JP2010016944A - Charging voltage control method, battery charger using the same, overcharge protection method, and battery pack using the same - Google Patents

Charging voltage control method, battery charger using the same, overcharge protection method, and battery pack using the same Download PDF

Info

Publication number
JP2010016944A
JP2010016944A JP2008173438A JP2008173438A JP2010016944A JP 2010016944 A JP2010016944 A JP 2010016944A JP 2008173438 A JP2008173438 A JP 2008173438A JP 2008173438 A JP2008173438 A JP 2008173438A JP 2010016944 A JP2010016944 A JP 2010016944A
Authority
JP
Japan
Prior art keywords
voltage
temperature
charging
battery cell
tctl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008173438A
Other languages
Japanese (ja)
Inventor
Iichiro Mori
猪一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008173438A priority Critical patent/JP2010016944A/en
Publication of JP2010016944A publication Critical patent/JP2010016944A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to inject more electric charges into a battery charger for lithium ion secondary batteries. <P>SOLUTION: With respect to battery chargers for constant-current, constant-voltage (CC-CV) charging, the Battery Association of Japan recommends that charging voltage Vx should be 4.25 V at up to 45°C, 4.15 V at higher temperatures, and 4.10 V at 50°C or higher as indicated by reference code α1. In this invention, meanwhile, the charging voltage is determined from Vx=ä[(Tlim-Tx)/(Tlim-Tctl)]×(Vctl<SP>2</SP>-Ve<SP>2</SP>)+Ve<SP>2</SP>}<SP>1/2</SP>, where, Tx is the temperature of a battery cell; Tctl is the temperature (=45°C) at which the suppression of charging voltage should be started because of high temperature; Vctl is the maximum charging voltage permitted in the battery cell at temperature Tctl; Tlim is the maximum temperature permitted in the battery cell in terms of safety; and Ve is the discharge termination voltage of the battery cell. Therefore, the charging voltage is as indicated by reference code α2 and charging can be additionally carried out by the amount equivalent to the portion hatched with oblique lines. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二次電池セルを含む電池パックの充電電圧を制御するための方法およびそれを用いる充電器ならびに前記電池パックにおける過充電保護方法およびそれを用いる前記電池パックに関する。   The present invention relates to a method for controlling a charging voltage of a battery pack including a secondary battery cell, a charger using the same, an overcharge protection method in the battery pack, and the battery pack using the same.

二次電池は、日々改良が進み、単位体積や重量当りのエネルギー蓄積量が増加している。そして、そのようなエネルギー密度の高い電池を安全に使用するための指針として、非特許文献1がある。その非特許文献1は、リチウムイオン二次電池の充放電のプロファイルを定めたもので、充電時のプロファイルは、表1および図7で示すように規定されている。すなわち、T2=10℃からT3=45℃を標準温度域とし、その標準温度域での充電電圧は4.25V、充電電流はメーカ毎に定められる所定値Ic、たとえば0.8Cなどである。これに対して、T1=0℃からT2=10℃の低温域では、充電電圧は前記4.25Vであるものの、充電電流はIc/2の場合と、充電電圧を4.10Vに下げる代りに、充電電流はIcのままである場合との何れかの選択となっている。また、前記温度T3を超える領域では、T4=50℃までは4.15V、それを超えてT4’=60℃までは4.10V、充電電流は共にIcのままとなっている。   Secondary batteries are being improved daily, and the amount of energy stored per unit volume and weight is increasing. And as a guideline for safely using such a battery with high energy density, there is Non-Patent Document 1. The non-patent document 1 defines a charging / discharging profile of a lithium ion secondary battery, and the charging profile is defined as shown in Table 1 and FIG. That is, T2 = 10 ° C. to T3 = 45 ° C. is the standard temperature range, the charging voltage in the standard temperature range is 4.25 V, and the charging current is a predetermined value Ic determined by each manufacturer, for example, 0.8 C. In contrast, in the low temperature range from T1 = 0 ° C. to T2 = 10 ° C., the charging voltage is 4.25V, but the charging current is Ic / 2, instead of lowering the charging voltage to 4.10V. The charging current is selected from the case where Ic remains unchanged. In the region exceeding the temperature T3, 4.15V until T4 = 50 ° C. and 4.10V until T4 ′ = 60 ° C., and the charging current remains Ic.

Figure 2010016944
Figure 2010016944
「ノート型PCにおけるリチウムイオン二次電池の安全利用に関する手引書」 平成19年4月20日 財団法人電子情報技術産業協会、財団法人電池工業会(BAJ)“Guidebook on the Safe Use of Lithium Ion Secondary Batteries in Notebook PCs” April 20, 2007 Japan Electronics and Information Technology Industries Association, Battery Industry Association (BAJ)

ところが、前記非特許文献1による規格では、充電電圧の制御が粗いので、二次電池の容量を充分に活用できない虞があり、本願発明者の実験によれば、特に高温域で、より多くの電荷を注入可能であることが明らかになった。   However, in the standard according to Non-Patent Document 1, since the control of the charging voltage is rough, there is a possibility that the capacity of the secondary battery cannot be fully utilized. It became clear that charge could be injected.

本発明の目的は、より多くの電荷を注入することができる充電電圧制御方法およびそれを用いる充電器ならびに過充電保護方法およびそれを用いる電池パックを提供することである。   An object of the present invention is to provide a charging voltage control method capable of injecting more charges, a charger using the same, an overcharge protection method, and a battery pack using the same.

本発明の充電電圧制御方法は、電池セルの温度Txに対応した電圧Vxで前記電池セルを充電する充電電圧制御方法において、高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、前記温度Tctlを超える現在の電池セルの温度を前記Txとするとき、Vx={[(Tlim−Tx)/(Tlim−Tctl)]・(Vctl−Ve)+Ve1/2から、前記電圧Vxを設定することを特徴とする。 The charging voltage control method of the present invention is a charging voltage control method for charging a battery cell with a voltage Vx corresponding to the temperature Tx of the battery cell. The maximum charging voltage that the battery cell can accept at Tctl is Vctl, the maximum temperature that the battery cell can safely accept is Tlim, the discharge end voltage of the battery cell is Ve, and the temperature of the current battery cell that exceeds the temperature Tctl is When Tx, Vx = {[(Tlim−Tx) / (Tlim−Tctl)] · (Vctl 2 −Ve 2 ) + Ve 2 } 1/2 , the voltage Vx is set.

また、本発明の充電器は、充電電流供給回路と、温度検出回路と、充電制御回路とを備え、前記温度検出回路によって検出された電池セルの温度Txに対応した電圧Vxとなるように、前記充電制御回路が前記充電電流供給回路から出力される充電電圧を制御する充電器において、高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、前記温度Tctlを超える前記温度検出回路で検出された電池セルの現在の温度を前記Txとするとき、前記充電制御回路は、Vx={[(Tlim−Tx)/(Tlim−Tctl)]・(Vctl−Ve)+Ve1/2から、前記電圧Vxを設定することを特徴とする。 The charger of the present invention includes a charging current supply circuit, a temperature detection circuit, and a charge control circuit, and has a voltage Vx corresponding to the temperature Tx of the battery cell detected by the temperature detection circuit. In the charger in which the charging control circuit controls the charging voltage output from the charging current supply circuit, the temperature at which the suppression of the charging voltage is to be started due to the high temperature is Tct1, and the maximum allowable to the battery cell at the temperature Tctl The charging voltage is Vctl, the maximum temperature that the battery cell can safely accept is Tlim, the discharge end voltage of the battery cell is Ve, and the current temperature of the battery cell detected by the temperature detection circuit that exceeds the temperature Tctl is the Tx. when a, the charging control circuit, Vx = {[(Tlim- Tx) / (Tlim-Tctl)] · (Vctl 2 -Ve 2) + Ve 2 1/2, and sets the voltage Vx.

上記の構成によれば、定電流定電圧(CC−CV)充電を行う充電器において、温度検出回路が、電池パック側からの電池セルの温度を表す信号または該充電器に設けられた温度センサの検出結果から、電池セルの温度Txを検出し、その検出結果に対応して、充電制御回路が充電電流供給回路を制御し、その温度Txに対応した電圧Vxで前記電池セルを定電圧充電するにあたって、前記充電制御回路は、高温時における定電圧充電の充電電圧Vxを、高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、前記温度Tctlを超える現在の電池セルの温度を前記Txとするとき、下式で決定する。   According to said structure, in the charger which performs constant current constant voltage (CC-CV) charge, a temperature detection circuit is a signal showing the temperature of the battery cell from the battery pack side, or the temperature sensor provided in this charger From the detection result, the battery cell temperature Tx is detected, and the charging control circuit controls the charging current supply circuit according to the detection result, and the battery cell is charged at a constant voltage with the voltage Vx corresponding to the temperature Tx. In the charging control circuit, the charging voltage Vx for constant voltage charging at a high temperature is set to a temperature Tctl at which the suppression of the charging voltage should be started because of the high temperature, and the maximum charging voltage that the battery cell can tolerate at the temperature Tctl. Vctl, Tlim is the maximum temperature that the battery cell can safely accept, T Ve, the discharge end voltage of the battery cell is Ve, and the current temperature of the battery cell that exceeds the temperature Tctl is When the Tx, is determined by the following equation.

Vx={[(Tlim−Tx)/(Tlim−Tctl)]
・(Vctl−Ve)+Ve1/2
したがって、前記電池セルの温度のTx上昇に伴って、定電圧充電の充電電圧Vxを、段階的に、その段階毎に比較的大きく下げてゆくのではなく、微少電圧ずつ、電池セルの温度Txにきめ細かく対応して下げてゆくので、前記段階のレベルとの差分だけ、余分に充電することができる。
Vx = {[(Tlim-Tx) / (Tlim-Tctl)]
・ (Vctl 2 −Ve 2 ) + Ve 2 } 1/2
Therefore, as the battery cell temperature Tx rises, the charging voltage Vx for constant voltage charging is not reduced step by step relatively large at each step, but the battery cell temperature Tx by a minute voltage. Since it is lowered correspondingly, it can be charged extra by the difference from the level of the above stage.

