JP2010014705A - Three-dimensional refractive index measuring method and three-dimensional refractive index measuring instrument - Google Patents

Three-dimensional refractive index measuring method and three-dimensional refractive index measuring instrument Download PDF

Info

Publication number
JP2010014705A
JP2010014705A JP2009116369A JP2009116369A JP2010014705A JP 2010014705 A JP2010014705 A JP 2010014705A JP 2009116369 A JP2009116369 A JP 2009116369A JP 2009116369 A JP2009116369 A JP 2009116369A JP 2010014705 A JP2010014705 A JP 2010014705A
Authority
JP
Japan
Prior art keywords
refractive index
thin film
retardation
dimensional refractive
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009116369A
Other languages
Japanese (ja)
Other versions
JP5287489B2 (en
Inventor
Koichi Minato
港  浩一
Mie Shimizu
美絵 清水
Yasuhiro Hinokibayashi
保浩 檜林
Sohei Kadota
総平 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009116369A priority Critical patent/JP5287489B2/en
Publication of JP2010014705A publication Critical patent/JP2010014705A/en
Application granted granted Critical
Publication of JP5287489B2 publication Critical patent/JP5287489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein retardation of a thin film prepared on a transparent substrate is rippled by influence of multiplex interference in the thin film to the wavelength, and is insufficient as basic data for calculating three-dimensional refractive index for each wavelength or wavelength dependence of it. <P>SOLUTION: This three-dimensional refractive index measuring method of a thin film comprises a step of using a transparent substrate for which the reflectivity from the thin film formed on it is as low as possible, making linearly polarized light come into it perpendicularly, and determining the optical axis of the thin film in the plane, a step of making a monochromatic polarized light traveling in the plane that includes the optical axis and is perpendicular to the thin film come into the thin film at a plurality of, at least three or more, incident angles &phiv;i, and determining retardation R(&phiv;i), a step of determining calculating formula R(&phiv;i;n<SB>x</SB>,n<SB>y</SB>,n<SB>z</SB>,&beta;) of the three-dimensional refractive index, and a step of determining n<SB>x</SB>, n<SB>y</SB>, n<SB>z</SB>and &beta; using the retardation R(&phiv;i) and calculating formula R so that (R(&phiv;i)-R(&phiv;i;n<SB>x</SB>,n<SB>y</SB>,n<SB>z</SB>,&beta;))2 becomes as small as possible. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、光学的に異方性のある透明性(透明または半透明)材料の3次元屈折率の測定、特に液晶表示装置等に用いられる位相差フィルム、カラーフィルタおよび一般の延伸フィルム等の3次元屈折率測定方法に関するものである。   The present invention relates to the measurement of the three-dimensional refractive index of optically anisotropic transparent (transparent or translucent) materials, in particular retardation films, color filters and general stretched films used for liquid crystal display devices, etc. The present invention relates to a three-dimensional refractive index measurement method.

液晶表示装置は、液晶分子の持つ複屈折性を利用した表示素子であり、液晶セル、偏光素子および光学補償層から構成される。液晶表示装置は光源の種類により、光源を内部に有する構造である透過型と、外部の光源を利用する構造である反射型の2つに大別される。透過型液晶表示装置では、二枚の偏光素子を液晶セルの両側に取り付け、一枚または二枚の光学補償層を液晶セルと偏光素子との間に配置した構成からなる。また、反射型液晶表示装置では、反射板、液晶セル、一枚の光学補償層、そして一枚の偏光素子の順に配置する。
液晶セルには、二枚の基板に狭持された棒状液晶性分子が配向して封入されており、対向する基板内面の両側もしくは片側に配置された電極層に電圧を加えることにより、棒状液晶性分子の配向状態を変化させて光の透過/遮光をスイッチングするしくみとなっている。
The liquid crystal display device is a display element that utilizes the birefringence of liquid crystal molecules, and includes a liquid crystal cell, a polarizing element, and an optical compensation layer. Liquid crystal display devices are roughly classified into two types according to the type of light source: a transmissive type having a light source inside and a reflective type having a structure using an external light source. The transmissive liquid crystal display device has a configuration in which two polarizing elements are attached to both sides of a liquid crystal cell, and one or two optical compensation layers are disposed between the liquid crystal cell and the polarizing element. In the reflective liquid crystal display device, the reflector, the liquid crystal cell, one optical compensation layer, and one polarizing element are arranged in this order.
In a liquid crystal cell, rod-like liquid crystal molecules sandwiched between two substrates are aligned and sealed, and a rod-like liquid crystal is formed by applying a voltage to the electrode layers disposed on both sides or one side of the opposing substrate inner surface. This is a mechanism for switching light transmission / light-shielding by changing the orientation state of the active molecule.

近年、液晶表示装置は、その薄型ゆえの省スペース性や軽量性、また省電力性などが評価されテレビとして急速な広がりを見せると同時に、輝度、コントラストや全方位の視認性などの表示性能をより高めることが強く要求されるようになっている。   In recent years, liquid crystal display devices have been evaluated for their space-saving, light-weight, and power-saving properties due to their thinness, and at the same time they are rapidly expanding as televisions, and at the same time display performance such as brightness, contrast, and visibility in all directions. There is a strong demand for higher levels.

このような要求に対し、前記液晶表示装置に用いられる光学補償層やカラーフィルタなどの光学素子の複屈折性を液晶表示モードに合わせてより最適化する必要があり、特に光学補償層としては様々なものが提案されているが、例えば、高視野角な範囲において表示特性が良好なIPS(In Plane Switching、横電界)モード液晶表示装置では、三次元の主屈折率nx,ny,nzに対し、nx≧ny≧nzという屈折率楕円体を有する二軸性位相差フィルムが使用されている(例えば、非特許文献1参照)。さらにnzの大きさが異なる2枚の二軸性のλ/2波長板を用いて互いの波長分散を補償しあうことで、黒表示における可視光領域の光漏れを小さく抑えた、広視野角なIPS液晶表示装置が開示されている(例えば、非特許文献2参照)。 In response to such demands, it is necessary to further optimize the birefringence of optical elements such as optical compensation layers and color filters used in the liquid crystal display device according to the liquid crystal display mode. In an IPS (In Plane Switching, lateral electric field) mode liquid crystal display device having good display characteristics in a high viewing angle range, for example, a three-dimensional main refractive index nx , ny , n z to, biaxial retardation film having a refractive index ellipsoid of n x ≧ n y ≧ n z is used (e.g., see non-Patent Document 1). In addition, two biaxial λ / 2 wavelength plates with different nz sizes are used to compensate for each other's wavelength dispersion, thereby reducing the light leakage in the visible light region in black display and reducing the field of view. An angular IPS liquid crystal display device is disclosed (for example, see Non-Patent Document 2).

また、カラーフィルタの持つ複屈折性が液晶表示装置の視認性に影響を及ぼすことから、カラーフィルタの赤色着色画素、緑色着色画素及び青色着色画素毎の厚み方向位相差を制御する必要性が指摘されている(例えば、特許文献1参照)。   In addition, since the birefringence of the color filter affects the visibility of the liquid crystal display device, it is pointed out that it is necessary to control the thickness direction retardation for each of the red, green and blue colored pixels of the color filter. (For example, refer to Patent Document 1).

これらの光学補償層やカラーフィルタなどの光学素子の複屈折性を測定する装置としては、光が試料を透過、又はその表面で反射する際の偏光状態を検出することで該試料の異方性、光学定数等を測定する複屈折測定装置や、光弾性変調法による透過型のポラリメトリー(polarimetry)と呼ばれる装置等さまざまなものが市販されており、目的用途に合ったものを選択して使用することができる。(例えば、特許文献2、3参照)。   As an apparatus for measuring the birefringence of an optical element such as an optical compensation layer or a color filter, anisotropy of the sample is detected by detecting a polarization state when light is transmitted through the sample or reflected on the surface thereof. Various devices such as birefringence measuring devices that measure optical constants and devices called transmission polarimetry by the photoelastic modulation method are commercially available, and those that suit the intended use are selected and used be able to. (For example, refer to Patent Documents 2 and 3).

上記の測定装置を用いて、液晶表示装置等に使用される光学素子の屈折率もしくは複屈折性は光学素子(以下、簡単のため試料と記すことがある)に対して垂直な面内でのみ測定されていたが、近年、いろいろな方向から光が透過する状態を精密に評価し管理することが必要になってきており、光学素子の3次元屈折率(屈折率楕円体の直交する3軸の長
さ:nx,n,nz)を精度良く測定することが求められている。
Using the above measurement apparatus, the refractive index or birefringence of an optical element used in a liquid crystal display device or the like is only in a plane perpendicular to the optical element (hereinafter referred to as a sample for simplicity). In recent years, it has become necessary to precisely evaluate and manage the state of light transmission from various directions, and the three-dimensional refractive index of the optical element (three axes perpendicular to the refractive index ellipsoid). length of: n x, n y, it is required to n z) accurately measured.

通常、3次元屈折率を求める方法としては、試料を直交する3方向で切出してそれぞれの面内での屈折率もしくは複屈折性を測定する方法が採用されるが、透明基板上に少なくとも1層以上の薄膜が形成された試料、特に光学補償層として用いられる位相差フィルム、及びカラーフィルタ等の光学素子の場合には、このような直交する3方向で板状の固体試料を作製することは極めて困難である。また、薄膜とバルクの値が一致するとは限らない。   Usually, as a method for obtaining a three-dimensional refractive index, a method is employed in which a sample is cut in three orthogonal directions and the refractive index or birefringence in each plane is measured. At least one layer is formed on a transparent substrate. In the case of a sample in which the above thin film is formed, particularly a retardation film used as an optical compensation layer and an optical element such as a color filter, it is possible to produce a plate-like solid sample in such three orthogonal directions. It is extremely difficult. Further, the values of the thin film and the bulk do not always match.

したがって、液晶表示装置用の光学素子については、透明基板上の薄膜をその状態のまま直接に光学的な測定をして、適切な近似のもと3次元屈折率を評価する必要があるが、透明基板と薄膜との間で生じる多重干渉が測定結果に影響を及ぼすという深刻な問題が生じる。   Therefore, for an optical element for a liquid crystal display device, it is necessary to directly measure the thin film on the transparent substrate as it is and evaluate the three-dimensional refractive index under an appropriate approximation. A serious problem arises in that multiple interference occurring between the transparent substrate and the thin film affects the measurement result.

以下、この点につき説明するが、先ず、多層膜に対する多重反射理論の適合性について説明する。   Hereinafter, this point will be described. First, the suitability of the multiple reflection theory for a multilayer film will be described.

今、図1に示すように、厚さd2、屈折率n2=n2−ik2の基板1上に厚さd1、屈折率n1=n1−ik1の薄膜2があり、屈折率n0の媒質中から入射角φ0で光が入射したとすると(図中3の部分)、このとき入射光の電気ベクトルの入射面に平行な成分(p成分)および垂直な成分(s成分)に対する振幅反射率Rp、Rs、透過率Tp、Tsは膜内部での多重反射(図中4の部分)を考慮して、下記式(3)で表されることが一般的に知られている(例えば、非特許文献3参照)。   As shown in FIG. 1, there is a thin film 2 having a thickness d1 and a refractive index n1 = n1-ik1 on a substrate 1 having a thickness d2 and a refractive index n2 = n2-ik2, and is incident from a medium having a refractive index n0. Assuming that light is incident at an angle φ0 (part 3 in the figure), the amplitude reflectances Rp and Rs for the component (p component) parallel to the incident surface of the electric vector of the incident light and the component (s component) perpendicular to the incident surface at this time. In general, it is known that the transmittances Tp and Ts are expressed by the following formula (3) in consideration of the multiple reflection (portion 4 in the figure) inside the film (for example, Non-Patent Document 3). reference).

Figure 2010014705
Figure 2010014705

式(3)および図1におけるr1、t1およびr2、t2は、それぞれ媒質/膜および膜/基板境界面における反射および透過のフレネル係数であり、反射のフレネル係数は、   In Equation (3) and FIG. 1, r1, t1 and r2, t2 are the Fresnel coefficients of reflection and transmission at the medium / film and film / substrate interfaces, respectively.

