JP2010014404A - Indentation type hardness tester - Google Patents

Indentation type hardness tester Download PDF

Info

Publication number
JP2010014404A
JP2010014404A JP2007275093A JP2007275093A JP2010014404A JP 2010014404 A JP2010014404 A JP 2010014404A JP 2007275093 A JP2007275093 A JP 2007275093A JP 2007275093 A JP2007275093 A JP 2007275093A JP 2010014404 A JP2010014404 A JP 2010014404A
Authority
JP
Japan
Prior art keywords
sample
indenter
load
displacement
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007275093A
Other languages
Japanese (ja)
Inventor
Moriyasu Kanari
守康 金成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2007275093A priority Critical patent/JP2010014404A/en
Publication of JP2010014404A publication Critical patent/JP2010014404A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an indentation type hardness tester accurately performing the detection of the contact origin of a penetrator and a sample in a nanometer order, eliminating the effect on a hardness test by the elastic displacement of the spring for supporting the penetrator and enabling the attachment and detachment of the sample and the on-the-spot observation of the surface of the sample. <P>SOLUTION: The indentation type hardness tester has not only a structure for measuring the load applied to the sample 13 and the indentation displacement of the penetrator 12 using a load detector 14 and a displacement detector 16 while pushing the penetrator 12 into the sample 13 using the elongation of a piezoelectric actuator 11 by fixing the separable penetrator 12 to the piezoelectric actuator 11 and the load detector 14 of a monolithic structure but also a structure forming an electric circuit between the penetrator 12 and the sample 13 and detecting the weak current flowing across the penetrator 12 and the sample 13 by a surface detector 17. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本技術は、微小荷重領域での押込み式硬さ試験機(例えば、非特許文献1参照。)に関するものである。特に、厚さ1マイクロメートル以下の薄膜材料について、圧子の押込み荷重と変位からなる荷重−変位曲線から、前記薄膜材料の硬さやヤング率などの力学的性質を得ることを目的とする押込み式硬さ試験機に関する。   The present technology relates to an indentation-type hardness tester in a minute load region (for example, see Non-Patent Document 1). In particular, for a thin film material having a thickness of 1 micrometer or less, an indentation-type hardness is intended to obtain mechanical properties such as hardness and Young's modulus of the thin film material from a load-displacement curve composed of an indenter indentation load and displacement. It relates to the testing machine.

従来の押込み式硬さ試験機には、ソレノイドコイルに流した電流に比例して可動鉄芯にかかる電磁力を荷重制御することによって圧子を押込む硬さ試験機(以下、荷重制御型硬さ試験機)がある(例えば、特許文献1参照。)。
また、試験機フレームに固定した圧電アクチュエータにかかる電圧によって生ずる伸びを変位制御して圧子を押込む硬さ試験機(以下、変位制御型硬さ試験機)がある(例えば、特許文献2参照。)。
The conventional indentation type hardness tester has a hardness tester that indents the indenter by controlling the electromagnetic force applied to the movable iron core in proportion to the current passed through the solenoid coil (hereinafter referred to as load control type hardness). (For example, refer to Patent Document 1).
Further, there is a hardness tester (hereinafter referred to as a displacement control type hardness tester) that pushes the indenter by controlling the displacement caused by the voltage applied to the piezoelectric actuator fixed to the tester frame (see, for example, Patent Document 2). ).

以下、図4〜図7により従来の押込み式硬さ試験機について説明する。図4は、従来の荷重制御型硬さ試験機の機器構成を示す。図において、41は圧子であり、その上部に固定された可動鉄芯42と共に、ばね機構43によって支持されている。   Hereinafter, a conventional indentation-type hardness tester will be described with reference to FIGS. FIG. 4 shows an apparatus configuration of a conventional load control type hardness tester. In the figure, reference numeral 41 denotes an indenter, which is supported by a spring mechanism 43 together with a movable iron core 42 fixed on the top thereof.

