JP2007202791A - Vascular pulse wave measuring apparatus - Google Patents
Vascular pulse wave measuring apparatus Download PDFInfo
- Publication number
- JP2007202791A JP2007202791A JP2006025218A JP2006025218A JP2007202791A JP 2007202791 A JP2007202791 A JP 2007202791A JP 2006025218 A JP2006025218 A JP 2006025218A JP 2006025218 A JP2006025218 A JP 2006025218A JP 2007202791 A JP2007202791 A JP 2007202791A
- Authority
- JP
- Japan
- Prior art keywords
- pulse wave
- blood flow
- blood
- measurement
- cuff
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
本発明は、血管の脈波に関する情報を測定する血管脈波測定装置に関するものである。 The present invention relates to a blood vessel pulse wave measuring apparatus for measuring information related to blood vessel pulse waves.
心臓から送り出された血流は波動として末梢に伝達され、心拍動や細動脈系の状態などによって修飾されて波形のゆがみが生ずる。この波形のゆがみを評価して、心循環系の評価を行なう試みがなされている。 The blood flow sent out from the heart is transmitted to the periphery as a wave and is modified by the heartbeat and the state of the arteriole system to cause waveform distortion. Attempts have been made to evaluate the distortion of the waveform and evaluate the cardiovascular system.
脈波を測定する方法として、従来より、血流の容積変動をとらえる容積脈波測定法と動脈内圧変化を圧脈波として測定する方法が知られている。 As a method for measuring a pulse wave, there are conventionally known a volume pulse wave measuring method that captures volume fluctuations in blood flow and a method of measuring a change in arterial pressure as a pressure pulse wave.
前者の容積脈波測定には種々の手法があるが、ヘモグロビンの吸光量を血流変動としてとらえる指尖光電管容積脈波計が広く用いられてきた。この指尖容積脈波計はその付近の動脈の圧脈波をかなり正確に推定でき、主に末梢血液循環動態や自律神経機能を反映する検査として用いられてきた。 There are various methods for measuring the volume pulse wave of the former, and fingertip photoelectric tube volume pulse wave meters that capture the amount of hemoglobin absorbed as a blood flow fluctuation have been widely used. This fingertip plethysmograph can estimate the pressure pulse wave of the nearby artery fairly accurately, and has been used mainly as a test that reflects peripheral blood circulation dynamics and autonomic nerve function.
近年、容積脈波の一次微分波形をさらに微分して、二次微分波形とした加速度脈波が提案され、その波形を評価することにより、動脈系全体の硬化性を反映する血管年齢の指標となると報告されている(下記の特許文献1)。
In recent years, an acceleration pulse wave that has been further differentiated from the primary differential waveform of the volume pulse wave to obtain a secondary differential waveform has been proposed, and by evaluating the waveform, an index of blood vessel age that reflects the sclerosis of the entire arterial system and (
また、動脈内圧変化を圧脈波として測定する方法としては、カフ(マンシェット)などにより動脈を圧迫することにより血管壁張力を除去し、動脈内圧(脈波)を測定する手首橈骨動脈圧測定法が開発されている(下記の特許文献2)。
In addition, as a method for measuring changes in arterial pressure as a pressure pulse wave, wrist radial arterial pressure measurement method is used to measure the intra-arterial pressure (pulse wave) by removing the blood vessel wall tension by compressing the artery with a cuff (Manchette) or the like. Has been developed (
この手法によれば、心臓から拍出される血液によって生じる末梢動脈血管の駆出波と反射波の測定が可能になり、その波形解析をすることにより動脈硬化が推定できると考えられている。
血管脈波は血管の器質的柔軟性(年齢や動脈硬化)と血管の生理的緊張状態の両者に依存している。血管の生理的緊張状態は自律神経や血液中物質による血管の収縮あるいは拡張により常に保持されている。 Vascular pulse waves depend on both vascular organic flexibility (age and arteriosclerosis) and vascular physiological tension. The physiological tension of blood vessels is always maintained by contraction or dilation of blood vessels due to autonomic nerves or substances in the blood.
従って、血管の器質的柔軟性のみを測定するには、これらの血管緊張を除いた血管脈波を測定する必要がある。自律神経や血液中物質に影響を及ぼす外部要因としては、気温、ストレス、薬物や運動、入浴、食事、バイオリズムなど数多くが上げられる。 Therefore, in order to measure only the organic flexibility of a blood vessel, it is necessary to measure the vascular pulse wave excluding these vascular tone. There are many external factors that affect autonomic nerves and substances in the blood, such as temperature, stress, drugs and exercise, bathing, meals, and biorhythms.