Figure 2010014705
Figure 2010014705

ただし、   However,

Figure 2010014705
Figure 2010014705

透過のフレネル係数は反射のフレネル係数を用いて、   The Fresnel coefficient of transmission is calculated using the Fresnel coefficient of reflection.

Figure 2010014705
で表される。λは真空中での光の波長、φ1、φ2は膜および基板内における屈折角で、Snellの法則より、
Figure 2010014705
It is represented by λ is the wavelength of light in vacuum, φ1 and φ2 are refraction angles in the film and substrate, and from Snell's law,

Figure 2010014705
Figure 2010014705

で表される複素数である。   Is a complex number.

したがって、原理的には、反射率Rp、Rs、透過率Tp、Rsの測定を未知の変数分だけ行い、連立方程式を解くことによって多重干渉を取り込んだ近似を含まない3次元屈折率を求めることができるはずであるが、この連立方程式を解くことは実際上容易ではなく現実的には不可能である。以降、n1,n2は、特に断らない限り複素屈折率を指すものとする。   Therefore, in principle, the reflectance Rp, Rs, transmittance Tp, and Rs are measured for unknown variables, and the simultaneous equations are solved to obtain a three-dimensional refractive index that does not include an approximation that incorporates multiple interference. However, solving these simultaneous equations is not easy in practice and impossible in practice. Hereinafter, n1 and n2 indicate complex refractive indexes unless otherwise specified.

次に、上記フレネルの関係式によらずにカラーフィルタの3次元屈折率を求める方法として、直接測定が可能なリタデーション値に基づく方法があるが、これをガラス基板上の赤色着色組成物層に適用した場合に見い出だされる問題を述べる。   Next, as a method for obtaining the three-dimensional refractive index of the color filter without depending on the above Fresnel relational expression, there is a method based on a retardation value that can be directly measured, and this is applied to the red colored composition layer on the glass substrate. Describes the problems found when applied.

図1の透明基板1には、液晶表示装置で一般的に使用される厚さ0.7mmの無アルカリガラス基板を、薄膜2には、該液晶表示装置のカラーフィルタの赤色着色画素を形成するために使用される赤色着色組成物を用いて測定用試料を作製した。
このときの赤色着色組成物層の分光透過率(T)を縦軸、光の波長(λ)を横軸にプロットしたグラフを図2に示す。
この赤色着色組成物が成膜された薄膜に、分光エリプソメータ(日本分光製M-200)を用いて試料面に対し入射角45度及び90度方向から400nmから780nmの波長の偏光光を照射することで、得られたエリプソパラメータΔより算出したリタデーション(Re)を縦軸、光の波長(λ)を横軸にプロットした場合の波長分散の測定結果を図3に示す。
A transparent substrate 1 in FIG. 1 is formed with a non-alkali glass substrate having a thickness of 0.7 mm, which is generally used in a liquid crystal display device, and a thin colored film 2 is formed with red colored pixels of a color filter of the liquid crystal display device. A sample for measurement was prepared using the red coloring composition used for this purpose.
FIG. 2 shows a graph in which the spectral transmittance (T) of the red colored composition layer at this time is plotted on the vertical axis and the wavelength (λ) of light is plotted on the horizontal axis.
Using a spectroscopic ellipsometer (M-200 manufactured by JASCO Corporation), the sample surface is irradiated with polarized light having a wavelength of 400 nm to 780 nm from an angle of incidence of 45 degrees and 90 degrees to the thin film on which the red coloring composition is formed. Thus, FIG. 3 shows a measurement result of chromatic dispersion when the retardation (Re) calculated from the obtained ellipso parameter Δ is plotted on the vertical axis and the wavelength (λ) of light is plotted on the horizontal axis.

ここで、光の波長(λ)を横軸、屈折率(n)を縦軸としてグラフ化した場合、物質のリタデーションの波長分散は、異常分散がなければ、傾きの大きさが短波長側ほど大きい曲線となることが一般的に知られている。この性質はコーシーの分散式から導かれることが知られており、これに基づくと、リタデーションの波長分散(図3)も、各波長において単調に変化(増加又は減少)する曲線となるはずである。   Here, when the light wavelength (λ) is plotted on the horizontal axis and the refractive index (n) is plotted on the vertical axis, the chromatic dispersion of the retardation of the substance is such that, if there is no anomalous dispersion, the magnitude of the inclination is closer to the shorter wavelength side. It is generally known that the curve is large. It is known that this property is derived from Cauchy's dispersion formula, and based on this, the chromatic dispersion of retardation (FIG. 3) should also be a curve that changes monotonically (increases or decreases) at each wavelength. .

図2より該赤色着色組成物層は600nm付近から700nm付近において80%以上の平坦な透過率を示していることから、この波長領域においてはリタデーションの波長分散もコーシーの分散式に従うことが予想されるが、これに反して、図3のリタデーションの波長分散性は、600nm付近から700nm付近において大きく波打った結果となっている。   From FIG. 2, the red colored composition layer shows a flat transmittance of 80% or more from around 600 nm to around 700 nm. Therefore, it is expected that the wavelength dispersion of retardation follows the Cauchy dispersion formula in this wavelength region. On the other hand, the wavelength dispersion of the retardation in FIG. 3 is a result of undulation from around 600 nm to around 700 nm.

すなわち、透明基板と薄膜との間で生じる多重干渉のために、上述の波形の波打ち現象が現れ、リタデーションが正しく評価されていないことを示している。したがって、この実験結果に基づいて3次元屈折率を算出する場合、得られる3次元屈折率は多くの誤差を含むこととなる。   That is, due to the multiple interference that occurs between the transparent substrate and the thin film, the above-described waveform wavy phenomenon appears, indicating that the retardation has not been evaluated correctly. Therefore, when the three-dimensional refractive index is calculated based on this experimental result, the obtained three-dimensional refractive index includes many errors.

他の例として、図1の透明基板1に、トリアセチルセルロース(以下、「TAC」という場合がある)からなる透明フィルムを用い、薄膜2に、複屈折異方性を有する重合性液晶材料を用いた試料の、入射角45度方向から測定したリタデーション(Re)の波長分散測定の結果を図4に示す。この場合においても透明基材と薄膜との間で生じる多重干渉の影響が現れていることが確認できる。   As another example, a transparent film made of triacetyl cellulose (hereinafter sometimes referred to as “TAC”) is used for the transparent substrate 1 of FIG. 1, and a polymerizable liquid crystal material having birefringence anisotropy is used for the thin film 2. The result of wavelength dispersion measurement of retardation (Re) measured from the direction of incident angle of 45 degrees of the used sample is shown in FIG. Even in this case, it can be confirmed that the influence of multiple interference appearing between the transparent substrate and the thin film appears.

特開2007−279379号公報JP 2007-279379 A 特開平1−216235号公報JP-A-1-216235 特開2005−3386号公報Japanese Patent Laid-Open No. 2005-3386

石鍋等、SID Digest、1094.(2000)SID Digest, 1094. (2000) 石鍋等、Jpn.J.Appl.Phys.、41、4553(2002)Stone pots, Jpn. J. et al. Appl. Phys. 41, 4553 (2002) 藤原、「分光エリプソメトリー」丸善(2003)Fujiwara, “Spectroscopic Ellipsometry” Maruzen (2003) Wu等、Jpn.J.Appl.Phys.、39、869(2000)Wu et al., Jpn. J. et al. Appl. Phys. 39, 869 (2000)

光学補償層やカラーフィルタなど液晶表示装置に用いる光学素子の3次元屈折率とその波長依存性は、それが使用される厚さ数μmの薄膜状態で評価される必要があり、厚い測定用試料を作成して切り出して評価することは妥当ではない。また、多層薄膜の反射率、透過率を測定してフレネルの式を用いて算出することは原理的に可能としても実際上は困難である。このため、高精度な実験的測定が可能なリタデーション測定を行い、このデータから何らかの近似により3次元の屈折率を導出することが行われる。   The three-dimensional refractive index and wavelength dependency of optical elements used in liquid crystal display devices such as optical compensation layers and color filters need to be evaluated in a thin film state of several μm in thickness. It is not appropriate to create, cut out and evaluate. Moreover, even if it is possible in principle, it is difficult in practice to measure the reflectance and transmittance of the multilayer thin film and calculate them using the Fresnel equation. For this reason, retardation measurement capable of highly accurate experimental measurement is performed, and a three-dimensional refractive index is derived from this data by some approximation.

ところが、透明基板上に作成した薄膜のリタデーションは、従来の単純な測定手法にあっては上記に示したように、薄膜に対する入射角あるいは波長に対し薄膜内の多重干渉の影響を受けて波打つものとなり、3次元屈折率を波長ごとにもしくは波長依存性を算出するための基礎データとしては不完全であるという問題がある。加えて、従来の測定手法では、後記図7(a)に示すような試料の屈折率楕円体の主軸が基準座標系におけるNx、Ny、Nzと一致する場合についてのみ解析されていることがほとんどで、図7(b)に示すような試料の屈折率楕円体の主軸Nx'、Ny’、Nz'が実験室座標系Nx、Ny、Nzと一致しない場合の3次元屈折率を求める手段についてはほとんど検討されていなかった。そこで、本発明は、リタデーションが薄膜に対する入射角あるいは波長に対し波打つことを抑止する手段を提供し、試料の屈折率楕円体の主軸が傾いている場合においても高精度で3次元屈折率を算出可能とすることを課題とした。   However, the retardation of a thin film formed on a transparent substrate is a wave that is affected by multiple interference in the thin film with respect to the incident angle or wavelength with respect to the thin film, as described above, in the conventional simple measurement method. Thus, there is a problem that the three-dimensional refractive index is incomplete for each wavelength or as basic data for calculating the wavelength dependence. In addition, in the conventional measurement method, the analysis is mostly made only when the principal axis of the refractive index ellipsoid of the sample as shown in FIG. 7A is coincident with Nx, Ny, Nz in the reference coordinate system. With respect to the means for obtaining the three-dimensional refractive index when the principal axes Nx ′, Ny ′, Nz ′ of the refractive index ellipsoid of the sample as shown in FIG. 7B do not coincide with the laboratory coordinate systems Nx, Ny, Nz. Was hardly studied. Therefore, the present invention provides a means for suppressing retardation from undulating with respect to the incident angle or wavelength with respect to the thin film, and calculates the three-dimensional refractive index with high accuracy even when the principal axis of the refractive index ellipsoid of the sample is inclined. The challenge was to make it possible.

かかる課題を達成するための請求項1に係わる発明は、
透明基板上に形成した薄膜に対し、少なくとも
1.直線偏光を垂直入射させて前記薄膜の面内の光学軸を求めるステップ、
2.前記光学軸を含みかつ薄膜に垂直な平面内を進む直線偏光を少なくとも3つ以上の複数の入射角φiで前記薄膜に入射させてリタデーションR(φi)を求めるステップ、
3.3次元屈折率の計算式R(φi;nx,ny,nz,β)を決めるステップ、
4.前記リタデーションR(φi)と計算式R(φi;nx,ny,nz,β)を用いて
下記式(1)のρができるだけ小さくなるように、nx,ny,nz,βを求めるステップ、
とを有する3次元屈折率測定方法において、
前記薄膜からの反射率ができるだけ小さくなるような透明基板を用いて、前記リタデーションR(φi)の測定を行う、ことを特徴とする薄膜の3次元屈折率測定方法である。
The invention according to claim 1 for achieving the above object is as follows.
At least 1. for the thin film formed on the transparent substrate. Determining the in-plane optical axis of the thin film by vertically injecting linearly polarized light;
2. Allowing the linearly polarized light including the optical axis and traveling in a plane perpendicular to the thin film to enter the thin film at at least three or more incident angles φi to obtain a retardation R (φi);
Formula 3.3 dimensional refractive index R (φi; n x, n y, n z, β) step of determining a
4). The retardation R (.phi.i) and formulas R (φi; n x, n y, n z, β) as ρ of the formula (1) is as small as possible with a, n x, n y, n z, obtaining β,
In a three-dimensional refractive index measurement method having:
The method of measuring a three-dimensional refractive index of a thin film, characterized in that the retardation R (φi) is measured using a transparent substrate having a reflectance as small as possible from the thin film.

