JP2010014642A - Method and apparatus for measuring light intensity - Google Patents

Method and apparatus for measuring light intensity Download PDF

Info

Publication number
JP2010014642A
JP2010014642A JP2008176664A JP2008176664A JP2010014642A JP 2010014642 A JP2010014642 A JP 2010014642A JP 2008176664 A JP2008176664 A JP 2008176664A JP 2008176664 A JP2008176664 A JP 2008176664A JP 2010014642 A JP2010014642 A JP 2010014642A
Authority
JP
Japan
Prior art keywords
light
intensity
sample
light intensity
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008176664A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwasaki
洋 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008176664A priority Critical patent/JP2010014642A/en
Publication of JP2010014642A publication Critical patent/JP2010014642A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for measuring light intensity capable of deriving transmittance and reflectance of an optical element with high accuracy. <P>SOLUTION: The light intensity measuring apparatus 1 includes a first light detector 5 detecting a first light intensity of the light transmitting through a sample 4, a light detector 9 detecting a second light intensity (P0') of the light which does not transmit through the sample 4, a lock-in amplifier 12 measuring intensity difference (ΔP') between the first light intensity and the second light intensity, and a computing unit 14 computing transmittance of the sample 4 through operating process of formula T=1+(ΔP'/P0') using the intensity difference and the second light intensity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光強度測定方法及び光強度測定装置に関し、特に、光学素子の透過率を測定する光強度測定方法及び光強度測定装置に関する。   The present invention relates to a light intensity measurement method and a light intensity measurement device, and more particularly to a light intensity measurement method and a light intensity measurement device for measuring the transmittance of an optical element.

従来、光透過性を有する光学素子の透過率を測定する光強度測定装置が知られている(例えば、特許文献1参照)。この種の光強度測定装置は図7に示すような構成を有している。光強度測定装置100は、光源101、ビームスプリッタ102、光検出器104、107、信号増幅器105、108、反射ミラー106及び演算器109を備えて構成されている。   2. Description of the Related Art Conventionally, a light intensity measuring device that measures the transmittance of an optical element having light transmittance is known (see, for example, Patent Document 1). This type of light intensity measuring apparatus has a configuration as shown in FIG. The light intensity measuring apparatus 100 includes a light source 101, a beam splitter 102, photodetectors 104 and 107, signal amplifiers 105 and 108, a reflection mirror 106, and a calculator 109.

ビームスプリッタ102は、光源101からの入射光を、光透過性を有する被測定用の試料(光学素子)103が配置された第1の光路L1を通過する第1の光と試料103が配置されていない第2の光路L2を通過する第2の光とに分離する。   In the beam splitter 102, the first light and the sample 103 that pass through the first optical path L1 in which the sample (optical element) 103 to be measured having light transmittance is disposed are disposed on the beam splitter 102. The second light passing through the second optical path L2 that is not separated is separated.

光検出器104は、試料103を透過した第1の光の第1光強度を検出し第1光強度信号P1’を送出する。光検出器107は試料103を透過しない第2の光の第2光強度を検出し第2光強度信号P0’を送出する。   The photodetector 104 detects the first light intensity of the first light that has passed through the sample 103, and sends a first light intensity signal P1 '. The photodetector 107 detects the second light intensity of the second light that does not pass through the sample 103, and transmits a second light intensity signal P0 '.

演算器109は、第1光強度信号P1’及び第2光強度信号P0’を受けて数式T=P1’/P0’に基づいて試料103の透過率Tを測定する。   The calculator 109 receives the first light intensity signal P1 'and the second light intensity signal P0' and measures the transmittance T of the sample 103 based on the equation T = P1 '/ P0'.

特開2002−162294号公報JP 2002-162294 A

ところで、光学素子には高い透過性を有するもの、例えば、表面に光波長よりも微細な凹凸形状を設けて反射率を0.1%以下に抑えたモスアイ(moth's eye)と呼ばれる表面加工層を有する光学素子が知られている。このような99.9%以上の透過率を有する光学素子の透過率を高い精度で測定するためには、光学素子の透過率を、例えば、有効数字4桁(99.99%)の精度で測定する光強度測定装置が必要となる。   By the way, an optical element having a high transparency, for example, a surface processing layer called a moth's eye, which has a concavo-convex shape finer than the light wavelength on the surface and has a reflectance reduced to 0.1% or less. The optical element which has is known. In order to measure the transmittance of such an optical element having a transmittance of 99.9% or more with high accuracy, the transmittance of the optical element is measured with, for example, an accuracy of four significant digits (99.99%). A light intensity measuring device for measurement is required.

しかしながら、上記した従来技術では、有効数字4桁(99.99%)という高い精度で透過率を測定することは困難である。以下にその理由を説明する。   However, with the above-described conventional technology, it is difficult to measure the transmittance with a high accuracy of 4 significant digits (99.99%). The reason will be described below.

光強度測定装置の分解能が、例えば、10nWである場合に、測定に影響を与える要因が全く存在しなければ、この光強度測定装置は10nWの分解能で測定できる。しかしながら、測定に影響を与える要因として、光強度測定装置を構成する電子回路から発生する雑音、装置の周囲に存在する光(例えば、室内光、外光等)等のいわゆる光強度ゆらぎが存在する。   If the resolution of the light intensity measuring device is, for example, 10 nW, this light intensity measuring device can measure with a resolution of 10 nW if there are no factors that affect the measurement. However, factors that affect the measurement include so-called light intensity fluctuations such as noise generated from electronic circuits constituting the light intensity measuring apparatus and light existing around the apparatus (for example, indoor light, outside light, etc.). .

光強度ゆらぎは、光源からの入射光の光強度が強くなるに従って大きさが増大し、短時間における大きさが10nWを上回ってしまうので、光強度測定装置の分解能が、例えば、10nWであったとしても、10nWの分解能で測定できない。   The light intensity fluctuation increases as the light intensity of the incident light from the light source increases, and the magnitude in a short time exceeds 10 nW. Therefore, the resolution of the light intensity measuring device is, for example, 10 nW. However, it cannot be measured with a resolution of 10 nW.

上記した光強度測定装置100において、透過率Tは数式T=P1’/P0’に基づいて計算されており、この数式には上記した光強度ゆらぎが全く考慮されていないので、透過率の測定において光強度ゆらぎの影響を受け測定精度の低下を来たしてしまう。   In the above-described light intensity measuring apparatus 100, the transmittance T is calculated based on the formula T = P1 ′ / P0 ′, and the above-described light intensity fluctuation is not taken into account at all in this formula. In this case, the measurement accuracy is lowered due to the influence of the light intensity fluctuation.

そこで、高い精度で測定するために測定時間を長くすることが考えられる。しかしながら、光強度ゆらぎのパワー密度は低周波側で高いので、長い時間をかけた測定はドリフト(電子回路の出力電圧の時間の経過に対する変化)の影響を受けてしまう。   Therefore, it is conceivable to increase the measurement time in order to measure with high accuracy. However, since the power density of the light intensity fluctuation is high on the low frequency side, the measurement over a long period of time is affected by drift (change in the output voltage of the electronic circuit over time).

上記した光強度測定装置100では、それぞれ信号増幅器104、107から出力される第1光強度信号P1’及び第2光強度信号P0’を入力として演算器108で計算しているだけなので、長い時間をかけて(長い時間周期で)測定すると上記したドリフトの影響を受け測定精度の向上を図ることが困難である。   In the above-described light intensity measuring apparatus 100, the first light intensity signal P1 ′ and the second light intensity signal P0 ′ output from the signal amplifiers 104 and 107, respectively, are merely calculated by the computing unit 108, so that it takes a long time. When measuring over a long period of time, it is difficult to improve the measurement accuracy due to the influence of the drift described above.

尚、光強度測定に関し、ここでは被測定用試料として用いられる光学素子の透過率測定についてのみ説明したが、光学素子の反射率測定についても上記と同様の問題が生じる。   In addition, regarding the light intensity measurement, only the transmittance measurement of the optical element used as the sample to be measured has been described here, but the same problem as described above also occurs in the reflectance measurement of the optical element.

上記した理由により、上記した従来技術では光強度を4桁にわたる有効数字をもって測定することは困難であった。   For the reasons described above, it has been difficult to measure the light intensity with four significant figures with the above-described prior art.

そこで、本発明は光学素子の光強度を高い精度で測定することを課題とする。   Therefore, an object of the present invention is to measure the light intensity of an optical element with high accuracy.

本発明の第1の態様による光強度測定方法は、光源からの入射光を、光透過性を有する被測定用の試料が配置された第1の光路を通過する第1の光と試料が配置されていない第2の光路を通過する第2の光とに分離する分離ステップと、前記試料を透過した前記第1の光の第1光強度と前記第2の光の第2光強度とをそれぞれ検出する検出ステップと、第1の光と第2の光の強度差を測定する強度差測定ステップと、以下の数式1に基づいて前記試料の透過率を算出する透過率算出、計算ないし演算ステップとを有するものである。ここで、数式1はT=1+(ΔP’/P0’)であり、Tは透過率、P0’は第2光強度、ΔP’は第1の光と第2の光の強度差とする。   In the light intensity measurement method according to the first aspect of the present invention, the first light and the sample passing through the first optical path in which the sample to be measured having light transmittance is arranged are arranged for the incident light from the light source. A separation step that separates the second light that passes through the second optical path that has not been performed, a first light intensity of the first light that has passed through the sample, and a second light intensity of the second light. A detection step for detecting each, an intensity difference measuring step for measuring an intensity difference between the first light and the second light, and a transmittance calculation, calculation or calculation for calculating the transmittance of the sample based on the following Equation 1 Steps. Here, Equation 1 is T = 1 + (ΔP ′ / P0 ′), where T is the transmittance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

すなわち、光強度測定処理において、第1の光と第2の光の強度差が反映された上記数式1に基づいて透過率の算出を行う。   That is, in the light intensity measurement process, the transmittance is calculated based on the above formula 1 that reflects the difference in intensity between the first light and the second light.

本発明の第2の態様に係る光強度測定装置は、光源からの入射光を、光透過性を有する被測定用の試料が配置された第1の光路を通過する第1の光と試料が配置されていない第2の光路を通過する第2の光とに分離するビームスプリッタと、前記試料を透過した前記第1の光の第1光強度を検出し第1光強度信号を送出する第1の光検出手段と、前記第2の光の第2光強度を検出し第2光強度信号を送出する第2の光検出手段と、前記第1の光と第2の光の強度差を測定して得られた強度差信号を出力する強度差測定手段と、前記第2光強度信号及び前記強度差信号を受け、以下の数式1に基づいて前記試料の透過率を測定する演算手段とを有するようにしたものである。ここで、数式1はT=1+(ΔP’/P0’)であり、Tは透過率、P0’は第2光強度、ΔP’は第1光と第2光の強度差とする。   The light intensity measuring device according to the second aspect of the present invention is configured to receive incident light from a light source using first light and a sample that pass through a first optical path in which a sample to be measured having light permeability is arranged. A beam splitter that separates the second light that passes through the second optical path that is not arranged, and a first light intensity signal that transmits the first light intensity signal by detecting the first light intensity of the first light that has passed through the sample. A first light detecting means; a second light detecting means for detecting a second light intensity of the second light and transmitting a second light intensity signal; and an intensity difference between the first light and the second light. An intensity difference measuring means for outputting an intensity difference signal obtained by the measurement, an arithmetic means for receiving the second light intensity signal and the intensity difference signal, and measuring the transmittance of the sample based on the following Equation 1. It is made to have. Here, Equation 1 is T = 1 + (ΔP ′ / P0 ′), where T is the transmittance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

すなわち、光強度測定装置による光強度測定処理において、第1の光路における第1光強度と第2の光路における第2光強度の差が反映された上記数式1に基づいて透過率の算出が行われる。   That is, in the light intensity measurement process by the light intensity measurement device, the transmittance is calculated based on the above formula 1 that reflects the difference between the first light intensity in the first optical path and the second light intensity in the second optical path. Is called.