例えば、従来の容積脈波加速度測定法や手首橈骨動脈圧測定法においては、冷水負荷や喫煙、簡易起立負荷などの外的要因によって、見かけ上、高血管年齢や動脈硬化を示す測定結果が出力される可能性があった。 For example, in the conventional volume pulse wave acceleration measurement method and wrist radial artery pressure measurement method, measurement results indicating high blood vessel age and arteriosclerosis are apparently output due to external factors such as cold water load, smoking, and simple standing load. There was a possibility.
このため、従来技術では、被験者の測定条件を常に一定に制御して測定する必要があるが、測定条件のコントロールのみにより上記の外的要因の影響を除くことは極めて難しく、測定結果の変動が大きく、正確な診断ができない、という問題があった。 For this reason, in the prior art, it is necessary to always measure the subject under constant measurement conditions, but it is extremely difficult to eliminate the influence of the above external factors only by controlling the measurement conditions. There was a problem that a large and accurate diagnosis could not be made.
本発明の課題は、上記の問題に鑑み、測定時の種々の外的要因に影響されずに高精度な血管脈波測定を行なえるようにすることにある。 In view of the above problems, an object of the present invention is to enable highly accurate vascular pulse wave measurement without being affected by various external factors during measurement.
課題を解決するため、本発明では、末梢血管の血管脈波を測定する脈波測定手段と、前記脈波測定手段の測定部位の上流の血管を狭窄し血流を停止させる血流停止手段と、前記血流停止手段により所定時間、血流を停止させた後、前記脈波測定手段による血管脈波測定を行なわせる制御手段を含む構成を採用した。 In order to solve the problem, in the present invention, a pulse wave measuring means for measuring a blood vessel pulse wave of a peripheral blood vessel, and a blood flow stopping means for constricting a blood vessel upstream of a measurement site of the pulse wave measuring means to stop blood flow. Then, after the blood flow is stopped by the blood flow stopping means for a predetermined time, a configuration including a control means for performing blood vessel pulse wave measurement by the pulse wave measuring means is adopted.
上記構成によれば、血管脈波測定を行なうに際して、測定部位の上流部においてカフ圧を加えて所定時間血流を停止し、開放した後に脈波測定を行なうよう制御することにより、血管の生理的緊張状態や、喫煙行動の有無などの種々の外的要因に影響されずに高精度な血管脈波測定を行なうことができる。 According to the above configuration, when performing vascular pulse wave measurement, cuff pressure is applied at the upstream portion of the measurement site to stop the blood flow for a predetermined time, and control to perform pulse wave measurement after opening the blood vessel physiology. Highly accurate vascular pulse wave measurement can be performed without being influenced by various external factors such as the state of static tension and the presence or absence of smoking behavior.
以下、本発明の実施例として、光電式指尖血液容積量測定に基づく構成と、手首橈骨動脈圧測定に基づく構成を示す。 Hereinafter, as an embodiment of the present invention, a configuration based on photoelectric fingertip blood volume measurement and a configuration based on wrist radial artery pressure measurement are shown.
本実施例では、指尖血液容積量測定に基づいて脈波測定を行なう構成を例示する。本実施例の指尖血液容積量測定は指尖に血液(ヘモグロビン)の吸収波長の光を照射し、その透過光あるいは反射光を計測して指尖血管脈波を測定するもので、簡便容易に実施できる利点がある。 In this embodiment, a configuration for performing pulse wave measurement based on fingertip blood volume measurement is illustrated. The fingertip blood volume measurement of the present embodiment irradiates the fingertip with light having an absorption wavelength of blood (hemoglobin) and measures the transmitted light or reflected light to measure the fingertip blood vessel pulse wave. There are advantages that can be implemented.
末梢血流を停止あるいは再開通させるためのカフとしては、血圧測定に用いられている手動式カフや自動式カフを用いる。さらには、脈波測定装置とカフを一体化したたとえば自動血圧計のような測定装置も可能である。 As a cuff for stopping or resuming peripheral blood flow, a manual cuff or an automatic cuff used for blood pressure measurement is used. Furthermore, a measuring device such as an automatic sphygmomanometer in which the pulse wave measuring device and the cuff are integrated is also possible.
図1は本実施例の脈波測定装置の構成および測定手法を示している。 FIG. 1 shows the configuration and measuring method of the pulse wave measuring apparatus of this embodiment.