電流制御器44から発せられるステップ状の電流信号がソレノイドコイル45に流れると、可動鉄芯42には電流信号に比例した電磁力が下向きにかかる。この電磁力は、ばね機構43を弾性変位させながら、圧子41を試料46に押込む。圧子41の変位は、変位検出器47によって測定され、電流信号から計算される電磁力と共に荷重−変位相関検出器48に取り込まれる。図5は、ソレノイドコイル45に流されるステップ電流ΔIに対する変位検出器47の応答hを例示する波形図である。また、49は3軸ステージであり、試料46の交換、表面押し込み位置その観察を容易にするために用いる。   When a step-like current signal emitted from the current controller 44 flows through the solenoid coil 45, an electromagnetic force proportional to the current signal is applied downward to the movable iron core 42. This electromagnetic force pushes the indenter 41 into the sample 46 while elastically displacing the spring mechanism 43. The displacement of the indenter 41 is measured by the displacement detector 47 and taken into the load-displacement correlation detector 48 together with the electromagnetic force calculated from the current signal. FIG. 5 is a waveform diagram illustrating the response h of the displacement detector 47 to the step current ΔI flowing through the solenoid coil 45. Reference numeral 49 denotes a triaxial stage, which is used for facilitating the replacement of the sample 46 and the observation of the surface pushing position.

図6は、従来の変位制御型硬さ試験機の機器構成を示す。図において、61は圧子であり、圧電アクチュエータ62とともにフレーム63に固定されている。ステップ状の電圧信号が印加されて圧電アクチュエータ62が伸びると、圧子61は、下向きに変位して試料64に押込まれる。圧子61の変位は、変位検出器65によって検出され、また、試料64にかかる荷重は、荷重検出器66によって検出され、荷重−変位相関検出器67に取り込まれる。図7は、圧電アクチュエータに印加されるステップ電圧ΔVに対する荷重検出器の応答Pを例示する波形図である。
金成守康、井原郁夫、月刊トライボロジー、2006年11月号、37−39頁 特公平6−48236号 公報 特公2551931号 公報(平8)
FIG. 6 shows an apparatus configuration of a conventional displacement control type hardness tester. In the figure, 61 is an indenter, which is fixed to a frame 63 together with a piezoelectric actuator 62. When the stepped voltage signal is applied and the piezoelectric actuator 62 extends, the indenter 61 is displaced downward and pushed into the sample 64. The displacement of the indenter 61 is detected by the displacement detector 65, and the load applied to the sample 64 is detected by the load detector 66 and taken into the load-displacement correlation detector 67. FIG. 7 is a waveform diagram illustrating the response P of the load detector with respect to the step voltage ΔV applied to the piezoelectric actuator.
Moriyasu Kanari, Ikuo Ihara, Monthly Tribology, November 2006, pp. 37-39 Japanese Patent Publication No. 6-48236 Japanese Patent Publication No. 2551931

以上に述べた従来の硬さ試験機の問題について、それぞれ順番に示す。まず、荷重制御型硬さ試験機では、2つの問題がある。第1に、試料46の硬さの減少に依存して補正長さΔhcと呼ばれる測定誤差が増加することが分かっている(例えば、非特許文献1、あるいは、非特許文献2)。特に、押込み硬さHITが10 GPa以下である有機試料などの測定においては、致命的な測定誤差となる。補正長さが試料の硬さ減少に依存して大きくなる主な原因は、荷重制御型硬さ試験機における圧子41と試料表面との接触における接触原点検出方法にある。荷重制御型硬さ試験機の接触原点検出は、圧子アプローチ速度の減少により検知されるが、軟らかい有機材料の場合、圧子41のアプローチ速度が十分に減少する間に、圧子はすでに試料中に一定量押し込まれる。この未検知の圧子の押し込み変位を損傷長さΔhDと呼ぶ。図8は、荷重制御型硬さ試験機で測定される荷重−変位曲線上における表面接触位置、表面検知位置、および損傷長さの関係を示す。   The problems of the conventional hardness tester described above will be shown in turn. First, there are two problems in the load control type hardness tester. First, it is known that a measurement error called a correction length Δhc increases depending on a decrease in hardness of the sample 46 (for example, Non-Patent Document 1 or Non-Patent Document 2). In particular, in measurement of an organic sample having an indentation hardness HIT of 10 GPa or less, it becomes a fatal measurement error. The main reason why the correction length increases depending on the decrease in the hardness of the sample is the contact origin detection method in the contact between the indenter 41 and the sample surface in the load control type hardness tester. The contact origin detection of the load control type hardness tester is detected by a decrease in the indenter approach speed. In the case of a soft organic material, the indenter is already constant in the sample while the approach speed of the indenter 41 is sufficiently reduced. The amount is pushed in. This undetected indentation displacement of the indenter is referred to as a damage length ΔhD. FIG. 8 shows the relationship between the surface contact position, the surface detection position, and the damage length on the load-displacement curve measured with a load control type hardness tester.