本発明の第3の態様に係る光強度測定装置は、光透過性を有する被測定用の試料を透過するときに第1の光として機能し前記試料を透過しないときに第2の光として機能する光を出射する光源と、前記試料を前記第1の光及び前記第2の光が通過する光路上又は光路外へ移動させる試料移動手段と、前記試料移動手段を駆動する駆動手段と、前記第1の光の第1光強度を検出して第1光強度信号を送出し、前記第2の光の第2光強度を検出して第2光強度信号を送出する光検出手段と、前記第1の光と第2の光の強度差を測定して得られた強度差信号を出力する強度差測定手段と、前記第2光強度信号及び前記強度差信号を受け、以下の数式1に基づいて前記試料の透過率を算出する演算手段とを有するようにしたものである。ここで、数式1はT=1+(ΔP’/P0’)であり、Tは透過率、P0’は第2光強度、ΔP’は第1の光と第2の光の強度差とする。   The light intensity measuring device according to the third aspect of the present invention functions as the first light when passing through the sample to be measured having optical transparency and functions as the second light when not passing through the sample. A light source that emits light, sample moving means for moving the sample on or off the optical path through which the first light and the second light pass, driving means for driving the sample moving means, Light detecting means for detecting a first light intensity of the first light and transmitting a first light intensity signal; detecting a second light intensity of the second light; and transmitting a second light intensity signal; and An intensity difference measuring means for outputting an intensity difference signal obtained by measuring an intensity difference between the first light and the second light, the second light intensity signal and the intensity difference signal are received. And a calculation means for calculating the transmittance of the sample on the basis thereof. Here, Equation 1 is T = 1 + (ΔP ′ / P0 ′), where T is the transmittance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

すなわち、光強度測定装置において、試料を第1の光及び第2の光が通過する光路上又は光路外へ移動させて得られた第1の光と第2の光の強度差が反映された上記数式1に基づいて透過率の算出が行われる。   That is, in the light intensity measurement device, the difference in intensity between the first light and the second light obtained by moving the sample on or off the optical path through which the first light and the second light pass is reflected. The transmittance is calculated based on Equation 1 above.

本発明の第4の態様に係る光強度測定装置は、光透過性を有する被測定用の試料を透過するときに第1の光として機能し前記試料を透過しないときに第2の光として機能する光を出射する光源と、前記試料が配置された光路及び前記試料が配置されていない光路を交互に変更する光路変更手段と、前記光路変更手段を駆動する駆動手段と、前記第1の光の第1光強度を検出して第1光強度信号を送出し、前記第2の光の第2光強度を検出して第2光強度信号を送出する光検出手段と、前記第1の光と第2の光の強度差を測定して得られた強度差信号を出力する強度差測定手段と、前記第2光強度信号及び前記強度差信号を受け、以下の数式1に基づいて透過率を測定する演算手段とを有するようにしたものである。ここで、数式1はT=1+(ΔP’/P0’)であり、Tは透過率、P0’は第2光強度、ΔP’は第1の光と第2の光の強度差とする。   The light intensity measuring device according to the fourth aspect of the present invention functions as the first light when passing through the sample to be measured having optical transparency and functions as the second light when not passing through the sample. A light source that emits light, an optical path changing unit that alternately changes an optical path in which the sample is arranged and an optical path in which the sample is not arranged, a driving unit that drives the optical path changing unit, and the first light Detecting the first light intensity of the second light, transmitting a first light intensity signal, detecting the second light intensity of the second light, and transmitting a second light intensity signal; and the first light An intensity difference measuring means for outputting an intensity difference signal obtained by measuring an intensity difference between the second light and the second light, and receiving the second light intensity signal and the intensity difference signal, and transmitting the transmittance based on the following Equation 1 And an arithmetic means for measuring. Here, Equation 1 is T = 1 + (ΔP ′ / P0 ′), where T is the transmittance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

従って、光強度測定装置において、試料が配置された光路及び前記試料が配置されていない光路を交互に変更させて得られた第1光強度と第2光強度の差が反映された上記数式1に基づいて透過率の測定が行われる。   Therefore, in the light intensity measurement apparatus, the above formula 1 reflects the difference between the first light intensity and the second light intensity obtained by alternately changing the optical path where the sample is arranged and the optical path where the sample is not arranged. Based on the above, the transmittance is measured.

本発明の第5の態様に係る光強度測定装置は、光源からの入射光を、被測定用の試料が配置された第1の光路を通過する第1の光と前記試料が配置されていない第2の光路を通過する第2の光とに分離するビームスプリッタと、前記試料を反射した前記第1の光の第1光強度を検出し第1光強度信号を送出する第1の光検出手段と、前記第2の光の第2光強度を検出し第2光強度信号を送出する第2の光検出手段と、前記第1の光と第2の光の強度差を測定して得られた強度差信号を出力する強度差測定手段と、前記第2光強度信号及び前記強度差信号を受け、以下の数式2に基づいて前記試料の反射率を測定する演算手段とを有するようにしたものである。ここで、数式2はR=1+(ΔP’/P0’)であり、Rは反射率、P0’は第2光強度、ΔP’は第1の光と第2の光の強度差とする。   In the light intensity measurement device according to the fifth aspect of the present invention, the light from the light source is not disposed with the first light passing through the first optical path where the sample to be measured is disposed. A beam splitter that separates the second light that passes through the second optical path, and a first light detection that detects the first light intensity of the first light reflected from the sample and transmits a first light intensity signal. A second light detecting means for detecting a second light intensity of the second light and transmitting a second light intensity signal; and measuring an intensity difference between the first light and the second light. Intensity difference measuring means for outputting the intensity difference signal obtained, and calculation means for receiving the second light intensity signal and the intensity difference signal and measuring the reflectance of the sample based on the following Equation 2. It is a thing. Here, Formula 2 is R = 1 + (ΔP ′ / P0 ′), where R is the reflectance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

すなわち、光強度測定装置による光強度測定処理において、第1の光路における第1光強度と第2の光路における第2光強度の差が反映された上記数式2に基づいて反射率の算出が行われる。   That is, in the light intensity measurement process by the light intensity measurement device, the reflectance is calculated based on the above formula 2 that reflects the difference between the first light intensity in the first optical path and the second light intensity in the second optical path. Is called.

本光強度測定方法は、光源からの入射光を、光透過性を有する被測定用の試料が配置された第1の光路を通過する第1の光と試料が配置されていない第2の光路を通過する第2の光とに分離する分離ステップと、前記試料を透過した前記第1の光の第1光強度と前記第2の光の第2光強度とをそれぞれ検出する検出ステップと、第1の光と第2の光の強度差を測定する強度差測定ステップと、以下の数式1に基づいて前記試料の透過率を算出する透過率計算ステップとを有する。ここで、数式1はT=1+(ΔP’/P0’)であり、Tは透過率、P0’は第2光強度、ΔP’は第1の光と第2の光の強度差とする。   In this light intensity measurement method, incident light from a light source is converted into first light that passes through a first optical path in which a sample to be measured having optical transparency is arranged, and a second optical path in which no sample is arranged. A separation step for separating the second light passing through the sample, a detection step for detecting a first light intensity of the first light transmitted through the sample and a second light intensity of the second light, respectively. An intensity difference measuring step for measuring the intensity difference between the first light and the second light, and a transmittance calculating step for calculating the transmittance of the sample based on the following Equation 1. Here, Equation 1 is T = 1 + (ΔP ′ / P0 ′), where T is the transmittance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

上記の第1の光と第2の光の強度差測定と、数式1に基づく透過率算出との組合せにより光強度ゆらぎの影響を軽減できるので、測定精度を高めることが可能となる。   Since the influence of the light intensity fluctuation can be reduced by the combination of the intensity difference measurement between the first light and the second light and the transmittance calculation based on Equation 1, the measurement accuracy can be improved.

本光強度測定装置は、光源からの入射光を、光透過性を有する被測定用の試料が配置された第1の光路を通過する第1の光と試料が配置されていない第2の光路を通過する第2の光とに分離するビームスプリッタと、前記試料を透過した前記第1の光の第1光強度を検出し第1光強度信号を送出する第1の光検出手段と、前記第2の光の第2光強度を検出し第2光強度信号を送出する第2の光検出手段と、前記第1の光と第2の光の強度差を測定して得られた強度差信号を出力する強度差測定手段と、前記第2光強度信号及び前記強度差信号を受け、以下の数式1に基づいて前記試料の透過率を算出する演算手段とを有するようにしたものである。ここで、数式1はT=1+(ΔP’/P0’)であり、Tは透過率、P0’は第2光強度、ΔP’は第1の光と第2の光の強度差とする。   The present light intensity measuring apparatus uses incident light from a light source as a first light passing through a first optical path in which a sample to be measured having optical transparency is arranged and a second optical path in which no sample is arranged. A beam splitter that separates the second light that passes through the sample, first light detection means that detects a first light intensity of the first light that has passed through the sample and sends a first light intensity signal, and A second light detecting means for detecting a second light intensity of the second light and transmitting a second light intensity signal; and an intensity difference obtained by measuring an intensity difference between the first light and the second light. An intensity difference measuring means for outputting a signal; and an arithmetic means for receiving the second light intensity signal and the intensity difference signal and calculating the transmittance of the sample based on the following Equation 1. . Here, Equation 1 is T = 1 + (ΔP ′ / P0 ′), where T is the transmittance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

上記の第1の光と第2の光の強度差測定と、数式1に基づく透過率算出との組合せにより光強度ゆらぎの影響を軽減できるので、測定精度を高めることが可能となる。   Since the influence of the light intensity fluctuation can be reduced by the combination of the intensity difference measurement between the first light and the second light and the transmittance calculation based on Equation 1, the measurement accuracy can be improved.

請求項3に記載した発明にあっては、前記第1の光検出手段及び前記第2の光検出手段と前記強度差測定手段との間に、前記第1光強度信号及び前記第2光強度信号を交互に前記強度差測定手段へ出力するスイッチング手段が設けられているので、低い周波数でより顕著なゆらぎの光強度測定に対する影響を軽減することができる。ここにゆらぎと記したが、ゆらぎの成分には光強度自体のゆらぎもあれば、光検出器の出力電流ゆらぎ、回路の出力電圧ゆらぎなど様々な起源のものがある。以後単に「光強度ゆらぎ」と記述される箇所もあるが、この一語にすべてのゆらぎ成分を代表させている表記であり、「光強度ゆらぎ」だけを限定排他的に指すものではない。   In the invention described in claim 3, the first light intensity signal and the second light intensity are provided between the first light detection means and the second light detection means and the intensity difference measurement means. Since the switching means for alternately outputting the signals to the intensity difference measuring means is provided, it is possible to reduce the influence of the more remarkable fluctuation on the light intensity measurement at a low frequency. Although the fluctuation is described here, the fluctuation component has fluctuations of the light intensity itself, there are various origins such as fluctuations in the output current of the photodetector and fluctuations in the output voltage of the circuit. Hereinafter, there is a place where it is simply described as “light intensity fluctuation”, but this single word represents all fluctuation components and does not mean “light intensity fluctuation” exclusively.