さらにまた、本発明の過充電保護方法は、予め定められる保護電圧Vzで電池セルへの充電電流を遮断する過充電保護方法において、高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、予め定めるマージンをα、前記温度Tctlを超える現在の電池セルの温度をTxとするとき、Vz={[(Tlim−Tx)/(Tlim−Tctl)]・(Vctl−Ve)+Ve1/2+αから、前記保護電圧Vzを設定することを特徴とする。 Furthermore, the overcharge protection method of the present invention is the overcharge protection method for cutting off the charging current to the battery cell at a predetermined protection voltage Vz. At that temperature Tctl, the maximum charge voltage that the battery cell can accept is Vctl, the maximum temperature that the battery cell can safely accept is Tlim, the discharge end voltage of the battery cell is Ve, the predetermined margin is α, and the temperature exceeds the temperature Tctl. When the current battery cell temperature is Tx, Vz = {[(Tlim−Tx) / (Tlim−Tctl)] · (Vctl 2 −Ve 2 ) + Ve 2 } 1/2 + α, and the protection voltage Vz is It is characterized by setting.

また、本発明の電池パックは、電池セルと、電圧検出回路と、スイッチ素子と、保護回路とを備え、前記電圧検出回路によって検出された前記電池セルの電圧が、予め定められる保護電圧Vzを超えると、前記保護回路が、前記電池セルへの充電経路に介在された前記スイッチ素子を遮断させ、充電電流を遮断する過充電保護動作を行う電池パックにおいて、温度センサをさらに備え、高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、予め定めるマージンをα、前記温度Tctlを超える前記温度センサで検出された電池セルの現在の温度をTxとするとき、前記保護回路は、Vz={[(Tlim−Tx)/(Tlim−Tctl)]・(Vctl−Ve)+Ve1/2+αから、前記保護電圧Vzを設定することを特徴とする。 The battery pack of the present invention further includes a battery cell, a voltage detection circuit, a switch element, and a protection circuit, and the voltage of the battery cell detected by the voltage detection circuit has a predetermined protection voltage Vz. When the battery pack exceeds, the battery pack that performs an overcharge protection operation that cuts off the switching element interposed in the charging path to the battery cell and cuts off the charging current further includes a temperature sensor, for high temperature The temperature at which charging voltage suppression should be started is Tctl, the maximum charging voltage that the battery cell can accept at the temperature Tctl, Vctl, the maximum temperature that the battery cell can safely accept is Tlim, and the discharge end voltage of the battery cell. Ve, where α is a predetermined margin, and Tx is the current temperature of the battery cell detected by the temperature sensor that exceeds the temperature Tctl. The protection circuit, Vz = from {[(Tlim-Tx) / (Tlim-Tctl)] · (Vctl 2 -Ve 2) + Ve 2} 1/2 + α, and sets the protection voltage Vz .

上記の構成によれば、電圧検出回路によって検出された電池セルの電圧が、予め定められる保護電圧Vzを超えると、保護回路が、前記電池セルへの充電経路に介在されたスイッチ素子を遮断させ、充電電流を遮断する過充電保護動作を行う電池パックにおいて、温度センサを設けるとともに、前記保護回路は、前記保護電圧Vzを前記電池セルの温度Txに対応して変化するようにし、さらに高温時における前記保護電圧Vzを、高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、予め定めるマージンをα、前記温度Tctlを超える現在の電池セルの温度を前記Txとするとき、下式で決定する。   According to the above configuration, when the voltage of the battery cell detected by the voltage detection circuit exceeds the predetermined protection voltage Vz, the protection circuit blocks the switch element interposed in the charging path to the battery cell. In the battery pack that performs the overcharge protection operation that cuts off the charging current, a temperature sensor is provided, and the protection circuit changes the protection voltage Vz in accordance with the temperature Tx of the battery cell, and further when the temperature is high. The protection voltage Vz at Tct is the temperature at which the suppression of the charging voltage due to the high temperature is Tctl, the maximum charging voltage that the battery cell can accept at the temperature Tctl is Vctl, and the maximum temperature that the battery cell can safely accept is Tlim, Ve is the discharge end voltage of the battery cell, α is a predetermined margin, and the current battery cell temperature exceeds the temperature Tctl. When the said Tx, determined by the following equation.

Vz={[(Tlim−Tx)/(Tlim−Tctl)]
・(Vctl−Ve)+Ve1/2+α
したがって、前記電池セルの温度Txの上昇に伴って、過充電保護電圧Vzを微少電圧ずつ、きめ細かく下げてゆくので、安全を確保しつつ、その時点(温度Tx)で可能な限りの容量まで充電することができる。
Vz = {[(Tlim-Tx) / (Tlim-Tctl)]
・ (Vctl 2 −Ve 2 ) + Ve 2 } 1/2 + α
Therefore, as the temperature Tx of the battery cell rises, the overcharge protection voltage Vz is finely decreased by a minute voltage, so that the battery is charged to the maximum capacity at that time (temperature Tx) while ensuring safety. can do.

さらにまた、本発明の充電器は、充電電流を検出する電流検出抵抗と、前記充電制御回路からの目標充電電流に対応したデータをデコードするカウンタと、前記カウンタのデコード値に対応した電圧を発生するデジタル/アナログ変換器とを備えて構成される可変電圧の第1の基準電圧源と、前記電流検出抵抗の検出電圧と前記第1の基準電圧源の第1の基準電圧とを比較する誤差増幅器とをさらに備え、前記充電制御回路は、定電圧充電時に、前記誤差増幅器からの出力に応答し、前記検出電圧が前記第1の基準電圧を超えると前記充電電流供給回路に所定値だけ充電電流を減少させることを特徴とする。   Furthermore, the charger of the present invention generates a current detection resistor for detecting a charging current, a counter for decoding data corresponding to the target charging current from the charging control circuit, and a voltage corresponding to the decoded value of the counter. A variable voltage first reference voltage source configured to include a digital / analog converter, and an error comparing the detection voltage of the current detection resistor with the first reference voltage of the first reference voltage source The charging control circuit is responsive to an output from the error amplifier during constant voltage charging, and charges the charging current supply circuit by a predetermined value when the detected voltage exceeds the first reference voltage. The current is reduced.

上記の構成によれば、前記定電流定電圧(CC−CV)充電の定電圧充電の領域において、充電制御回路が、充電電流供給回路に、前記充電電圧Vxを維持させながら、満充電に至るまで充電電流を減少させてゆく電流垂下制御を行うにあたって、電流検出抵抗で充電電流を検出し、その電流検出抵抗の検出電圧と、充電電流の制御目標値となる第1の基準電圧源の第1の基準電圧とを誤差増幅器で比較し、前記検出電圧が前記第1の基準電圧を超えると前記充電電流供給回路に所定値だけ充電電流を減少させ、さらに第1の基準電圧を減少させる動作を繰返すことで、前記電流垂下制御を行う。このような構成において、前記第1の基準電圧源を、前記充電制御回路からの目標充電電流に対応したデータをデコードするカウンタと、前記カウンタのデコード値に対応した電圧を発生するデジタル/アナログ変換器とによって構成する。   According to said structure, in the constant voltage charge area | region of the said constant current constant voltage (CC-CV) charge, a charge control circuit reaches a full charge, making a charging current supply circuit maintain the said charging voltage Vx. When the current drooping control for decreasing the charging current is performed, the charging current is detected by the current detection resistor, the detection voltage of the current detection resistor, and the first reference voltage source of the first reference voltage source that becomes the control target value of the charging current 1 is compared with a reference voltage of 1 by an error amplifier, and when the detected voltage exceeds the first reference voltage, the charging current supply circuit reduces the charging current by a predetermined value, and further reduces the first reference voltage. Is repeated to perform the current drooping control. In such a configuration, the first reference voltage source includes a counter that decodes data corresponding to the target charging current from the charge control circuit, and a digital / analog converter that generates a voltage corresponding to the decoded value of the counter. It consists of a container.

したがって、逐次減少が指示される充電電流の制御目標値を、簡単な構成で、精度良く設定することができる。   Therefore, it is possible to accurately set the control target value of the charging current instructed to be sequentially decreased with a simple configuration.

また、本発明の電池パックでは、前記電池セルは相互に直列に複数段設けられて組電池を形成し、前記保護回路は、各段に設けられ、前記保護電圧Vzを設定する可変電圧の第2の基準電圧源およびその第2の基準電圧源からの第2の基準電圧と各段のセル電圧とを比較し、前記第2の基準電圧をセル電圧が超えていると過充電判定信号を出力する比較器と、前記各比較器の少なくとも1つから前記過充電判定信号が出力されると、前記スイッチ素子を遮断させる論理回路とを備えて構成され、さらに前記温度センサからの出力に応答して前記第2の基準電圧源における第2の基準電圧を変化させる保護電圧制御部を備えることを特徴とする。   In the battery pack of the present invention, the battery cells are provided in a plurality of stages in series with each other to form an assembled battery, and the protection circuit is provided in each stage, and a variable voltage first that sets the protection voltage Vz is provided. The second reference voltage source and the second reference voltage from the second reference voltage source are compared with the cell voltage of each stage, and if the cell voltage exceeds the second reference voltage, an overcharge determination signal is generated. A comparator that outputs, and a logic circuit that shuts off the switch element when the overcharge determination signal is output from at least one of the comparators, and further responds to an output from the temperature sensor. And a protection voltage control unit for changing the second reference voltage in the second reference voltage source.