Figure 2010014705
Figure 2010014705

(ここで、iは3以上の整数、nx,ny,nzは薄膜の屈折率楕円体の直交する3成分、βは薄膜の屈折率楕円体におけるx y z各軸方向に対する傾斜角である。)
薄膜からの反射率ができるだけ小さくなるような透明基板を用いると、入射する偏光光が反射光として逆行する量が低減される結果、リタデーションが波打つ現象が抑止される。
(Here, i is the angle of inclination with respect to an integer of 3 or more, n x, n y, n z is three orthogonal components of the refractive index ellipsoid of the thin film, beta is xyz axial directions in the refractive index ellipsoid of the film .)
When a transparent substrate is used so that the reflectance from the thin film is as small as possible, the amount of incident polarized light that travels backward as reflected light is reduced, and the phenomenon of retardation rippling is suppressed.

請求項2に係わる発明は、前記透明基板の屈折率をn2、前記透明基板上に形成された最表層薄膜の屈折率をn1とした場合、|n2−n1|≦0.1 を満たす屈折率を有する透明基板を用いることを特徴とする請求項1記載の薄膜の3次元屈折率測定方法である。   The invention according to claim 2 is a refractive index satisfying | n 2 −n 1 | ≦ 0.1, where n 2 is the refractive index of the transparent substrate and n 1 is the refractive index of the outermost layer thin film formed on the transparent substrate. 2. The method for measuring a three-dimensional refractive index of a thin film according to claim 1, wherein a transparent substrate having the above is used.

透明基板と薄膜の屈折率差を上記の範囲に設定すると、リタデーションが波打つ現象を抑止する効果が極めて著しいものとなる。   When the refractive index difference between the transparent substrate and the thin film is set in the above range, the effect of suppressing the phenomenon of retardation waving becomes extremely remarkable.

請求項3に係わる発明は、前記3次元屈折率の近似式R(φi;nx,ny,nz,β)が、下記式(2)で表されることを特徴とする請求項1又は請求項2に記載の3次元屈折率測定方法である。 According invention in claim 3, wherein the 3 approximate expression for dimensional refractive index R (φi; n x, n y, n z, β) is, according to claim 1, characterized by being represented by the following formula (2) Alternatively, the three-dimensional refractive index measurement method according to claim 2.

Figure 2010014705
Figure 2010014705

(ここで、i、nx,ny,nzは式(1)に同じ。また、式(2)は、θ、dは既知のパラメータ、βは薄膜の屈折率楕円体におけるx y z各軸方向に対する傾斜角である。)
上式はリタデーションを測定するための直線偏光光が薄膜へ入射する角度と該薄膜の3次元屈折率を結びつける計算式を与えたものである。これは一例であって特に限定する必要はないが、上記の式は、薄膜の屈折率楕円体が、基準座標軸の一つの決められた軸から傾く場合にも適用できる。
(Where i, nx , ny , and nz are the same as in equation (1). Also, in equation (2), θ, d are known parameters, and β is each axis of xyz in the refractive index ellipsoid of the thin film. (Inclination angle with respect to direction)
The above formula gives a calculation formula that links the angle at which linearly polarized light for measuring retardation enters the thin film and the three-dimensional refractive index of the thin film. Although this is an example and it is not necessary to specifically limit it, the above formula can also be applied to the case where the refractive index ellipsoid of the thin film is tilted from one predetermined axis of the reference coordinate axis.

請求項4に係わる発明は、請求項3に記載の3次元屈折率測定方法において、該屈折角の入射面内方向の屈折角をθ1、入射面外方向の屈折角をθ2とするとき、式(4)であらわされる試料の屈折角θを用いて3次元屈折率を求める工程を含むことを特徴とする3次元屈折率測定方法である。 The invention according to claim 4 is the method for measuring a three-dimensional refractive index according to claim 3, wherein the refraction angle of the refraction angle in the direction of incidence on the incidence surface is θ 1 , and the refraction angle in the direction outside the incidence surface is θ 2. A method for measuring a three-dimensional refractive index, including a step of obtaining a three-dimensional refractive index using a refraction angle θ of a sample expressed by the equation (4).

Figure 2010014705
Figure 2010014705

但し、θ1は式(5)、θ2は式(6)で表される屈折角であり、入射角をΦ、偏光光の試料中における屈折角をθ、試料の屈折率楕円体におけるx軸方向に対する傾斜角をβ、n‘を式(7)で表される入射面内の屈折率とする。 However, θ 1 is the refraction angle represented by the equation (5), θ 2 is the refraction angle represented by the equation (6), the incident angle is Φ, the refraction angle in the sample of the polarized light is θ, and x in the refractive index ellipsoid of the sample. The inclination angle with respect to the axial direction is β, and n ′ is the refractive index in the incident surface represented by the equation (7).

Figure 2010014705
Figure 2010014705

Figure 2010014705
Figure 2010014705

Figure 2010014705
Figure 2010014705

請求項5に係わる発明は、請求項1記載のリタデーションR(φi)を求めるステップであって、屈折率の異なるk個(k≧2)の透明基板上に形成した同一の薄膜に対し、順次リタデーションRk(φi)を求め、φiごとに、そのk個のリタデーションRk(φi)の中から、当該φiで反射率が最小である前記透明基板に対応するリタデーションRk(φi)を選択し、求めるR(φi)とすることを特徴とする請求項1記載の3次元屈折率測定方法である。   The invention according to claim 5 is a step for obtaining the retardation R (φi) according to claim 1, and sequentially for the same thin film formed on k transparent substrates having different refractive indexes (k ≧ 2). Retardation Rk (φi) is obtained, and for each φi, the retardation Rk (φi) corresponding to the transparent substrate having the minimum reflectance at φi is selected from the k retardations Rk (φi). 2. The three-dimensional refractive index measurement method according to claim 1, wherein R ([phi] i) is set.

屈折率の異なる複数の透明基板上に形成した薄膜のφiごとのリタデーションR(φi)の測定値の中で、反射率の一番低い(透過率が最も高い)透明基板に対応するリタデーションR(φi)値が、多重干渉の影響が少ない信頼性の高い数値である。透明基板の数kとしては、概ね4,5程度が好ましい。   Among the measured values of retardation R (φi) for each thin film formed on a plurality of transparent substrates having different refractive indexes, retardation R (corresponding to the transparent substrate having the lowest reflectance (highest transmittance) ( The φi) value is a highly reliable value with little influence of multiple interference. The number k of transparent substrates is preferably about 4.5.

請求項6に係わる発明は、
透明基板上に形成した薄膜に対し、少なくとも
1.直線偏光を垂直入射させて前記薄膜の面内の光学軸を求める手段、
2.前記光学軸を含みかつ薄膜に垂直な平面内を進む直線偏光を少なくとも3つ以上の複数の入射角φiで前記薄膜に入射させてリタデーションR(φi)を求める手段、
3.3次元屈折率の計算式R(φi;nx,ny,nz,β)を決める手段、
4.前記リタデーションR(φi)と計算式R(φi;nx,ny,nz,β)を用いて下記式(1)のρができるだけ小さくなるように、nx,ny,nzを求める手段、とを具備したことを特徴とする3次元屈折率測定装置である。
The invention according to claim 6 is:
At least 1. for the thin film formed on the transparent substrate. Means for obtaining an in-plane optical axis of the thin film by vertically incidence of linearly polarized light;
2. Means for determining retardation R (φi) by causing linearly polarized light traveling in a plane including the optical axis and perpendicular to the thin film to enter the thin film at a plurality of incident angles φi of at least three or more;
3.3 dimensional refractive index formula R (φi; n x, n y, n z, β) means for determining a
4). The retardation R (.phi.i) and formulas R (φi; n x, n y, n z, β) as ρ of the formula (1) is as small as possible with a, n x, n y, and n z A three-dimensional refractive index measuring device.

Figure 2010014705
Figure 2010014705

(ここで、iは3以上の整数、nx,ny,nzは薄膜の屈折率楕円体の直交する3成分、βは薄膜の屈折率楕円体におけるx y z各軸方向に対する傾斜角である。)
である。
(Here, i is the angle of inclination with respect to an integer of 3 or more, n x, n y, n z is three orthogonal components of the refractive index ellipsoid of the thin film, beta is xyz axial directions in the refractive index ellipsoid of the film .)
It is.

かかる装置構成であると、先ず、入射光の入射角を変化させて得られた複数のリタデーション値に対し、計算式R(φi)から理論的に求められるリタデーションR(φi;nx,ny,nz,β)との差が最小になるように、ある特定の透明基板上に形成した薄膜の3次元屈折率nx,ny,nzを求めるので、透明基板と薄膜との間で生じる多重干渉の影響を平均化することができる。次に、同様な手順で別の透明基板上の薄膜の屈折率を求めることができる。このようにして複数の基板上薄膜の屈折率を順次求めていくことができる。そしてある波長に対して反射率の最も少ない場合(透過率が最も高い場合)に対応する屈折率nx,ny,nzを選び出して、これを求める値とすることができる。これを波長ごとに繰り返すことで3次元屈折率の波長依存性も決定できる。また、一つの透明基板に対し波長を先に掃引し、その後基板を交換してもかまわない。 If it is such a device configuration, first, the plurality of retardation values obtained by changing the incident angle of the incident light, formula R (.phi.i) retardation theoretically calculated from R (φi; n x, n y , Nz , β), the three-dimensional refractive index nx , ny , nz of the thin film formed on a specific transparent substrate is determined so as to minimize the difference between the transparent substrate and the thin film. Can be averaged. Next, the refractive index of the thin film on another transparent substrate can be obtained in the same procedure. In this way, the refractive indexes of the plurality of thin films on the substrate can be obtained sequentially. The refractive indices n x corresponding to the case the smallest reflectance (when the highest transmittance is) for a wavelength, n y, and singled out n z, it may be a value for obtaining this. By repeating this for each wavelength, the wavelength dependence of the three-dimensional refractive index can also be determined. Alternatively, the wavelength may be swept first with respect to one transparent substrate, and then the substrate may be replaced.

請求項7に係わる発明は、前記3次元屈折率の近似式R(φi;nx,ny,nz,β)が、下記式(2)で表されることを特徴とする請求項6に記載の3次元屈折率測定装置である。 Invention according to claim 7, wherein the 3 approximate expression for dimensional refractive index R; claim 6 (φi n x, n y, n z, β) , characterized by being represented by the following formula (2) Is a three-dimensional refractive index measuring device.

Figure 2010014705
Figure 2010014705

(ここで、i、nx,ny,nzは式(1)同じ。また、式(2)は、θ、dは既知のパラメータ、βは薄膜の屈折率楕円体におけるx y z各軸方向に対する傾斜角である。)
請求項8に係わる発明は、請求項7に記載の3次元屈折率測定装置において、該屈折角の入射面内方向の屈折角をθ1、入射面外方向の屈折角をθ2とするとき、式(4)であらわされる試料の屈折角θを用いて3次元屈折率を求める手段を含むことを特徴とする3次元屈折率測定装置である。
(Where i, nx , ny , and nz are the same as in equation (1). Also, in equation (2), θ and d are known parameters, and β is the xyz axis direction in the refractive index ellipsoid of the thin film. The tilt angle with respect to
The invention according to claim 8 is the three-dimensional refractive index measuring apparatus according to claim 7, wherein the refraction angle of the refraction angle in the incident surface direction is θ 1 and the refraction angle in the outer direction of the incidence surface is θ 2. The three-dimensional refractive index measuring apparatus includes means for obtaining a three-dimensional refractive index using the refraction angle θ of the sample expressed by the equation (4).

Figure 2010014705
Figure 2010014705

但し、θ1は式(5)、θ2は式(6)で表される屈折角であり、入射角をΦ、偏光光の試料中における屈折角をθ、試料の屈折率楕円体におけるx軸方向に対する傾斜角をβ、n‘を式(7)で表される入射面内の屈折率とする。 However, θ 1 is the refraction angle represented by the equation (5), θ 2 is the refraction angle represented by the equation (6), the incident angle is Φ, the refraction angle in the sample of the polarized light is θ, and x in the refractive index ellipsoid of the sample. The inclination angle with respect to the axial direction is β, and n ′ is the refractive index in the incident surface represented by the equation (7).