請求項4に記載した発明にあっては、前記強度差測定手段はロックインアンプであり、前記ロックインアンプは、前記スイッチング手段の切り替え動作に同期して前記第1の光と前記第2の光の強度差を測定しているので、低い周波数で生じる顕著な光強度ゆらぎの光強度測定に対する影響を軽減することができる。   In the invention described in claim 4, the intensity difference measuring means is a lock-in amplifier, and the lock-in amplifier synchronizes with the switching operation of the switching means in the first light and the second light. Since the light intensity difference is measured, it is possible to reduce the influence of the significant light intensity fluctuation generated at a low frequency on the light intensity measurement.

請求項5に記載した発明にあっては、前記光源と前記ビームスプリッタの間に光変調器が配置され、二つの光路で検出される光強度を反映する信号を光強度差測定手段に交互に供給する方法として光の切換えを利用している。従って、電気信号の切換えを行なう場合に較べて切換え部分で静電的あるいは誘導的なノイズの影響を受けないという利点がある。   In the invention described in claim 5, an optical modulator is disposed between the light source and the beam splitter, and a signal reflecting the light intensity detected in the two optical paths is alternately supplied to the light intensity difference measuring means. Light switching is used as a supply method. Accordingly, there is an advantage that the switching portion is not affected by electrostatic or inductive noise as compared with the case of switching the electric signal.

請求項6に記載した発明にあっては、光透過性を有する被測定用の試料を透過するときに第1の光として機能し前記試料を透過しないときに第2の光として機能する光を出射する光源と、前記試料を前記第1の光及び前記第2の光が通過する光路上又は光路外へ移動させる試料移動手段と、前記試料移動手段を駆動する駆動手段と、前記第1の光の第1光強度を検出して第1光強度信号を送出し、前記第2の光の第2光強度を検出して第2光強度信号を送出する光検出手段と、前記第1の光と第2の光の強度差を測定して得られた強度差信号を出力する強度差測定手段と、前記第2光強度信号及び前記強度差信号を受け、以下の数式1に基づいて前記試料の透過率を算出する演算手段とを有するようにしたものである。ここで、数式1はT=1+(ΔP’/P0’)であり、Tは透過率、P0’は第2光強度、ΔP’は第1の光と第2の光の強度差とする。   In the invention described in claim 6, the light functioning as the first light when passing through the sample to be measured having optical transparency and functioning as the second light when not passing through the sample. A light source that emits; a sample moving unit that moves the sample on or out of an optical path through which the first light and the second light pass; a driving unit that drives the sample moving unit; Light detecting means for detecting a first light intensity of light and transmitting a first light intensity signal; detecting a second light intensity of the second light; and transmitting a second light intensity signal; and An intensity difference measuring means for outputting an intensity difference signal obtained by measuring an intensity difference between the light and the second light; receiving the second light intensity signal and the intensity difference signal; And a calculation means for calculating the transmittance of the sample. Here, Equation 1 is T = 1 + (ΔP ′ / P0 ′), where T is the transmittance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

この場合には、装置内に設ける光路は一つだけでよく、また、光検出器及び信号増幅器もそれぞれ一つ設けるだけでよいので簡単な構成で光強度測定を高精度に行うことができる。   In this case, only one optical path is provided in the apparatus, and only one photodetector and signal amplifier are provided, so that the light intensity can be measured with high accuracy with a simple configuration.

請求項7に記載した発明にあっては、光透過性を有する被測定用の試料を透過するときに第1の光として機能し前記試料を透過しないときに第2の光として機能する光を出射する光源と、前記試料が配置された光路及び前記試料が配置されていない光路を交互に変更する光路変更手段と、前記光路変更手段を駆動する駆動手段と、前記第1の光の第1光強度を検出して第1光強度信号を送出し、前記第2の光の第2光強度を検出して第2光強度信号を送出する光検出手段と、前記第1の光と第2の光の強度差を測定して得られた強度差信号を出力する強度差測定手段と、前記第2光強度信号及び前記強度差信号を受け、以下の数式1に基づいて透過率を算出する演算手段とを有するようにしたものである。ここで、数式1はT=1+(ΔP’/P0’)であり、Tは透過率、P0’は第2光強度、ΔP’は第1の光と第2の光の強度差とする。   In the invention described in claim 7, the light functioning as the first light when passing through the sample to be measured having optical transparency and functioning as the second light when not passing through the sample. A light source that emits light, an optical path changing unit that alternately changes an optical path in which the sample is arranged and an optical path in which the sample is not arranged, a driving unit that drives the optical path changing unit, and a first of the first light Light detecting means for detecting a light intensity and transmitting a first light intensity signal; detecting a second light intensity of the second light; and transmitting a second light intensity signal; and the first light and the second light An intensity difference measuring means for outputting an intensity difference signal obtained by measuring the intensity difference of the light, the second light intensity signal and the intensity difference signal are received, and the transmittance is calculated based on the following Equation 1. And an arithmetic means. Here, Equation 1 is T = 1 + (ΔP ′ / P0 ′), where T is the transmittance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

この場合には強度差測定手段に供給される光強度信号の切換えに光路の変更という光学的な手段を用いているため、静電的あるいは誘導的なノイズの影響を受けないので電気的なゆらぎの影響を軽減でき、その結果、測定精度を高めることが可能となる。   In this case, since the optical means of changing the optical path is used to switch the light intensity signal supplied to the intensity difference measuring means, it is not affected by electrostatic or inductive noise, so that electrical fluctuations are generated. As a result, measurement accuracy can be improved.

請求項8に記載した発明にあっては、光源からの入射光を、被測定用の試料が配置された第1の光路を通過する第1の光と前記試料が配置されていない第2の光路を通過する第2の光とに分離するビームスプリッタと、前記試料を反射した前記第1の光の第1光強度を検出し第1光強度信号を送出する第1の光検出手段と、前記第2の光の第2光強度を検出し第2光強度信号を送出する第2の光検出手段と、前記第1の光と第2の光の強度差を測定して得られた強度差信号を出力する強度差測定手段と、前記第2光強度信号及び前記強度差信号を受け、以下の数式2に基づいて前記試料の反射率を算出する演算手段とを有するようにしたものである。ここで、数式2はR=1+(ΔP’/P0’)であり、Rは反射率、P0’は第2光強度、ΔP’は第1の光と第2の光の強度差とする。   In the invention described in claim 8, the incident light from the light source is converted into the first light passing through the first optical path in which the sample to be measured is disposed and the second light in which the sample is not disposed. A beam splitter for separating the light into second light passing through the optical path; first light detection means for detecting a first light intensity of the first light reflected from the sample and transmitting a first light intensity signal; A second light detecting means for detecting a second light intensity of the second light and transmitting a second light intensity signal; and an intensity obtained by measuring an intensity difference between the first light and the second light. An intensity difference measuring means for outputting a difference signal; and an arithmetic means for receiving the second light intensity signal and the intensity difference signal and calculating the reflectance of the sample based on the following Equation 2. is there. Here, Formula 2 is R = 1 + (ΔP ′ / P0 ′), where R is the reflectance, P0 ′ is the second light intensity, and ΔP ′ is the intensity difference between the first light and the second light.

このように反射率を測定する場合にも、上記した数式2に基づく光強度測定によりゆらぎの影響を軽減できるので反射率測定の精度を高めることが可能となる。   Even when the reflectance is measured in this way, the influence of fluctuation can be reduced by the light intensity measurement based on the above-described Equation 2, so that the accuracy of the reflectance measurement can be increased.

請求項9に記載した発明にあっては、前記ビームスプリッタと前記第1の光検出手段の間に、前記第1の光に対する前記試料の位置ないし配置を変更する試料配置変更手段を備えているので、試料より光源側に位置する光学系によって決定される偏光方向と試料配置変更手段に保持された試料の向き、あるいは試料への光の入射角に依存する透過率の変化量を測定し、試料の光学的な異方性を高精度に測定することができる。   In the invention described in claim 9, there is provided a sample arrangement changing means for changing the position or arrangement of the sample with respect to the first light between the beam splitter and the first light detecting means. Therefore, measure the amount of change in transmittance depending on the polarization direction determined by the optical system located on the light source side from the sample and the direction of the sample held in the sample arrangement changing means, or the incident angle of light to the sample, The optical anisotropy of the sample can be measured with high accuracy.

請求項10に記載した発明にあっては、前記ビームスプリッタと前記第1の光検出手段の間に、前記第1の光に対する前記試料の位置ないし配置を変更する試料配置変更手段を備えているので、試料より光源側に位置する光学系によって決定される偏光方向と試料配置変更手段に保持された試料の向き、あるいは試料への光の入射角に依存する反射率の変化量を測定し、反射配置の測定において観測される試料の光学的な異方性を高精度に測定することができる。   In the invention described in claim 10, there is provided sample arrangement changing means for changing the position or arrangement of the sample with respect to the first light between the beam splitter and the first light detecting means. Therefore, the amount of change in reflectance depending on the polarization direction determined by the optical system located on the light source side from the sample and the direction of the sample held in the sample arrangement changing means, or the incident angle of the light to the sample is measured, The optical anisotropy of the sample observed in the measurement of the reflection arrangement can be measured with high accuracy.

以下に、本発明の第1の実施の形態に係る光強度測定装置について図1を参照して説明する。図1は第1の実施の形態に係る光強度測定装置の構成について示すブロック図である。   Hereinafter, a light intensity measuring apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of the light intensity measuring apparatus according to the first embodiment.

光強度測定装置1は、光源2、ビームスプリッタ3、光検出器5、9、信号増幅器6、10、反射ミラー7、可変濃度フィルタ8、スイッチング手段としてのスイッチ11、強度差測定手段としてのロックインアンプ12、切替え回路13及び透過率計算手段としての演算器14を備えて構成されている。   The light intensity measuring device 1 includes a light source 2, a beam splitter 3, photodetectors 5 and 9, signal amplifiers 6 and 10, a reflection mirror 7, a variable density filter 8, a switch 11 as a switching means, and a lock as an intensity difference measuring means. An in-amplifier 12, a switching circuit 13, and an arithmetic unit 14 as a transmittance calculation unit are provided.

ビームスプリッタ3は、光源2からの入射光を、光透過性を有する被測定用の試料4が配置された第1の光路L1を通過する第1の光と試料4が配置されていない第2の光路L2を通過する第2の光とに分離する。尚、光強度測定装置1にあっては、第2の光路L2を通過した場合における透過率Tを1(100%)とするように第1の光路L1及び第2の光路L2への光の分岐比や装置を構成する各電子回路の利得が調整されている。例えば、可変濃度フィルタ8は試料を置かず第1の光が検出器5に直接到達する場合に演算器14によって算出される透過率の値が1(100%)になるように調整する機能を有している。尚、このような分岐比や利得の調整は後述する第2、第4及び第6の実施の形態においても同様である。   The beam splitter 3 converts the incident light from the light source 2 into the first light passing through the first optical path L1 in which the sample 4 to be measured having optical transparency is arranged and the second in which the sample 4 is not arranged. And the second light passing through the optical path L2. In the light intensity measuring device 1, the light T to the first optical path L1 and the second optical path L2 is set so that the transmittance T when passing through the second optical path L2 is 1 (100%). The branching ratio and the gain of each electronic circuit constituting the device are adjusted. For example, the variable density filter 8 has a function of adjusting the transmittance value calculated by the calculator 14 to 1 (100%) when the first light reaches the detector 5 directly without placing a sample. Have. Such adjustment of the branching ratio and gain is the same in the second, fourth and sixth embodiments described later.