従来の荷重制御型硬さ試験機の第2の問題は、そのばね機構43の弾性変位によって生ずる荷重−変位特性が測定結果に与える影響である。圧子を押し込む際には、ばね機構43を弾性変位させるための力が必要である。このばね機構の荷重−変位特性は、有機材料などの荷重−変位特性に匹敵しており、これらの材料における荷重制御型硬さ試験機の測定限界を示している。図9は、従来の変位制御型硬さ試験機で得られた有機薄膜(銅フタロシアニン)で得られた荷重−変位曲線(非特許文献3、図中の○印)である。この曲線に、ばね定数kが300N/mのロバーバル機構のばね荷重−変位特性を重ねて示してある。   The second problem of the conventional load control type hardness tester is the influence that the load-displacement characteristic caused by the elastic displacement of the spring mechanism 43 has on the measurement result. When the indenter is pushed in, a force for elastically displacing the spring mechanism 43 is required. The load-displacement characteristic of this spring mechanism is comparable to the load-displacement characteristic of organic materials and the like, and shows the measurement limit of the load control type hardness tester for these materials. FIG. 9 is a load-displacement curve (Non-patent Document 3, mark “◯”) obtained with an organic thin film (copper phthalocyanine) obtained with a conventional displacement-controlled hardness tester. On this curve, the spring load-displacement characteristic of the Roverval mechanism with a spring constant k of 300 N / m is superimposed.

従来の変位制御型硬さ試験機の問題は、試料64が荷重検出器66上に固定されることである。試料64の重さが荷重検出器の秤量以下に限定されるとともに、その取り付け・取り外しのために荷重検出器から、試料皿68ごと分離する必要がある。また、3軸ステージなどの試料64の移動手段を組み合わせることが不可能であるために、試料表面をその場観察することができず、押し込み位置が決められない問題がある。以上の理由から、変位制御型硬さ試験機は、産業上ほとんど利用されていない。   The problem with the conventional displacement control type hardness tester is that the sample 64 is fixed on the load detector 66. The weight of the sample 64 is limited to be less than or equal to the weight of the load detector, and it is necessary to separate the sample pan 68 from the load detector for attachment / detachment. Further, since it is impossible to combine the moving means of the sample 64 such as a three-axis stage, there is a problem that the sample surface cannot be observed in situ and the pushing position cannot be determined. For the above reasons, the displacement control type hardness tester is hardly used in the industry.

本発明は、このような従来の硬さ試験機が有していた問題を解決しようとするものであり、圧子と試料との接触原点検出をナノメータオーダで正確に行い、かつ、圧子を支持するばねの弾性変位による硬さ試験への影響を無くして、かつ、試料の取り付け・取り外しと試料表面のその場観察を可能にすることを目的とするものである。
T.Sawa,and K.Tanaka,Journal of Materials Research,16,pp.3084−3096(2001). M.Kanari,H. Kawamata,T. Wakanatsu,and I.Ihara,Applied Physics Letters,90,061921(2007).
The present invention is intended to solve the problem of such a conventional hardness tester, accurately detecting the contact origin of the indenter and the sample on the order of nanometers, and supporting the indenter. The object is to eliminate the influence of the elastic displacement of the spring on the hardness test, and to enable sample mounting / removal and in-situ observation of the sample surface.
T. Sawa, and K. Tanaka, Journal of Materials Research, 16, pp. 3084-3096 (2001). M. Kanari, H. Kawamata, T. Wakanatsu, and I. Ihara, Applied Physics Letters, 90, 061921 (2007).