上記の構成によれば、電池セルが直列に複数段設けられて組電池を形成する場合に、過充電保護回路を、各段に設けられる第2の基準電圧源および比較器と、共通に設けられる論理回路との簡単な構成で実現することができる。   According to the above configuration, when the battery cell is provided in a plurality of stages in series to form an assembled battery, the overcharge protection circuit is provided in common with the second reference voltage source and the comparator provided in each stage. It can be realized with a simple configuration with a logic circuit.

本発明の充電電圧制御方法および充電器は、以上のように、定電流定電圧(CC−CV)充電を行う充電器において、温度検出回路が、電池パック側からの電池セルの温度を表す信号または該充電器に設けられた温度センサの検出結果から、電池セルの温度Txを検出し、その検出結果に対応して、充電制御回路が充電電流供給回路を制御し、その温度Txに対応した電圧Vxで前記電池セルを定電圧充電するにあたって、前記充電制御回路は、高温時における定電圧充電の充電電圧Vxを、高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、前記温度Tctlを超える現在の電池セルの温度を前記Txとするとき、Vx={[(Tlim−Tx)/(Tlim−Tctl)]・(Vctl−Ve)+Ve1/2から決定する。 As described above, the charging voltage control method and the charger according to the present invention are signals in which the temperature detection circuit indicates the temperature of the battery cell from the battery pack side in the charger that performs constant current constant voltage (CC-CV) charging. Alternatively, the temperature Tx of the battery cell is detected from the detection result of the temperature sensor provided in the charger, and in response to the detection result, the charge control circuit controls the charging current supply circuit and corresponds to the temperature Tx. When the battery cell is charged at a constant voltage with the voltage Vx, the charge control circuit sets the charging voltage Vx for constant voltage charging at a high temperature to a temperature Tctl at which the suppression of the charging voltage due to the high temperature is to be started, and the temperature Tctl. The maximum charging voltage that the battery cell can accept is Vctl, the maximum temperature that the battery cell can safely accept is Tlim, the discharge end voltage of the battery cell is Ve, and the temperature Tct Wherein when the Tx the current temperature of the battery cell exceeds, Vx = {[(Tlim- Tx) / (Tlim-Tctl)] · (Vctl 2 -Ve 2) + Ve 2} determined from 1/2.

それゆえ、前記電池セルの温度のTx上昇に伴って、定電圧充電の充電電圧Vxを、段階的に、その段階毎に比較的大きく下げてゆくのではなく、微少電圧ずつ、電池セルの温度Txにきめ細かく対応して下げてゆくので、前記段階のレベルとの差分だけ、余分に充電することができる。   Therefore, as the temperature Tx of the battery cell increases, the charging voltage Vx for constant voltage charging is not decreased step by step relatively large for each step, but the temperature of the battery cell is increased by a minute voltage. Since the voltage is lowered correspondingly to Tx, it is possible to charge extra by the difference from the level of the stage.

さらにまた、本発明の過充電保護方法は、および電池パックは、以上のように、電圧検出回路によって検出された電池セルの電圧が、予め定められる保護電圧Vzを超えると、保護回路が、前記電池セルへの充電経路に介在されたスイッチ素子を遮断させ、充電電流を遮断する過充電保護動作を行う電池パックにおいて、温度センサを設けるとともに、前記保護回路は、前記保護電圧Vzを前記電池セルの温度Txに対応して変化するようにし、さらに高温時における前記保護電圧Vzを、高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、予め定めるマージンをα、前記温度Tctlを超える現在の電池セルの温度を前記Txとするとき、Vz={[(Tlim−Tx)/(Tlim−Tctl)]・(Vctl−Ve)+Ve1/2+αから決定する。 Furthermore, in the overcharge protection method of the present invention and the battery pack, as described above, when the voltage of the battery cell detected by the voltage detection circuit exceeds a predetermined protection voltage Vz, the protection circuit In a battery pack that performs an overcharge protection operation that cuts off a switching element interposed in a charging path to a battery cell and cuts off a charging current, a temperature sensor is provided, and the protection circuit supplies the protection voltage Vz to the battery cell. The protection voltage Vz at a high temperature is changed to correspond to the temperature Tx of the battery, and the temperature at which the suppression of the charging voltage is to be started due to the high temperature is Tctl, and the maximum charge that the battery cell can tolerate at the temperature Tctl The voltage is Vctl, the maximum temperature that the battery cell can safely accept is Tlim, the discharge end voltage of the battery cell is Ve, and a predetermined merge is performed. The alpha, when the temperature of the current of the battery cell exceeds the temperature TCTL and the Tx, Vz = {[(Tlim -Tx) / (Tlim-Tctl)] · (Vctl 2 -Ve 2) + Ve 2} 1 / Determine from 2 + α.

それゆえ、前記電池セルの温度Txの上昇に伴って、過充電保護電圧Vzを微少電圧ずつ、きめ細かく下げてゆくので、安全を確保しつつ、その時点(温度Tx)で可能な限りの容量まで充電することができる。   Therefore, as the temperature Tx of the battery cell rises, the overcharge protection voltage Vz is finely reduced by a minute voltage, so that the capacity is as high as possible at that time (temperature Tx) while ensuring safety. Can be charged.

以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。   Embodiments according to the present invention will be described below with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted.

[実施の形態1]
図1は、本発明の実施の第1の形態に係る充電システム1のブロック図である。この充電システム1は、電池パック2と充電器3とを備えて構成される。電池パック2は、この図1で示すように、直接充電器3から充電される構成に限らず、携帯型パーソナルコンピュータやデジタルカメラ、携帯電話機等の電池駆動機器に内装された状態で充電されてもよい。これらの電池パック2と充電器3とは、接続端子T1,T2,T3を介して接続される。
[Embodiment 1]
FIG. 1 is a block diagram of a charging system 1 according to the first embodiment of the present invention. The charging system 1 includes a battery pack 2 and a charger 3. As shown in FIG. 1, the battery pack 2 is not limited to a configuration in which the battery pack 2 is directly charged, but is charged in a state in which the battery pack 2 is built in a battery-driven device such as a portable personal computer, a digital camera, or a mobile phone. Also good. The battery pack 2 and the charger 3 are connected via connection terminals T1, T2, T3.

電池パック2は、二次電池セルB1,B2,B3が直列に接続されて成る組電池Bと、充放電を制御する制御IC11と、前記制御IC11からの制御出力に応答して保護動作を行うスイッチ素子Q1,Q2と、温度センサ12,13とを備えて構成される。前記温度センサ12,13は、組電池B(二次電池セルB1,B2,B3毎に設けられてもよい)に密着してその温度を検出するもので、サーミスタなどから成り、温度センサ12は制御IC11に内蔵されてもよい。   The battery pack 2 performs a protective operation in response to a battery pack B in which secondary battery cells B1, B2, and B3 are connected in series, a control IC 11 that controls charging and discharging, and a control output from the control IC 11. The switch elements Q1 and Q2 and the temperature sensors 12 and 13 are provided. The temperature sensors 12 and 13 are in close contact with the assembled battery B (may be provided for each of the secondary battery cells B1, B2 and B3) to detect the temperature, and are composed of a thermistor or the like. It may be built in the control IC 11.

前記二次電池セルB1,B2,B3は、前記非特許文献1の対象となるリチウムイオン二次電池である。二次電池セルB1,B2,B3は、それぞれ複数の二次電池セルが並列に接続されたものでもよい。また、直列段数も、3段に限らない。前記組電池Bは、前記接続端子T1,T3を介して充電器2から与えられる充電電流で充電され、その充放電の経路には、直列に、過放電防止用のスイッチ素子Q1と、過充電防止用のスイッチ素子Q2とが介在される。   The secondary battery cells B1, B2, B3 are lithium ion secondary batteries that are the subject of Non-Patent Document 1. Secondary battery cells B1, B2, and B3 may each have a plurality of secondary battery cells connected in parallel. The number of series stages is not limited to three. The assembled battery B is charged with a charging current supplied from the charger 2 via the connection terminals T1 and T3, and an overdischarge-preventing switch element Q1 and an overcharge are connected in series in the charge / discharge path. A switch element Q2 for prevention is interposed.

前記制御IC11は、分圧抵抗R11,R12,R13;R21,R22,R23;R31,R32,R33と、基準電圧源E1,E2,E3と、比較器CP11,CP12;CP21,CP22;CP31,CP32と、NANDゲートG1,G2とを備えて構成される。前記各二次電池セルB1,B2,B3のセル電圧Vb1,Vb2,Vb3は、制御IC11内に取込まれ、分圧抵抗R11,R12,R13;R21,R22,R23;R31,R32,R33によって分圧される。   The control IC 11 includes voltage dividing resistors R11, R12, R13; R21, R22, R23; R31, R32, R33, reference voltage sources E1, E2, E3, comparators CP11, CP12; CP21, CP22; CP31, CP32 And NAND gates G1 and G2. The cell voltages Vb1, Vb2, and Vb3 of the secondary battery cells B1, B2, and B3 are taken into the control IC 11 and are divided by the voltage dividing resistors R11, R12, R13; R21, R22, R23; R31, R32, R33. Divided pressure.

分圧抵抗R11,R12;R21,R22;R31,R32間のハイ側の分圧電圧V11,V21,V31は、過放電検出用の比較器CP11,CP21,CP31の一方の入力端に入力され、他方の入力端に入力される第2の基準電圧である基準電圧源E1,E2,E3からの基準電圧Vref1,Vref2,Vref3と比較される。その比較結果は、NANDゲートG1に与えられ、したがってこのNANDゲートG1は、前記二次電池セルB1,B2,B3のセル電圧Vb1,Vb2,Vb3の分圧電圧V11,V21,V31の少なくとも1つが、基準電圧Vref1,Vref2,Vref3より低下すると、過放電状態と判断し、pチャネルFETから成る前記スイッチ素子Q1を遮断させる。   The high-side divided voltages V11, V21, V31 between the voltage dividing resistors R11, R12; R21, R22; R31, R32 are input to one input terminal of overdischarge detection comparators CP11, CP21, CP31, It is compared with reference voltages Vref1, Vref2, and Vref3 from reference voltage sources E1, E2, and E3, which are second reference voltages input to the other input terminal. The comparison result is given to the NAND gate G1, and therefore the NAND gate G1 has at least one of the divided voltages V11, V21, V31 of the cell voltages Vb1, Vb2, Vb3 of the secondary battery cells B1, B2, B3. When the voltage drops below the reference voltages Vref1, Vref2, and Vref3, it is determined that the battery is overdischarged, and the switch element Q1 formed of a p-channel FET is cut off.