第1の光は試料4を透過して光検出器5に入力される。第2の光は、反射ミラー7で反射され、可変濃度フィルタ8を介して光検出器9に入力される。   The first light passes through the sample 4 and is input to the photodetector 5. The second light is reflected by the reflection mirror 7 and input to the photodetector 9 through the variable density filter 8.

光検出器5は、試料4を透過した第1の光の第1光強度P1’を検出する。信号増幅器6は第1光強度P1’を増幅した第1光強度信号を送出する。光検出器9は第2の光の第2光強度P0’を検出する。信号増幅器10は第2光強度P0’を増幅した第2光強度信号を送出する。尚、P1’、P0’はゆらぎを含む観測量である。   The photodetector 5 detects the first light intensity P <b> 1 ′ of the first light transmitted through the sample 4. The signal amplifier 6 sends out a first light intensity signal obtained by amplifying the first light intensity P1 '. The photodetector 9 detects the second light intensity P0 'of the second light. The signal amplifier 10 transmits a second light intensity signal obtained by amplifying the second light intensity P0 '. P1 'and P0' are observation amounts including fluctuations.

スイッチ11は、切替え回路13から出力される切替え制御信号に従って光検出器6とロックインアンプ12の接続(以下、「第1の接続」と呼ぶ。)及び光検出器10とロックインアンプ12の接続(以下、「第2の接続」と呼ぶ。)を短時間に(短い周期で)交互に切替える。   The switch 11 is connected between the photodetector 6 and the lock-in amplifier 12 (hereinafter referred to as “first connection”) and between the photodetector 10 and the lock-in amplifier 12 according to the switching control signal output from the switching circuit 13. The connection (hereinafter referred to as “second connection”) is switched alternately in a short time (with a short cycle).

前記切替え制御信号は、たとえばハイとローの2状態をとる周波数f0の矩形波交流信号でありスイッチ11の切替動作を制御する信号として機能する。例えば、切替え制御信号がハイ状態の場合には前記第1の接続状態を維持するようにスイッチ11が動作して第1光強度信号がロックインアンプ12に送出される。切替え制御信号がロー状態の場合には前記第2の接続状態を維持するようにスイッチ11が動作して第2光強度信号がロックインアンプ12に送出される。 The switching control signal is, for example, a rectangular wave AC signal having a frequency f 0 that takes two states of high and low, and functions as a signal that controls the switching operation of the switch 11. For example, when the switching control signal is in a high state, the switch 11 operates to maintain the first connection state, and the first light intensity signal is sent to the lock-in amplifier 12. When the switching control signal is in the low state, the switch 11 operates to maintain the second connection state, and the second light intensity signal is sent to the lock-in amplifier 12.

ロックインアンプ12は、入力された信号波形のうち、参照信号と同期した周波数f0の変動成分を検出しその大きさを出力する計測装置である。しかるに光強度測定装置1においては、ロックインアンプ12には第1光強度信号と第2光強度信号が周波数f0で交互に入力されるように構成されている。したがってロックインアンプの出力としては、第1光強度信号と第2光強度信号の交代に伴う入力の変動分の大きさ、すなわち第1光強度と第2光強度の強度差、ΔP’が与えられる。 The lock-in amplifier 12 is a measuring device that detects a fluctuation component of the frequency f 0 synchronized with the reference signal from the input signal waveform and outputs the magnitude thereof. However, the light intensity measuring apparatus 1 is configured such that the first light intensity signal and the second light intensity signal are alternately input to the lock-in amplifier 12 at the frequency f 0 . Therefore, the output of the lock-in amplifier is given by the magnitude of the input fluctuation accompanying the change of the first light intensity signal and the second light intensity signal, that is, the difference in intensity between the first light intensity and the second light intensity, ΔP ′. It is done.

演算器14は、前記第2光強度信号及び前記強度差信号を受け、以下の数式(1)に基づいて試料4の透過率Tを計算する。   The calculator 14 receives the second light intensity signal and the intensity difference signal, and calculates the transmittance T of the sample 4 based on the following formula (1).

T=1+(ΔP’/P0’)・・・・・・・(1)
上記した光強度測定装置1を用いて透過率測定を行った場合には後述する理由によりゆらぎの影響が軽減され、光強度測定(透過率測定)を高い精度で行うことができる。
T = 1 + (ΔP ′ / P0 ′) (1)
When the transmittance measurement is performed using the light intensity measuring apparatus 1 described above, the influence of fluctuation is reduced for the reason described later, and the light intensity measurement (transmittance measurement) can be performed with high accuracy.

本発明で高精度の測定が提供されることを検証するために、まず従来の測定装置で得られる透過率測定値のゆらぎの大きさを確認しておく。比較例として図7に示すのは分光光度計に常用される構成だが、試料を置く測定用の光路と参照用の光路とがあり、それぞれの光強度P1’とP0’を測定し、透過率Tを以下の数式(A)の右辺によって与える。   In order to verify that highly accurate measurement is provided by the present invention, first, the magnitude of the fluctuation of the transmittance measurement value obtained by the conventional measuring apparatus is confirmed. As a comparative example, FIG. 7 shows a configuration commonly used in a spectrophotometer. However, there are a measurement optical path and a reference optical path for placing a sample, and the light intensities P1 ′ and P0 ′ are measured and the transmittance is measured. T is given by the right side of the following formula (A).

T=P1’/P0’・・・・・・・・・・・(A)
試料を置かない場合には T=1(100%)が得られるように、各々の光路への光の分岐比または回路の利得などが調節されている。
T = P1 '/ P0' (A)
When no sample is placed, the light branching ratio to each optical path or the gain of the circuit is adjusted so that T = 1 (100%) is obtained.

ここで、光強度Pの肩のダッシュは、測定値を表す印として付した。測定値を時間平均して0になるゆらぎ分δとそうでない部分に分けて書くと、P1’=P1+δ1,P0’=P0+δ0である。したがって、透過率の値としてはゆらぎを含まないP1/P0が知りたいが、(P1+δ1)/(P0+δ0)で代用していることになる。   Here, the dash on the shoulder of the light intensity P is attached as a mark representing the measured value. If the measured value is divided into a fluctuation portion δ that becomes 0 on average over time and a portion that does not, the result is P1 ′ = P1 + δ1, P0 ′ = P0 + δ0. Therefore, P1 / P0 that does not include fluctuation is desired as the transmittance value, but (P1 + δ1) / (P0 + δ0) is used instead.

δ1もδ0も同程度の大きさだから、この比、すなわち、Tの値に反映されるゆらぎの相対的な大きさは、(√2)δ0/P0(以下、「ゆらぎ分(a)」と呼ぶ。)程度となる。   Since both δ1 and δ0 are of the same magnitude, this ratio, that is, the relative magnitude of fluctuation reflected in the value of T, is (√2) δ0 / P0 (hereinafter, “fluctuation (a)”) Call it).

続いて、図1を参照して本発明による透過率測定値に含まれるゆらぎ分を計算する。測定用と参照用の二つの光路が設けられている点では上記した比較例と共通である。アナログスイッチを用いて強度信号P1’とP0’を交互にロックインアンプに入力し、アナログスイッチの切替えに同期的な検出によって強度の差 ΔP’を測定している。これのゆらぎ分をεと書くことにすると、ΔP’=P1−P0+εである。ここで本発明の方法による透過率算出式、T=1+( ΔP’/P0’)に含まれるゆらぎを調べると、
T=1+(ΔP’/P0’)=1+(P1−P0+ε)/(P0+δ0)
≒P1/P0+ε/P0+(1−P1/P0)・(δ0/P0)・・・・・・(B)
ここで、上数式(B)の二行目に移る際に、1に較べて小さい量であるε/P0およびδ0/P0の1次の寄与までのみを考慮する近似を行なった。この方法で得られた測定値のゆらぎ分は上記した数式(B)の最後の辺の第2項と第3項であるε/P0+(1−P1/P0)・(δ0/P0)(以下、「ゆらぎ分(b)」と呼ぶ。)となる。
Subsequently, referring to FIG. 1, the amount of fluctuation included in the transmittance measurement value according to the present invention is calculated. It is the same as the comparative example described above in that two optical paths for measurement and reference are provided. The intensity signals P1 ′ and P0 ′ are alternately input to the lock-in amplifier using an analog switch, and the intensity difference ΔP ′ is measured by detection synchronously with the switching of the analog switch. If this fluctuation is written as ε, ΔP ′ = P1−P0 + ε. Here, when the fluctuation included in the transmittance calculation formula, T = 1 + (ΔP ′ / P0 ′) according to the method of the present invention is examined,
T = 1 + (ΔP ′ / P0 ′) = 1+ (P1−P0 + ε) / (P0 + δ0)
≒ P1 / P0 + ε / P0 + (1-P1 / P0) ・ (δ0 / P0) ・ ・ ・ ・ (B)
Here, when moving to the second row of the above formula (B), an approximation was performed in which only the first-order contributions of ε / P0 and δ0 / P0, which are smaller amounts than 1, were considered. The fluctuation of the measured value obtained by this method is ε / P0 + (1−P1 / P0) · (δ0 / P0) (hereinafter, the second and third terms of the last side of the above formula (B). , Referred to as “fluctuation (b)”).

従来法と、本発明の方法で得られた測定値にふくまれるゆらぎ分(a)と(b)の大小は、次のように比較できる。比較的短い時間周期でふたつの光路について強度の交互比較を行なうと、DC測定よりも高い周波数の測定になり、低い周波数で顕著なゆらぎの影響は大幅に軽減されるので、εはδ0よりもかなり小さな量になっている。またゆらぎ分(b)の最後の項(1−P1/P0)・(δ0/P0)では第1の因子(1−P1/P0)が1に近いふたつの量の差なので、結局この項の大きさは(δ0/P0)よりかなり小さい。したがって、本発明の(B)式で与えられる透過率に対するゆらぎの寄与(b)は、従来法に基づく算出値に対して(a)のように与えられるゆらぎ(√2)δ0/P0に較べてかなり小さくできる。   The magnitudes of fluctuations (a) and (b) included in the measurement values obtained by the conventional method and the method of the present invention can be compared as follows. When alternating intensity comparisons are made for two optical paths in a relatively short time period, the measurement is at a higher frequency than the DC measurement, and the effect of significant fluctuations is greatly reduced at a lower frequency, so ε is greater than δ0. The amount is quite small. Also, in the last term (1-P1 / P0) · (δ0 / P0) of fluctuation (b), the first factor (1-P1 / P0) is the difference between the two quantities close to 1, so this term The magnitude is much smaller than (δ0 / P0). Therefore, the fluctuation contribution (b) to the transmittance given by the equation (B) of the present invention is compared with the fluctuation (√2) δ0 / P0 given as shown in (a) with respect to the calculated value based on the conventional method. Can be quite small.

本発明の採用によってほぼ2桁の改善が可能で、透過率99.99%と99.98%を弁別することができた。なお、99.99%および99.98%の透過率をもつ試料は、色インクの希釈液によって調整した。   By adopting the present invention, an improvement of almost two digits was possible, and it was possible to discriminate between 99.99% and 99.98% transmittance. Samples having transmittances of 99.99% and 99.98% were prepared with a dilute solution of color ink.

次に、本発明の第2の実施の形態に係る光強度測定装置について図2を参照して説明する。図2は第2の実施の形態に係る光強度測定装置の構成について示すブロック図である。   Next, a light intensity measurement apparatus according to a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a block diagram showing the configuration of the light intensity measuring apparatus according to the second embodiment.