本実施例の装置は、光電式指尖容積脈波測定装置Aと、カフB1の圧迫/開通(開放)を制御するカフ圧制御装置Bを用いたものである。 The apparatus of this embodiment uses a photoelectric fingertip volume pulse wave measuring apparatus A and a cuff pressure control apparatus B that controls the compression / opening (opening) of the cuff B1.
被験者Eの指に光電式指尖容積脈波測定装置(A)の波長940nm(血液ヘモグロビンの吸収波長)の光プローブ(A1)を装着し、それより被験者Eの心臓に近い部分、たとえば手首にカフB1を装着する。 The optical probe (A1) having a wavelength of 940 nm (absorption wavelength of blood hemoglobin) of the photoelectric fingertip volume pulse wave measurement device (A) is attached to the finger of the subject E, and the portion closer to the heart of the subject E, for example, the wrist Wear cuff B1.
カフ圧制御装置BおよびカフB1は、カフB1の空気圧の増減により血管を圧迫し血流の停止と再開通を自動的に行なうものであり、公知の自動血圧計などで用いられているハードウェア構成をそのまま流用することができる。このカフ圧信号は、ディスプレーに表示される。 The cuff pressure control device B and the cuff B1 automatically press the blood vessel by increasing / decreasing the air pressure of the cuff B1 to automatically stop and restart the blood flow, and are used in a known automatic sphygmomanometer or the like. The configuration can be used as it is. This cuff pressure signal is displayed on the display.
光電式指尖容積脈波測定装置Aは光プローブA1を装着した被験者Eの指の血液容積変化を光吸収量変化として計測する装置である。光電式指尖容積脈波測定装置Aおよび光プローブA1も公知のハードウェア構成をそのまま流用できる。 The photoelectric fingertip volume pulse wave measuring device A is a device that measures a change in blood volume of a finger of a subject E wearing the optical probe A1 as a change in light absorption amount. A known hardware configuration can be used as it is for the photoelectric fingertip volume pulse wave measuring device A and the optical probe A1.
光プローブA1から出力される信号は、図3に模式化して示すように脈波に相当する周波数0.1Hz〜10HzのAC成分信号1と平均血液容積に相当する周波数0(DC)〜0.1Hzの範囲のDC成分信号2の二つに分離される。
As schematically shown in FIG. 3, the signal output from the optical probe A1 includes an
図3のように、光プローブA1を介して得られる信号の原波形(0)は、ハイパスフィルターおよびローパスフィルター回路によりそれぞれ脈波成分(1)(AC成分)と原波形平均(2)(DC成分)とに分けられる。 As shown in FIG. 3, the original waveform (0) of the signal obtained through the optical probe A1 is obtained by the high-pass filter and the low-pass filter circuit, respectively, with the pulse wave component (1) (AC component) and the original waveform average (2) (DC Ingredients).
なお、光プローブA1が測定しているのは血液容積量であるが、この情報を血流量と解釈してもよく、したがって、信号(2)は平均血液量と解釈してもよい。 Note that although the optical probe A1 measures the volume of blood, this information may be interpreted as blood flow, and therefore the signal (2) may be interpreted as average blood volume.
脈波信号(1)は2次微分回路Fに入力され、2次微分された加速度脈波信号(3)が得られる。 The pulse wave signal (1) is input to the secondary differentiating circuit F to obtain the second-order differentiated acceleration pulse wave signal (3).
DC(血流)成分信号(2)とAC(脈波)成分信号(1)および加速度脈波信号(3)は、それぞれ制御部Dに入力され、制御部Dの信号処理を経てディスプレイCに表示される。また、制御部Dは、カフ圧制御装置Bに入力するカフ圧信号(4)もディスプレイCに表示する。制御部DおよびディスプレイCには、PC(パーソナルコンピュータ)などのハードウェアを流用してもよい。制御部Dには、後述の血流停止/開放制御および測定処理を行なうソフトウェアを実行させる。 The DC (blood flow) component signal (2), the AC (pulse wave) component signal (1), and the acceleration pulse wave signal (3) are respectively input to the control unit D, and are input to the display C through the signal processing of the control unit D. Is displayed. The control unit D also displays the cuff pressure signal (4) input to the cuff pressure control device B on the display C. For the control unit D and the display C, hardware such as a PC (personal computer) may be used. The control unit D is caused to execute software for performing blood flow stop / release control and measurement processing, which will be described later.