同様に、分圧抵抗R12,R13;R22,R23;R32,R33間のロー側の分圧電圧V12,V22,V32は、過充電検出用の比較器CP12,CP22,CP32の一方の入力端に入力され、他方の入力端に入力される前記基準電圧源E1,E2,E3からの基準電圧Vref1,Vref2,Vref3と比較される。その比較結果は、NANDゲートG2に与えられ、したがってこのNANDゲートG2は、前記二次電池セルB1,B2,B3のセル電圧Vb1,Vb2,Vb3の分圧電圧V12,V22,V32の少なくとも1つが、基準電圧Vref1,Vref2,Vref3より低下すると、過充電状態と判断し、pチャネルFETから成る前記スイッチ素子Q2を遮断させる。   Similarly, the divided voltage V12, V22, V32 on the low side between the voltage dividing resistors R12, R13; R22, R23; R32, R33 is applied to one input terminal of the overcharge detection comparators CP12, CP22, CP32. It is input and compared with reference voltages Vref1, Vref2, and Vref3 from the reference voltage sources E1, E2, and E3 input to the other input terminal. The comparison result is given to the NAND gate G2, and therefore the NAND gate G2 has at least one of the divided voltages V12, V22, V32 of the cell voltages Vb1, Vb2, Vb3 of the secondary battery cells B1, B2, B3. When the voltage drops below the reference voltages Vref1, Vref2, and Vref3, the overcharge state is determined, and the switch element Q2 formed of a p-channel FET is cut off.

たとえば、前記分圧抵抗R11,R21,R31を1284kΩ、分圧抵抗R12,R22,R32を1140kΩ、分圧抵抗R13,R23,R33を1000kΩに設定し、前記基準電圧Vref1,Vref2,Vref3を1.25Vに設定すると、前記分圧電圧V11,V12,V13が前記基準電圧Vref1,Vref2,Vref3の1.25Vになるのは、セル電圧Vb1,Vb2,Vb3が、1.25×3424/2140=2Vとのときである。すなわち、セル電圧Vb1,Vb2,Vb3が2Vを超えて低下した場合は、比較器CP11,CP21,CP31は過放電と判定し、NANDゲートG1を介してスイッチ素子Q1を遮断させる。   For example, the voltage dividing resistors R11, R21 and R31 are set to 1284 kΩ, the voltage dividing resistors R12, R22 and R32 are set to 1140 kΩ, the voltage dividing resistors R13, R23 and R33 are set to 1000 kΩ, and the reference voltages Vref1, Vref2 and Vref3 are set to 1. When the voltage is set to 25V, the divided voltages V11, V12, and V13 become 1.25V of the reference voltages Vref1, Vref2, and Vref3 because the cell voltages Vb1, Vb2, and Vb3 are 1.25 × 3424/2140 = 2V. It is time when. That is, when the cell voltages Vb1, Vb2, and Vb3 drop below 2V, the comparators CP11, CP21, and CP31 determine that overdischarge is performed, and the switch element Q1 is cut off via the NAND gate G1.

同様の設定では、前記分圧電圧V21,V22,V23が前記基準電圧Vref1,Vref2,Vref3の1.25Vになるのは、セル電圧Vb1,Vb2,Vb3が、1.25×3424/1040=4.28Vとのときである。すなわち、セル電圧Vb1,Vb2,Vb3が、過充電の保護電圧Vzである4.28Vを超えて上昇した場合は、比較器CP12,CP22,CP32は、過充電になったと判定し、NANDゲートG2を介してスイッチ素子Q2を遮断させる。   In the same setting, the divided voltages V21, V22, V23 become 1.25V of the reference voltages Vref1, Vref2, Vref3 because the cell voltages Vb1, Vb2, Vb3 are 1.25 × 3424/1040 = 4. .28V. That is, when the cell voltages Vb1, Vb2, and Vb3 rise above 4.28V that is the overcharge protection voltage Vz, the comparators CP12, CP22, and CP32 determine that the overcharge occurs, and the NAND gate G2 The switch element Q2 is shut off via

一方、充電器3は、直流電源回路21と、DC−DCコンバータ22と、充電制御回路23と、バイアス電源E01およびバイアス抵抗RBと、電流検出抵抗RSと、基準電圧源E02,E03と、誤差増幅器(エラーアンプ)CP01,CP02とを備えて構成される。   On the other hand, the charger 3 includes a DC power supply circuit 21, a DC-DC converter 22, a charge control circuit 23, a bias power supply E01 and a bias resistor RB, a current detection resistor RS, reference voltage sources E02 and E03, and an error. Amplifiers (error amplifiers) CP01 and CP02 are provided.

前記直流電源回路21は、商用交流などから直流電圧を発生させるもので、発生された電圧は、昇圧または降圧のDC−DCコンバータ22によって、後述する所定の充電電圧Vxで、所定の充電電流に変換されて、前記接続端子T1,T3から組電池Bへ与えられる。これらの直流電源回路21およびDC−DCコンバータ22は、充電電流供給回路
を構成する。
The DC power supply circuit 21 generates a DC voltage from commercial AC or the like, and the generated voltage is converted into a predetermined charging current at a predetermined charging voltage Vx (to be described later) by a step-up or step-down DC-DC converter 22. It is converted and given to the assembled battery B from the connection terminals T1, T3. These DC power supply circuit 21 and DC-DC converter 22 constitute a charging current supply circuit.

前記DC−DCコンバータ22は、前記直流電源回路21の出力端間に直列に接続されるスイッチング素子Q11、インダクタL1および平滑コンデンサC1と、前記インダクタL1および平滑コンデンサC1と並列に接続されるダイオードD1と、PWM制御回路24とを備えて構成される。そして、前記充電制御回路23からの制御出力に応答した周波数およびデューティでPWM制御回路24がスイッチング素子Q11をスイッチングさせることで、平滑コンデンサC1から前記接続端子T1,T3間には、所定の充電電圧Vxで、所定の充電電流が供給される。   The DC-DC converter 22 includes a switching element Q11, an inductor L1, and a smoothing capacitor C1 connected in series between the output terminals of the DC power supply circuit 21, and a diode D1 connected in parallel with the inductor L1 and the smoothing capacitor C1. And a PWM control circuit 24. The PWM control circuit 24 switches the switching element Q11 at a frequency and duty in response to the control output from the charge control circuit 23, so that a predetermined charge voltage is applied between the smoothing capacitor C1 and the connection terminals T1 and T3. A predetermined charging current is supplied at Vx.

その接続端子T1,T3間の電圧Vxは、誤差増幅器CP01に取込まれ、この誤差増幅器CP01は、前記電圧Vxと基準電圧源E02からの基準電圧Vref01とを比較し、それらの差に対応した出力を前記充電制御回路23に与えることで、充電制御回路23は充電電圧Vxを検知する。また、前記DC−DCコンバータ22から電池パック2へ流れる充電電流は、電流検出抵抗RSによって電圧変換され、誤差増幅器CP02において、第1の基準電圧源である基準電圧源E03からの基準電圧Vref02と比較され、それらの差に対応した出力が前記充電制御回路23に与えられることで、充電制御回路23は前記充電電流を所定の値に保持する。   The voltage Vx between the connection terminals T1 and T3 is taken into the error amplifier CP01. The error amplifier CP01 compares the voltage Vx with the reference voltage Vref01 from the reference voltage source E02, and corresponds to the difference between them. By supplying the output to the charging control circuit 23, the charging control circuit 23 detects the charging voltage Vx. Further, the charging current flowing from the DC-DC converter 22 to the battery pack 2 is converted into a voltage by the current detection resistor RS, and the error amplifier CP02 generates a reference voltage Vref02 from a reference voltage source E03 which is a first reference voltage source. By comparing and providing an output corresponding to the difference to the charge control circuit 23, the charge control circuit 23 holds the charge current at a predetermined value.

さらにまた、前記接続端子T2には、バイアス電源E01からバイアス抵抗RBを介してバイアス電圧が与えられており、電池パック2側では、この接続端子T2とGND側の接続端子T3との間には温度センサ13が接続される。したがって、前記接続端子T2には、前記バイアス電圧をバイアス抵抗RBと温度センサ13とで分圧した電圧が現れ、充電制御回路23は、その分圧電圧から組電池B(二次電池セルB1,B2,B3)の温度を検出する。前記バイアス電源E01、バイアス抵抗RBおよび温度センサ13は、温度検出回路を構成するが、温度センサ13は充電器3側に設けられてもよく、また制御IC11に接続される温度センサ12の検出結果を、通信によって得るようにしてもよい。   Furthermore, a bias voltage is applied to the connection terminal T2 from the bias power source E01 via the bias resistor RB. On the battery pack 2 side, there is a gap between the connection terminal T2 and the connection terminal T3 on the GND side. A temperature sensor 13 is connected. Therefore, a voltage obtained by dividing the bias voltage by the bias resistor RB and the temperature sensor 13 appears at the connection terminal T2, and the charge control circuit 23 generates a battery pack B (secondary battery cells B1, B1) from the divided voltage. The temperature of B2, B3) is detected. The bias power source E01, the bias resistor RB, and the temperature sensor 13 constitute a temperature detection circuit, but the temperature sensor 13 may be provided on the charger 3 side, and the detection result of the temperature sensor 12 connected to the control IC 11 May be obtained by communication.