光強度測定装置20は、光源2、偏光子21、光変調器22、偏光ビームスプリッタ23、光検出器5、9、信号増幅器6、10、反射ミラー7、可変濃度フィルタ8、ロックインアンプ12、変調回路24、加算器25、光強度信号モニタ26及び演算器(図示せず)を備えて構成されている。   The light intensity measuring device 20 includes a light source 2, a polarizer 21, an optical modulator 22, a polarizing beam splitter 23, photodetectors 5 and 9, signal amplifiers 6 and 10, a reflection mirror 7, a variable density filter 8, and a lock-in amplifier 12. , A modulation circuit 24, an adder 25, a light intensity signal monitor 26, and an arithmetic unit (not shown).

偏光子21は、光源2からの入射光を、図示された座標系で(1,0,0)方向に光電場ベクトルを有する直線偏光として光変調器22に入射する。   The polarizer 21 makes incident light from the light source 2 incident on the light modulator 22 as linearly polarized light having a photoelectric field vector in the (1, 0, 0) direction in the illustrated coordinate system.

光変調器22はその主軸を(1,1,0)方向と(1,−1,0)方向に合せて設置して用いる。この光変調器はその主軸方向、すなわち(1,1,0)方向と(1,−1,0)方向に電場ベクトルを有しZ軸方向に伝搬する同じ周波数ωのふたつの直線偏光成分相互の間に、0からπ/2までの位相差を生じさせることができるものである。   The optical modulator 22 is used with its main axis aligned in the (1, 1, 0) direction and the (1, -1, 0) direction. This optical modulator has an electric field vector in the principal axis direction, ie, (1, 1, 0) direction and (1, -1, 0) direction, and two linearly polarized light components having the same frequency ω propagating in the Z axis direction. In the meantime, a phase difference from 0 to π / 2 can be generated.

偏光ビームスプリッタ23は、入射光の電場ベクトルが(1,0,0)方向にある場合にはz方向に光を透過させ、入射光の電場ベクトルが(0,1,0)方向にある場合には入射光を−x方向へと直角に反射させる機能を有する。   The polarization beam splitter 23 transmits light in the z direction when the electric field vector of incident light is in the (1, 0, 0) direction, and the electric field vector of incident light is in the (0, 1, 0) direction. Has a function of reflecting incident light at right angles to the -x direction.

変調回路24は変調信号を所定のタイミングで光変調器22に送出し、入射光の位相差を0とπ/2の間で周期的に変化させる機能を有する。そのタイミングで同期信号がロックインアンプ12に送出される。   The modulation circuit 24 has a function of sending a modulation signal to the optical modulator 22 at a predetermined timing and periodically changing the phase difference of incident light between 0 and π / 2. At that timing, a synchronization signal is sent to the lock-in amplifier 12.

ここで、位相差が0である場合には、光変調器22を透過した光の電場ベクトルは(1,0,0)方向を維持したままなので、直線偏光は偏光ビームスプリッタ23を透過し試料4が配置された第1の光路L1を通過する。一方、位相差がπ/2の場合には、光変調器22を透過した光電場ベクトルは(0,1,0)方向になるので、直線偏光は偏光ビームスプリッタ23で直角に反射されて試料4が配置されていない第2の光路L2を通過する。   Here, when the phase difference is 0, since the electric field vector of the light transmitted through the optical modulator 22 remains in the (1, 0, 0) direction, the linearly polarized light is transmitted through the polarization beam splitter 23 and the sample. 4 passes the first optical path L1 in which 4 is disposed. On the other hand, when the phase difference is π / 2, since the photoelectric field vector transmitted through the optical modulator 22 is in the (0, 1, 0) direction, the linearly polarized light is reflected at a right angle by the polarization beam splitter 23 and the sample. It passes through the second optical path L2 where 4 is not arranged.

光検出器5は、試料4を透過した第1の光の第1光強度P1’を検出する。信号増幅器6は第1光強度P1’を増幅した第1光強度信号を送出する。光検出器9は第2の光の第2光強度P0’を検出する。信号増幅器10は第2光強度P0’を増幅した第2光強度信号を送出する。   The photodetector 5 detects the first light intensity P <b> 1 ′ of the first light transmitted through the sample 4. The signal amplifier 6 sends out a first light intensity signal obtained by amplifying the first light intensity P1 '. The photodetector 9 detects the second light intensity P0 'of the second light. The signal amplifier 10 transmits a second light intensity signal obtained by amplifying the second light intensity P0 '.

加算器25は、第1光強度信号及び第2光強度信号を受け両者が加算された信号電圧を出力する。   The adder 25 receives the first light intensity signal and the second light intensity signal and outputs a signal voltage obtained by adding both signals.

ロックインアンプ12はふたつの光路L1およびL2に置かれた検出器5および9で得られた光強度の和に相当する信号電圧を加算器25から受けるが、光路L1と光路L2には共通の一光源からの光が交互に導入されているので、光路L1に試料が置かれていない場合には検出器5および9で受けられる光強度の和は一定で、すなわち加算器25の出力としてロックインアンプ12に入力される信号電圧は一定値となる。したがって、ロックインアンプはその入力信号に変調周波数の変動成分を感じない。   The lock-in amplifier 12 receives a signal voltage corresponding to the sum of the light intensities obtained by the detectors 5 and 9 placed in the two optical paths L1 and L2 from the adder 25, but is common to the optical paths L1 and L2. Since light from one light source is introduced alternately, the sum of the light intensities received by the detectors 5 and 9 is constant when the sample is not placed in the optical path L1, that is, locked as the output of the adder 25. The signal voltage input to the in-amplifier 12 has a constant value. Therefore, the lock-in amplifier does not feel the fluctuation component of the modulation frequency in the input signal.

しかるに光路L1に置かれた試料によって検出器5に到達する光強度に損失が生じた場合には、検出器5と検出器9からの信号は加算されても互いに完全に補い合う強度バランスを失い、したがって加算器25の出力には光路切換えの周波数で変動が生じることになる。ロックインアンプはこの変動の大きさを測定し出力するが、この変動の大きさは取りも直さず試料による光損失の大きさに比例しており、結果として光路1と光路2で検出される光強度の差、ΔP’の測定が実現される。   However, when a loss occurs in the light intensity reaching the detector 5 due to the sample placed in the optical path L1, even if the signals from the detector 5 and the detector 9 are added, the intensity balance completely complements each other. Therefore, the output of the adder 25 varies with the optical path switching frequency. The lock-in amplifier measures and outputs the magnitude of the fluctuation, but the magnitude of the fluctuation is not directly corrected and is proportional to the magnitude of the optical loss caused by the sample. As a result, it is detected in the optical path 1 and the optical path 2. Measurement of the difference in light intensity, ΔP ′, is realized.

光強度信号モニタ26は第2の光路L2における第2光強度信号を監視し演算器に第2光強度信号を送出する。   The light intensity signal monitor 26 monitors the second light intensity signal in the second optical path L2, and sends the second light intensity signal to the calculator.

演算器は、前記第2光強度信号及び前記増幅された強度差信号を受け、上記した数式(1)に基づいて試料4の透過率Tを算出する。   The computing unit receives the second light intensity signal and the amplified intensity difference signal, and calculates the transmittance T of the sample 4 based on the above mathematical formula (1).

このように、本第2の実施の形態では、光変調器22、偏光ビームスプリッタ23及び変調回路24を用いて第1の光路L1と第2の光路L2を切替えて、光路上に試料が配置された場合とそうでない場合における光強度測定を交互に行っている。   As described above, in the second embodiment, the optical modulator 22, the polarization beam splitter 23, and the modulation circuit 24 are used to switch the first optical path L1 and the second optical path L2, and the sample is arranged on the optical path. The light intensity measurement is performed alternately between the case where it is performed and the case where it is not.

第2の実施の形態に係る光強度測定装置20によれば、光強度を反映する電気信号を上記した第1の実施の形態におけるスイッチ11で切替える場合に比べると、切り替え部分に関し静電的あるいは誘導的なノイズの影響を受けないという効果を有する。また、測定に関わる光ビーム自体の強度が変調されているので、光検出器に到達する背景光(こちらは変調されていない)との分離ができる利点がある。   According to the light intensity measurement device 20 according to the second embodiment, compared with the case where the electrical signal reflecting the light intensity is switched by the switch 11 in the first embodiment described above, It has the effect of not being affected by inductive noise. Further, since the intensity of the light beam itself related to the measurement is modulated, there is an advantage that it can be separated from the background light (this is not modulated) reaching the photodetector.

次に、本発明の第3の実施の形態に係る光強度測定装置について図3を参照して説明する。図3は第3の実施の形態に係る光強度測定装置の構成について示すブロック図である。本第3の実施の形態では、試料移動機構31を用いて単一の光路Lに試料が配置された場合とそうでない場合における光強度測定を交互に行っている。   Next, a light intensity measuring apparatus according to a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a block diagram showing the configuration of the light intensity measuring apparatus according to the third embodiment. In the third embodiment, the light intensity measurement is alternately performed when the sample is disposed in the single optical path L and when the sample is not disposed using the sample moving mechanism 31.

光強度測定装置30は、光源2、試料移動機構31、光検出器32、信号増幅器33、駆動回路34、ロックインアンプ12及び演算器(図示せず)を備えて構成されている。   The light intensity measuring device 30 includes a light source 2, a sample moving mechanism 31, a photodetector 32, a signal amplifier 33, a drive circuit 34, a lock-in amplifier 12, and a calculator (not shown).

光源2からの入射光は、試料移動機構31が試料4を光路L上に移動させた場合には第1の光として機能し、試料移動機構31が試料4を光路Lから外れた領域に移動させた場合には第2の光として機能する。   Incident light from the light source 2 functions as first light when the sample moving mechanism 31 moves the sample 4 onto the optical path L, and the sample moving mechanism 31 moves the sample 4 to a region outside the optical path L. When it is made to function, it functions as the second light.

試料移動機構31は、試料4を、光路L上に移動させたり該光路Lから外れた領域に移動させる機能を有する。試料移動機構31の具体的な移動方法としては、例えば、板状の試料を回転体に取り付けて、羽根車のように回転させて光路Lを遮断する方法がある。   The sample moving mechanism 31 has a function of moving the sample 4 on the optical path L or moving it to a region outside the optical path L. As a specific moving method of the sample moving mechanism 31, for example, there is a method of blocking the optical path L by attaching a plate-like sample to a rotating body and rotating it like an impeller.

駆動回路34は試料移動機構31を所定のタイミングで駆動させ、そのタイミングで同期信号がロックインアンプ12に送出される。   The drive circuit 34 drives the sample moving mechanism 31 at a predetermined timing, and a synchronization signal is sent to the lock-in amplifier 12 at that timing.

試料4が試料移動機構31によって光路L上に移動した場合には、第1の光は試料4を透過して光検出器32に入力される。試料4が試料移動機構31によって光路Lから外れた領域に移動した場合には、第2の光は試料4を透過せずに光検出器32に入力される。   When the sample 4 moves on the optical path L by the sample moving mechanism 31, the first light passes through the sample 4 and is input to the photodetector 32. When the sample 4 is moved to an area off the optical path L by the sample moving mechanism 31, the second light is input to the photodetector 32 without passing through the sample 4.

光検出器32は、試料4を透過した第1の光の第1光強度P1’を検出すると共に第2の光の第2光強度P0’を検出する。信号増幅器33は第1光強度P1’を増幅した第1光強度信号及び第2光強度P0’を増幅した第2光強度信号を送出する。   The light detector 32 detects the first light intensity P1 'of the first light transmitted through the sample 4 and detects the second light intensity P0' of the second light. The signal amplifier 33 sends out a first light intensity signal obtained by amplifying the first light intensity P1 'and a second light intensity signal obtained by amplifying the second light intensity P0'.