以上の構成において、被験者Eの脈波の測定を開始した後、カフ圧信号(4)によりカフ圧を加えることにより血管を狭窄して血流を一定時間停止させる。血流の停止は、脈波信号(1および3)の消失と、DC成分(血流)信号(2)の低下としてディスプレイC上で検者が検証することができる。 In the above configuration, after the measurement of the pulse wave of the subject E is started, the blood flow is stopped for a certain time by constricting the blood vessel by applying the cuff pressure by the cuff pressure signal (4). The stop of the blood flow can be verified by the examiner on the display C as the disappearance of the pulse wave signals (1 and 3) and the decrease of the DC component (blood flow) signal (2).
カフB1により血流を止めると測定部位の血液容積が減少するので、原波形は脈波成分の振幅が小さくなり0へと減少していき、当然、原波形の平均信号(2)も0へと減少していく。 When the blood flow is stopped by the cuff B1, the blood volume of the measurement site decreases, so the amplitude of the pulse wave component of the original waveform decreases to 0, and naturally the average signal (2) of the original waveform also decreases to 0. And decrease.
カフ圧信号(4)の制御により行なう血流の停止時間は、血流の再開後、即ちカフ圧を零にした直後に生じる血流(ほぼDC成分信号2)の増大が最大になる時間を設定するか、あるいは脈波信号1の脈波の振幅が最大になる時間を設定する。
The stop time of blood flow performed by controlling the cuff pressure signal (4) is the time during which the increase in blood flow (approximately DC component signal 2) that occurs immediately after resumption of blood flow, that is, immediately after the cuff pressure is reduced to zero, is maximized. Set or set a time when the amplitude of the pulse wave of the
これは、血流が最大になる時、血管は最大に拡張し、脈波の振幅が最大値を示すからである。血流停止時間は測定部位が指尖の場合は約30秒から90秒程度が適当であると考えられ、30秒、60秒、続いて90秒間の血流停止操作を行い、平均血流量(信号(2))あるいは脈波の振幅(信号(1)あるいは(3))が最大になる時間を選択する。 This is because when the blood flow becomes maximum, the blood vessel expands to the maximum, and the amplitude of the pulse wave shows the maximum value. When the measurement site is a fingertip, the blood flow stop time is considered to be about 30 to 90 seconds. The blood flow stop operation is performed for 30 seconds, 60 seconds, and then 90 seconds, and the average blood flow ( The time when the signal (2)) or the amplitude of the pulse wave (signal (1) or (3)) is maximized is selected.
被験者ごとに上記の30秒、60秒、続いて90秒間の血流停止操作と、血流量の測定を行ない適切な血流停止時間を選択できるよう装置を構成してもよく、また、あらかじめ多数の測定を行なって得た測定例から適当な血流停止時間をデフォルトとして用いるよう装置を構成してもよいし、また、30秒、60秒、90秒間といった固定的な血流停止時間を検者の判断で選択できるよう装置を構成してもよい。 The apparatus may be configured so that an appropriate blood flow stop time can be selected by performing the blood flow stop operation for 30 seconds, 60 seconds, and then 90 seconds for each subject and measuring the blood flow. The device may be configured to use an appropriate blood flow stop time as a default from the measurement example obtained by performing the measurement, and a fixed blood flow stop time such as 30 seconds, 60 seconds, and 90 seconds may be detected. The apparatus may be configured so that it can be selected at the discretion of the person.
あるいは、30秒、60秒、90秒間といった固定的な血流停止時間の血流停止/血流量の測定、およびそれに続く下記の血管脈波測定処理を複数セット実行し、各セットの血流量測定結果に基づき、適切なセットの血管脈波測定結果を出力するようにしてもよい。 Alternatively, a plurality of sets of blood flow stop / measurement of blood flow at a fixed blood flow stop time of 30 seconds, 60 seconds, 90 seconds, and subsequent blood vessel pulse wave measurement processing described below are executed, and blood flow measurement of each set is performed. Based on the result, an appropriate set of blood vessel pulse wave measurement results may be output.
本実施例では、平均血流量を指標にして被験者ごとに血流停止操作と、血流量の測定を行なった上、血流停止時間を選択した。 In this example, the blood flow stop operation and blood flow measurement were performed for each subject using the average blood flow as an index, and the blood flow stop time was selected.
その後行なう実際の脈波測定では、たとえば血流停止前の加速度脈波を5個平均加算して平均波形を求める。次に、血流再開後の血流が最大になった時点で測定した5個の加速度脈波を平均加算して平均波形を求める。 In the actual pulse wave measurement performed thereafter, for example, an average waveform is obtained by averaging five acceleration pulse waves before stopping blood flow. Next, an average waveform is obtained by averaging the five acceleration pulse waves measured at the time when the blood flow after the blood flow resumes becomes maximum.