そして、本発明は、上記目的を達成するために、分離可能な圧子を一体構造の圧電アクチュエータおよび荷重検出器に固定して、圧電アクチュエータの伸びを用いて圧子を試料に押込みながら、荷重検出器と変位検出器を用いて試料にかかる荷重と圧子の押込み変位を測定する構造にしたものである。   In order to achieve the above object, the present invention provides a load detector in which a separable indenter is fixed to a monolithic piezoelectric actuator and a load detector, and the indenter is pushed into the sample using the extension of the piezoelectric actuator. And a displacement detector to measure the load applied to the sample and the indentation displacement of the indenter.

第2の解決手段は、圧子と試料間に電気回路を形成して、圧子−試料間に流れる微弱電流を検知できる構造としたものである。   The second solution is a structure in which a weak current flowing between the indenter and the sample can be detected by forming an electric circuit between the indenter and the sample.

上記第1の解決手段による作用は次の通りである。すなわち、圧電アクチュエータの伸びを用いて圧子を駆動するために、ばね機構の弾性変位の測定への影響がなくなるという効果を発揮する。また、圧子と試料の接触原点を圧子にかかる荷重を用いて1ミリグラム以下の分解能で検出するために、未検知の押込みによる損傷長さΔhDがなくなるという効果を発揮する。さらに、試料をステージ上に固定して3軸方向に移動ができるために、試料表面のその場観察が可能となり圧子の押込み位置を決められ、かつ、試料の重さに制限がなく、かつ、試料の取り付け・取り外しが簡便になるという効果を発揮する。   The operation of the first solving means is as follows. In other words, since the indenter is driven using the extension of the piezoelectric actuator, the effect of measuring the elastic displacement of the spring mechanism is eliminated. In addition, since the contact origin of the indenter and the sample is detected with a resolution of 1 milligram or less using the load applied to the indenter, the effect of eliminating the damage length ΔhD due to undetected indentation is exhibited. Furthermore, since the sample can be fixed on the stage and moved in the three-axis direction, in-situ observation of the sample surface is possible, the indentation position of the indenter can be determined, and the weight of the sample is not limited, and Demonstrates the effect of easy sample attachment and removal.

また、第2の解決手段による作用は、圧子と試料表面間に電気回路を形成することによって、導電性を有する試料の場合には、その接触時に発せられる微弱電流信号を用いて接触原点を正確に検知できるという効果を発揮する。   In addition, the action of the second solving means is that an electrical circuit is formed between the indenter and the sample surface, so that in the case of a conductive sample, the contact origin is accurately determined using a weak current signal generated at the time of contact. The effect of being able to be detected is demonstrated.

上述したように本発明の押込み式硬さ試験機は、圧子と試料との接触を正確に感知でき、試料の大きさや重量に制限がなく、試料表面のその場観察が可能な硬さ試験機を提供できる。   As described above, the indentation-type hardness tester of the present invention can accurately detect contact between an indenter and a sample, has no restrictions on the size and weight of the sample, and can perform in-situ observation of the sample surface. Can provide.

以下、本発明の実施形態を図1〜図3に基づいて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1においては、11の圧電アクチュエータは、荷重検出器14と一体構造である。12の圧子は、取り外し可能なように圧電アクチュエータ11の先端に固定される。試料13は、3軸ステージ18上に取り外し可能なように固定されている。変位検出器16はフレーム19に固定されて、変位検出ターゲット15は、圧子12に固定されている。荷重検出器14と変位検出器16は、荷重−変位相関検出器10につながれている。表面検出器17は、圧子12と試料13の間に電気回路を形成するように配線で繋がれている。   In FIG. 1, the eleven piezoelectric actuators are integrated with the load detector 14. The twelve indenters are fixed to the tip of the piezoelectric actuator 11 so as to be removable. The sample 13 is detachably fixed on the three-axis stage 18. The displacement detector 16 is fixed to the frame 19, and the displacement detection target 15 is fixed to the indenter 12. The load detector 14 and the displacement detector 16 are connected to the load-displacement correlation detector 10. The surface detector 17 is connected by wiring so as to form an electric circuit between the indenter 12 and the sample 13.