Figure 2010014705
Figure 2010014705

Figure 2010014705
Figure 2010014705

Figure 2010014705
Figure 2010014705

請求項9に係わる発明は、薄膜を形成した屈折率の異なるk個(k≧2)の透明基板を装着する手段を具備したことを特徴とする請求項7又は請求項8記載の3次元屈折率測定装置である。   The invention according to claim 9 comprises means for mounting k transparent substrates having different refractive indexes (k ≧ 2) on which a thin film is formed. It is a rate measuring device.

かかる装置構成であると、装置内に装着した複数の基板上薄膜の屈折率を自動的に順次求めていくことができ、ある波長に対して反射率の最も少ない場合(透過率が最も高い場合)に対応する屈折率nx,ny,nzを選び出して、これを求める値とすることができる。 With such an apparatus configuration, the refractive index of a plurality of thin films on a substrate mounted in the apparatus can be automatically determined sequentially, and when the reflectance is the lowest for a certain wavelength (when the transmittance is the highest) refractive indices n x corresponding to), n y, and singled out n z, may be a value for obtaining this.

本発明によれば、薄膜に組み合わせる透明基板を、薄膜からの反射率ができるだけ少ないものを選択することでリタデーションの波打ちを抑止し、且つ、リタデーション値から屈折率を算出する計算式を好適なものとすることによって、透明基板上の薄膜の3次元屈折率の正確で精度の高い計算が可能となる。また、屈折率測定装置については、屈折率の異なる複数の透明基板を装着できるようにした装置であるため、求めるべき薄膜の屈折率の大小が不明であっても、効率的に測定を実行し、3次元屈折率の算出を容易に行うことのできる。   According to the present invention, a transparent substrate to be combined with a thin film is selected from those having as little reflectivity as possible from the thin film, thereby suppressing the undulation of the retardation, and a suitable calculation formula for calculating the refractive index from the retardation value. By doing so, accurate and highly accurate calculation of the three-dimensional refractive index of the thin film on the transparent substrate becomes possible. In addition, since the refractive index measuring device is a device that can mount a plurality of transparent substrates having different refractive indexes, even if the magnitude of the refractive index of the thin film to be obtained is unknown, the measurement is efficiently performed. It is possible to easily calculate the three-dimensional refractive index.

図1は、透明基板上に1層の薄膜が形成された試料を示す説明図である。FIG. 1 is an explanatory view showing a sample in which a single-layer thin film is formed on a transparent substrate. 図2は、透明基板上に1層の薄膜が形成された試料の分光透過率の一例を示す分光スベクトル図である。FIG. 2 is a spectral vector diagram showing an example of the spectral transmittance of a sample in which a single-layer thin film is formed on a transparent substrate. 図3は、透明基板上に1層の薄膜が形成された試料の入射角45度におけるリタデーションの波長分散の一例を示すグラフ図である。FIG. 3 is a graph showing an example of wavelength dispersion of retardation at an incident angle of 45 degrees of a sample in which one thin film is formed on a transparent substrate. 図4は、透明基板上に1層の薄膜が形成された試料の入射角45度におけるリタデーションの波長分散の他の例を示すグラフ図である。FIG. 4 is a graph showing another example of retardation wavelength dispersion at an incident angle of 45 degrees of a sample in which a single thin film is formed on a transparent substrate. 図5は、本発明の一実施の形態に係る3次元屈折率測定装置の一例を示す概略構成図である。FIG. 5 is a schematic configuration diagram illustrating an example of a three-dimensional refractive index measurement apparatus according to an embodiment of the present invention. 図6は、3次元屈折率算出方法を説明するための、垂直入射を含む複数の斜め入射角より試料に偏光光を斜入射させて得られたリタデーションと、リタデーション計算結果を示すグラフ図である。FIG. 6 is a graph showing retardation obtained by obliquely incident polarized light on a sample from a plurality of oblique incidence angles including normal incidence and a retardation calculation result for explaining a three-dimensional refractive index calculation method. . 図7は、試料の屈折率楕円体が基準座標系におけるNx、Ny、Nzと一致する場合(a)、および一致しない場合(b)を説明するための、試料の屈折率楕円体の一例を示す説明図である。FIG. 7 shows an example of a refractive index ellipsoid of the sample for explaining a case where the refractive index ellipsoid of the sample matches Nx, Ny, Nz in the reference coordinate system (a) and a case where it does not match (b). It is explanatory drawing shown. 図8は、多重干渉による影響を考慮しない場合のリタデーションの入射角依存性を示すグラフ図である。FIG. 8 is a graph showing the incident angle dependence of retardation when the influence of multiple interference is not considered. 図9は、リタデーションの入射角依存性の例を示すグラフ図である。FIG. 9 is a graph showing an example of the incidence angle dependency of retardation. 図10は、本発明の一実施の形態に係るリタデーションの入射角依存性を示すグラフ図である。FIG. 10 is a graph showing the incidence angle dependency of retardation according to an embodiment of the present invention. 図11は、比較例におけるリタデーションの入射角依存性を示すグラフ図である。FIG. 11 is a graph showing the dependency of retardation on the incident angle in the comparative example.

以下、本発明の実施の形態につき先ず装置面、次に、屈折率の算出方法、次に本発明の基本原理、最後に実施例の順で説明する。   In the following, embodiments of the present invention will be described in the order of the apparatus surface, the refractive index calculation method, the basic principle of the present invention, and finally the examples.

本発明の3次元屈折率測定装置は、透明基板上に少なくとも1層以上の薄膜が形成された試料に直線偏光光を試料に垂直入射させて前記薄膜の面内の光学軸を求める手段と、該光学軸を含みかつ薄膜に垂直な平面内でを進む偏光光を少なくとも1つ以上の複数の入射角φiで前記薄膜に入射させてリタデーションR(φi)(以下、簡単のため位相差とも記すこともある)を求める手段と、次元屈折率の計算式R(φi;nx,ny,nz,β)を決める手段、さらに、前記リタデーションR(φi)と計算式R(φi;nx,ny,nz,β)を用いて、下記の式(1)の値ができるだけ小さくなるように、nx,ny,nz
βを求める手段、とを少なくとも具備した3次元屈折率測定装置である。
The three-dimensional refractive index measuring apparatus of the present invention includes means for obtaining linearly polarized light vertically incident on a sample in which at least one thin film is formed on a transparent substrate and obtaining an in-plane optical axis of the thin film; Polarized light including the optical axis and traveling in a plane perpendicular to the thin film is incident on the thin film at at least one or more incident angles φi, and retardation R (φi) (hereinafter also referred to as a phase difference for simplicity). means for determining also) be, dimensions refractive index formula R (φi; n x, n y, n z, means for determining the beta), further, the retardation R (.phi.i) and formulas R (φi; n x, n y, n z, β) with, as the value of the expression (1) below is as small as possible, n x, n y, n z,
a three-dimensional refractive index measuring device comprising at least means for obtaining β.

Figure 2010014705
Figure 2010014705

すなわち、垂直入射及び斜入射におけるリタデーション測定結果に、式(1)より算出されるリタデーションの計算値をカーブフィッティングさせて誤差ρの最小値を求めることで、透明基板と薄膜との間で生じる多重干渉の影響を平均化することができる測定装置である。   That is, by multiplying the retardation measurement result obtained by the equation (1) with the retardation measurement result at normal incidence and oblique incidence to obtain the minimum value of the error ρ, the multiple generated between the transparent substrate and the thin film is obtained. It is a measuring device that can average the influence of interference.

さらに、本発明の3次元屈折率測定装置は、同一の層構成を有する薄膜が形成された、屈折率の異なる少なくとも2つ以上の透明基板を備え、前記透明基板上の薄膜に対し、式(1)ができるだけ小さくなるように、それぞれnx,ny,nz,βを求める手段を具備し、式(1)が最小となる前記透明基板でのnx,ny,nz,βを3次元屈折率と定める手段、とを少なくとも具備する。すなわち、該透明基板の屈折率をn2、該透明基板に第一層目に形成された薄膜の屈折率をn1とするとき、|n2−n1|の異なる少なくとも2つ以上の複数の試料を装着でき、望ましくは自動での連続測定が可能で、それぞれの式(1)が最小となる前記透明基板でのnx,ny,nz,βを3次元屈折率と定める手段を含む。 Furthermore, the three-dimensional refractive index measuring apparatus of the present invention includes at least two or more transparent substrates having different refractive indexes on which thin films having the same layer configuration are formed. as 1) is as small as possible, respectively n x, n y, n z , comprising means for obtaining the beta, n x in the transparent substrate formula (1) is minimized, n y, n z, beta And at least means for determining a three-dimensional refractive index. That is, when the refractive index of the transparent substrate is n2 and the refractive index of the thin film formed in the first layer on the transparent substrate is n1, at least two or more samples having different | n2−n1 | are mounted. Preferably, automatic continuous measurement is possible, and includes means for determining n x , n y , n z , and β on the transparent substrate that minimizes each equation (1) as a three-dimensional refractive index.

具体的には、図5に示すように、光源部5、分光器6、偏光子7、試料ステージ8、検光子9、検出部10、データ処理装置11、および表示装置12の基本ユニットから構成される装置である。光源部5としては、測定波長範囲内でブロードな波長分布を有するもの、例えば白色光源を用いることができる。分光器6は、測定光束を被測定物面に投射するユニットであり、均一な断面強度分布の平行光束を形成するコリメータ光学系(レンズ、凹面鏡等)、特定の波長の単色を取り出すための波長選択手段、例えば狭帯域フィルタ等を含んでいてもよい。偏光子7は特定の偏光方向の直線偏光を取り出すための偏光子である。検光子9の偏光素子は、対応する偏光素子と所定の偏光方向関係、例えば平行ニコルに構成されている。検出部10は光強度に応じた電気信号を発生する光検出素子であり、例えばフォトダイオードあるいは2次元のCCD素子(電荷結合素子)で構成され、検出出力をそれぞれ任意にサンプリングできるように構成されている。また、得られた光束の増幅・A/D変換部を行う装置等を含むことができる。データ処理装置11は検出信号のデータ処理、装置の動作制御等を行うコンピュータである。また、波長選択手段である分光器6は、光源部5と偏光子7の間に設ける代わりに、受光部の検出器の前段または偏光子7と検光子9の間に設けてもよい。ここで、光源としては、レーザのような単色光でもよい。この場合単色性と直線偏光性いずれもある幅をもっていてもかまわない。   Specifically, as shown in FIG. 5, the light source unit 5, the spectroscope 6, the polarizer 7, the sample stage 8, the analyzer 9, the detection unit 10, the data processing device 11, and the display device 12 are configured as basic units. It is a device. As the light source part 5, what has a broad wavelength distribution within a measurement wavelength range, for example, a white light source, can be used. The spectroscope 6 is a unit that projects a measurement light beam onto the surface of the object to be measured, a collimator optical system (lens, concave mirror, etc.) that forms a parallel light beam with a uniform cross-sectional intensity distribution, and a wavelength for extracting a single color of a specific wavelength. Selection means such as a narrow band filter may be included. The polarizer 7 is a polarizer for extracting linearly polarized light having a specific polarization direction. The polarizing element of the analyzer 9 is configured to have a predetermined polarization direction relationship with the corresponding polarizing element, for example, parallel Nicols. The detection unit 10 is a light detection element that generates an electrical signal corresponding to the light intensity, and is configured by, for example, a photodiode or a two-dimensional CCD element (charge coupled device), and can be configured to arbitrarily sample the detection output. ing. Moreover, the apparatus etc. which perform amplification and A / D conversion part of the obtained light beam can be included. The data processing device 11 is a computer that performs data processing of detection signals, operation control of the device, and the like. Further, the spectroscope 6 serving as a wavelength selection unit may be provided before the detector of the light receiving unit or between the polarizer 7 and the analyzer 9 instead of being provided between the light source unit 5 and the polarizer 7. Here, the light source may be monochromatic light such as a laser. In this case, both monochromaticity and linear polarization may have a certain width.