ロックインアンプ12は、入力された第1光強度信号と第2光強度信号を受け、駆動回路34から試料移動機構31の移動動作に同期して供給される参照信号と同じ周波数成分の変動を検出することによって第1光強度P1’と第2光強度P0’の強度差ΔP’を測定し、得られた強度差ΔP’を出力する。   The lock-in amplifier 12 receives the input first light intensity signal and second light intensity signal, and changes the same frequency component as the reference signal supplied from the drive circuit 34 in synchronization with the movement operation of the sample moving mechanism 31. By detecting, the intensity difference ΔP ′ between the first light intensity P1 ′ and the second light intensity P0 ′ is measured, and the obtained intensity difference ΔP ′ is output.

演算器は、前記第2光強度信号及び前記強度差信号を受け、上記した数式(1)に基づいて試料4の透過率Tを算出する。   The computing unit receives the second light intensity signal and the intensity difference signal, and calculates the transmittance T of the sample 4 based on the above equation (1).

第3の実施の形態に係る光強度測定装置30によれば、設ける光路は一つだけでよく、また、光検出器32及び信号増幅器33もそれぞれ一つ設けるだけでよいので簡単な構成で光強度測定を高精度に行うことができる。   According to the light intensity measuring apparatus 30 according to the third embodiment, only one optical path is provided, and only one optical detector 32 and one signal amplifier 33 are provided. Strength measurement can be performed with high accuracy.

次に、本発明の第4の実施の形態に係る光強度測定装置について図4を参照して説明する。図4は第4の実施の形態に係る光強度測定装置の構成について示すブロック図である。   Next, a light intensity measuring apparatus according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a block diagram showing the configuration of the light intensity measuring apparatus according to the fourth embodiment.

光強度測定装置40は、光源2、光路変更手段としての可動ミラー41、駆動回路42、光検出器5、9、信号増幅器6、10、可変濃度フィルタ8、加算器25、光強度信号モニタ26、ロックインアンプ12及び演算器(図示せず)を備えて構成されている。   The light intensity measuring device 40 includes a light source 2, a movable mirror 41 as an optical path changing means, a drive circuit 42, photodetectors 5 and 9, signal amplifiers 6 and 10, a variable density filter 8, an adder 25, and a light intensity signal monitor 26. , A lock-in amplifier 12 and a computing unit (not shown).

光源2からの入射光は、可動ミラー41が入射光を通過させる光路を試料4が配置された第1の光路L1に変更した場合には第1の光として機能し、入射光を通過させる光路を試料4が配置されていない第2の光路L2に変更した場合には第2の光として機能する。   The incident light from the light source 2 functions as the first light when the optical path through which the movable mirror 41 transmits the incident light is changed to the first optical path L1 in which the sample 4 is disposed, and the optical path through which the incident light passes. Is changed to the second optical path L2 in which the sample 4 is not arranged, it functions as the second light.

可動ミラー41は、光源2からの入射光を受け可動ミラー41からの出射方向を変更する機能、即ち、第1の光路L1及び第2の光路L2を交互に変更する機能を有する。   The movable mirror 41 has a function of receiving incident light from the light source 2 and changing an emission direction from the movable mirror 41, that is, a function of alternately changing the first optical path L1 and the second optical path L2.

駆動回路42は可動ミラー41を所定のタイミングで回転駆動させ、そのタイミングで同期信号がロックインアンプ12に送出される。   The drive circuit 42 rotates the movable mirror 41 at a predetermined timing, and a synchronization signal is sent to the lock-in amplifier 12 at that timing.

可動ミラー41によって入射光の光路が第1の光路L1に変更された場合には、入射光(第1の光)は試料4を透過して光検出器5に入力される。可動ミラー41によって入射光の光路が第2の光路L2に変更された場合には、入射光(第2の光)は試料4を透過せずに光検出器9に入力される。   When the optical path of the incident light is changed to the first optical path L1 by the movable mirror 41, the incident light (first light) passes through the sample 4 and is input to the photodetector 5. When the optical path of the incident light is changed to the second optical path L <b> 2 by the movable mirror 41, the incident light (second light) is input to the photodetector 9 without passing through the sample 4.

光検出器5は、試料4を透過した第1の光の第1光強度P1’を検出する。信号増幅器6は第1光強度P1’を増幅した第1光強度信号を送出する。光検出器9は第2の光の第2光強度P0’を検出する。信号増幅器10は第2光強度P0’を増幅した第2光強度信号を送出する。   The photodetector 5 detects the first light intensity P <b> 1 ′ of the first light transmitted through the sample 4. The signal amplifier 6 sends out a first light intensity signal obtained by amplifying the first light intensity P1 '. The photodetector 9 detects the second light intensity P0 'of the second light. The signal amplifier 10 transmits a second light intensity signal obtained by amplifying the second light intensity P0 '.

加算器25は第1光強度信号及び第2光強度信号を受け両者が加算された信号電圧を出力する。   The adder 25 receives the first light intensity signal and the second light intensity signal and outputs a signal voltage obtained by adding the both.

ロックインアンプ12はふたつの光路L1およびL2に置かれた検出器5および9で得られた光強度の和に相当する信号電圧を加算器25から受けるが、光路L1と光路L2には共通の一光源からの光が可動ミラー41によって交互に導入されているので、光路L1に試料が置かれていない場合には検出器5および9で受けられる光強度の和は一定で、すなわち加算器25の出力としてロックインアンプ12に入力される信号電圧は一定値となる。したがって、ロックインアンプはその入力信号に可動ミラー41の動作周波数の変動成分を感じない。   The lock-in amplifier 12 receives a signal voltage corresponding to the sum of the light intensities obtained by the detectors 5 and 9 placed in the two optical paths L1 and L2 from the adder 25, but is common to the optical paths L1 and L2. Since the light from one light source is alternately introduced by the movable mirror 41, the sum of the light intensities received by the detectors 5 and 9 is constant when the sample is not placed in the optical path L1, that is, the adder 25. The signal voltage input to the lock-in amplifier 12 as an output is a constant value. Therefore, the lock-in amplifier does not feel the fluctuation component of the operating frequency of the movable mirror 41 in the input signal.

しかるに光路L1に置かれた試料によって検出器5に到達する光強度に損失が生じた場合には、検出器5と検出器9からの信号は加算されても互いに完全に補い合う強度バランスを失い、したがって加算器25の出力には可動ミラー41による光路切換えの周波数で変動が生じることになる。ロックインアンプはこの変動の大きさを測定し出力するが、この変動の大きさは取りも直さず試料による光損失の大きさに比例しており、結果として光路1と光路2で検出される光強度の差、ΔP’の測定が実現される。   However, when a loss occurs in the light intensity reaching the detector 5 due to the sample placed in the optical path L1, even if the signals from the detector 5 and the detector 9 are added, the intensity balance completely complements each other. Therefore, the output of the adder 25 varies with the frequency of switching the optical path by the movable mirror 41. The lock-in amplifier measures and outputs the magnitude of the fluctuation, but the magnitude of the fluctuation is not directly corrected and is proportional to the magnitude of the optical loss caused by the sample. As a result, it is detected in the optical path 1 and the optical path 2. Measurement of the difference in light intensity, ΔP ′, is realized.

光強度信号モニタ26は第2の光路L2における第2光強度信号を監視し演算器に第2光強度信号を送出する。   The light intensity signal monitor 26 monitors the second light intensity signal in the second optical path L2, and sends the second light intensity signal to the calculator.

演算器は、前記第2光強度信号及び前記強度差信号を受け、上記した数式(1)に基づいて試料4の透過率Tを測定する。   The computing unit receives the second light intensity signal and the intensity difference signal, and measures the transmittance T of the sample 4 based on the above equation (1).

第4の実施の形態に係る光強度測定装置40によれば、光強度を反映する電気信号を上記した第1の実施の形態におけるスイッチ11で切替える場合に比べると、切り替え部分に関し静電的あるいは誘導的なノイズの影響を受けないという効果を有する。   According to the light intensity measuring device 40 according to the fourth embodiment, compared with the case where the electrical signal reflecting the light intensity is switched by the switch 11 in the first embodiment described above, It has the effect of not being affected by inductive noise.

次に、本発明の第5の実施の形態に係る光強度測定装置について図5を参照して説明する。図5は第5の実施の形態に係る光強度測定装置の構成について示すブロック図である。   Next, a light intensity measuring apparatus according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a block diagram showing the configuration of the light intensity measuring apparatus according to the fifth embodiment.

光強度測定装置50は、光源2、ビームスプリッタ3、光検出器5、9、信号増幅器6、10、3つの反射ミラー7、7,7、可変濃度フィルタ8、スイッチ11、ロックインアンプ12、切替え装置13及び演算器52を備えて構成されている。ここで、3つの反射ミラー7、7,7は一つが第1の光路L1の前段に配置され、他の一つは第1の光路L1の後段に配置され、さらに他の一つは第2の光路L2に配置されている。   The light intensity measuring device 50 includes a light source 2, a beam splitter 3, photodetectors 5 and 9, signal amplifiers 6 and 10, three reflection mirrors 7, 7 and 7, a variable density filter 8, a switch 11, a lock-in amplifier 12, The switching device 13 and the arithmetic unit 52 are provided. Here, one of the three reflecting mirrors 7, 7, and 7 is arranged in the front stage of the first optical path L1, the other one is arranged in the rear stage of the first optical path L1, and the other one is the second optical path L1. Is disposed in the optical path L2.

ビームスプリッタ3は、光源2からの入射光を、光反射性を有する被測定用の試料51が配置された第1の光路L1を通過する第1の光と試料51が配置されていない第2の光路L2を通過する第2の光とに分離する。尚、光強度測定装置50にあっては、第1の光路L1で試料による光の損失が無い場合に光強度測定装置50が1(100%)の大きさの反射率の値を与えるように第1の光路L1及び第2の光路L2への光の分岐比や装置を構成する各電子回路の利得が調整されている。例えば、可変濃度フィルタ8は第1の光路L1で試料による光の損失が無い場合に1(100%)の大きさの反射率の値がこの光強度測定装置50によって与えられるように調整する機能を有している。   The beam splitter 3 converts the incident light from the light source 2 into the first light passing through the first optical path L1 in which the sample 51 to be measured having light reflectivity is arranged and the second in which the sample 51 is not arranged. And the second light passing through the optical path L2. In the light intensity measuring apparatus 50, the light intensity measuring apparatus 50 gives a reflectance value of 1 (100%) when there is no loss of light by the sample in the first optical path L1. The branching ratio of light to the first optical path L1 and the second optical path L2 and the gain of each electronic circuit constituting the device are adjusted. For example, the variable density filter 8 has a function of adjusting the light intensity measurement device 50 to provide a reflectance value of 1 (100%) when there is no light loss due to the sample in the first optical path L1. have.

ここで、ビームスプリッタ3を透過した第1の光路L1に配置された前段の反射ミラー7で反射され、反射された入射光は試料51で反射された後に第1の光路L1に配置された後段の反射ミラー7で反射されて光検出器5に入射される。尚、入射光が試料51を介して光検出器5に到達するまでのルート(第1の光路L1)上に必要な反射ミラー7の個数は上記した2つに限られないが光の減衰を考慮すると少ない個数にすることが望ましい。   Here, the incident light reflected by the front reflection mirror 7 disposed in the first optical path L1 that has passed through the beam splitter 3 and reflected is reflected by the sample 51 and then disposed in the first optical path L1. Are reflected by the reflection mirror 7 and are incident on the photodetector 5. The number of reflection mirrors 7 required on the route (first optical path L1) until the incident light reaches the photodetector 5 through the sample 51 is not limited to the above two, but the attenuation of light is performed. Considering this, it is desirable to use a small number.