上述のように構成される充電システムにおいて、注目すべきは、本実施の形態では、充電制御回路23は、定電流定電圧(CC−CV)充電を行うにあたって、定電圧充電時には、前記温度センサ13によって検出された組電池Bの温度Txに対応した電圧Vxとなるように、前記DC−DCコンバータ22から出力される充電電圧Vxを制御し、その際、高温であるときには、前記非特許文献1とは異なり、下式に従って前記充電電圧Vxを決定することである。すなわち、充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記二次電池セルB1,B2,B3が許容できる最大充電電圧(前記非特許文献1で定めるところの上限充電電圧に相当するセル当りに可能な充電電圧の上限値)をVctl、前記二次電池セルB1,B2,B3が安全上許容できる最高温度をTlim、前記二次電池セルB1,B2,B3の放電終了電圧をVe、前記温度Tctlを超える温度であって、前記温度センサ13で検出された二次電池セルB1,B2,B3の現在の温度を前記Txとするとき、充電プロファイルを電熱工学的に計算して、
Vx={[(Tlim−Tx)/(Tlim−Tctl)]
・(Vctl−Ve)+Ve1/2 ・・・(1)
から、前記電圧Vxを設定する。前記温度Tctlは、前記非特許文献1では、45℃である。
In the charging system configured as described above, it should be noted that in the present embodiment, the charging control circuit 23 performs the constant current constant voltage (CC-CV) charging, the temperature sensor during constant voltage charging. The charging voltage Vx output from the DC-DC converter 22 is controlled so that the voltage Vx corresponds to the temperature Tx of the assembled battery B detected by the control unit 13. When the temperature is high, the non-patent document Unlike 1, the charging voltage Vx is determined according to the following equation. That is, the temperature at which the suppression of the charging voltage is to be started is Tctl, and the maximum charging voltage that can be allowed by the secondary battery cells B1, B2, and B3 at the temperature Tctl (corresponding to the upper limit charging voltage defined in Non-Patent Document 1). The upper limit value of the charging voltage possible per cell) is Vctl, the maximum temperature that the secondary battery cells B1, B2, and B3 can safely accept is Tlim, and the discharge end voltage of the secondary battery cells B1, B2, and B3 is Ve. When the current temperature of the secondary battery cells B1, B2, B3 detected by the temperature sensor 13 is Tx, which is a temperature exceeding the temperature Tctl, the charge profile is calculated by electrothermal engineering,
Vx = {[(Tlim-Tx) / (Tlim-Tctl)]
(Vctl 2 −Ve 2 ) + Ve 2 } 1/2 (1)
From the above, the voltage Vx is set. In the said nonpatent literature 1, the said temperature Tctl is 45 degreeC.

以下に、式1の求め方を説明する。先ず、前記二次電池セルB1,B2,B3の容量をC、前記温度Tctl,Txにおけるセルの電圧をVctl,Vxとすると、セルの有するエネルギーEctl,Exは、
Ectl=(1/2)・C・Vctl−(1/2)・C・Ve・・・(2)
Ex=(1/2)・C・Vx−(1/2)・C・Ve ・・・(3)
から求められる。
In the following, how to obtain Equation 1 will be described. First, assuming that the capacity of the secondary battery cells B1, B2, B3 is C, and the cell voltages at the temperatures Tctl, Tx are Vctl, Vx, the energy Ectl, Ex of the cell is
Ectl = (1/2) · C · Vctl 2 − (1/2) · C · Ve 2 (2)
Ex = (1/2) · C · Vx 2 − (1/2) · C · Ve 2 (3)
It is requested from.

したがって、前記温度Tctl,Txにおけるセルのエネルギー比は、
Ex/Ectl=[(1/2)・C・Vx−(1/2)・C・Ve
/[(1/2)・C・Vctl−(1/2)・C・Ve]・・(4)
となり、さらに、
Ex/Ectl=[Vx−Ve]/[Vctl−Ve] ・・・(5)
となる。
Therefore, the energy ratio of the cell at the temperatures Tctl and Tx is
Ex / Ectl = [(1/2) · C · Vx 2 − (1/2) · C · Ve 2 ]
/ [(1/2) · C · Vctl 2 − (1/2) · C · Ve 2 ] ·· (4)
And then
Ex / Ectl = [Vx 2 -Ve 2] / [Vctl 2 -Ve 2] ··· (5)
It becomes.

一方、前記式4から、
C・Vx−C・Ve=Ex・(C・Vctl−C・Ve)/Ectl・(6)
であり、したがって、
Vx=[Ex・(C・Vctl−C・Ve)/Ectl・C]+Ve・(7)
となる。ここで、温度上昇ΔTはセルの電気的エネルギーにほぼ比例し、前記最高温度をTlimとすると、前記式7を前記式1とすることができる。
On the other hand, from Equation 4 above,
C · Vx 2 −C · Ve 2 = Ex · (C · Vctl 2 −C · Ve 2 ) / Ectl · (6)
And therefore
Vx 2 = [Ex · (C · Vctl 2 −C · Ve 2 ) / Ectl · C] + Ve 2 · (7)
It becomes. Here, the temperature rise ΔT is substantially proportional to the electric energy of the cell, and when the maximum temperature is Tlim, Equation 7 can be expressed as Equation 1.

なお、単電池の内部短絡時の等価回路を示すと、図2(a)のようになり、そのときの熱回路のモデルを示すと図2(b)のようになる。Rqはその内部短絡を起こした異物の電気抵抗によって発生する熱起電力であり、CTは電池の熱容量であり、Rは電池の放熱抵抗である。そこで、前記温度上昇ΔTは、
ΔT=Rq(1−exp(−t/R・CT)) ・・・(8)
と表すことができ、展開すると、
ΔT=R・I・r(1−exp(−t/R・CT))
=R・P・(1−exp(−t/R・CT)) ・・・(9)
となる。
In addition, when the equivalent circuit at the time of the internal short circuit of a cell is shown, it will become like FIG. 2 (a), and if it shows the model of the thermal circuit at that time, it will become like FIG.2 (b). Rq is a thermoelectromotive force generated by the electric resistance of the foreign matter that caused the internal short circuit, CT is a heat capacity of the battery, and R is a heat dissipation resistance of the battery. Therefore, the temperature rise ΔT is
ΔT = Rq (1−exp (−t / R · CT)) (8)
And when expanded,
ΔT = R · I 2 · r (1-exp (−t / R · CT))
= R · P · (1-exp (−t / R · CT)) (9)
It becomes.

ここで、Pは、セルの内部短絡で発生する電力で、単位時間当りに発生するエネルギーであり、その大きさはセルに充電されたエネルギーEが源となるので、前記のように温度上昇ΔTはセルの電気的エネルギーにほぼ比例することになる。したがって、電池の限界温度Tlimは材料によって上下するが、セルの内部で短絡した場合は、短絡によって発生する抵抗が発熱体(前記Rq)となり、電池自身を過熱してその電池に蓄えられたエネルギーが熱に変わり、その最終到達温度が電池材料で決まる限界温度を超えない範囲で、充電エネルギーをコントロールできればよく、現在の温度Txから、前記温度上昇ΔTが生じても、前記限界温度Tlim内であれば安全を確保することができ、前記式1での充電が可能となる。   Here, P is the electric power generated by the internal short circuit of the cell, and is the energy generated per unit time, the magnitude of which is derived from the energy E charged in the cell, so that the temperature rise ΔT as described above. Is approximately proportional to the electrical energy of the cell. Therefore, the limit temperature Tlim of the battery varies depending on the material, but when short-circuited inside the cell, the resistance generated by the short-circuit becomes a heating element (Rq), and the energy stored in the battery by overheating the battery itself It is sufficient that the charging energy can be controlled within a range in which the final temperature reached does not exceed the limit temperature determined by the battery material, even if the temperature rise ΔT occurs from the current temperature Tx, within the limit temperature Tlim. If it exists, safety can be ensured, and charging according to the above-mentioned formula 1 becomes possible.

ここで、リチウムイオン電池の形状としては、円筒形、角形、ラミネート(ポリマー)形のものがあり、正極と負極とをセパレータを介して渦巻き状に巻回した極板群を電池ケースに挿入し、非水電解液を注液後、封口することにより製造されている。正極の活物質としては、コバルト酸リチウム、コバルト酸リチウムの変性体、ニッケル酸リチウム、ニッケル酸リチウムの変性体、マンガン酸リチウム、マンガン酸リチウムの変性体などが好ましい。各変性体には、アルミニウム、マグネシウムなどの元素を含むものを用いることができ、コバルト、ニッケルおよびマンガンの少なくとも2種を含むものも用いることができる。一方、負極の活物質としては、各種天然黒鉛、各種人造黒鉛、シリサイドなどのシリコン含有複合材料、各種合金材料を用いることができる。   Here, the shape of the lithium ion battery includes a cylindrical shape, a rectangular shape, and a laminate (polymer) shape. An electrode plate group in which a positive electrode and a negative electrode are wound in a spiral shape through a separator is inserted into a battery case. It is manufactured by sealing after injecting a non-aqueous electrolyte. As the positive electrode active material, lithium cobaltate, lithium cobaltate modified, lithium nickelate, lithium nickelate modified, lithium manganate, lithium manganate modified, and the like are preferable. As each modified material, one containing an element such as aluminum or magnesium can be used, and one containing at least two of cobalt, nickel and manganese can also be used. On the other hand, as the negative electrode active material, various natural graphites, various artificial graphites, silicon-containing composite materials such as silicide, and various alloy materials can be used.

また、非水電解液には、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などの各種リチウム塩を溶質として用いることができる。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを用いることが好ましいが、これらに限定されない。非水溶媒は、1種を単独で用いることもできるが、2種以上を組み合わせて用いることが好ましい。また、添加剤としては、ビニレンカーボネート、シクロヘキシルベンゼン、ジフェニルエーテルなどを用いることもできる。 In addition, various lithium salts such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) can be used as the solute in the non-aqueous electrolyte. As the non-aqueous solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and the like are preferably used, but are not limited thereto. Although a nonaqueous solvent can also be used individually by 1 type, it is preferable to use 2 or more types in combination. Moreover, as an additive, vinylene carbonate, cyclohexylbenzene, diphenyl ether, etc. can also be used.

