又は2次微分して得られる微分波形の少なくとも一つに基づき同定することを特徴とする血圧計測方法。   4. The blood pressure measurement method according to claim 3, wherein in the blood pressure value determination step, the arterial squeezing waveform (Ac) is a primary frequency or a compressed pulse wave of a specific frequency component, or a compressed pulse wave of the specific frequency component is primary or A blood pressure measurement method characterized by identifying based on at least one of differential waveforms obtained by secondary differentiation. 請求項3又は4に記載の血圧計測方法において、該動脈きしみ波形のうち最初に検知されるものを第1動脈きしみ波形とし、該第1動脈きしみ波形時のカフ圧と、該第1動脈きしみ波形の一つ前の脈波に対応するカフ圧とにより、最高血圧値を決定することを特徴とする血圧計測方法。   5. The blood pressure measurement method according to claim 3 or 4, wherein the first detected squeezing waveform of the arterial squeezing waveform is a first arterial squeezing waveform, and the cuff pressure at the time of the first arterial squeezing waveform and the first arterial squeezing A blood pressure measurement method, wherein a maximum blood pressure value is determined based on a cuff pressure corresponding to a pulse wave immediately before the waveform. 請求項3又は4に記載の血圧計測方法において、該動脈きしみ波形のうち最後に検知されるものを最終動脈きしみ波形とし、該最終動脈きしみ波形時のカフ圧と、該最終動脈きしみ波形の次の脈波に対応するカフ圧とにより、最低血圧値を決定することを特徴とする血圧計測方法。   5. The blood pressure measurement method according to claim 3 or 4, wherein the last detected squeezing waveform of the arterial squeezing waveform is a final arterial squeezing waveform, the cuff pressure at the time of the final arterial squeezing waveform, and the next of the final arterial squeezing waveform A blood pressure measurement method, wherein a minimum blood pressure value is determined based on a cuff pressure corresponding to the pulse wave. 請求項1乃至6のいずれかに記載の血圧計測方法を用いた血圧計測装置。   A blood pressure measurement device using the blood pressure measurement method according to claim 1.
JP2008179152A 2008-07-09 2008-07-09 Blood pressure measuring method and blood pressure measuring apparatus using this method Pending JP2010017299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179152A JP2010017299A (en) 2008-07-09 2008-07-09 Blood pressure measuring method and blood pressure measuring apparatus using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179152A JP2010017299A (en) 2008-07-09 2008-07-09 Blood pressure measuring method and blood pressure measuring apparatus using this method

Publications (1)

Publication Number Publication Date
JP2010017299A true JP2010017299A (en) 2010-01-28

Family

ID=41702778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179152A Pending JP2010017299A (en) 2008-07-09 2008-07-09 Blood pressure measuring method and blood pressure measuring apparatus using this method

Country Status (1)

Country Link
JP (1) JP2010017299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708533A (en) * 2015-07-01 2018-02-16 浜松光子学株式会社 Viscous-elastic behaviour acquisition device, viscous-elastic behaviour acquisition methods, viscous-elastic behaviour obtain program and store the storage medium of the program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708533A (en) * 2015-07-01 2018-02-16 浜松光子学株式会社 Viscous-elastic behaviour acquisition device, viscous-elastic behaviour acquisition methods, viscous-elastic behaviour obtain program and store the storage medium of the program
CN107708533B (en) * 2015-07-01 2020-07-31 浜松光子学株式会社 Viscoelastic property acquisition device, viscoelastic property acquisition method, viscoelastic property acquisition program, and storage medium storing the program
US11154206B2 (en) 2015-07-01 2021-10-26 Hamamatsu Photonics K.K. Viscoelasticity characteristics acquisition device, viscoelasticity characteristics acquisition method, viscoelasticity characteristics acquisition program, and recording medium recording said program

Similar Documents

Publication Publication Date Title
JP4704361B2 (en) Apparatus and method for measuring hemodynamic parameters
US20060224070A1 (en) System and method for non-invasive cardiovascular assessment from supra-systolic signals obtained with a wideband external pulse transducer in a blood pressure cuff
KR100865050B1 (en) Augmentation-index determining apparatus and arteriosclerosis inspecting apparatus
US20210251499A1 (en) Medical Instrument and Program
US6827687B2 (en) Blood-pressure measuring apparatus having waveform analyzing function
US6793628B2 (en) Blood-pressure measuring apparatus having augmentation-index determining function
JP6129166B2 (en) Method and apparatus for detecting arterial occlusion / resumption and system for measuring systolic blood pressure
US8864678B2 (en) Blood pressure measuring method and blood pressure manometer
EP3199101B1 (en) Device for evaluating vascular elastic modulus
US7097621B2 (en) Filter for use with pulse-wave sensor and pulse wave analyzing apparatus
KR20100050890A (en) Apparatus and method for measuring blood pressure
EP3225160B1 (en) Measurement device and method for measuring emotional stress indicator and blood pressure
US9211070B2 (en) Evaluation of peripheral arterial disease in a patient using an oscillometric pressure signal obtained at a lower extremity of the patient
JP2010017299A (en) Blood pressure measuring method and blood pressure measuring apparatus using this method
JP5798226B2 (en) Pulse wave analyzer
JP6108525B2 (en) Blood pressure measurement device
KR101604079B1 (en) Method and apparatus for measuring blood pressure by correcting error
JP5616253B2 (en) Pulse wave analyzer
JP2013233279A (en) Pulse wave analyzer
KR101632307B1 (en) The Apparatus and Method for estimating blood pressure
GB2456947A (en) Non invasive determination of stroke volume based on incident wave suprasystolic blood pressure amplitude
JP2007202791A (en) Vascular pulse wave measuring apparatus
KR102395962B1 (en) A method to measure blood pressure using korotkoff sound and cuff signal
JP6366954B2 (en) Blood pressure measurement device
JP4509312B2 (en) Blood pressure measurement device and blood pressure value determination method