以下、上記構成の動作を、まず、荷重の負荷過程について説明する。試料13は、3軸ステージ18によって圧子12直下の規定位置に1マイクロメートル程度の位置決め精度で移動される。3軸ステージ18上に試料13を固定することによって、試料13の重さが制限されず、かつ、光学顕微鏡などを用いた試料表面のその場観察と押込み位置の位置決めが可能となる。硬さ試験の開始とともに圧電アクチュエータ11は、電圧がステップ状に増加するように印加されて伸び、先端に取り付けた圧子11および変位検出ターゲット15を下向きに変位させる。電圧の増加に伴う圧子12の変位は、変位検出ターゲット15と変位検出器16の間のギャップを検出して用いる。圧子12が試料13と接触したときには、圧電アクチュエータ11と一体構造をなす荷重検出器14の荷重信号で検知できる。さらに、試料が導電体である場合には、接触時に圧子12と試料13間に流れる微弱な電流を表面検出器17で検知して、接触を検知できる。硬さ試験中、荷重検出器14および変位検出器16で検出された圧子12の荷重および変位信号は、荷重−変位相関検出器10に取り込まれる。圧子12と試料13との接触後、試料に加わる荷重が規定した最大荷重に達するまで、圧電アクチュエータ11には電圧がステップ状に増加するように負荷され続ける。図2は、このときの圧電アクチュエータ12に印加する電圧と荷重検出器14で検出される荷重のイメージを表す。   Hereinafter, the operation of the above configuration will be described first with respect to the load process. The sample 13 is moved to a specified position just below the indenter 12 by the triaxial stage 18 with a positioning accuracy of about 1 micrometer. By fixing the sample 13 on the three-axis stage 18, the weight of the sample 13 is not limited, and in-situ observation of the sample surface using an optical microscope or the like and positioning of the push-in position are possible. With the start of the hardness test, the piezoelectric actuator 11 is applied and extended so that the voltage increases stepwise, and the indenter 11 attached to the tip and the displacement detection target 15 are displaced downward. The displacement of the indenter 12 accompanying the increase in voltage is used by detecting the gap between the displacement detection target 15 and the displacement detector 16. When the indenter 12 comes into contact with the sample 13, it can be detected by a load signal from a load detector 14 that is integrated with the piezoelectric actuator 11. Furthermore, when the sample is a conductor, a weak current flowing between the indenter 12 and the sample 13 at the time of contact can be detected by the surface detector 17 to detect contact. During the hardness test, the load and displacement signal of the indenter 12 detected by the load detector 14 and the displacement detector 16 are taken into the load-displacement correlation detector 10. After the contact between the indenter 12 and the sample 13, the piezoelectric actuator 11 continues to be loaded so that the voltage increases stepwise until the load applied to the sample reaches the specified maximum load. FIG. 2 shows an image of the voltage applied to the piezoelectric actuator 12 and the load detected by the load detector 14 at this time.

最大荷重に到達した後、規定した一定時間圧電アクチュエータ11に同一の電圧をかけ続けながらその伸びを維持して荷重を保持する。荷重保持後の除荷過程では、負荷過程と逆の動作によって、規定された最低荷重まで荷重を減少した後、硬さ試験を終了する。また、試料表面上の同じ場所で硬さ試験を行う場合は、上述の負荷過程および除荷過程の動作を繰り返す。   After reaching the maximum load, the piezoelectric actuator 11 is continuously applied with the same voltage for a predetermined period of time, and its elongation is maintained to maintain the load. In the unloading process after holding the load, the hardness test is finished after the load is reduced to the specified minimum load by the reverse operation of the loading process. In addition, when the hardness test is performed at the same location on the sample surface, the above loading process and unloading process are repeated.