このような1個または複数個のリチウムイオン電池と保護回路とを樹脂ケースに入れたものが電池パックであり、前記リチウム塩からなる溶質が正負極間を移動することにより、充放電されるメカニズムである為に、正負極材料や形状の違が異なっている場合であっても、前記式を適用することができる。   A battery pack is a battery pack in which one or a plurality of lithium ion batteries and a protective circuit are placed in a resin case, and the solute consisting of the lithium salt moves between the positive and negative electrodes to charge and discharge. Therefore, even if the positive and negative electrode materials and the shapes are different, the above formula can be applied.

図3および図4は、本願発明者による充電プロファイルのシミュレーション結果を示すグラフである。共に前記温度Tctl=45℃以上をシミュレーションしたものであり、前記45℃までは、前記非特許文献1の一例に従っている。図3は前記最高温度Tlimを150℃とした場合であり、図4は前記最高温度Tlimを180℃とした場合である。参照符号α1が前記非特許文献に従う充電プロファイルであり、参照符号α2,α3が本願発明に従う充電プロファイルである。   3 and 4 are graphs showing the simulation results of the charging profile by the inventor of the present application. Both are simulations of the temperature Tctl = 45 ° C. or higher, and follow the example of Non-Patent Document 1 up to 45 ° C. FIG. 3 shows the case where the maximum temperature Tlim is 150 ° C., and FIG. 4 shows the case where the maximum temperature Tlim is 180 ° C. Reference numeral α1 is a charging profile according to the non-patent document, and reference numerals α2 and α3 are charging profiles according to the present invention.

また、図5は、前記式1による電熱光学計算による充電温度Txおよび電圧Vxと電池エネルギーとの関係を示すグラフである。それによると、前記充電電圧の抑制を開始すべき温度Tctl=45℃で、既に充電電圧Vxを増やしてもその容量は変らなくなり、この時点での容量を100%とすると、50℃で約95%、60℃で約86%となっている。一方、25℃では、充電電圧Vxを増やす程に容量が増加し、4.25Vで100%となっている。また、電気工学・電熱工学的に数値計算するために、電池に充電されるエネルギーについて、電池をコンデンサに置き換えてシュミレーションした場合も、前記25℃のデータに近くなる。そして、前記非特許文献1では、矢符F1,F2,F3で示すように各温度での充電電圧が定められるのに対して、本実施の形態では、矢符F1,F2’,F3で示すように充電電圧が定められることになる。   FIG. 5 is a graph showing the relationship between the battery temperature and the charging temperature Tx and voltage Vx based on the electrothermal optical calculation according to Equation 1. According to this, at the temperature Tctl = 45 ° C. at which the suppression of the charging voltage is to be started, even if the charging voltage Vx is already increased, the capacity does not change, and assuming that the capacity at this point is 100%, about 95 at 50 ° C. %, About 86% at 60 ° C. On the other hand, at 25 ° C., the capacity increases as the charging voltage Vx is increased, and is 100% at 4.25V. In addition, in order to perform numerical calculation in terms of electrical engineering and electrothermal engineering, when the battery is simulated by replacing the battery with a capacitor, the data at 25 ° C. is obtained. And in the said nonpatent literature 1, as shown by arrow F1, F2, F3, while charging voltage in each temperature is defined, in this Embodiment, it shows by arrow F1, F2 ', F3. Thus, the charging voltage is determined.

こうして、充電制御回路23が、二次電池セルB1,B2,B3の温度Txの上昇に伴って、定電圧充電の充電電圧Vxを、微少電圧ずつ、前記温度Txにきめ細かく対応して下げてゆくことで、非特許文献1による段階的に低下させるのに比べて、その差分(図3および図4において斜線を施して示す領域および図5においてF2’−F2)だけ、余分に充電することができるようになる。   Thus, as the temperature Tx of the secondary battery cells B1, B2, and B3 rises, the charge control circuit 23 decreases the constant voltage charging voltage Vx by a minute voltage corresponding to the temperature Tx. Thus, compared with the stepwise reduction according to Non-Patent Document 1, it is possible to charge an extra amount by the difference (the region shown by hatching in FIGS. 3 and 4 and F2′−F2 in FIG. 5). become able to.

また、注目すべきは、電池パック2側でも、制御IC11が、前記比較器CP12,CP22,CP32およびNANDゲートG2を使用して過充電保護動作を行うにあたって、前記温度センサ12に保護電圧制御部13が設けられるとともに、前記基準電圧源E1,E2,E3が可変電圧となっていることである。そして、保護電圧制御部13は、下式に従って過充電の保護電圧Vzを決定する。   Also, it should be noted that, even on the battery pack 2 side, when the control IC 11 performs the overcharge protection operation using the comparators CP12, CP22, CP32 and the NAND gate G2, the temperature sensor 12 has a protection voltage control unit. 13 and the reference voltage sources E1, E2 and E3 are variable voltages. And the protection voltage control part 13 determines the protection voltage Vz of overcharge according to the following formula.

Vz={[(Tlim−Tx)/(Tlim−Tctl)]
・(Vctl−Ve)+Ve1/2+α ・・・(10)
すなわち、前記式1が充電電圧Vxであるのに対して、上記保護電圧Vzはマージンαを加えた電圧となる。前記マージンαは、たとえば0.25Vである。前記マージンα以外の求め方は先述の通りである。保護電圧制御部13は決定した保護電圧Vzとなるように、前記基準電圧源E1,E2,E3による基準電圧Vref1,Vref2,Vref3を変化する。なお、過充電判定レベルである前記基準電圧Vref1,Vref2,Vref3を変化させてしまうと、過放電判定レベルも2Vから変化するが、充電と放電とは別動作であり、前記保護電圧制御部13は、充電時にだけ基準電圧Vref1,Vref2,Vref3を変化させるようにすればよい。或いは、放電時にも、温度に応じた適切な過放電判定レベルとなるように基準電圧Vref1,Vref2,Vref3を変化させるようにしてもよい。さらにまた、前記基準電圧源E1,E2,E3を充電と放電とで共用しているけれども、個別に設けられてもよい。
Vz = {[(Tlim-Tx) / (Tlim-Tctl)]
(Vctl 2 −Ve 2 ) + Ve 2 } 1/2 + α (10)
That is, while the equation 1 is the charging voltage Vx, the protection voltage Vz is a voltage to which a margin α is added. The margin α is, for example, 0.25V. The method for obtaining other than the margin α is as described above. The protection voltage control unit 13 changes the reference voltages Vref1, Vref2, and Vref3 by the reference voltage sources E1, E2, and E3 so that the determined protection voltage Vz is obtained. If the reference voltages Vref1, Vref2, and Vref3, which are overcharge determination levels, are changed, the overdischarge determination level also changes from 2V. However, the operation is different from charging and discharging, and the protection voltage control unit 13 The reference voltages Vref1, Vref2, and Vref3 may be changed only during charging. Alternatively, the reference voltages Vref1, Vref2, and Vref3 may be changed so that an appropriate overdischarge determination level corresponding to the temperature is obtained even during discharge. Furthermore, although the reference voltage sources E1, E2, E3 are shared for charging and discharging, they may be provided separately.

このように構成することで、前記保護電圧制御部13が、二次電池セルB1,B2,B3の温度Txの上昇に伴って、過充電保護電圧Vzを微少電圧ずつ、きめ細かく下げてゆくので、安全を確保しつつ、その時点(温度Tx)で可能な限りの容量まで充電することができる。   By configuring in this way, the protection voltage control unit 13 finely lowers the overcharge protection voltage Vz by a minute voltage as the temperature Tx of the secondary battery cells B1, B2, B3 increases. While ensuring safety, the battery can be charged to the maximum capacity at that time (temperature Tx).

また、注目すべきは、充電器3において、充電電流制御の基準となる基準電圧Vref02を作成する基準電圧源E03が、前記充電制御回路23からの目標充電電流に対応したデータをデコードするカウンタ25と、前記カウンタ25のデコード値に対応した電圧を発生するデジタル/アナログ変換器26とを備えて構成され、前記基準電圧Vref02を可変電圧で出力することである。前記デジタル/アナログ変換器26は、電源E04からの電源電圧で動作する。   Also, it should be noted that in the charger 3, a reference voltage source E03 that generates a reference voltage Vref02 serving as a reference for charge current control decodes data corresponding to the target charge current from the charge control circuit 23. And a digital / analog converter 26 for generating a voltage corresponding to the decoded value of the counter 25, and outputting the reference voltage Vref02 as a variable voltage. The digital / analog converter 26 operates with the power supply voltage from the power supply E04.

前記定電流定電圧(CC−CV)充電の定電圧充電の領域において、前記充電制御回路23は、DC−DCコンバータ22に、前記充電電圧Vxを維持させながら、満充電に至るまで充電電流を減少させてゆく電流垂下制御を行うにあたって、電流検出抵抗RSで充電電流を検出し、その電流検出抵抗RSの検出電圧と、充電電流の制御目標値となる基準電圧Vref02とを誤差増幅器CP02で比較し、前記検出電圧が前記基準電圧Vref02を超えると、前記DC−DCコンバータ22に所定値だけ充電電流を減少させ、さらに前記基準電圧Vref02を減少させる動作を繰返すことで、前記電流垂下制御を行う。このような構成において、前記のように基準電圧源E03をカウンタ25とデジタル/アナログ変換器26とによって構成することで、逐次減少が指示される充電電流の制御目標値を、簡単な構成で、精度良く設定することができる。   In the constant voltage charge region of the constant current constant voltage (CC-CV) charge, the charge control circuit 23 maintains the charge voltage Vx in the DC-DC converter 22 and supplies the charge current until full charge. In performing the current drooping control, the charging current is detected by the current detection resistor RS, and the detected voltage of the current detection resistor RS is compared with the reference voltage Vref02 which is the control target value of the charging current by the error amplifier CP02. When the detected voltage exceeds the reference voltage Vref02, the current drooping control is performed by repeating the operation of reducing the charging current to the DC-DC converter 22 by a predetermined value and further reducing the reference voltage Vref02. . In such a configuration, the reference voltage source E03 is configured by the counter 25 and the digital / analog converter 26 as described above, so that the control target value of the charging current instructed to be sequentially decreased can be obtained with a simple configuration. It can be set with high accuracy.