第2の光は、第2の光路L2に配置された反射ミラー7で反射され、可変濃度フィルタ8を介して光検出器9に入力される。   The second light is reflected by the reflection mirror 7 disposed in the second optical path L <b> 2 and input to the photodetector 9 through the variable density filter 8.

光検出器5は、試料51で反射された第1の光の第1光強度P1’を検出する。信号増幅器6は第1光強度P1’を増幅した第1光強度信号を送出する。光検出器9は第2の光の第2光強度P0’を検出する。信号増幅器10は第2光強度P0’を増幅した第2光強度信号を送出する。   The photodetector 5 detects the first light intensity P <b> 1 ′ of the first light reflected by the sample 51. The signal amplifier 6 sends out a first light intensity signal obtained by amplifying the first light intensity P1 '. The photodetector 9 detects the second light intensity P0 'of the second light. The signal amplifier 10 transmits a second light intensity signal obtained by amplifying the second light intensity P0 '.

スイッチ11は、切替え回路13から出力される切替え制御信号に従って第1の接続及び第2の接続を短い周期で交互に切り替える。このようなスイッチ11による切り替え動作によって第1光強度信号及び第2光強度信号は交互にロックインアンプ12に送出される。   The switch 11 alternately switches the first connection and the second connection in a short cycle according to the switching control signal output from the switching circuit 13. By such switching operation by the switch 11, the first light intensity signal and the second light intensity signal are alternately sent to the lock-in amplifier 12.

ロックインアンプ12は、入力された第1光強度信号と第2光強度信号を受け第1光強度P1’と第2光強度P0’の強度差ΔP’を測定し、得られた強度差ΔP’を出力する。   The lock-in amplifier 12 receives the input first light intensity signal and the second light intensity signal, measures the intensity difference ΔP ′ between the first light intensity P1 ′ and the second light intensity P0 ′, and obtains the obtained intensity difference ΔP. 'Is output.

演算器52は、前記第2光強度信号及び前記強度差信号を受け、以下の数式(2)に基づいて試料51の反射率Rを算出する。尚、数式(2)は、特許請求の範囲の請求項8に記載の数式(A)に対応している。   The calculator 52 receives the second light intensity signal and the intensity difference signal, and calculates the reflectance R of the sample 51 based on the following formula (2). In addition, Numerical formula (2) respond | corresponds to Numerical formula (A) of Claim 8 of a claim.

R=1+(ΔP’/P0’)・・・・・・・(2)
上記した光強度測定装置50を用いて光学素子の光強度測定を行った場合には上記第1の実施の形態と同様の理由によりゆらぎの影響が軽減され、光強度測定(反射率測定)を高い精度で行うことができる。
R = 1 + (ΔP ′ / P0 ′) (2)
When the light intensity measurement of the optical element is performed using the light intensity measurement device 50 described above, the influence of fluctuation is reduced for the same reason as in the first embodiment, and the light intensity measurement (reflectance measurement) is performed. It can be performed with high accuracy.

次に、本発明の第6の実施の形態に係る光強度測定装置について図6を参照して説明する。図6は、第6の実施の形態に係る光強度測定装置の構成について示すブロック図である。   Next, a light intensity measuring apparatus according to a sixth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a block diagram showing a configuration of a light intensity measuring apparatus according to the sixth embodiment.

本実施の形態は上記した第1の実施の形態と比較すると、ビームスプリッタ3と光検出器5の間に試料4の位置ならびに配置の角度を変更する試料配置変更機構61が設けられている点を除いて同じである。従って、第1の実施の形態と同様の構成についての説明は省略する。   Compared with the first embodiment described above, this embodiment is provided with a sample arrangement changing mechanism 61 between the beam splitter 3 and the photodetector 5 for changing the position and the arrangement angle of the sample 4. It is the same except for. Therefore, the description of the same configuration as in the first embodiment is omitted.

本実施の形態は、試料4の入射光に対する位置を変更する試料配置変更手段としての試料配置変更機構61を設け、透過率の配置への依存、すなわち光学異方性も測定できる点に特徴がある。   The present embodiment is characterized in that a sample arrangement changing mechanism 61 is provided as sample arrangement changing means for changing the position of the sample 4 with respect to incident light, and the dependence of transmittance on the arrangement, that is, the optical anisotropy can also be measured. is there.

光源2とビームスプリッタ3の間には偏光子21が配置されている。   A polarizer 21 is disposed between the light source 2 and the beam splitter 3.

光強度測定装置60は、偏光子21によって決定される偏光方向と試料配置変更機構61に配置された試料4の向きに依存する透過率を測定する。   The light intensity measuring device 60 measures the transmittance depending on the polarization direction determined by the polarizer 21 and the direction of the sample 4 arranged in the sample arrangement changing mechanism 61.

試料4の向きに対する依存性は試料配置変更機構61によって決定される。一例として具体的には、図6に示すように、X−Y平面に配置された板状の試料4を、Z軸を回転軸として回転させることによって、前記偏光方向を有する入射光に対する試料4の向きを変更させる。   The dependence on the orientation of the sample 4 is determined by the sample arrangement changing mechanism 61. Specifically, as shown in FIG. 6, as shown in FIG. 6, the sample 4 with respect to the incident light having the polarization direction is rotated by rotating the plate-like sample 4 arranged on the XY plane with the Z axis as the rotation axis. Change the direction of.

従って、試料配置変更機構61を用いて試料4の入射光に対する向きを変更することによって、偏光方向と試料配置変更機構61に配置された試料4の向きに依存する透過率の値を測定することができる。   Therefore, by changing the direction of the sample 4 with respect to the incident light using the sample arrangement changing mechanism 61, the transmittance value depending on the polarization direction and the direction of the sample 4 arranged in the sample arrangement changing mechanism 61 is measured. Can do.

本実施の形態は透過率測定について説明したが、反射率測定についても偏光方向と試料配置変更機構61に配置された試料4の向きに依存する反射率を測定することができる。この場合の構成は上記した第5の実施の形態において試料51の代わりに試料配置変更機構61を設けたものと同じである。   Although the present embodiment has been described with respect to transmittance measurement, the reflectance that depends on the polarization direction and the direction of the sample 4 arranged in the sample arrangement changing mechanism 61 can also be measured. The configuration in this case is the same as that in which the sample arrangement changing mechanism 61 is provided instead of the sample 51 in the above-described fifth embodiment.

尚、上記した各実施の形態は、本発明を好適に実施した形態の一例に過ぎず、本発明は、その主旨を逸脱しない限り、種々変形して実施することが可能なものである。   Each of the above-described embodiments is merely an example of a preferred embodiment of the present invention, and the present invention can be implemented with various modifications without departing from the gist thereof.

第1の実施の形態に係る光強度測定装置の構成について示すブロック図である。It is a block diagram shown about the composition of the light intensity measuring device concerning a 1st embodiment. 第2の実施の形態に係る光強度測定装置の構成について示すブロック図である。It is a block diagram shown about the structure of the light intensity measuring apparatus which concerns on 2nd Embodiment. 第3の実施の形態に係る光強度測定装置の構成について示すブロック図である。It is a block diagram shown about the structure of the light intensity measuring apparatus which concerns on 3rd Embodiment. 第4の実施の形態に係る光強度測定装置の構成について示すブロック図である。It is a block diagram shown about the structure of the light intensity measuring apparatus which concerns on 4th Embodiment. 第5の実施の形態に係る光強度測定装置の構成について示すブロック図である。It is a block diagram shown about the structure of the light intensity measuring apparatus which concerns on 5th Embodiment. 第6の実施の形態に係る光強度測定装置の構成について示すブロック図である。It is a block diagram shown about the structure of the light intensity measuring apparatus which concerns on 6th Embodiment. 従来の光強度測定装置の構成を示したブロック図である。It is the block diagram which showed the structure of the conventional light intensity measuring apparatus.

符号の説明Explanation of symbols

1、20、30、40、50、60…光強度測定装置、2…光源、3…ビームスプリッタ、4、51…試料、5、9、32…光検出器、6、10、33…信号増幅器、7…反射ミラー、8…可変濃度フィルタ、11…スイッチ、12…ロックインアンプ、13…切替え回路、14、52…演算器、21…偏光子、22…光変調器、23…偏光ビームスプリッタ、24…変調回路、25…加算器、26…光強度信号モニタ、31…試料移動機構、34、42…駆動回路、41…可動ミラー、61…試料配置変更機構   DESCRIPTION OF SYMBOLS 1, 20, 30, 40, 50, 60 ... Light intensity measuring device, 2 ... Light source, 3 ... Beam splitter, 4, 51 ... Sample, 5, 9, 32 ... Photo detector, 6, 10, 33 ... Signal amplifier , 7 ... reflection mirror, 8 ... variable density filter, 11 ... switch, 12 ... lock-in amplifier, 13 ... switching circuit, 14, 52 ... computing unit, 21 ... polarizer, 22 ... optical modulator, 23 ... polarizing beam splitter , 24 ... modulation circuit, 25 ... adder, 26 ... light intensity signal monitor, 31 ... sample moving mechanism, 34, 42 ... drive circuit, 41 ... movable mirror, 61 ... sample arrangement changing mechanism

Claims (10)