図3は、発明した押込み硬さ試験機を用いて、ポリエチレン材料について硬さ試験を行ったときに得られた荷重−変位曲線を表している。図においては、白抜き丸(〇)は、1回目の負荷−除荷過程を表しており、黒塗り丸(●)は、試料表面上の同じ場所を再び押込んだ時の負荷−除荷過程を表している。押込み2回目の除荷過程は、押込み1回目の除荷過程をトレースしていること、および、押込み2回目の負荷および除荷過程の曲線間に高分子材料特有の擬弾性ヒステリシスが得られていることから、発明した硬さ試験機によって、妥当な硬さ試験が実施されていることが分かる。   FIG. 3 shows a load-displacement curve obtained when a hardness test is performed on a polyethylene material using the indentation hardness tester invented. In the figure, the white circle (◯) represents the first loading-unloading process, and the black circle (●) represents the load-unloading when the same location on the sample surface is pushed in again. Represents the process. The unloading process at the second indentation traces the unloading process at the first indentation, and the pseudoelastic hysteresis peculiar to the polymer material is obtained between the curves of the second indentation and the unloading process. Therefore, it can be seen that the hardness tester invented performs a reasonable hardness test.

従来の押込み硬さ試験機は、セラミックス材料および金属材料の硬さやヤング率などの力学特性評価に用いられてきた。本発明の押込み硬さ試験機は、これら従来の用途に用いられることは当然であるが、これまで、表面の接触原点の検出が困難であった材料への用途開拓が見込める。   Conventional indentation hardness testers have been used to evaluate mechanical properties such as hardness and Young's modulus of ceramic materials and metal materials. The indentation hardness tester of the present invention is naturally used for these conventional applications, but it can be expected to develop applications for materials for which it has been difficult to detect the contact origin of the surface.

非特許文献3に示すように、硬さ10GPa以下の有機材料の硬さ試験においては、圧子と試料表面の接触の正確な検知が求められる。特に、近年、EL(Electro Luminessence)ディスプレイなどの有機半導体膜の実用化および研究開発が盛んになってきているが、有機半導体薄膜の曲げ強度などを推定するためには、その力学的特性を測定する必要がある。本発明の押込み式硬さ試験機は、ナノメータオーダで接触を正確に検知することができることから、特にこれらの有機半導体膜の分野での利用が期待できる。また、同様に、細胞や人体組織などの非常に軟らかい生体材料の力学特性評価に用途を拡大できる可能性が高い。このように、本発明の押込み硬さ試験機は、今後、発展が期待されている科学技術分野において、先端計測分析機器として用いられ、これらの学術分野の研究開発を飛躍的に発展させる可能性が高い。   As shown in Non-Patent Document 3, in the hardness test of an organic material having a hardness of 10 GPa or less, accurate detection of contact between the indenter and the sample surface is required. In recent years, organic semiconductor films such as EL (Electro Luminessence) displays have been put into practical use and research and development. However, in order to estimate the bending strength of organic semiconductor thin films, the mechanical properties are measured. There is a need to. Since the indentation type hardness tester of the present invention can accurately detect contact on the nanometer order, it can be expected to be used particularly in the field of these organic semiconductor films. Similarly, there is a high possibility that the application can be expanded to evaluate mechanical properties of very soft biological materials such as cells and human tissues. As described above, the indentation hardness tester of the present invention is used as an advanced measurement / analysis instrument in the field of science and technology that is expected to be developed in the future. Is expensive.

本発明の硬さ試験機の実施形態を示す構成図The block diagram which shows embodiment of the hardness tester of this invention 本発明の硬さ試験機の電圧−荷重応答を示す波形図Waveform diagram showing voltage-load response of the hardness tester of the present invention 本発明の実施例を示す荷重−変位曲線図Load-displacement curve diagram showing an embodiment of the present invention 従来の荷重制御型硬さ試験機の構成図Configuration diagram of a conventional load control hardness tester 従来の荷重制御型硬さ試験機のソレノイド電流−変位応答を示す波形図Waveform diagram showing solenoid current-displacement response of a conventional load-controlled hardness tester 従来の変位制御型硬さ試験機の構成図Configuration diagram of a conventional displacement control type hardness tester 従来の変位制御型硬さ試験機の電圧−荷重応答を示す波形図Waveform diagram showing voltage-load response of a conventional displacement control type hardness tester 従来の荷重制御型硬さ試験機の損傷長さのイメージ図Image of damage length of a conventional load-controlled hardness tester 従来の荷重制御型硬さ試験機のばね機構による荷重−変位曲線図Load-displacement curve diagram by spring mechanism of conventional load control type hardness tester