[実施の形態2]
図6は、本発明の実施の第2の形態に係る充電システム1aのブロック図である。この充電システム1aは、前述の図1で示す充電システム1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この充電システム1aでは、電池パック2aおよび充電器3aに、非正規品或いは非適合品を排除するためのID認証チップ19,29が搭載されていることである。そして、ID認証チップ19,29は、前記接続端子T2,T3を介して通信を行い、充電器3a側のID認証チップ29で電池パック2aに対する認証が行えない場合は、充電制御回路23aに充電動作を行わせず、または電池パック2a側のID認証チップ19で充電器3aに対する認証が行えない場合は、スイッチ素子Q2を遮断させて充電動作を行わせず、或いはID認証チップ19,29間で相互認証を行い、前記の動作を共に行ってもよい。
[Embodiment 2]
FIG. 6 is a block diagram of a charging system 1a according to the second embodiment of the present invention. This charging system 1a is similar to the charging system 1 shown in FIG. 1 described above, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted. It should be noted that in this charging system 1a, ID authentication chips 19 and 29 for eliminating non-genuine products or non-conforming products are mounted on the battery pack 2a and the charger 3a. The ID authentication chips 19 and 29 communicate via the connection terminals T2 and T3. If the ID authentication chip 29 on the charger 3a side cannot authenticate the battery pack 2a, the ID control chips 19 and 29 charge the charge control circuit 23a. When the operation is not performed, or when the ID authentication chip 19 on the battery pack 2a side cannot authenticate the charger 3a, the switch element Q2 is shut off and the charging operation is not performed, or between the ID authentication chips 19 and 29 The above operations may be performed together with mutual authentication.

このように構成される充電システム1aにおいて、電池パック2a側のID認証チップ19は、認証動作を行う認証部19aとともに、前記温度センサ12および保護電圧制御部13aを備えて構成される。このため、制御IC11aには、前記保護電圧制御部13が設けられていない。また、充電器3a側の充電制御回路23aは、前記ID認証チップ19,29間の通信によって前記組電池Bの温度Txを取得する。   In the charging system 1a configured as described above, the ID authentication chip 19 on the battery pack 2a side includes the temperature sensor 12 and the protection voltage control unit 13a together with the authentication unit 19a that performs the authentication operation. For this reason, the protection voltage control unit 13 is not provided in the control IC 11a. In addition, the charging control circuit 23a on the charger 3a side acquires the temperature Tx of the assembled battery B through communication between the ID authentication chips 19 and 29.

このように構成することで、ID認証チップ19は、ID認証とともに、自身の二次電池セルB1,B2,B3に推奨する充電条件および温度プロファイルで充電を行うことができる。   By configuring in this way, the ID authentication chip 19 can perform charging under the charging conditions and temperature profile recommended for its own secondary battery cells B1, B2, and B3 together with ID authentication.

本発明は、携帯型パーソナルコンピュータやデジタルカメラ、携帯電話機等の電子機器、電気自動車やハイブリッドカー等の車両、等の電池搭載装置として使用される充電システムとして好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a charging system used as a battery mounting device for electronic devices such as portable personal computers, digital cameras, and mobile phones, vehicles such as electric cars and hybrid cars, and the like.

本発明の実施の第1の形態に係る充電システムのブロック図である。1 is a block diagram of a charging system according to a first embodiment of the present invention. 単電池の内部短絡時の等価回路図および熱回路のモデルを示す図である。It is a figure which shows the equivalent circuit diagram at the time of the internal short circuit of a cell, and the model of a thermal circuit. 本願発明者による充電プロファイルのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the charge profile by this inventor. 本願発明者による充電プロファイルのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of the charge profile by this inventor. 本実施の形態の電熱光学計算による充電温度および電圧と電池エネルギーとの関係を示すグラフである。It is a graph which shows the relationship between the charging temperature and voltage and battery energy by the electrothermal optical calculation of this Embodiment. 本発明の実施の第2の形態に係る充電システムのブロック図である。It is a block diagram of the charging system which concerns on the 2nd Embodiment of this invention. 背景技術に係る充電プロファイルのグラフである。It is a graph of the charge profile which concerns on background art.

符号の説明Explanation of symbols

1,1a 充電システム
2,2a 電池パック
3,3a 充電器
11,11a 制御IC
12,13 温度センサ
19,29ID認証チップ
19a 認証部
21 直流電源回路
22 DC−DCコンバータ
23,23a 充電制御回路
25 カウンタ
26 デジタル/アナログ変換器
B 組電池
B1,B2,B3 二次電池セル
CP01,CP02 誤差増幅器
CP11,CP12;CP21,CP22;CP31,CP32 比較器
E01 バイアス電源
E02,E03 基準電圧源
E1,E2,E3 基準電圧源
G1,G2 NANDゲート
Q1,Q2 スイッチ素子
R11,R12,R13;R21,R22,R23;R31,R32,R33 分圧抵抗
RB バイアス抵抗
RS 電流検出抵抗
T1,T2,T3 接続端子
1, 1a Charging system 2, 2a Battery pack 3, 3a Charger 11, 11a Control IC
12, 13 Temperature sensor 19, 29 ID authentication chip 19a Authentication unit 21 DC power supply circuit 22 DC-DC converter 23, 23a Charge control circuit 25 Counter 26 Digital / analog converter B Batteries B1, B2, B3 Secondary battery cells CP01, CP02 Error amplifiers CP11, CP12; CP21, CP22; CP31, CP32 Comparator E01 Bias power supplies E02, E03 Reference voltage sources E1, E2, E3 Reference voltage sources G1, G2 NAND gates Q1, Q2 switch elements R11, R12, R13; R21 , R22, R23; R31, R32, R33 Voltage dividing resistor RB Bias resistor RS Current detection resistor T1, T2, T3 Connection terminal

Claims (6)