すなわち、図2に示した加速度脈波の振幅a、b、c、dのそれぞれについて、血流停止前の脈波5個の平均振幅値prePPを血流再開後の脈波5個の平均振幅値postPPで除した値S=(prePP/postPP)×100を求める。 That is, for each of the amplitudes a, b, c, and d of the acceleration pulse wave shown in FIG. 2, the average amplitude value prePP of the five pulse waves before stopping the blood flow is used as the average amplitude of the five pulse waves after resuming the blood flow. A value S = (prePP / postPP) × 100 divided by the value postPP is obtained.
図2に加速度脈波信号(3)の代表的パターンを示す。図2において、b/a、c/a、d/a、e/aは動脈硬化や加齢に相関した指標である。高齢化や動脈硬化が進展するとb/aの値は増大し、d/aとe/aの値は減少する。 FIG. 2 shows a typical pattern of the acceleration pulse wave signal (3). In FIG. 2, b / a, c / a, d / a, and e / a are indices correlated with arteriosclerosis and aging. As aging and arteriosclerosis progress, the value of b / a increases and the values of d / a and e / a decrease.
本実施例では、b/aを算出し、測定部位の動脈硬化あるいは血管年齢の指標とすることとした。表1に被験者Eに種々の負荷を与えた際の測定結果を示す。 In this example, b / a was calculated and used as an index of arteriosclerosis or blood vessel age at the measurement site. Table 1 shows the measurement results when applying various loads to the subject E.
したがって、本実施例のように、血管脈波測定を行なうに際して、測定部位の上流部においてカフ圧を加えて所定時間血流を停止し、開放した後に脈波測定を行なうよう制御することにより、測定時の種々の外的要因に影響されずに高精度な血管脈波測定を行なうことができる。 Therefore, when performing vascular pulse wave measurement as in this embodiment, by applying cuff pressure at the upstream portion of the measurement site to stop the blood flow for a predetermined time and controlling to perform pulse wave measurement after opening, A highly accurate vascular pulse wave measurement can be performed without being affected by various external factors at the time of measurement.
本実施例におけるように、血管を一定時間狭窄して血流を停止させた後、狭窄を急激に解除して血流を再開させると、血管を流れる血液量は狭窄前の量より一過性に増大する。これは反応性充血と称される現象であり、血管の生理的緊張状態が消失した状態である。したがって、血流を停止させた後、血流が増大している時の脈波を解析することにより、血管の生理的緊張状態に依存しない血管の器質的柔軟性(年齢や動脈硬化)のみが測定可能となる。 As in this embodiment, after the blood vessel is stenotic for a certain period of time to stop the blood flow, the blood flow through the blood vessel is more transient than the amount before the stenosis when the stenosis is suddenly released and the blood flow is resumed. To increase. This is a phenomenon called reactive hyperemia and is a state in which the physiological tension of blood vessels has disappeared. Therefore, by analyzing the pulse wave when the blood flow is increased after stopping the blood flow, only the organic flexibility (age and arteriosclerosis) of the blood vessel that does not depend on the physiological tension state of the blood vessel It becomes possible to measure.
すなわち、本実施例によれば、被験者の生理的状態や測定環境に依存することなく、血管の器質的柔軟性(血管年齢や動脈硬化)のみが測定可能となり、動脈硬化など生活習慣病の診断をより正確に行なえる利点がある。 That is, according to the present embodiment, only the organic flexibility (blood vessel age and arteriosclerosis) of blood vessels can be measured without depending on the physiological state and measurement environment of the subject, and diagnosis of lifestyle-related diseases such as arteriosclerosis can be performed. There is an advantage that can be performed more accurately.
なお、上記実施例のように血管の柔軟性の評価などを目的として血管脈波測定を行なう場合には血流停止後にカフ圧を急激に下げて脈圧の変化を観察するが、血流停止後に徐々にカフ圧を下げることにより、最高血圧と最低血圧および平均血圧を測定することができる。 When blood vessel pulse wave measurement is performed for the purpose of evaluating the flexibility of blood vessels as in the above embodiment, the change in pulse pressure is observed by rapidly decreasing the cuff pressure after stopping blood flow. By gradually lowering the cuff pressure later, the maximum blood pressure, the minimum blood pressure, and the average blood pressure can be measured.