試料(測定)ステージ8は、この試料ステージに取り付けた試料を垂直入射の光線軸まわり、および光線軸に対して垂直な回転軸まわりに回転可能としている。試料ステージ8は図示しない、軸、ステッピングモータ等により回転可能な回転ステージ,回転ステージの回転角度位置の信号を発生するエンコーダ、駆動制御部の制御のもとに電源により駆動されるように構成されている。また試料ステージ8には、該透明基板の屈折率をn2、該透明基板に第一層目に形成された薄膜の屈折率をn1とするとき、|n2−n1|の異なる少なくとも3つ以上の複数の試料を装着でき、自動での連続測定が可能でなように、ステッピングモータ等により試料の入替え可能なステージ,ステージの位置信号を発生するエンコーダ、駆動制御部の制御のもとに電源により駆動される構成が備えられている。   The sample (measurement) stage 8 allows the sample attached to the sample stage to be rotated about a normal incident light axis and a rotation axis perpendicular to the light axis. The sample stage 8 is configured to be driven by a power source under the control of an unillustrated rotating stage that can be rotated by a shaft, a stepping motor, etc., an encoder that generates a rotation angle position signal of the rotating stage, and a drive control unit. ing. Further, the sample stage 8 has at least three or more different | n 2 −n 1 |, where n 2 is the refractive index of the transparent substrate and n 1 is the refractive index of the thin film formed on the first layer of the transparent substrate. In order to be able to mount multiple samples and automatic continuous measurement is possible, a stage that can be replaced by a stepping motor, etc., an encoder that generates a stage position signal, and a power source under the control of the drive controller A driven configuration is provided.

かかる構成により、略直線偏光の偏光光を試料に垂直入射させて試料の面内の光学軸、すなわち主屈折率方向とを求めることができる。さらに該光学軸方向が斜入射面に含まれるように試料ステージを垂直入射光軸のまわりに回転し、斜入射の入射面を光線軸に対して垂直な回転軸まわりに回転できるので、該光学軸を含みかつ試料に垂直な平面内で少なくとも1つ以上の複数の斜め入射角より試料に偏光光を斜入射させてリタデーションを求
めることができる。この状態で垂直入射測定、斜入射測定による透過光が並行して検出され、それぞれ複屈折特性(主屈折率方向、リタデーション値等)が求められ、垂直入射の測定結果と合わせて3次元屈折率が算出される基礎データとなる。
この装置により求められたリタデーション(Re)を縦軸、入射角を横軸にプロットした場合の一例を、図6に示した。
With such a configuration, it is possible to obtain the optical axis in the plane of the sample, that is, the main refractive index direction by allowing the substantially linearly polarized polarized light to vertically enter the sample. Further, the sample stage can be rotated around the vertical incident optical axis so that the optical axis direction is included in the oblique incident surface, and the oblique incident incident surface can be rotated around the rotational axis perpendicular to the light axis. Retardation can be obtained by obliquely incident polarized light on the sample from at least one or more oblique incidence angles in a plane including the axis and perpendicular to the sample. In this state, transmitted light by normal incidence measurement and oblique incidence measurement is detected in parallel, and birefringence characteristics (main refractive index direction, retardation value, etc.) are obtained respectively, and the three-dimensional refractive index is combined with the normal incidence measurement results. Is the basic data to be calculated.
An example in which the retardation (Re) obtained by this apparatus is plotted on the vertical axis and the incident angle is plotted on the horizontal axis is shown in FIG.

従来の測定装置では、図7(a)に示すような試料の屈折率楕円体の主軸が基準座標系におけるNx、Ny、Nzと一致する場合についてのみ解析されていることがほとんどで、図7(b)に示すような試料の屈折率楕円体の主軸Nx'、Ny’、Nz'が実験室座標系Nx、Ny、Nzと一致しない場合の3次元屈折率を求める手段についてはほとんど検討されていなかった。   In the conventional measuring apparatus, the analysis is performed only when the principal axis of the refractive index ellipsoid of the sample as shown in FIG. 7A coincides with Nx, Ny, Nz in the reference coordinate system. The means for obtaining the three-dimensional refractive index when the principal axes Nx ′, Ny ′, Nz ′ of the refractive index ellipsoid of the sample as shown in (b) do not coincide with the laboratory coordinate system Nx, Ny, Nz are almost studied. It wasn't.

試料の屈折率楕円体が図7(b)にように基準座標系より傾いているかどうかについては、図6中の□(実測値)で示すように、左右非対称となることで判別することができる。   Whether or not the refractive index ellipsoid of the sample is tilted from the reference coordinate system as shown in FIG. 7B can be determined by being left-right asymmetric as shown by □ (measured value) in FIG. it can.

次にリタデーションの測定値とカーブフィッティングさせて3次元屈折率nx,ny,nzを求める計算式について説明する。ここで本発明者らは、図7(b)に対応する、屈折率楕円体がz軸方向からβ度傾斜している場合のリタデーションの計算式に、光学補償フィルムの光学軸の傾斜角度を算出可能な次式(2)を用いることが好適であることを見出している。(例えば、非特許文献4参照)。 Then 3-dimensional refractive indices n x by measured values and curve fitting of the retardation, n y, the calculation formula for obtaining the n z will be described. Here, the inventors set the inclination angle of the optical axis of the optical compensation film in the retardation calculation formula corresponding to FIG. 7B when the refractive index ellipsoid is inclined by β degrees from the z-axis direction. It has been found that it is preferable to use the following formula (2) that can be calculated. (For example, refer nonpatent literature 4).

Figure 2010014705
Figure 2010014705

但し、nx,ny,nzはそれぞれ基準座標系におけるx軸方向、y軸方向、z軸方向の3次元屈折率を表し面内にnx,ny(nx≧ny)、厚さ方向にnzとする。また、入射角をφi、試料の膜厚をd、偏光光の試料中における屈折角をθとする。
上式でβ=0とすれば図7(a)の屈折率楕円体の主軸方向が基準座標と平行な場合に対応する。ここで、θとβだけがリタデーションを測定するための射入射(垂直入射も含む)の角度φiの関数であることに注意する。また、配置等によってはβ以外の複数のパラメータを含んでもかまわない。
入射角φiは、垂直入射時の略直線偏光の偏光光を試料に垂直入射させて求められる試料の面内の光学軸、すなわち主屈折率方向を含む面内の角もしくは該主屈折率方向に直交する面内の角であり、測定開始時にいずれかを選択して測定もしくは両方連続して測定することが出来る。βは、入射角として主屈折率方向を含む面内の角として測定を行った場合はx軸に対する傾斜角を、入射角として該主屈折率方向に直交する面内の角として測定を行った場合にはy軸に対する傾斜角として取り扱われるため、両方の角度で測定してx軸およびy軸の2軸に対する傾斜角を求めてもよい。
However, n x, n y, n z x -axis direction in the respective reference coordinate system, y-axis direction, the z-axis direction of the three-dimensional refractive index represents plane n x, n y (n x ≧ n y), It is set to nz in the thickness direction. Also, the incident angle is φi, the film thickness of the sample is d, and the refraction angle of the polarized light in the sample is θ.
If β = 0 in the above equation, this corresponds to the case where the principal axis direction of the refractive index ellipsoid in FIG. 7A is parallel to the reference coordinates. Here, it should be noted that only θ and β are functions of the incident angle (including the normal incidence) φi for measuring the retardation. Further, depending on the arrangement or the like, a plurality of parameters other than β may be included.
The incident angle φi is an optical axis within the surface of the sample obtained by vertically incident polarized light of substantially linear polarized light at the time of normal incidence, that is, an in-plane angle including the main refractive index direction or the main refractive index direction. It is an angle within a plane perpendicular to the surface, and can be measured by selecting either one at the start of measurement or continuously. When β was measured as an in-plane angle including the main refractive index direction as an incident angle, an inclination angle with respect to the x-axis was measured as an incident angle and an in-plane angle perpendicular to the main refractive index direction. In some cases, it is handled as an inclination angle with respect to the y-axis, and therefore, the inclination angle with respect to the two axes of the x-axis and the y-axis may be obtained by measuring at both angles.

上式(2)さらに、該屈折角θは入射面内方向と入射面外方向とで異なる値を示すと考えられることから、それぞれθ1、θ2としたとき、次式(4)で表すことによりさらに精度良く3次元屈折率を求めることができる。   (2) Further, since the refraction angle θ is considered to show different values in the in-incident surface direction and the out-of-incident surface direction, when θ 1 and θ 2 are respectively expressed by the following equation (4): Further, the three-dimensional refractive index can be obtained with high accuracy.

Figure 2010014705
Figure 2010014705

但し、θ1は式(5)、θ2は式(6)で表される屈折角であり、入射角をφ、偏光光の試料中における屈折角をθ、試料の屈折率楕円体のz軸方向からの傾斜角をβ、n'を式(7)で表される入射面内の屈折率とする。   However, θ1 is the refraction angle represented by the equation (5), θ2 is the refraction angle represented by the equation (6), the incident angle is φ, the refraction angle of the polarized light in the sample is θ, and the z-axis direction of the refractive index ellipsoid of the sample The inclination angle from the angle β is β, and n ′ is the refractive index in the incident surface represented by the equation (7).

Figure 2010014705
Figure 2010014705

Figure 2010014705
Figure 2010014705

Figure 2010014705
Figure 2010014705

式(2)にnx,ny,nzおよびβを逐次的に当てはめてリタデーションを算出し、実測によって得られた全ての入射角での測定結果との誤差が最小になるように、当てはめるnx,ny,nzおよびβの数値をフィッティングすることで3次元屈折率およびz軸方向からの傾斜角βを決定する。このカーブフィッティングのアルゴリズムとしては、シンプレックス法などの線形計画法、Levenburg−Marquardt法などの非線形カーブフィッティング法などが好適に用いられる。 The n x formula (2), to calculate the retardation n y, by applying the n z and β sequentially, so that the error between the measurement result at all angles of incidence obtained by actual measurement is minimal, fitting n x, n y, determines the inclination angle beta from 3 dimensional refractive index and the z-axis direction by fitting the value of n z and beta. As the curve fitting algorithm, a linear programming method such as a simplex method, a non-linear curve fitting method such as a Levenburg-Marquardt method, or the like is preferably used.

上記により、nx,ny,nzおよびβが求まれば、下式(8)よりnx',ny',nz'が求められる。 The above, n x, n y, if n z and β is Motomare, n x by the following equation (8) ', n y' , n z ' is obtained.

Figure 2010014705
Figure 2010014705

しかしながら、図8に示すような多重干渉による影響を受けたリタデーションの入射角依存性を含む測定結果に、上記のアルゴリズムを適用して屈折率を算出しても、信頼性に欠けることが明らかであり、また収束性も悪いものであった。   However, it is clear that even if the refractive index is calculated by applying the above algorithm to the measurement result including the incidence angle dependency of the retardation influenced by the multiple interference as shown in FIG. There was also poor convergence.

そこで本発明者らは、上記事情を鑑みて鋭意検討を試みた結果、該透明基板の屈折率をn2、該透明基板に第一層目に形成された薄膜の屈折率をn1とするとき、ある波長、できれば相当の波長域で、|n2−n1|≦0.1 を満たすように透明基板を選定することで信頼性の高いリタデーション値を得ることが可能で、精度の高い3次元屈折率値に至ることを見出した。
すなわち、該透明基板と薄膜との屈折率差を最小化するように該透明基板の材質を選定することで、光学的多重干渉の影響を最小化することができることを見出したものである。光学干渉では、基板と薄膜との層間での起こる反射光の強度により大きく左右されることが一般的に知られており、その反射光の強度Rはそれぞれの層の屈折率をn2、n1としたとき、次式(9)で与えられることが分かっている。
Therefore, as a result of intensive studies in view of the above circumstances, the present inventors have determined that the refractive index of the transparent substrate is n2, and the refractive index of the thin film formed in the first layer on the transparent substrate is n1, It is possible to obtain a highly reliable retardation value by selecting a transparent substrate so that | n 2 −n 1 | ≦ 0.1 at a certain wavelength, preferably in a considerable wavelength range, and a highly accurate three-dimensional refractive index. I found that the value was reached.
That is, it has been found that the influence of optical multiple interference can be minimized by selecting the material of the transparent substrate so as to minimize the difference in refractive index between the transparent substrate and the thin film. It is generally known that optical interference is greatly influenced by the intensity of reflected light generated between the substrate and the thin film, and the intensity R of the reflected light determines the refractive index of each layer as n2, n1. Then, it is known that the following equation (9) is given.