電池セルの温度Txに対応した電圧Vxで前記電池セルを充電する充電電圧制御方法において、
高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、前記温度Tctlを超える現在の電池セルの温度を前記Txとするとき、
Vx={[(Tlim−Tx)/(Tlim−Tctl)]
・(Vctl−Ve)+Ve1/2
から、前記電圧Vxを設定することを特徴とする充電電圧制御方法。
In a charging voltage control method for charging the battery cell with a voltage Vx corresponding to the temperature Tx of the battery cell,
The temperature at which charging voltage suppression should be started due to a high temperature is Tctl, the maximum charging voltage that can be allowed by the battery cell at the temperature Tctl, Vctl, the maximum temperature that the battery cell can safely accept is Tlim, and the discharge of the battery cell When the end voltage is Ve and the current battery cell temperature exceeding the temperature Tctl is the Tx,
Vx = {[(Tlim-Tx) / (Tlim-Tctl)]
・ (Vctl 2 −Ve 2 ) + Ve 2 } 1/2
To set the voltage Vx.
予め定められる保護電圧Vzで電池セルへの充電電流を遮断する過充電保護方法において、
高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、予め定めるマージンをα、前記温度Tctlを超える現在の電池セルの温度をTxとするとき、
Vz={[(Tlim−Tx)/(Tlim−Tctl)]
・(Vctl−Ve)+Ve1/2+α
から、前記保護電圧Vzを設定することを特徴とする過充電保護方法。
In the overcharge protection method of cutting off the charging current to the battery cell at a predetermined protection voltage Vz,
The temperature at which charging voltage suppression should be started due to a high temperature is Tctl, the maximum charging voltage that can be allowed by the battery cell at the temperature Tctl, Vctl, the maximum temperature that the battery cell can safely accept is Tlim, and the discharge of the battery cell When the end voltage is Ve, the predetermined margin is α, and the current battery cell temperature exceeding the temperature Tctl is Tx,
Vz = {[(Tlim-Tx) / (Tlim-Tctl)]
・ (Vctl 2 −Ve 2 ) + Ve 2 } 1/2 + α
To set the protection voltage Vz.
充電電流供給回路と、温度検出回路と、充電制御回路とを備え、前記温度検出回路によって検出された電池セルの温度Txに対応した電圧Vxとなるように、前記充電制御回路が前記充電電流供給回路から出力される充電電圧を制御する充電器において、
高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、前記温度Tctlを超える前記温度検出回路で検出された電池セルの現在の温度を前記Txとするとき、前記充電制御回路は、
Vx={[(Tlim−Tx)/(Tlim−Tctl)]
・(Vctl−Ve)+Ve1/2
から、前記電圧Vxを設定することを特徴とする充電器。
A charge current supply circuit; a temperature detection circuit; and a charge control circuit, wherein the charge control circuit supplies the charge current so that the voltage Vx corresponds to the temperature Tx of the battery cell detected by the temperature detection circuit. In the charger that controls the charging voltage output from the circuit,
The temperature at which charging voltage suppression should be started due to a high temperature is Tctl, the maximum charging voltage that can be allowed by the battery cell at the temperature Tctl, Vctl, the maximum temperature that the battery cell can safely accept is Tlim, and the discharge of the battery cell When the end voltage is Ve and the current temperature of the battery cell detected by the temperature detection circuit exceeding the temperature Tctl is Tx, the charge control circuit is
Vx = {[(Tlim-Tx) / (Tlim-Tctl)]
・ (Vctl 2 −Ve 2 ) + Ve 2 } 1/2
To set the voltage Vx.
充電電流を検出する電流検出抵抗と、
前記充電制御回路からの目標充電電流に対応したデータをデコードするカウンタと、前記カウンタのデコード値に対応した電圧を発生するデジタル/アナログ変換器とを備えて構成される可変電圧の第1の基準電圧源と、
前記電流検出抵抗の検出電圧と前記第1の基準電圧源の第1の基準電圧とを比較する誤差増幅器とをさらに備え、
前記充電制御回路は、定電圧充電時に、前記誤差増幅器からの出力に応答し、前記検出電圧が前記第1の基準電圧を超えると前記充電電流供給回路に所定値だけ充電電流を減少させることを特徴とする請求項3記載の充電器。
A current detection resistor for detecting the charging current;
A variable voltage first reference comprising: a counter that decodes data corresponding to a target charging current from the charge control circuit; and a digital / analog converter that generates a voltage corresponding to a decoded value of the counter. A voltage source;
An error amplifier that compares a detection voltage of the current detection resistor with a first reference voltage of the first reference voltage source;
The charging control circuit responds to an output from the error amplifier during constant voltage charging, and reduces the charging current by a predetermined value to the charging current supply circuit when the detected voltage exceeds the first reference voltage. The charger according to claim 3.
電池セルと、電圧検出回路と、スイッチ素子と、保護回路とを備え、前記電圧検出回路によって検出された前記電池セルの電圧が、予め定められる保護電圧Vzを超えると、前記保護回路が、前記電池セルへの充電経路に介在された前記スイッチ素子を遮断させ、充電電流を遮断する過充電保護動作を行う電池パックにおいて、
温度センサをさらに備え、
高温のために充電電圧の抑制を開始すべき温度をTctl、その温度Tctlにおいて前記電池セルが許容できる最大充電電圧をVctl、前記電池セルが安全上許容できる最高温度をTlim、前記電池セルの放電終了電圧をVe、予め定めるマージンをα、前記温度Tctlを超える前記温度センサで検出された電池セルの現在の温度をTxとするとき、前記保護回路は、
Vz={[(Tlim−Tx)/(Tlim−Tctl)]
・(Vctl−Ve)+Ve1/2+α
から、前記保護電圧Vzを設定することを特徴とする電池パック。
A battery cell, a voltage detection circuit, a switch element, and a protection circuit, and when the voltage of the battery cell detected by the voltage detection circuit exceeds a predetermined protection voltage Vz, the protection circuit In a battery pack that performs an overcharge protection operation that cuts off the switch element interposed in the charging path to the battery cell and cuts off the charging current,
A temperature sensor,
The temperature at which charging voltage suppression should be started due to a high temperature is Tctl, the maximum charging voltage that can be allowed by the battery cell at the temperature Tctl, Vctl, the maximum temperature that the battery cell can safely accept is Tlim, and the discharge of the battery cell When the end voltage is Ve, the predetermined margin is α, and the current temperature of the battery cell detected by the temperature sensor exceeding the temperature Tctl is Tx, the protection circuit
Vz = {[(Tlim-Tx) / (Tlim-Tctl)]
・ (Vctl 2 −Ve 2 ) + Ve 2 } 1/2 + α
The battery pack is characterized in that the protection voltage Vz is set.
前記電池セルは相互に直列に複数段設けられて組電池を形成し、
前記保護回路は、各段に設けられ、前記保護電圧Vzを設定する可変電圧の第2の基準電圧源およびその第2の基準電圧源からの第2の基準電圧と各段のセル電圧とを比較し、前記第2の基準電圧をセル電圧が超えていると過充電判定信号を出力する比較器と、前記各比較器の少なくとも1つから前記過充電判定信号が出力されると、前記スイッチ素子を遮断させる論理回路とを備えて構成され、
さらに前記温度センサからの出力に応答して前記第2の基準電圧源における第2の基準電圧を変化させる保護電圧制御部を備えることを特徴とする請求項5記載の電池パック。
The battery cells are provided in a plurality of stages in series with each other to form a battery pack,
The protection circuit is provided in each stage, and includes a second reference voltage source of variable voltage that sets the protection voltage Vz, a second reference voltage from the second reference voltage source, and a cell voltage of each stage. A comparator that outputs an overcharge determination signal when the cell voltage exceeds the second reference voltage, and the switch when the overcharge determination signal is output from at least one of the comparators. And a logic circuit that shuts off the element,
6. The battery pack according to claim 5, further comprising a protection voltage control unit that changes a second reference voltage in the second reference voltage source in response to an output from the temperature sensor.
JP2008173438A 2008-07-02 2008-07-02 Charging voltage control method, battery charger using the same, overcharge protection method, and battery pack using the same Ceased JP2010016944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173438A JP2010016944A (en) 2008-07-02 2008-07-02 Charging voltage control method, battery charger using the same, overcharge protection method, and battery pack using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173438A JP2010016944A (en) 2008-07-02 2008-07-02 Charging voltage control method, battery charger using the same, overcharge protection method, and battery pack using the same

Publications (1)

Publication Number Publication Date
JP2010016944A true JP2010016944A (en) 2010-01-21

Family

ID=41702487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173438A Ceased JP2010016944A (en) 2008-07-02 2008-07-02 Charging voltage control method, battery charger using the same, overcharge protection method, and battery pack using the same

Country Status (1)

Country Link
JP (1) JP2010016944A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055044A (en) * 2010-08-31 2012-03-15 Hitachi Koki Co Ltd Charging system, battery pack, and charging device
JP2012105536A (en) * 2010-11-11 2012-05-31 Dspace Digital Signal Processing & Control Engineering Gmbh Battery simulation system performing error simulation
WO2012101366A2 (en) 2011-01-24 2012-08-02 Renault S.A.S. Method for managing the charging of a rechargeable battery of a motor vehicle
CN105404710A (en) * 2015-10-20 2016-03-16 奇瑞汽车股份有限公司 Simulation design method for vehicle-mounted charging system of electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308132A (en) * 1995-04-28 1996-11-22 Origin Electric Co Ltd Feeding device for transmitter and its control method
JPH09233732A (en) * 1996-02-29 1997-09-05 Sanyo Electric Co Ltd Charge method of secondary battery, and equipment
JP2000270494A (en) * 1999-03-16 2000-09-29 Matsushita Electric Ind Co Ltd Secondary battery control circuit
JP2000358336A (en) * 1999-06-14 2000-12-26 Densei Lambda Kk Temperature correcting circuit for battery-charging voltage
JP2007259532A (en) * 2006-03-21 2007-10-04 Sanyo Electric Co Ltd Method for charging secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308132A (en) * 1995-04-28 1996-11-22 Origin Electric Co Ltd Feeding device for transmitter and its control method
JPH09233732A (en) * 1996-02-29 1997-09-05 Sanyo Electric Co Ltd Charge method of secondary battery, and equipment
JP2000270494A (en) * 1999-03-16 2000-09-29 Matsushita Electric Ind Co Ltd Secondary battery control circuit
JP2000358336A (en) * 1999-06-14 2000-12-26 Densei Lambda Kk Temperature correcting circuit for battery-charging voltage
JP2007259532A (en) * 2006-03-21 2007-10-04 Sanyo Electric Co Ltd Method for charging secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055044A (en) * 2010-08-31 2012-03-15 Hitachi Koki Co Ltd Charging system, battery pack, and charging device
JP2012105536A (en) * 2010-11-11 2012-05-31 Dspace Digital Signal Processing & Control Engineering Gmbh Battery simulation system performing error simulation
WO2012101366A2 (en) 2011-01-24 2012-08-02 Renault S.A.S. Method for managing the charging of a rechargeable battery of a motor vehicle
CN103442934A (en) * 2011-01-24 2013-12-11 雷诺股份公司 Method for managing the charging of rechargeable battery of motor vehicle
CN103442934B (en) * 2011-01-24 2016-02-17 雷诺股份公司 For the method for the charging of the rechargeable battery of supervisor motor vehicle
CN105404710A (en) * 2015-10-20 2016-03-16 奇瑞汽车股份有限公司 Simulation design method for vehicle-mounted charging system of electric vehicle

Similar Documents

Publication Publication Date Title
CN101816092B (en) Secondary cell charge control method and charge control circuit
JP6833984B2 (en) Battery, terminal, and charging system
JP4768090B2 (en) Charge control circuit, battery pack, and charging system
JP2008206259A (en) Charging system, charger, and battery pack
CN101953016B (en) Charging method for an assembled cell and an assembled cell system
KR101658867B1 (en) Pre-charging and voltage supply system for a dc-ac inverter
JP5618393B2 (en) Power storage system and secondary battery control method
CN104037462B (en) Battery module and overcharge protection method
KR101147231B1 (en) Battery pack and method for controlling of charging and dischraging of the same
JP2009183105A (en) Charge control circuit, battery pack, and charging system
JP2015202024A (en) Mobile Battery
KR20150054464A (en) Charging method of battery and battery charging system
JP2009123560A (en) Battery pack and charging system
US20180090948A1 (en) Device and method for managing soc and soh of parallel-connected battery pack
CN113196610A (en) Method and apparatus for controlling charging current in battery pack containing different types of cells
US20130181683A1 (en) Battery Charging Circuit and Reference Signal Generator
JP2009043554A (en) Battery pack, charging device, and charging system
JP2010016944A (en) Charging voltage control method, battery charger using the same, overcharge protection method, and battery pack using the same
JP4878573B2 (en) Battery protection circuit and battery pack
JP2008065989A (en) Battery pack and detection method
JP2008199717A (en) Battery pack, and charging control method
JP2010252505A (en) Charger
JP2009189131A (en) Charging control circuit, battery pack, and charging system
JP5284029B2 (en) Battery pack and method of manufacturing battery pack
JP2009038960A (en) Charging system, and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130625