したがって、本装置によって被験者Eの最高血圧、最低血圧、平均血圧Pmeanなどを測定することも可能であり、いわゆる通常の血圧測定も実施することができる。 Therefore, it is possible to measure the systolic blood pressure, the diastolic blood pressure, the average blood pressure Pmean and the like of the subject E by this apparatus, and so-called normal blood pressure measurement can also be performed.
このため、たとえば、本実施例の血管脈波測定機能は、既存の自動血圧計の付加機能として実施することもでき、血管脈波測定結果は、たとえば動脈硬化の度合あるいは動脈年齢などとしてユーザや検者に対して表示することができる。 For this reason, for example, the blood vessel pulse wave measurement function of the present embodiment can also be implemented as an additional function of an existing automatic blood pressure monitor, and the blood vessel pulse wave measurement result is obtained as the degree of arteriosclerosis or arterial age, for example. Can be displayed to the examiner.
以上では、ディスプレイCおよび制御部Dの部分にPCを流用するものとしたが、上記より明らかなように自動血圧計のディスプレイや制御部のハードウェアを流用できるのはいうまでもない。 In the above description, the PC is used for the display C and the control unit D, but it goes without saying that the display of the automatic sphygmomanometer and the hardware of the control unit can be used as apparent from the above.
また、血流停止前の脈波の振幅と血流再開後の脈波の振幅を比較することにより、被験者Eの血管緊張度合いを評価することができる。 Further, by comparing the amplitude of the pulse wave before stopping blood flow with the amplitude of the pulse wave after resuming blood flow, the degree of vascular tone of the subject E can be evaluated.
本実施例は、実施例1での光電式指尖容積脈波測定装置Aに代えて、橈骨動脈圧測定装置Pを用いて脈波測定を行なうようにしたものである。 In this embodiment, the pulse wave measurement is performed using the radial artery pressure measurement device P instead of the photoelectric fingertip volume pulse wave measurement device A in the first embodiment.
本実施例では、図4に示すように被験者Eの手首に橈骨動脈圧測定装置PのプローブP1(圧センサ)を装着する。 In this embodiment, as shown in FIG. 4, the probe P1 (pressure sensor) of the radial artery pressure measuring device P is attached to the wrist of the subject E.
橈骨動脈圧測定装置PはプローブP1を介して被験者Eの手首の橈骨動脈の圧変化を測定し、脈波に相当するAC成分信号(1)、および平均血圧に相当するDC成分信号(2)を出力する。 The radial artery pressure measuring device P measures the pressure change of the radial artery at the wrist of the subject E via the probe P1, and the AC component signal (1) corresponding to the pulse wave and the DC component signal (2) corresponding to the average blood pressure. Is output.
ディスプレイCおよび制御部Dは、実施例1と同様に構成されており、制御部Dの制御によりAC(脈波)成分信号(1)とDC(平均血圧)成分信号(2)をディスプレイCに表示する。 The display C and the control unit D are configured in the same manner as in the first embodiment. Under the control of the control unit D, the AC (pulse wave) component signal (1) and the DC (mean blood pressure) component signal (2) are displayed on the display C. indicate.
カフ圧制御装置BおよびカフB1も実施例1と同様に構成されているが、本実施例ではカフB1は被験者Eの上腕部に装着し、空気圧の増減により血管を圧迫し血流の停止と再開通を自動的に行なう。制御部Dがカフ圧制御装置Bに出力するカフ圧信号(4)もディスプレイに表示する。 The cuff pressure control device B and the cuff B1 are also configured in the same manner as in the first embodiment, but in this embodiment, the cuff B1 is attached to the upper arm of the subject E, presses the blood vessel by increasing or decreasing the air pressure, and stops the blood flow. Reopening is performed automatically. The cuff pressure signal (4) output from the control unit D to the cuff pressure control device B is also displayed on the display.
被験者Eの脈波の測定を開始した後、カフ圧を加えることにより血管を狭窄して血流を一定時間停止させる。血流の停止は、脈波信号(1)の消失とDC成分(平均血圧)信号(2)の低下としてモニター用ディスプレイC上で検証することができる。 After the measurement of the pulse wave of the subject E is started, the blood flow is stopped for a certain time by constricting the blood vessel by applying a cuff pressure. The stoppage of blood flow can be verified on the monitor display C as the disappearance of the pulse wave signal (1) and the decrease of the DC component (mean blood pressure) signal (2).