Figure 2010014705
Figure 2010014705

透明基板と薄膜の屈折率差が小さくなれば反射光の強度が弱くなり、リタデーション測定に資する透過光として透過していく量が増大するため、光学干渉による影響を最小化できる。透明基板の屈折率n1の波長依存性は予め測定できるので、値の異なるものを複数準備し、これに薄膜を形成しておくのが好ましい。波長により透明基板と薄膜の屈折率が変動する場合には、波長ごとに反射率ができるだけ小さくなるように透明基板を切り替えてリタデーションを測定して一群の基礎データとするのが望ましい。   If the difference in refractive index between the transparent substrate and the thin film becomes small, the intensity of reflected light becomes weak and the amount of transmitted light that contributes to retardation measurement increases, so that the influence of optical interference can be minimized. Since the wavelength dependence of the refractive index n1 of the transparent substrate can be measured in advance, it is preferable to prepare a plurality of different values and to form a thin film thereon. When the refractive index of the transparent substrate and the thin film varies depending on the wavelength, it is desirable to switch the transparent substrate so that the reflectance becomes as small as possible for each wavelength, and measure the retardation to obtain a group of basic data.

ここで薄膜表面からの反射率が低いということは透明基板からの透過率が高い場合ということに注意する。また透明基板上の薄膜が2層以上である場合には、n2はそれらのある種の平均の屈折率と考えることができる。   Here, it should be noted that a low reflectance from the thin film surface means a high transmittance from the transparent substrate. When there are two or more thin films on the transparent substrate, n2 can be considered as a certain average refractive index of them.

また、本発明においては、上述のリタデーションを求めるステップと、垂直入射における測定結果及び斜入射における測定結果にリタデーションの計算値をカーブフィッティングさせ、式(1)より算出される誤差ρの最小値を求めるステップと、該透明基板の屈折率をn2、該透明基板に第一層目に形成された薄膜の屈折率をn1とするとき、|n2−n1|の異なる少なくとも3つ以上の複数の試料を装着でき、自動での連続測定が可能で、そ
れぞれの試料での誤差ρをカーブフィッテングさせることにより|n2−n1|の最小値を算出するステップを含んでいるため、より効率的に3次元屈折率を求めることができる。
Further, in the present invention, the step of obtaining the above-mentioned retardation, curve-fitting the calculated value of the retardation to the measurement result at the normal incidence and the measurement result at the oblique incidence, and the minimum value of the error ρ calculated from the equation (1) A plurality of samples having different | n 2 −n 1 |, where n 2 is the refractive index of the transparent substrate and n 1 is the refractive index of the thin film formed on the transparent substrate as the first layer. Can be mounted, automatic continuous measurement is possible, and the step of calculating the minimum value of | n2−n1 | by curve fitting the error ρ of each sample is more efficient. The refractive index can be determined.

実際にも、図9に示すように、透明基板の屈折率を1.52から1.65、1.69と大きくしていった場合に、入射角に対し波打ち現象がなくなることが明らかとなった。したがって、このリタデーション値と計算値の誤差ρの値が最も小さくなるようフィッティングして行けば、精度の高い薄膜の複屈折値に至ることが明らかである。さらに、誤差ρが最も小さくなったときの透明基材の屈折率が薄膜の屈折率と略等しくなることから、複屈折と同時に屈折率を簡便に求めることが可能となり、従来の方法では、屈折率および複屈折を求める際に必要であった煩雑なステップを省略することができる。    In fact, as shown in FIG. 9, when the refractive index of the transparent substrate is increased from 1.52 to 1.65 and 1.69, it becomes clear that the wavy phenomenon is eliminated with respect to the incident angle. It was. Therefore, it is clear that if the fitting is performed such that the error ρ between the retardation value and the calculated value is minimized, the birefringence value of the thin film with high accuracy can be obtained. Furthermore, since the refractive index of the transparent substrate when the error ρ is the smallest becomes substantially equal to the refractive index of the thin film, it is possible to easily obtain the refractive index simultaneously with the birefringence. It is possible to omit the complicated steps required for obtaining the rate and the birefringence.

本発明の3次元屈折率測定装置で測定可能な試料として以下に説明するが、上述の光学素子の他、本発明の趣旨より逸脱しない限りにおいては、透明基板上に少なくとも1層以上の薄膜が形成された試料であれば何でもよい。   A sample that can be measured by the three-dimensional refractive index measuring apparatus of the present invention will be described below. In addition to the above-described optical element, at least one thin film is formed on the transparent substrate unless departing from the spirit of the present invention. Any sample may be used as long as it is formed.

透明基板としては、ソーダ石灰ガラス、低アルカリ硼珪酸ガラス、無アルカリアルミノ硼珪酸ガラスなどのガラス板や、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレートなどの樹脂板、トリアセチルセルロース(以下、「TAC」という場合がある)からなる透明フィルムが挙げられる。また薄膜との屈折率差を解消するための透明基材としては、ショット日本株式会社製光学ガラスである、合成石英、ボロフロート、BK7、K5、B270、ゼロデュア、SK11、BaK4、SSKN8、F2、BaSF1、SF2、LaKN22、SF8、SF18、SF10、SF14、サファイア、SF11、SFL11、LaSFN30、SFL6、SF6、SF57、LaSFN9、CORNING製パイレックス(登録商標)7740、C0550、HOYA株式会社製BaF11、BaF13、BaF10、BaFN10、SF5、FD5、FD10、TAC4、株式会社OHARA製S−TIH1、3、4、6、10、11,13、14、18、23、53、53、L−TIH53、S−NPH1、S−NPH2、53、S−NBH5、8、51、52、53、55、L−NBH54、S−LAH51、52、53、55、58、59、60、63、64、65、66、71、79、L−LAH53、81、83、84、85、S−LAM2、3、7、51、52、54、55、58、59、60、61、66、L−LAM60,69、72、S−BAH10、11、27、28、32、S−TIM1、2、3、5、8、22、25、27、28、35、39、S−FTM16、L−TIM28、S−BAM3、4、12、S−NBM51、S−TIL1、2、6、25、26、27、S−YGH51、S−LAL7、8、9、10、12、13、14、18、54、56、58、59、61、L−LAL12、13、S−BSM2、4、9、10、14、15、16、18、22、25、28、71、81、S−PHM52、53、S−BAL2、3、11、12、14、35、41、42、L−PHL1、2、L−BAL35、42、S−NSL3、5、36、S−BSL7、L−BSL7、S−FSL5、S−FPL51、S−FPL53などの光学ガラスを好適に用いることができる。   Transparent substrates include glass plates such as soda lime glass, low alkali borosilicate glass and non-alkali aluminoborosilicate glass, resin plates such as polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, triacetyl cellulose (hereinafter “TAC”). A transparent film made of Moreover, as a transparent base material for eliminating the refractive index difference from the thin film, synthetic glass, borofloat, BK7, K5, B270, Zerodur, SK11, BaK4, SSKN8, F2, which are optical glass manufactured by Shot Japan Co., Ltd., BaSF1, SF2, LaKN22, SF8, SF18, SF10, SF14, Sapphire, SF11, SFL11, LaSFN30, SFL6, SF6, SF57, LaSFN9, CORNING Pyrex (registered trademark) 7740, C0550, HOYA B13 BaFN10, SF5, FD5, FD10, TAC4, OHARA S-TIH1, 3, 4, 6, 10, 11, 13, 14, 18, 23, 53, 53, L-TIH53, S-NPH1, S -NPH2, 53, -NBH5, 8, 51, 52, 53, 55, L-NBH54, S-LAH51, 52, 53, 55, 58, 59, 60, 63, 64, 65, 66, 71, 79, L-LAH53, 81 83, 84, 85, S-LAM2, 3, 7, 51, 52, 54, 55, 58, 59, 60, 61, 66, L-LAM 60, 69, 72, S-BAH10, 11, 27, 28 32, S-TIM1, 2, 3, 5, 8, 22, 25, 27, 28, 35, 39, S-FTM16, L-TIM28, S-BAM3, 4, 12, S-NBM51, S-TIL1 2, 6, 25, 26, 27, S-YGH51, S-LAL7, 8, 9, 10, 12, 13, 14, 18, 54, 56, 58, 59, 61, L-LAL12, 13, S -BSM2, 4, 9, 10, 14, 15 16, 18, 22, 25, 28, 71, 81, S-PHM52, 53, S-BAL2, 3, 11, 12, 14, 35, 41, 42, L-PHL1, 2, L-BAL35, 42, Optical glass such as S-NSL3, 5, 36, S-BSL7, L-BSL7, S-FSL5, S-FPL51, and S-FPL53 can be preferably used.

薄膜層としては、液晶表示装置の複屈折性を光学補償するための複屈折異方性を有する重合性液晶材料や、白色バックライト光より特定の波長の光を取り出すカラーフィルタを形成するための着色組成物、液晶パネル化後の液晶駆動のための、酸化インジウム、酸化錫、酸化亜鉛、酸化アンチモンなどの金属酸化物の組み合わせからなる透明電極が挙げられる。   As a thin film layer, a polymerizable liquid crystal material having birefringence anisotropy for optically compensating the birefringence of a liquid crystal display device, and a color filter for extracting light of a specific wavelength from white backlight light are formed. For example, a transparent electrode made of a combination of metal oxides such as indium oxide, tin oxide, zinc oxide, and antimony oxide for driving a liquid crystal after forming a colored composition and a liquid crystal panel.

この際、測定する基板がカラーフィルタである場合は、R・G・Bの単一着色画素層のみを透過するように加工されたマスクを介して測定することで単一着色画素層のリタデーション値を求めることができる。
また、例えば、610nmの波長の光を入射光として使用した場合は、赤色着色画素のみ
に起因する位相差値、550nmの場合は、緑色着色画素のみに起因する位相差値、450nmの場合は、青色着色画素のみに起因する位相差値としてそれぞれ単一着色画素層のおおよその値を見積もることができる。
なお、測定する基板がR・G・Bのうちいずれかの単一着色画素層(透明基板に単色のカラーフィルタ着色組成物の塗膜を形成した構成)である場合は、マスクを介することなく位相差の測定が可能となる。
In this case, when the substrate to be measured is a color filter, the retardation value of the single colored pixel layer is measured by using a mask processed so as to transmit only the single colored pixel layer of R, G, and B. Can be requested.
Further, for example, when light having a wavelength of 610 nm is used as incident light, the phase difference value caused only by the red colored pixel, in the case of 550 nm, the phase difference value caused only by the green colored pixel, in the case of 450 nm, The approximate value of the single colored pixel layer can be estimated as the phase difference value caused only by the blue colored pixels.
In addition, when the substrate to be measured is a single colored pixel layer of R, G, or B (a configuration in which a coating film of a monochrome color filter coloring composition is formed on a transparent substrate), without using a mask The phase difference can be measured.

本発明の3次元屈折率測定方法では、リタデーションを得るための測定装置として、測定精度の高い公知の測定装置を用いて、得られたリタデーションと計算式から別途3次元屈折率を算出してもよい。好適な測定装置としては、光が試料を透過、又はその表面で反射する際の偏光状態を検出することで該試料の異方性、光学定数等を測定する複屈折測定装置や、光弾性変調法による透過型のポラリメトリー(polarimetry)と呼ばれる装置が好ましく、より好ましくはミュラーマトリクスポラリメータが用いられる。   In the three-dimensional refractive index measuring method of the present invention, a known measuring device with high measurement accuracy is used as a measuring device for obtaining retardation, and the three-dimensional refractive index is separately calculated from the obtained retardation and calculation formula. Good. Suitable measuring devices include a birefringence measuring device that measures the anisotropy, optical constant, etc. of the sample by detecting the polarization state when light is transmitted through the sample or reflected from the surface thereof, or photoelastic modulation. An apparatus called transmission-type polarimetry by the method is preferable, and a Mueller matrix polarimeter is more preferably used.

最後に、実施例に基づいて本発明を具体的に説明する。   Finally, the present invention will be specifically described based on examples.