符号の説明Explanation of symbols

10 荷重−変位相関検出器
11 圧電アクチュエータ
12 圧子
13 試料
14 荷重検出器
15 変位検出ターゲット
16 変位検出器
17 表面検出器
18 3軸ステージ
19 フレーム
DESCRIPTION OF SYMBOLS 10 Load-displacement correlation detector 11 Piezoelectric actuator 12 Indenter 13 Sample 14 Load detector 15 Displacement detection target 16 Displacement detector 17 Surface detector 18 Triaxial stage 19 Frame

Claims (4)

分離可能な圧子の上部に固定した一体構造の押込み駆動用圧電アクチュエータおよび荷重検出器と、試験機フレームに固定された変位検出器からなり、前記圧電アクチュエータを用いて前記圧子を変位制御して試料に押込むべく駆動しながら、前期変位検出器と前記荷重検出器を用いて、前記圧子の変位量と押込み荷重を測定して、前記圧子の押込み荷重および変位からなる荷重−変位曲線を求めて試料の硬さやヤング率などの力学的性質を測定することを特徴とする押込み式硬さ試験機。   An indentation driving piezoelectric actuator and a load detector fixed to the top of a separable indenter, and a displacement detector fixed to a tester frame. Displacement of the indenter is controlled using the piezoelectric actuator, and a sample Measure the amount of displacement of the indenter and the indentation load using the displacement detector and the load detector, and obtain a load-displacement curve consisting of the indenter indentation load and displacement. An indentation type hardness tester characterized by measuring mechanical properties such as hardness and Young's modulus of a sample. 試料表面と圧子が接触する際の接触原点を、圧子に連結された荷重検出器の押込み荷重信号を用いて1ミリグラム以下の荷重分解能で検出することを特徴とする請求項1記載の硬さ試験機。   2. The hardness test according to claim 1, wherein the origin of contact when the sample surface and the indenter are in contact is detected with a load resolution of 1 milligram or less using an indentation load signal of a load detector connected to the indenter. Machine. 試料が、導電体あるいは半導体(以下、導電体)である場合には、試料表面と圧子が接触する際の接触原点を、試料と圧子間に形成された電気回路に流れる電流信号を用いて検出することを特徴とする請求項1の硬さ試験機。   When the sample is a conductor or semiconductor (hereinafter referred to as a conductor), the contact origin when the sample surface contacts the indenter is detected using a current signal flowing in the electric circuit formed between the sample and the indenter. The hardness tester according to claim 1, wherein: 3軸ステージ上に固定した試料が、圧子直下と顕微鏡などの表面観察手段直下との間を移動できるようにして、試料表面のその場観察と圧子押込み位置の位置決めを可能とする請求項1の硬さ試験機。   The sample fixed on the three-axis stage can be moved between a position immediately below the indenter and a surface observation means such as a microscope, thereby enabling in-situ observation of the sample surface and positioning of the indenter pushing position. Hardness tester.
JP2007275093A 2007-10-23 2007-10-23 Indentation type hardness tester Pending JP2010014404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275093A JP2010014404A (en) 2007-10-23 2007-10-23 Indentation type hardness tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275093A JP2010014404A (en) 2007-10-23 2007-10-23 Indentation type hardness tester

Publications (1)

Publication Number Publication Date
JP2010014404A true JP2010014404A (en) 2010-01-21

Family

ID=41700665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275093A Pending JP2010014404A (en) 2007-10-23 2007-10-23 Indentation type hardness tester

Country Status (1)

Country Link
JP (1) JP2010014404A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019768A (en) * 2011-07-12 2013-01-31 Mechano Transformer Corp Method for detecting contact of actuator, constant force generating mechanism, and method for estimation generation force
WO2014204032A1 (en) * 2013-06-17 2014-12-24 서울대학교산학협력단 Indentation fatigue test module
KR102031197B1 (en) * 2019-02-18 2019-11-08 (주)프론틱스 Instrumented Indentation Tester
JP2020041819A (en) * 2018-09-06 2020-03-19 住友金属鉱山株式会社 Method for measuring hardness of sintered product, hardness measurement device, and crushability determination method
RU2721020C1 (en) * 2019-12-10 2020-05-15 Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" Dynamic nanoindenter
CN112881175A (en) * 2021-01-26 2021-06-01 湘潭大学 Low-cost indenter pressure head soft landing method and system based on composite deceleration algorithm
JP2021085835A (en) * 2019-11-29 2021-06-03 学校法人 関西大学 Indentation test system on process machine and indentation test method on process machine
JP2022506506A (en) * 2018-11-04 2022-01-17 エムティーエス システムズ コーポレイション Combination of piezoelectric actuator and sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019768A (en) * 2011-07-12 2013-01-31 Mechano Transformer Corp Method for detecting contact of actuator, constant force generating mechanism, and method for estimation generation force
WO2014204032A1 (en) * 2013-06-17 2014-12-24 서울대학교산학협력단 Indentation fatigue test module
JP2020041819A (en) * 2018-09-06 2020-03-19 住友金属鉱山株式会社 Method for measuring hardness of sintered product, hardness measurement device, and crushability determination method
JP7256950B2 (en) 2018-09-06 2023-04-13 住友金属鉱山株式会社 Hardness measuring method and hardness measuring device for fired material, and method for judging whether crushing is possible
JP2022506506A (en) * 2018-11-04 2022-01-17 エムティーエス システムズ コーポレイション Combination of piezoelectric actuator and sensor
KR102031197B1 (en) * 2019-02-18 2019-11-08 (주)프론틱스 Instrumented Indentation Tester
WO2020171502A1 (en) * 2019-02-18 2020-08-27 (주)프론틱스 Instrumented indentation test device
JP2021085835A (en) * 2019-11-29 2021-06-03 学校法人 関西大学 Indentation test system on process machine and indentation test method on process machine
JP7335606B2 (en) 2019-11-29 2023-08-30 学校法人 関西大学 Indentation test system and indentation test method
RU2721020C1 (en) * 2019-12-10 2020-05-15 Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" Dynamic nanoindenter
CN112881175A (en) * 2021-01-26 2021-06-01 湘潭大学 Low-cost indenter pressure head soft landing method and system based on composite deceleration algorithm
CN112881175B (en) * 2021-01-26 2022-07-22 湘潭大学 Low-cost indenter pressure head soft landing method and system based on composite deceleration algorithm

Similar Documents

Publication Publication Date Title
JP2010014404A (en) Indentation type hardness tester
JP6097832B2 (en) Metal Corrosion Resistance Evaluation Method, Metal Material Corrosion Resistance Evaluation Device, Metal Material Composition Prediction Method, Metal Material Composition Prediction Device
EP1178299A1 (en) Superfine indentation tester
US8186210B2 (en) Surface evaluation employing orthogonal force measurement
US8327460B2 (en) Probe microscope and measurement method using the same
JP4245951B2 (en) Electrical property evaluation equipment
Read Piezo-actuated microtensile test apparatus
Stangebye et al. Understanding and quantifying electron beam effects during in situ TEM nanomechanical tensile testing on metal thin films
JP2010085139A (en) Thin-film testing device
JP2005189064A (en) Small-sized fatigue tester and fatigue test method
Min et al. Development of in-situ SEM testing apparatus for observing behavior of material at high magnification during tensile test
JP2016206094A (en) Hardness measurement device
Dutta et al. Table top experimental setup for electrical contact resistance measurement during indentation
Brown et al. Coefficient of friction measurement in the presence of high current density
KR20160015840A (en) Conductive atomic force microscope and method for operating the same
JP6150324B2 (en) Indentation test method and indentation test apparatus
JP2015194395A (en) Atomic force microscope having prober
JP2003121459A (en) Electric characteristic measuring device and measuring method
JP2003307475A (en) Apparatus and method for material test
JP3880840B2 (en) Small material testing machine
JP2017037054A (en) Hydrogen brittleness evaluation device and hydrogen brittleness evaluation method
Park et al. New structures and techniques for easy axial loading test of static and fatigue properties of MEMS materials
Ruybalid et al. An in-situ, micro-mechanical setup with accurate, tri-axial, piezoelectric force sensing and positioning
JP2013019862A (en) Indenter, hardness testing device, and hardness testing method
JP2012202840A (en) Adhesion tester