本実施例でも、カフB1で血流を停止させた後、橈骨動脈圧測定装置Pにより血管脈波測定を行なう。 Also in the present embodiment, blood flow is stopped by the cuff B1, and then the blood vessel pulse wave is measured by the radial artery pressure measuring device P.
カフB1による血流停止時間は、カフ圧を零にした直後、血流の再開後に生じる脈波の振幅の増大が最大になる時間を設定する。 The blood flow stop time by the cuff B1 is set to a time when the increase in the amplitude of the pulse wave that occurs after the blood flow is resumed immediately after the cuff pressure is made zero.
カフB1による血流停止時間の制御に関しては、実施例1で前述した手法を用いることができる。本実施例では、血流停止時間は1分(60秒)に設定した。 Regarding the control of the blood flow stop time by the cuff B1, the method described in the first embodiment can be used. In this example, the blood flow stop time was set to 1 minute (60 seconds).
測定に際しては、カフB1による血流停止前の脈波を入力し、測定した5個の脈波を平均加算して平均波形を求めた後、カフB1の圧力により血流を停止させ、続いて血流再開後の血流が最大になった時点で測定した5個の脈波を平均加算して平均波形を求める。 In the measurement, the pulse wave before the blood flow stoppage by the cuff B1 is input, and the five measured pulse waves are averaged to obtain an average waveform, and then the blood flow is stopped by the pressure of the cuff B1. An average waveform is obtained by averaging the five pulse waves measured at the time when the blood flow after resuming blood flow becomes maximum.
図5に、本実施例により測定される脈波信号(1)の代表的パターンを示す。図5において、特にAI=P2/P1は、心臓や大動脈にかかる負荷の大きさを表すとともに、動脈の硬さに相当するものとして血管の状態の評価に用いることができる。このAI=P2/P1の値は動脈硬化や年齢とともに増大する。 FIG. 5 shows a typical pattern of the pulse wave signal (1) measured by the present embodiment. In FIG. 5, AI = P2 / P1 particularly represents the magnitude of the load applied to the heart and the aorta and can be used for evaluating the state of the blood vessel as being equivalent to the stiffness of the artery. The value of AI = P2 / P1 increases with arteriosclerosis and age.
ここで、表2に本実施例の装置において被験者Eに種々の負荷を与えて行なった血管脈波測定結果を示す。 Here, Table 2 shows the vascular pulse wave measurement results obtained by applying various loads to the subject E in the apparatus of this example.
本実施例でも、血管脈波測定を行なうに際して、測定部位の上流部においてカフ圧を加えて所定時間血流を停止し、開放した後に脈波測定を行なうよう制御することにより、測定時の種々の外的要因に影響されずに高精度な血管脈波測定を行なうことができ、前述の実施例同様の効果を期待できる。 Also in this example, when performing blood vessel pulse wave measurement, the cuff pressure is applied at the upstream portion of the measurement site to stop the blood flow for a predetermined time, and control to perform the pulse wave measurement after opening for various measurements. The blood vessel pulse wave can be measured with high accuracy without being influenced by the external factors, and the same effect as the above-described embodiment can be expected.
本発明は、血流を停止可能なカフ(マンシェット)を必須とするもので、このため、本発明の血管脈波測定機能は前述の通り、自動血圧計などのハードウェアに光プローブ(実施例1)、あるいは圧力プローブ(実施例2)を追加することにより、該製品の付加機能として簡単安価かつ容易に実施することができる。 The present invention essentially requires a cuff (manchette) capable of stopping blood flow. Therefore, as described above, the blood vessel pulse wave measurement function of the present invention is an optical probe (hardware) such as an automatic sphygmomanometer. 1) Alternatively, by adding a pressure probe (Embodiment 2), it can be implemented simply and inexpensively as an additional function of the product.