[実施例1]
a)赤色着色塗膜の作製
カラーフィルタ用赤色レジストCDP−RS6300(東洋インキ製造(株))をスピンコート法により株式会社OHARA製の光学ガラスS−TIM22(屈折率1.65)に塗工した後、クリーンオーブン中で、70℃で20分間プリベークした。次いで、この基板を室温に冷却後、超高圧水銀ランプを用い、紫外線を露光した。その後、この基板を23℃の炭酸ナトリウム水溶液を用いてスプレー現像した後、イオン交換水で洗浄し、風乾した。
その後、クリーンオーブン中で、230℃で30分間ポストベークを行い、各色塗膜を得た。乾燥塗膜の膜厚は、いずれも2.0μmであった。
[Example 1]
a) Preparation of red colored coating film Red resist CDP-RS6300 (Toyo Ink Manufacturing Co., Ltd.) for color filter was applied to optical glass S-TIM22 (refractive index 1.65) manufactured by OHARA Co., Ltd. by spin coating. Then, it prebaked at 70 degreeC for 20 minutes in clean oven. Next, the substrate was cooled to room temperature and then exposed to ultraviolet rays using an ultrahigh pressure mercury lamp. Thereafter, the substrate was spray-developed using a sodium carbonate aqueous solution at 23 ° C., washed with ion-exchanged water, and air-dried.
Thereafter, post-baking was performed at 230 ° C. for 30 minutes in a clean oven to obtain each color coating film. The film thickness of the dried coating film was 2.0 μm in all cases.

b)リタデーション測定
リタデーションは、透過型分光エリプソメータ(日本分光社製「M−200」)を用いて、塗膜を形成した基板の法線方向から−45度〜45度傾けた方位より5度ステップで610nmの波長で測定し、エリプソパラメータであるδを得た。△=δ/360×λより位相差値△(λ)を算出し、この値を用いて式(3)より得られるリタデーション計算値をカーブフィッティングさせて3次元屈折率を算出した。
ここでカーブフィッティングには線形計画法を使用し、式(1)で表される実測値と計算値のとの誤差ρが最小となるようにnx、ny、nz、βを求めた。得られた結果を表1に示す。また、リタデーションを縦軸、入射角を横軸にプロットしたグラフを図10に、斜め45度から照射ときの波長400nm〜700nmにおける波長分散の結果を図11に示す。
b) Retardation measurement retardation is 5 degree steps from a direction inclined -45 degrees to 45 degrees from the normal direction of the substrate on which the coating film is formed using a transmission spectroscopic ellipsometer ("M-200" manufactured by JASCO Corporation). Was measured at a wavelength of 610 nm, and an ellipso parameter δ was obtained. A phase difference value Δ (λ) was calculated from Δ = δ / 360 × λ, and a retardation calculation value obtained from the equation (3) was curve-fitted using this value to calculate a three-dimensional refractive index.
Here, linear programming was used for curve fitting, and nx, ny, nz, and β were obtained so that the error ρ between the actually measured value and the calculated value represented by Equation (1) was minimized. The obtained results are shown in Table 1. Further, FIG. 10 is a graph in which retardation is plotted on the vertical axis and the incident angle is plotted on the horizontal axis, and FIG. 11 shows the results of chromatic dispersion at wavelengths of 400 nm to 700 nm when irradiated from 45 degrees obliquely.

Figure 2010014705
Figure 2010014705

[実施例2]
透明基板に株式会社OHARA製の光学ガラスS−TIM35(屈折率1.69)を用いた以外は実施例1と同様にして評価を行った。得られた結果を表1に、またリタデーションを縦軸、入射角を横軸にプロットしたグラフを図10に、斜め45度から照射ときの波長400nm〜700nmにおける波長分散の結果を図11に示す。
[Example 2]
Evaluation was performed in the same manner as in Example 1 except that optical glass S-TIM35 (refractive index: 1.69) manufactured by OHARA Corporation was used for the transparent substrate. The obtained results are shown in Table 1, the graph in which retardation is plotted on the vertical axis and the incident angle is plotted on the horizontal axis is shown in FIG. 10, and the results of chromatic dispersion at wavelengths of 400 nm to 700 nm when irradiated from 45 degrees obliquely are shown in FIG. .

[実施例3]
透明基板に株式会社OHARA製の光学ガラスS−LAM60(屈折率1.74)を用い
た以外は実施例1と同様にして評価を行った。得られた結果を表1に、またリタデーションを縦軸、入射角を横軸にプロットしたグラフを図10に、斜め45度から照射ときの波長400nm〜700nmにおける波長分散の結果を図11に示す。
[Example 3]
Evaluation was performed in the same manner as in Example 1 except that optical glass S-LAM60 (refractive index: 1.74) manufactured by OHARA Corporation was used for the transparent substrate. The obtained results are shown in Table 1, the graph in which retardation is plotted on the vertical axis and the incident angle is plotted on the horizontal axis is shown in FIG. 10, and the results of chromatic dispersion at wavelengths of 400 nm to 700 nm when irradiated from 45 degrees obliquely are shown in FIG. .

[実施例4]
透明基板に株式会社OHARA製の光学ガラスS−LAH66(屈折率1.77)を用いた以外は実施例1と同様にして評価を行った。得られた結果を表1に、またリタデーションを縦軸、入射角を横軸にプロットしたグラフを図10に、斜め45度から照射ときの波長400nm〜700nmにおける波長分散の結果を図11に示す。
[Example 4]
Evaluation was performed in the same manner as in Example 1 except that optical glass S-LAH66 (refractive index: 1.77) manufactured by OHARA Corporation was used for the transparent substrate. The obtained results are shown in Table 1, the graph in which retardation is plotted on the vertical axis and the incident angle is plotted on the horizontal axis is shown in FIG. 10, and the results of chromatic dispersion at wavelengths of 400 nm to 700 nm when irradiated from 45 degrees obliquely are shown in FIG. .

[比較例1]
透明基板にCORNING製のガラス基板1737(屈折率1.52)を用いた以外は実施例1と同様にして評価を行った。得られた結果を表1に、またリタデーションを縦軸、入射角を横軸にプロットしたグラフを図10に、斜め45度から照射ときの波長400nm〜700nmにおける波長分散の結果を図11に示す。
[Comparative Example 1]
Evaluation was performed in the same manner as in Example 1 except that a glass substrate 1737 (refractive index: 1.52) manufactured by CORNING was used as the transparent substrate. The obtained results are shown in Table 1, the graph in which retardation is plotted on the vertical axis and the incident angle is plotted on the horizontal axis is shown in FIG. 10, and the results of chromatic dispersion at wavelengths of 400 nm to 700 nm when irradiated from 45 degrees obliquely are shown in FIG. .

表1より、屈折率1.65〜1.77の光学ガラスを使用した実施例では誤差が0.02〜0.012と小さくなっているのに対し、比較例では0.252と大きくなっている。またリタデーションの入射角依存性を示すグラフ(図10)からも実施例ではより計算値に近い曲線を示しているのがわかる。この要因としては図11の波長分散のグラフから明らかなように、多重干渉による波のうねりが実施例においては低減していることが挙げられる。このことより、本発明の3次元屈折率測定方法および測定装置が非常に優れていることがわかる。   According to Table 1, the error using the optical glass having a refractive index of 1.65 to 1.77 is as small as 0.02 to 0.012 in the example, whereas it is as large as 0.252 in the comparative example. Yes. In addition, it can be seen from the graph showing the dependence of retardation on the incident angle (FIG. 10) that the example shows a curve closer to the calculated value. As apparent from the chromatic dispersion graph of FIG. 11, the cause of this is that the wave swell due to multiple interference is reduced in the embodiment. This shows that the three-dimensional refractive index measuring method and measuring apparatus of the present invention are very excellent.

1・・・ガラス基板
2・・・薄膜
3・・・薄膜での光の透過状態
4・・・多重干渉を考慮した薄膜での光の透過状態
5・・・光源
6・・・分光器
7・・・偏光子
8・・・試料ステージ
9・・・検光子
10・・・検出部
11・・・データ処理装置
12・・・表示装置
DESCRIPTION OF SYMBOLS 1 ... Glass substrate 2 ... Thin film 3 ... Light transmission state in thin film 4 ... Light transmission state in thin film considering multiple interference 5 ... Light source 6 ... Spectroscope 7 ... Polarizer 8 ... Sample stage 9 ... Analyzer 10 ... Detector 11 ... Data processing device 12 ... Display device

Claims (9)