光源からの入射光を、光透過性を有する被測定と用の試料が配置された第1の光路を通過する第1の光と試料が配置されていない第2の光路を通過する第2の光とに分離する分離ステップと、
前記試料を透過した前記第1の光の第1光強度と前記第2の光の第2光強度とをそれぞれ検出する検出ステップと、
前記第1の光と前記第2の光の強度差を測定する強度差測定ステップと、
以下の数式1に基づいて前記試料の透過率を算出する演算ステップとを有する
光強度測定方法。
(1)T=1+(ΔP’/P0’)
但し、
T:透過率
P0’:第2光強度
ΔP’:第1の光と第2の光の強度差
とする。
Incident light from the light source passes through a first optical path through which a sample to be measured and a sample having optical transparency are arranged, and a second optical path through which a second specimen is not arranged. A separation step that separates into light;
A detection step of detecting a first light intensity of the first light transmitted through the sample and a second light intensity of the second light, respectively.
An intensity difference measuring step for measuring an intensity difference between the first light and the second light;
A light intensity measurement method comprising: a calculation step of calculating the transmittance of the sample based on the following formula 1.
(1) T = 1 + (ΔP ′ / P0 ′)
However,
T: transmittance P0 ′: second light intensity ΔP ′: difference in intensity between the first light and the second light.
光源からの入射光を、光透過性を有する被測定用の試料が配置された第1の光路を通過する第1の光と試料が配置されていない第2の光路を通過する第2の光とに分離するビームスプリッタと、
前記試料を透過した前記第1の光の第1光強度を検出し第1光強度信号を送出する第1の光検出手段と、
前記第2の光の第2光強度を検出し第2光強度信号を送出する第2の光検出手段と、
前記第1の光と第2の光の強度差を測定する強度差測定手段と、
前記第2光強度信号及び前記強度差信号を受け、以下の数式1に基づいて前記試料の透過率を計算・算出する演算手段とを有する
光強度測定装置。
(1)T=1+(ΔP’/P0’)
但し、
T:透過率
P0’:第2光強度
ΔP’:第1の光と第2の光の強度差
とする。
Incident light from the light source is converted into first light that passes through a first optical path in which a sample to be measured having optical transparency is arranged and second light that passes through a second optical path in which no sample is arranged. A beam splitter that separates
First light detection means for detecting a first light intensity of the first light transmitted through the sample and transmitting a first light intensity signal;
Second light detection means for detecting a second light intensity of the second light and transmitting a second light intensity signal;
An intensity difference measuring means for measuring an intensity difference between the first light and the second light;
A light intensity measuring apparatus comprising: an arithmetic unit that receives the second light intensity signal and the intensity difference signal and calculates and calculates the transmittance of the sample based on the following Equation 1.
(1) T = 1 + (ΔP ′ / P0 ′)
However,
T: transmittance P0 ′: second light intensity ΔP ′: difference in intensity between the first light and the second light.
前記第1の光検出手段及び前記第2の光検出手段と前記強度差測定手段との間に、前記第1光強度信号及び前記第2光強度信号を交互に前記強度差測定手段へ供給するスイッチング手段が設けられた
請求項2に記載の光強度測定装置。
The first light intensity signal and the second light intensity signal are alternately supplied to the intensity difference measuring means between the first light detecting means and the second light detecting means and the intensity difference measuring means. The light intensity measuring device according to claim 2, further comprising a switching unit.
前記強度差測定手段はロックインアンプであり、
前記ロックインアンプは、前記スイッチング手段の切り替え動作に同期して前記第1光強度と前記第2光強度の差を測定する
請求項3に記載の光強度測定装置。
The intensity difference measuring means is a lock-in amplifier,
The light intensity measurement device according to claim 3, wherein the lock-in amplifier measures a difference between the first light intensity and the second light intensity in synchronization with a switching operation of the switching means.
前記光源と前記ビームスプリッタの間に光変調器が配置され、
光変調器の作用によって、ビームスプリッタが前記第1の光路と前記第2の光路へと振り分ける光パワーが交代する
請求項2に記載の光強度測定装置。
An optical modulator is disposed between the light source and the beam splitter;
The light intensity measurement apparatus according to claim 2, wherein the optical power that the beam splitter distributes to the first optical path and the second optical path is switched by the action of an optical modulator.
光透過性を有する被測定用の試料を透過するときに第1の光として機能し前記試料を透過しないときに第2の光として機能する光を出射する光源と、
前記試料を前記第1の光及び前記第2の光が通過する光路上又は光路外へ移動させる試料移動手段と、
前記試料移動手段を駆動する駆動手段と、
前記第1の光の第1光強度を検出して第1光強度信号を送出し、前記第2の光の第2光強度を検出して第2光強度信号を送出する光検出手段と、
第1の光と第2の光の強度差を測定し強度差信号を出力する強度差測定手段と、
前記第2光強度信号及び前記強度差信号を受け、以下の数式1に基づいて前記試料の透過率を算出する演算手段とを有する
光強度測定装置。
(1)T=1+(ΔP’/P0’)
但し、
T:透過率
P0’:第2光強度
ΔP’:第1の光と第2の光の強度差
とする。
A light source that emits light that functions as first light when passing through a sample to be measured having light permeability and functions as second light when not passing through the sample;
Sample moving means for moving the sample on or off the optical path through which the first light and the second light pass;
Driving means for driving the sample moving means;
Light detecting means for detecting a first light intensity of the first light and transmitting a first light intensity signal; detecting a second light intensity of the second light; and transmitting a second light intensity signal;
An intensity difference measuring means for measuring an intensity difference between the first light and the second light and outputting an intensity difference signal;
A light intensity measurement apparatus comprising: an arithmetic unit that receives the second light intensity signal and the intensity difference signal and calculates the transmittance of the sample based on the following Equation 1.
(1) T = 1 + (ΔP ′ / P0 ′)
However,
T: transmittance P0 ′: second light intensity ΔP ′: difference in intensity between the first light and the second light.
光透過性を有する被測定用の試料を透過するときに第1の光として機能し前記試料を透過しないときに第2の光として機能する光を出射する光源と、
前記試料が配置された光路及び前記試料が配置されていない光路を交互に変更する光路変更手段と、
前記光路変更手段を駆動する駆動手段と、
前記第1の光の第1光強度を検出して第1光強度信号を送出し、前記第2の光の第2光強度を検出して第2光強度信号を送出する光検出手段と、
前記第1の光と前記第2の光の強度差を測定し強度差信号を出力する強度差測定手段と、
前記第2光強度信号及び前記強度差信号を受け、以下の数式1に基づいて透過率を測定する演算手段とを有する
光強度測定装置。
(1)T=1+(ΔP’/P0’)
但し、
T:透過率
P0’:第2光強度
ΔP’:第1の光と第2の光の強度差
とする。
A light source that emits light that functions as first light when passing through a sample to be measured having light permeability and functions as second light when not passing through the sample;
An optical path changing means for alternately changing an optical path where the sample is arranged and an optical path where the sample is not arranged;
Driving means for driving the optical path changing means;
Light detecting means for detecting a first light intensity of the first light and transmitting a first light intensity signal; detecting a second light intensity of the second light; and transmitting a second light intensity signal;
Intensity difference measuring means for measuring an intensity difference between the first light and the second light and outputting an intensity difference signal;
A light intensity measuring device comprising: an arithmetic unit that receives the second light intensity signal and the intensity difference signal and measures the transmittance based on the following Equation 1.
(1) T = 1 + (ΔP ′ / P0 ′)
However,
T: transmittance P0 ′: second light intensity ΔP ′: intensity difference between the first light and the second light
And
光源からの入射光を、被測定用の試料が配置された第1の光路を通過する第1の光と前記試料が配置されていない第2の光路を通過する第2の光とに分離するビームスプリッタと、
前記試料を反射した前記第1の光の第1光強度を検出し第1光強度信号を送出する第1の光検出手段と、
前記第2の光の第2光強度を検出し第2光強度信号を送出する第2の光検出手段と、
第1の光と第2の光の強度差を測定し強度差信号を出力する強度差測定手段と、
前記第2光強度信号及び前記強度差信号を受け、以下の数式2に基づいて前記試料の反射率を測定する演算手段とを有する
光強度測定装置。
(2)R=1+(ΔP’/P0’)
但し、
R:反射率
P0’:第2光強度
ΔP’:第1の光と第2の光の強度差
とする。
The incident light from the light source is separated into first light that passes through the first optical path where the sample to be measured is arranged and second light that passes through the second optical path where the sample is not arranged. A beam splitter,
First light detection means for detecting a first light intensity of the first light reflected from the sample and transmitting a first light intensity signal;
Second light detection means for detecting a second light intensity of the second light and transmitting a second light intensity signal;
An intensity difference measuring means for measuring an intensity difference between the first light and the second light and outputting an intensity difference signal;
A light intensity measurement apparatus comprising: an arithmetic unit that receives the second light intensity signal and the intensity difference signal and measures the reflectance of the sample based on the following Equation 2.
(2) R = 1 + (ΔP ′ / P0 ′)
However,
R: reflectance P0 ′: second light intensity ΔP ′: difference in intensity between the first light and the second light.
前記ビームスプリッタと前記第1の光検出手段の間に、前記第1の光に対する前記試料の位置および配置を変更する試料配置変更手段を備えた
請求項2に記載の光強度測定装置。
The light intensity measurement apparatus according to claim 2, further comprising a sample arrangement changing unit that changes a position and arrangement of the sample with respect to the first light between the beam splitter and the first light detection unit.
前記ビームスプリッタと前記第1の光検出手段の間に、前記第1の光に対する前記試料の位置および配置を変更する試料配置変更手段を備えた
請求項8に記載の光強度測定装置。
The light intensity measurement apparatus according to claim 8, further comprising a sample arrangement changing unit that changes a position and arrangement of the sample with respect to the first light between the beam splitter and the first light detection unit.
JP2008176664A 2008-07-07 2008-07-07 Method and apparatus for measuring light intensity Abandoned JP2010014642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176664A JP2010014642A (en) 2008-07-07 2008-07-07 Method and apparatus for measuring light intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176664A JP2010014642A (en) 2008-07-07 2008-07-07 Method and apparatus for measuring light intensity

Publications (1)

Publication Number Publication Date
JP2010014642A true JP2010014642A (en) 2010-01-21

Family

ID=41700878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176664A Abandoned JP2010014642A (en) 2008-07-07 2008-07-07 Method and apparatus for measuring light intensity

Country Status (1)

Country Link
JP (1) JP2010014642A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105284A (en) * 2013-01-14 2013-05-15 中国科学院光电技术研究所 Lithography machine illuminating system optical module transmittance measuring device and method
JP2014512693A (en) * 2011-04-21 2014-05-22 アプライド マテリアルズ インコーポレイテッド Construction of a reference spectrum with changes in environmental influences
JPWO2012132645A1 (en) * 2011-03-29 2014-07-24 浜松ホトニクス株式会社 Terahertz spectrometer and prism member
CN104207787A (en) * 2014-09-28 2014-12-17 广州视源电子科技股份有限公司 Human body identification method
US9696206B2 (en) 2011-03-29 2017-07-04 Hamamatsu Photonics K.K. Terahertz-wave spectrometer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012132645A1 (en) * 2011-03-29 2014-07-24 浜松ホトニクス株式会社 Terahertz spectrometer and prism member
JP5869556B2 (en) * 2011-03-29 2016-02-24 浜松ホトニクス株式会社 Terahertz wave spectrometer
US9696206B2 (en) 2011-03-29 2017-07-04 Hamamatsu Photonics K.K. Terahertz-wave spectrometer
JP2014512693A (en) * 2011-04-21 2014-05-22 アプライド マテリアルズ インコーポレイテッド Construction of a reference spectrum with changes in environmental influences
CN103105284A (en) * 2013-01-14 2013-05-15 中国科学院光电技术研究所 Lithography machine illuminating system optical module transmittance measuring device and method
CN104207787A (en) * 2014-09-28 2014-12-17 广州视源电子科技股份有限公司 Human body identification method

Similar Documents

Publication Publication Date Title
US9587927B2 (en) High speed high resolution heterodyne interferometric method and system
US7515271B2 (en) Wavelength calibration in a fiber optic gyroscope
US7786719B2 (en) Optical sensor, optical current sensor and optical voltage sensor
JP2010014642A (en) Method and apparatus for measuring light intensity
JP2008180734A (en) Electric field sensor and its adjusting method
CN107091950B (en) Reflective current and magnetic field sensor integrating temperature sensing based on optical sensing principle
US8446589B2 (en) Residual intensity modulation (RIM) control loop in a resonator fiber-optic gyroscope (RFOG)
US20100194379A1 (en) Optical fiber electric current measurement apparatus and electric current measurement method
US20160033783A1 (en) Optical system for generating beam of reference light and method for splitting beam of light to generate beam of reference light
KR101097396B1 (en) Optical current transformer and signal processing method thereof
JP2009014418A (en) Spectrometer
WO2020153322A1 (en) Electric field sensor
JP4625405B2 (en) SPR measuring equipment
US11885841B2 (en) Electric field sensor
US20050275846A1 (en) Device for measuring an optical path length difference
JP2001235776A (en) Optical heterodyne detection system for optical signal and method for monitoring optical signal
JP2010043984A (en) Light wavelength measuring device
KR100431706B1 (en) Method and system for correcting the non-linearity error in a two-frequency laser interferometer
US20230288247A1 (en) Sound measurement method
JP4031446B2 (en) Electric field sensor and electric field detection method
US11933609B2 (en) Interferometer and optical instrument with integrated optical components
JP2006058025A (en) Electrooptical sensor
JP2011017676A (en) Optical fiber current sensor
KR101855797B1 (en) System for linear polarizer transmission axis measurement using non-normal arranging of polariscope
JP3872456B2 (en) Electric field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130208