A 光電式指尖容積脈波測定装置
A1 光プローブ
B カフ圧制御装置
B1 カフ
C ディスプレイ
D 制御部
P 橈骨動脈圧測定装置
P1 プローブ
A Photoelectric fingertip volume pulse wave measurement device A1 Optical probe B Cuff pressure control device B1 Cuff C Display D Control unit P Radial artery pressure measurement device P1 Probe
Claims (3)
前記脈波測定手段の測定部位の上流の血管を狭窄し血流を停止させる血流停止手段と、
前記血流停止手段により所定時間、血流を停止させた後、前記脈波測定手段による血管脈波測定を行なわせる制御手段を含むことを特徴とする血管脈波測定装置。 A pulse wave measuring means for measuring a blood vessel pulse wave of a peripheral blood vessel;
A blood flow stopping means for constricting a blood vessel upstream of the measurement site of the pulse wave measuring means to stop the blood flow;
A blood vessel pulse wave measuring apparatus comprising: a control unit that causes blood pulse measurement by the pulse wave measuring unit after the blood flow is stopped by the blood flow stopping unit for a predetermined time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006025218A JP2007202791A (en) | 2006-02-02 | 2006-02-02 | Vascular pulse wave measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006025218A JP2007202791A (en) | 2006-02-02 | 2006-02-02 | Vascular pulse wave measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007202791A true JP2007202791A (en) | 2007-08-16 |
Family
ID=38482793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006025218A Pending JP2007202791A (en) | 2006-02-02 | 2006-02-02 | Vascular pulse wave measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007202791A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010213842A (en) * | 2009-03-16 | 2010-09-30 | Doshisha | Device for evaluating hardness/softness of vascular wall |
JP2011526517A (en) * | 2008-06-30 | 2011-10-13 | ネルコー ピューリタン ベネット アイルランド | System and method for processing signals with repetitive features |
CN110811592A (en) * | 2018-08-10 | 2020-02-21 | 株式会社东芝 | Blood circulation detection device and blood circulation detection method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002085204A1 (en) * | 2001-04-20 | 2002-10-31 | Combi Corporation | Arteriosclerosis measurer |
-
2006
- 2006-02-02 JP JP2006025218A patent/JP2007202791A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002085204A1 (en) * | 2001-04-20 | 2002-10-31 | Combi Corporation | Arteriosclerosis measurer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011526517A (en) * | 2008-06-30 | 2011-10-13 | ネルコー ピューリタン ベネット アイルランド | System and method for processing signals with repetitive features |
JP2010213842A (en) * | 2009-03-16 | 2010-09-30 | Doshisha | Device for evaluating hardness/softness of vascular wall |
CN110811592A (en) * | 2018-08-10 | 2020-02-21 | 株式会社东芝 | Blood circulation detection device and blood circulation detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3689335B2 (en) | Noninvasive optical measurement of blood components | |
RU2309668C1 (en) | Method and device for non-invasive measurement of function of endothelium | |
US6659958B2 (en) | Augmentation-index measuring apparatus | |
Hickey et al. | Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study | |
KR20180029072A (en) | Biological data processing | |
Zahedi et al. | Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation | |
US11154208B2 (en) | System and method of measurement of average blood pressure | |
CN107411778B (en) | Noninvasive detection system with peripheral blood flow regulation function | |
KR101604078B1 (en) | Blood pressure monitoring apparatus and method of low pressurization | |
US11723543B2 (en) | Non-invasive system and method for measuring blood pressure variability | |
JP6203737B2 (en) | Finger arteriole dilatability testing method, finger arteriole dilatability testing device, and finger arteriole dilatability testing program | |
US6793628B2 (en) | Blood-pressure measuring apparatus having augmentation-index determining function | |
US20140316291A1 (en) | Measurement device, evaluating method, and evaluation program | |
US10010292B2 (en) | Measuring apparatus and measuring method | |
WO2007132865A1 (en) | Blood vessel senescence detection system | |
JP6129166B2 (en) | Method and apparatus for detecting arterial occlusion / resumption and system for measuring systolic blood pressure | |
AU769672B2 (en) | Method and device for continuous analysis of cardiovascular activity of a subject | |
JP7327816B2 (en) | Pulse wave signal analysis device, pulse wave signal analysis method, and computer program | |
JP2009082175A (en) | Respiration training instrument and computer program | |
Tanaka et al. | Accuracy assessment of a noninvasive device for monitoring beat-by-beat blood pressure in the radial artery using the volume-compensation method | |
JP7120001B2 (en) | Sphygmomanometer, blood pressure measurement method and blood pressure measurement program | |
JP2007202791A (en) | Vascular pulse wave measuring apparatus | |
Benmira et al. | An ultrasound look at Korotkoff sounds: the role of pulse wave velocity and flow turbulence | |
Nilsson et al. | Respiratory variations in the photoplethysmographic waveform: acute hypovolaemia during spontaneous breathing is not detected | |
JP4729703B2 (en) | Blood vessel hardness measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081219 |
|
A977 | Report on retrieval |
Effective date: 20110425 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110510 |
|
A02 | Decision of refusal |
Effective date: 20111011 Free format text: JAPANESE INTERMEDIATE CODE: A02 |