透明基板上に形成した薄膜に対し、少なくとも
1.直線偏光を垂直入射させて前記薄膜の面内の光学軸を求めるステップ、
2.前記光学軸を含みかつ薄膜に垂直な平面内を進む直線偏光を少なくとも3つ以上の複数の入射角φiで前記薄膜に入射させてリタデーションR(φi)を求めるステップ、
3.3次元屈折率の計算式R(φi;nx,ny,nz,β)を決めるステップ、
4.前記リタデーションR(φi)と計算式R(φi;nx,ny,nz,β)を用いて下記式(1)のρができるだけ小さくなるように、nx,ny,nz,βを求めるステップ、
とを有する3次元屈折率測定方法において、
前記薄膜からの反射率ができるだけ小さくなるような透明基板を用いて、前記リタデーションR(φi)の測定を行う、ことを特徴とする薄膜の3次元屈折率測定方法。
Figure 2010014705
(ここで、iは3以上の整数、nx,ny,nzは薄膜の屈折率楕円体の直交する3成分、βは薄膜の屈折率楕円体におけるx y z各軸方向に対する傾斜角である。)
At least 1. for the thin film formed on the transparent substrate. Determining the in-plane optical axis of the thin film by vertically injecting linearly polarized light;
2. Allowing the linearly polarized light including the optical axis and traveling in a plane perpendicular to the thin film to enter the thin film at at least three or more incident angles φi to obtain a retardation R (φi);
Formula 3.3 dimensional refractive index R (φi; n x, n y, n z, β) step of determining a
4). The retardation R (.phi.i) and formulas R (φi; n x, n y, n z, β) as ρ of the formula (1) is as small as possible with a, n x, n y, n z, obtaining β,
In a three-dimensional refractive index measurement method having:
A method for measuring a three-dimensional refractive index of a thin film, wherein the retardation R (φi) is measured using a transparent substrate having a reflectance as small as possible from the thin film.
Figure 2010014705
(Here, i is an integer of 3 or more, nx, ny, and nz are three orthogonal components of the refractive index ellipsoid of the thin film, and β is an inclination angle with respect to each axis direction of xyz in the refractive index ellipsoid of the thin film.)
前記透明基板の屈折率をn2、前記透明基板上に形成された最表層薄膜の屈折率をn1とした場合、|n2−n1|≦0.1 を満たす屈折率を有する透明基板を用いることを特徴とする請求項1記載の薄膜の3次元屈折率測定方法。   When the refractive index of the transparent substrate is n 2 and the refractive index of the outermost layer thin film formed on the transparent substrate is n 1, a transparent substrate having a refractive index satisfying | n 2 −n 1 | ≦ 0.1 is used. The method for measuring a three-dimensional refractive index of a thin film according to claim 1. 前記3次元屈折率の近似式R(φi;nx,ny,nz,β)が、下記式(2)で表されることを特徴とする請求項1又は請求項2に記載の3次元屈折率測定方法。
Figure 2010014705
(ここで、i、nx,ny,nzは式(1)に同じ。また、式(2)は、θ、dは既知のパラメータ、βは薄膜の屈折率楕円体におけるx y z各軸方向に対する傾斜角である。)
The 3 approximate expression of dimensional refractive index R (φi; n x, n y, n z, β) is 3 according to claim 1 or claim 2, characterized by being represented by the following formula (2) Dimensional refractive index measurement method.
Figure 2010014705
(Where i, nx , ny , and nz are the same as in equation (1). Also, in equation (2), θ, d are known parameters, and β is each axis of xyz in the refractive index ellipsoid of the thin film. (Inclination angle with respect to direction.)
請求項3に記載の3次元屈折率測定方法において、該屈折角の入射面内方向の屈折角をθ1、入射面外方向の屈折角をθ2とするとき、式(3)であらわされる試料の屈折角θを用いて3次元屈折率を求める工程を含むことを特徴とする3次元屈折率測定方法。
Figure 2010014705
但し、θ1は式(5)、θ2は式(6)で表される屈折角であり、入射角をΦ、偏光光の試料中における屈折角をθ、試料の屈折率楕円体におけるx軸方向に対する傾斜角をβ、n‘を式(7)で表される入射面内の屈折率とする。
Figure 2010014705
Figure 2010014705
Figure 2010014705
In the three-dimensional refractive index measurement method according to claim 3, when the refraction angle of the refraction angle in the incident surface direction is θ 1 and the refraction angle in the outer direction of the incidence surface is θ 2 , the refraction angle is expressed by Expression (3). A method for measuring a three-dimensional refractive index, comprising a step of obtaining a three-dimensional refractive index using a refraction angle θ of a sample.
Figure 2010014705
However, θ 1 is the refraction angle represented by the equation (5), θ 2 is the refraction angle represented by the equation (6), the incident angle is Φ, the refraction angle in the sample of the polarized light is θ, and x in the refractive index ellipsoid of the sample. The inclination angle with respect to the axial direction is β, and n ′ is the refractive index in the incident surface represented by the equation (7).
Figure 2010014705
Figure 2010014705
Figure 2010014705
請求項1記載のリタデーションR(φi)を求めるステップであって、屈折率の異なるk個(k≧2)の透明基板上に形成した同一の薄膜に対し、順次リタデーションRk(φi)を求め、φiごとに、そのk個のリタデーションRk(φi)の中から、当該φiで反射率が最小である前記透明基板に対応するリタデーションRk(φi)を、求めるR(φi)とすることを特徴とする請求項1記載の3次元屈折率測定方法。   The step of obtaining the retardation R (φi) according to claim 1, wherein the retardation Rk (φi) is sequentially obtained for the same thin film formed on k transparent substrates having different refractive indexes (k ≧ 2), For each φi, among the k retardations Rk (φi), the retardation Rk (φi) corresponding to the transparent substrate having the minimum reflectance at φi is set as R (φi) to be obtained. The three-dimensional refractive index measurement method according to claim 1. 透明基板上に形成した薄膜に対し、少なくとも
1.直線偏光を垂直入射させて前記薄膜の面内の光学軸を求める手段、
2.前記光学軸を含みかつ薄膜に垂直な平面内を進む直線偏光を少なくとも3つ以上の複数の入射角φiで前記薄膜に入射させてリタデーションR(φi)を求める手段、
3.3次元屈折率の計算式R(φi;nx,ny,nz,β)を決める手段、
4.前記リタデーションR(φi)と計算式R(φi;nx,ny,nz,β)を用いて下記式(1)のρができるだけ小さくなるように、nx,ny,nzを求める手段、とを具備
することを特徴とする3次元屈折率測定装置。
Figure 2010014705
(ここで、iは3以上の整数、nx,ny,nzは薄膜の屈折率の直交する3成分、βは薄膜の屈折率楕円体におけるx y z各軸方向に対する傾斜角である。)
At least 1. for the thin film formed on the transparent substrate. Means for obtaining an in-plane optical axis of the thin film by vertically incidence of linearly polarized light;
2. Means for determining retardation R (φi) by causing linearly polarized light traveling in a plane including the optical axis and perpendicular to the thin film to enter the thin film at a plurality of incident angles φi of at least three or more;
3.3 dimensional refractive index formula R (φi; n x, n y, n z, β) means for determining a
4). The retardation R (.phi.i) and formulas R (φi; n x, n y, n z, β) as ρ of the formula (1) is as small as possible by using a means for calculating nx, ny, and nz, And a three-dimensional refractive index measuring device.
Figure 2010014705
(Where i is an integer of 3 or more, nx, ny, and nz are three orthogonal components of the refractive index of the thin film, and β is an inclination angle with respect to the xyz axes in the refractive index ellipsoid of the thin film.)
前記3次元屈折率の近似式R(φi;nx,ny,nz,β)が、下記式(2)で表されることを特徴とする請求項6に記載の3次元屈折率測定装置。
Figure 2010014705
(ここで、i、nx,ny,nzは式(1)同じ。また、式(2)は、θ、dは既知のパラメータ、βは薄膜の屈折率楕円体におけるx y z各軸方向に対する傾斜角である。)
The 3 approximate expression of dimensional refractive index R (φi; n x, n y, n z, β) is the three-dimensional refractive index measurement according to claim 6, characterized by being represented by the following formula (2) apparatus.
Figure 2010014705
(Where i, nx , ny , and nz are the same as in equation (1). Also, in equation (2), θ and d are known parameters, and β is the xyz axis direction in the refractive index ellipsoid of the thin film. The tilt angle with respect to
請求項7に記載の3次元屈折率測定装置において、該屈折角の入射面内方向の屈折角をθ1、入射面外方向の屈折角をθ2とするとき、式(4)であらわされる試料の屈折角θを用いて3次元屈折率を求める手段を含むことを特徴とする3次元屈折率測定装置。
Figure 2010014705
但し、θ1は式(5)、θ2は式(6)で表される屈折角であり、入射角をΦ、偏光光の試料中における屈折角をθ、試料の屈折率楕円体におけるx軸方向に対する傾斜角をβ、n‘を式(7)で表される入射面内の屈折率とする。
Figure 2010014705
Figure 2010014705
Figure 2010014705
8. The three-dimensional refractive index measurement apparatus according to claim 7, wherein when the refraction angle of the refraction angle in the in-plane direction of the incident surface is θ 1 and the refraction angle of the out-of-incidence direction is θ 2 , the equation (4) is expressed. A three-dimensional refractive index measuring device comprising means for obtaining a three-dimensional refractive index using a refraction angle θ of a sample.
Figure 2010014705
However, θ 1 is the refraction angle represented by the equation (5), θ 2 is the refraction angle represented by the equation (6), the incident angle is Φ, the refraction angle in the sample of the polarized light is θ, and x in the refractive index ellipsoid of the sample. The inclination angle with respect to the axial direction is β, and n ′ is the refractive index in the incident surface represented by the equation (7).
Figure 2010014705
Figure 2010014705
Figure 2010014705
薄膜を形成した屈折率の異なるk個(k≧2)の透明基板を装着する手段を具備したことを特徴とする請求項7又は請求項8記載の3次元屈折率測定装置。   9. The three-dimensional refractive index measuring apparatus according to claim 7, further comprising means for mounting k transparent substrates having different refractive indexes (k ≧ 2) on which a thin film is formed.
JP2009116369A 2008-06-05 2009-05-13 Three-dimensional refractive index measuring method and three-dimensional refractive index measuring apparatus Expired - Fee Related JP5287489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116369A JP5287489B2 (en) 2008-06-05 2009-05-13 Three-dimensional refractive index measuring method and three-dimensional refractive index measuring apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008147885 2008-06-05
JP2008147885 2008-06-05
JP2009116369A JP5287489B2 (en) 2008-06-05 2009-05-13 Three-dimensional refractive index measuring method and three-dimensional refractive index measuring apparatus

Publications (2)

Publication Number Publication Date
JP2010014705A true JP2010014705A (en) 2010-01-21
JP5287489B2 JP5287489B2 (en) 2013-09-11

Family

ID=41700927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116369A Expired - Fee Related JP5287489B2 (en) 2008-06-05 2009-05-13 Three-dimensional refractive index measuring method and three-dimensional refractive index measuring apparatus

Country Status (1)

Country Link
JP (1) JP5287489B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117828A (en) * 2010-11-29 2012-06-21 Nippon Zeon Co Ltd Method for measuring retardation of optically anisotropic film
JP2021519419A (en) * 2018-04-08 2021-08-10 ルムス エルティーディー. Characterization of optical samples
US11747137B2 (en) 2020-11-18 2023-09-05 Lumus Ltd. Optical-based validation of orientations of internal facets
US11762169B2 (en) 2017-12-03 2023-09-19 Lumus Ltd. Optical device alignment methods
US11849262B2 (en) 2019-03-12 2023-12-19 Lumus Ltd. Image projector
US12124050B2 (en) 2019-02-28 2024-10-22 Lumus Ltd. Compact collimated image projector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216235A (en) * 1988-02-25 1989-08-30 Orc Mfg Co Ltd Method and device for measuring birefringence
JP2007526981A (en) * 2003-06-05 2007-09-20 フラウンホーファ−ゲゼルシャフト ツァー フォルデルング デア アンゲバンデン フォルシュンク エー. ファオ. Method and apparatus for three-dimensional measurement of the refractive index of a transparent or partially transparent layer
JP2008076120A (en) * 2006-09-19 2008-04-03 Ricoh Co Ltd Double refractive index measuring instrument, double refractive index measurement method, program and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216235A (en) * 1988-02-25 1989-08-30 Orc Mfg Co Ltd Method and device for measuring birefringence
JP2007526981A (en) * 2003-06-05 2007-09-20 フラウンホーファ−ゲゼルシャフト ツァー フォルデルング デア アンゲバンデン フォルシュンク エー. ファオ. Method and apparatus for three-dimensional measurement of the refractive index of a transparent or partially transparent layer
JP2008076120A (en) * 2006-09-19 2008-04-03 Ricoh Co Ltd Double refractive index measuring instrument, double refractive index measurement method, program and recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117828A (en) * 2010-11-29 2012-06-21 Nippon Zeon Co Ltd Method for measuring retardation of optically anisotropic film
US11762169B2 (en) 2017-12-03 2023-09-19 Lumus Ltd. Optical device alignment methods
JP2021519419A (en) * 2018-04-08 2021-08-10 ルムス エルティーディー. Characterization of optical samples
US11662311B2 (en) 2018-04-08 2023-05-30 Lumus Ltd. Optical sample characterization
JP7389491B2 (en) 2018-04-08 2023-11-30 ルムス エルティーディー. Characterization of optical samples
US12124050B2 (en) 2019-02-28 2024-10-22 Lumus Ltd. Compact collimated image projector
US11849262B2 (en) 2019-03-12 2023-12-19 Lumus Ltd. Image projector
US11747137B2 (en) 2020-11-18 2023-09-05 Lumus Ltd. Optical-based validation of orientations of internal facets

Also Published As

Publication number Publication date
JP5287489B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
TWI427374B (en) Retardation compensation element, van liquid crystal display device, and liquid crystal projector
JP5287489B2 (en) Three-dimensional refractive index measuring method and three-dimensional refractive index measuring apparatus
US7468769B2 (en) Retardation compensator and single-panel type color liquid crystal projector
US7554635B2 (en) Liquid crystal projector, liquid crystal device and substrate for liquid crystal device
JP4897707B2 (en) Phase difference compensation element, liquid crystal display device, and liquid crystal projector
JP4805130B2 (en) Reflective liquid crystal display element and reflective liquid crystal projector
KR20070097438A (en) Phase difference compensator, light modurating system, liquid crystal display and liquid crystal projector
US7030949B2 (en) Optical display including a cholesteric layer, a display device and a diffusing layer on an exit side of the cholesteric layer
US7477387B2 (en) Method and apparatus for analyzing optical characteristics of optical medium and method for production monitoring
JP5399099B2 (en) Liquid crystal display
JP5140409B2 (en) Polarimeter, measurement system
US7079209B2 (en) Retardation compensation system and liquid crystal projector with different compensation for one of the primary colors
KR20160052592A (en) Method and apparatus for measuring parameters of optical anisotropy
TWI485382B (en) And a measuring device for measuring the inclination angle of the reflective liquid crystal cell
KR20150033112A (en) Liquid crystal modulator and inspection apparatus having the same
KR20010107968A (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
JP2006171328A (en) Phase difference compensation element, optical modulation system, liquid crystal display device, and liquid crystal projector
JP2006119444A (en) Retardation compensation element and liquid crystal device using the same
US6693686B2 (en) Polarizing element and optical display apparatus including the same
JP3813800B2 (en) Liquid crystal cell parameter detector
JP3813834B2 (en) Liquid crystal panel parameter detector
JP5266961B2 (en) Manufacturing method of color filter substrate
WO2023189090A1 (en) Test method
KR100775735B1 (en) Equipment, Method and Computer-readible storage medium for determining the optical retardation of a sample
TW202219496A (en) Inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees