JP2010014163A - Bearing device for wheel - Google Patents

Bearing device for wheel Download PDF

Info

Publication number
JP2010014163A
JP2010014163A JP2008173089A JP2008173089A JP2010014163A JP 2010014163 A JP2010014163 A JP 2010014163A JP 2008173089 A JP2008173089 A JP 2008173089A JP 2008173089 A JP2008173089 A JP 2008173089A JP 2010014163 A JP2010014163 A JP 2010014163A
Authority
JP
Japan
Prior art keywords
wheel
caulking
rolling
inner ring
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008173089A
Other languages
Japanese (ja)
Other versions
JP5121603B2 (en
Inventor
Masayuki Kuroda
正幸 黒田
Kazuo Komori
和雄 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008173089A priority Critical patent/JP5121603B2/en
Publication of JP2010014163A publication Critical patent/JP2010014163A/en
Application granted granted Critical
Publication of JP5121603B2 publication Critical patent/JP5121603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device for a wheel, which secures the strength of its caulking part and on which the most proper shape of the caulking part is set in accordance with bearing size. <P>SOLUTION: In the wheel bearing device wherein an inner ring 3 is press-fitted to a small-diameter step 2b of a hub wheel 2 and the inner ring 3 is fixed by a caulking part 2c formed by plastically deforming the end toward an outer side in a radial direction, the end of the small-diameter step 2b is formed in a hollow cylindrical part 12 before being caulked. Based on the great end surface 3b of the inner ring 3, when an axial size up to the bottom surface 12a of the cylindrical part 12 is expressed as L1, the axial size up to an intersection P of the line of action S of a ball 6 at the inner side and the small-diameter step 2b as L2, the cross section of the caulking part 2c as A (mm<SP>2</SP>), a basic static rating radial load of a train of balls 6 on the inner side as C0r (kN), and the number of balls 6 as Zi, the shape and dimensions of the caulking part 2c are set so as to satisfy both reference expressions: L2>L1, and 0.672Amin≥C0r×Zi×tanθ+80. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車等の車輪を懸架装置に対して回転自在に支承する車輪用軸受装置、特に、加締部の強度を確保すると共に、軸受サイズに応じた最適な加締部の形状が設定された車輪用軸受装置に関するものである。   The present invention relates to a wheel bearing device for rotatably supporting a wheel of an automobile or the like with respect to a suspension device, in particular, ensuring the strength of the crimping portion and setting the optimum shape of the crimping portion according to the bearing size. The present invention relates to a wheel bearing device.

自動車等の車両の車輪用軸受装置には、駆動輪用のものと従動輪用のものとがある。特に、自動車の懸架装置に対して車輪を回転自在に支承する車輪用軸受装置は、低コスト化は言うまでもなく、燃費向上のための軽量・コンパクト化が進んでいる。その従来構造の代表的な一例として、図6に示すような従動輪用の車輪用軸受装置が知られている。   2. Description of the Related Art Wheel bearing devices for vehicles such as automobiles include those for driving wheels and those for driven wheels. In particular, a wheel bearing device that rotatably supports a wheel with respect to a suspension device of an automobile has been made lighter and more compact for improving fuel efficiency, not to mention cost reduction. As a typical example of the conventional structure, a wheel bearing device for a driven wheel as shown in FIG. 6 is known.

この車輪用軸受装置は第3世代と称され、軸部材(ハブ輪)51と内輪52と外輪53、および複列のボール54、54とを備えている。軸部材51は、その一端部に車輪(図示せず)を取り付けるための車輪取付フランジ55を一体に有し、外周に内側転走面51aと、この内側転走面51aから軸方向に延びる小径段部51bが形成されている。   This wheel bearing device is called the third generation, and includes a shaft member (hub wheel) 51, an inner ring 52, an outer ring 53, and double-row balls 54, 54. The shaft member 51 integrally has a wheel mounting flange 55 for mounting a wheel (not shown) at one end thereof, an inner rolling surface 51a on the outer periphery, and a small diameter extending in the axial direction from the inner rolling surface 51a. A step portion 51b is formed.

軸部材51の小径段部51bには、外周に内側転走面52aが形成された内輪52が圧入されている。そして、軸部材51の小径段部51bの端部を径方向外方に塑性変形させて形成した加締部51cにより、軸部材51に対して内輪52が軸方向へ抜けるのを防止している。   An inner ring 52 having an inner rolling surface 52a formed on the outer periphery is press-fitted into the small-diameter step portion 51b of the shaft member 51. The inner ring 52 is prevented from coming out of the shaft member 51 in the axial direction by a caulking portion 51c formed by plastically deforming the end portion of the small diameter step portion 51b of the shaft member 51 radially outward. .

外輪53は、外周に車体取付フランジ53bを一体に有し、内周に複列の外側転走面53a、53aが形成されている。そして、この複列の外側転走面53a、53aと、これら複列の外側転走面53a、53aに対向する内側転走面51a、52aの間には複列のボール54、54が転動自在に収容されている。   The outer ring 53 integrally has a vehicle body mounting flange 53b on the outer periphery, and double row outer rolling surfaces 53a and 53a are formed on the inner periphery. And the double row balls 54 and 54 roll between the double row outer rolling surfaces 53a and 53a and the inner rolling surfaces 51a and 52a opposite to the double row outer rolling surfaces 53a and 53a. It is freely housed.

ここで、加締部51cを形成する円筒部56の肉厚は、この円筒部56を径方向外方に加締拡げる以前の状態で先端縁に向う程小さくなっている。そして、この円筒部56を径方向外方に加締拡げることにより、内輪52の大端面52bを押え付ける加締部51cの肉厚は、円筒部56の基端部の肉厚に対し、先端に向うにしたがって漸減している。   Here, the thickness of the cylindrical portion 56 forming the crimped portion 51c is smaller toward the tip edge before the cylindrical portion 56 is crimped and expanded outward in the radial direction. The thickness of the caulking portion 51c that presses the large end surface 52b of the inner ring 52 is increased with respect to the thickness of the proximal end portion of the cylindrical portion 56 by expanding the cylindrical portion 56 radially outward. It gradually decreases as it goes to.

これにより、円筒部56の先端部を押型により塑性変形させて加締部51cを形成するために要する力が徒に大きくなることがなく、加締作業に伴って加締部51cに亀裂等の損傷が発生したり、あるいは、加締部51cにより固定される内輪52に、この内輪52の直径を予圧や転がり疲れ寿命等の耐久性に影響を及ぼす程大きく変化させるような力が作用することがない。
特開平10−272903号公報
Thereby, the force required for plastically deforming the distal end portion of the cylindrical portion 56 by the pressing die to form the crimped portion 51c does not increase suddenly, and the crimped portion 51c has a crack or the like accompanying the crimping operation. The inner ring 52 that is damaged or that is fixed by the caulking portion 51c is subjected to a force that greatly changes the diameter of the inner ring 52 so as to affect the durability such as preload and rolling fatigue life. There is no.
Japanese Patent Laid-Open No. 10-272903

このような従来の車輪用軸受装置では、加締作業に伴って予圧や転がり疲労寿命等の耐久性に影響を及ぼす程、内輪52の内径を大きく変形させるような力が作用するのを防止することができる。然しながら、内輪52の変形を抑える反面、加締部51cの強度不足が懸念される。すなわち、加締部51は、内輪52の軸力(押付力)を付与しているため、無負荷状態の時であってもこの軸力が反作用していると共に、軸受部分に振動大、騒音大で継続使用が不可となるまで、少なくとも加締部51cが破断しないように強度を確保する必要がある。   In such a conventional wheel bearing device, the force that greatly deforms the inner diameter of the inner ring 52 is prevented so as to affect the durability such as the preload and the rolling fatigue life accompanying the caulking work. be able to. However, while suppressing the deformation of the inner ring 52, there is a concern that the strength of the caulking portion 51c is insufficient. That is, since the caulking portion 51 applies the axial force (pressing force) of the inner ring 52, the axial force reacts even when there is no load, and the bearing portion has a large vibration and noise. It is necessary to ensure the strength so that at least the caulking portion 51c does not break until it becomes large and cannot be used continuously.

本発明は、このような従来の問題に鑑みてなされたもので、加締部の強度を確保すると共に、軸受サイズに応じた最適な加締部の形状が設定された車輪用軸受装置を提供することを目的とする。   The present invention has been made in view of such conventional problems, and provides a wheel bearing device in which the strength of the crimped portion is ensured and the optimum shape of the crimped portion is set according to the bearing size. The purpose is to do.

係る目的を達成すべく、本発明のうち請求項1に記載の発明は、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面に対向する内側転走面が形成された少なくとも一つの内輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、前記小径段部を径方向外方に塑性変形させて形成した加締部により前記ハブ輪に対して前記内輪が軸方向に固定された車輪用軸受装置において、前記加締部の引張強さをσk(MPa)、断面積をA(mm)、前記複列の転動体列のうちインナー側の転動体列の基本静定格ラジアル荷重をC0r(kN)、当該転動体の個数をZi、接触角をθとした時、σkmin×Amin=0.672Amin≧C0r×Zi×tanθ+80の基準式を満足すると共に、加締前における前記ハブ輪の小径段部の端部が中空状の円筒部に形成され、この円筒部の底面から前記内輪の大端面までの軸方向寸法をL1、前記インナー側の転動体列の転動体の作用線と前記小径段部との交点から前記内輪の大端面までの軸方向寸法をL2とした時、L2>L1が成立するように前記加締部の形状・寸法が設定されている。 In order to achieve such an object, the invention according to claim 1 of the present invention includes an outer member in which a double row outer rolling surface is integrally formed on the inner periphery, and a wheel for attaching a wheel to one end. A hub wheel integrally having a mounting flange and formed with a small-diameter step portion extending in the axial direction on the outer periphery, and an inner side that is press-fitted into the small-diameter step portion of the hub wheel and faces the outer surface of the double row on the outer periphery. An inner member composed of at least one inner ring formed with a rolling surface, and a double row rolling member accommodated between the rolling surfaces of the inner member and the outer member via a cage. In the wheel bearing device, wherein the inner ring is fixed in the axial direction with respect to the hub wheel by a crimping part formed by plastically deforming the small-diameter step part radially outward. The tensile strength of σk (MPa) and the cross-sectional area of A (mm 2 ) Standard equation of σ kmin × Amin = 0.672 Amin ≧ C0r × Zi × tan θ + 80, where C0r (kN) is the basic static rated radial load of the rolling element row on the inner side, Zi is the number of the rolling elements, and θ is the contact angle. And the end of the small-diameter step portion of the hub wheel before caulking is formed in a hollow cylindrical portion, and the axial dimension from the bottom surface of the cylindrical portion to the large end surface of the inner ring is L1, and the inner The shape of the caulking portion is such that L2> L1 is established, where L2 is an axial dimension from the intersection of the line of action of the rolling elements of the rolling element row on the side and the small diameter step portion to the large end surface of the inner ring.・ Dimensions are set.

このように、ハブ輪の小径段部に内輪が圧入され、小径段部の端部を径方向外方に塑性変形させて形成した加締部により、ハブ輪に対して内輪が軸方向に固定された車輪用軸受装置において、加締部の引張強さをσk(MPa)、断面積をA(mm)、複列の転動体列のうちインナー側の転動体列の基本静定格ラジアル荷重をC0r(kN)、当該転動体の個数をZi、接触角をθとした時、σkmin×Amin=0.672Amin≧C0r×Zi×tanθ+80の基準式を満足すると共に、加締前におけるハブ輪の小径段部の端部が中空状の円筒部に形成され、この円筒部の底面から内輪の大端面までの軸方向寸法をL1、インナー側の転動体列の転動体の作用線と小径段部との交点から内輪の大端面までの軸方向寸法をL2とした時、L2>L1が成立するように加締部の形状・寸法が設定されているので、軽量・コンパクト化を図りつつ、加締部の強度を確保すると共に、軸受サイズに応じた最適な加締部の形状が設定された車輪用軸受装置を提供することができる。 In this way, the inner ring is fixed in the axial direction with respect to the hub wheel by the crimping part formed by press-fitting the inner ring into the small diameter step part of the hub wheel and plastically deforming the end of the small diameter step part radially outward. In the above-described wheel bearing device, the tensile strength of the caulking portion is σk (MPa), the cross-sectional area is A (mm 2 ), and the basic static rated radial load of the inner side rolling element row of the double row rolling element rows Is C0r (kN), the number of rolling elements is Zi, and the contact angle is θ, it satisfies the standard equation of σkmin × Amin = 0.672Amin ≧ C0r × Zi × tan θ + 80, and the hub wheel before caulking The end of the small-diameter step is formed in a hollow cylindrical portion, the axial dimension from the bottom surface of this cylindrical portion to the large end surface of the inner ring is L1, the line of action of the rolling elements in the inner rolling element row, and the small-diameter step When the axial dimension from the point of intersection with the large end surface of the inner ring is L2 , The shape and dimensions of the crimped part are set so that L2> L1 is satisfied, so that the strength of the crimped part is ensured while achieving light weight and compactness, and optimum crimping according to the bearing size is achieved. A wheel bearing device in which the shape of the part is set can be provided.

好ましくは、請求項2に記載の発明のように、前記加締部の許容せん断応力をτ、加締部軸方向断面積をA1、加締部高さをtとした時、τmin×A1=0.605A1≧C0r×Z×tanθ+80(kN)の基準式を満足するように、当該加締部の形状・寸法が設定されていれば、基本静定格ラジアル荷重C0rが全ての転動体に均一に加わった時でも、その軸方向分力で加締部が破断することはなく、充分な加締部の強度を確保することができる。   Preferably, when the allowable shear stress of the caulking portion is τ, the caulking portion axial sectional area is A1, and the caulking portion height is t, as in the invention described in claim 2, τmin × A1 = If the shape and dimensions of the crimped part are set so as to satisfy the standard expression of 0.605A1 ≧ C0r × Z × tan θ + 80 (kN), the basic static rated radial load C0r is uniformly applied to all rolling elements. Even when applied, the caulking portion is not broken by the axial component force, and sufficient strength of the caulking portion can be ensured.

また、請求項3に記載の発明のように、前記加締部の径方向の幅をE、高さをtとした時、E/t=0.75〜1.1の範囲に設定されていれば、軽量・コンパクト化を図ると共に、所望の加締強度を確保することができる。   Further, as in the invention according to claim 3, when the radial width of the crimped portion is E and the height is t, E / t is set in a range of 0.75 to 1.1. As a result, it is possible to achieve light weight and compactness and to secure a desired crimping strength.

また、請求項4に記載の発明のように、前記小径段部の端部が、加締前において中空状の円筒部に形成され、その内径面が端部に向って漸次拡径するテーパ面に形成されていても良いし、また、請求項5に記載の発明のように、前記小径段部の端部が、加締前において中空状の円筒部に形成され、その肉厚が底部から端部に亙って略均一に形成されていても良い。   According to a fourth aspect of the present invention, the end portion of the small-diameter step portion is formed into a hollow cylindrical portion before caulking, and the inner surface thereof gradually increases in diameter toward the end portion. Further, as in the invention according to claim 5, the end portion of the small-diameter step portion is formed into a hollow cylindrical portion before caulking, and the thickness thereof is from the bottom portion. It may be formed substantially uniformly over the end.

また、請求項6に記載の発明のように、前記ハブ輪が炭素0.40〜0.80重量%を含む中高炭素鋼からなり、外周に前記複列の外側転走面に対向する一方の内側転走面が直接形成され、この内側転走面から前記小径段部に亙り高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理され、前記加締部が鍛造後の素材表面硬さ30HRC以下の未焼入れ部とされると共に、前記内輪が高炭素クロム軸受鋼からなり、外周に前記複列の外側転走面に対向する他方の内側転走面が形成され、ズブ焼入れにより芯部まで58〜64HRCの範囲で硬化処理されていれば、軽量・コンパクト化を図ると共に、加締作業に伴って予圧や転がり疲労寿命等の耐久性に影響を及ぼす程、内輪の内径を大きく変形させるような力が作用するのを防止することができる。   Further, as in the invention described in claim 6, the hub wheel is made of medium-high carbon steel containing 0.40 to 0.80% by weight of carbon, and one of the hub wheels is opposed to the double row outer rolling surface on the outer periphery. An inner rolling surface is directly formed, the surface hardness is set to a range of 58 to 64 HRC by induction hardening from the inner rolling surface to the small diameter step portion, and the caulking portion has a surface hardness after forging. The inner ring is made of high carbon chrome bearing steel and the other inner rolling surface facing the outer rolling surface of the double row is formed on the outer periphery, and the core portion is formed by quenching. If it is hardened in the range of 58 to 64 HRC, the inner diameter of the inner ring is greatly deformed so as to reduce the weight and size, and to affect the durability such as preload and rolling fatigue life accompanying the caulking work. Such a force acting It is possible to stop.

また、請求項7に記載の発明のように、前記アウター側の転動体列のピッチ円直径PCDoが前記インナー側の転動体列のピッチ円直径PCDiよりも大径(PCDo>PCDi)に形成されると共に、前記アウター側の転動体列の転動体個数Zoが、前記インナー側の転動体列の転動体個数Ziよりも多く(Zo>Zi)設定されていれば、有効に軸受スペースを活用してインナー側に比べアウター側部分の軸受剛性を増大させることができ、軸受の長寿命化を図ることができる。   Further, as in the invention described in claim 7, the pitch circle diameter PCDo of the outer rolling element row is formed to be larger than the pitch circle diameter PCDi of the inner rolling element row (PCDo> PCDi). In addition, if the number of rolling elements Zo of the outer rolling element row is set to be larger than the number of rolling elements Zi of the inner rolling element row (Zo> Zi), the bearing space is effectively utilized. Thus, the bearing rigidity of the outer side portion can be increased compared to the inner side, and the life of the bearing can be extended.

本発明に係る車輪用軸受装置は、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面に対向する内側転走面が形成された少なくとも一つの内輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、前記小径段部を径方向外方に塑性変形させて形成した加締部により前記ハブ輪に対して前記内輪が軸方向に固定された車輪用軸受装置において、前記加締部の引張強さをσk(MPa)、断面積をA(mm)、前記複列の転動体列のうちインナー側の転動体列の基本静定格ラジアル荷重をC0r(kN)、当該転動体の個数をZi、接触角をθとした時、σkmin×Amin=0.672Amin≧C0r×Zi×tanθ+80の基準式を満足すると共に、加締前における前記ハブ輪の小径段部の端部が中空状の円筒部に形成され、この円筒部の底面から前記内輪の大端面までの軸方向寸法をL1、前記インナー側の転動体列の転動体の作用線と前記小径段部との交点から前記内輪の大端面までの軸方向寸法をL2とした時、L2>L1が成立するように前記加締部の形状・寸法が設定されているので、軽量・コンパクト化を図りつつ、加締部の強度を確保すると共に、軸受サイズに応じた最適な加締部の形状が設定された車輪用軸受装置を提供することができる。 The wheel bearing device according to the present invention integrally has an outer member integrally formed with a double row outer rolling surface on the inner periphery, and a wheel mounting flange for mounting the wheel on one end, and on the outer periphery. A hub wheel having a small-diameter step portion extending in the axial direction, and at least one inner rolling surface that is press-fitted into the small-diameter step portion of the hub wheel and that faces the outer rolling surface of the double row on the outer periphery. An inner member formed of an inner ring, and a double row rolling element that is rotatably accommodated between both rolling surfaces of the inner member and the outer member via a cage, and the small-diameter step portion is provided. In a wheel bearing device in which the inner ring is axially fixed to the hub ring by a caulking portion formed by plastic deformation radially outward, the tensile strength of the caulking portion is σk (MPa), The cross sectional area is A (mm 2 ), and the basic static regulation of the inner side rolling element row of the double row rolling element rows. When the rated radial load is C0r (kN), the number of rolling elements is Zi, and the contact angle is θ, the standard equation of σkmin × Amin = 0.672 Amin ≧ C0r × Zi × tan θ + 80 is satisfied and before the caulking An end of the small-diameter step portion of the hub wheel is formed in a hollow cylindrical portion. The axial dimension from the bottom surface of the cylindrical portion to the large end surface of the inner ring is L1, and the rolling elements of the inner rolling element row When the axial dimension from the intersection of the action line and the small diameter step portion to the large end surface of the inner ring is L2, the shape and dimensions of the crimping portion are set so that L2> L1 is established. It is possible to provide a wheel bearing device in which the strength of the caulking portion is ensured while reducing the weight and size, and the optimum shape of the caulking portion is set according to the bearing size.

外周にナックルに取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面に対向する他方の内側転走面が形成された内輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、前記小径段部を径方向外方に塑性変形させて形成した加締部により前記ハブ輪に対して前記内輪が軸方向に固定された車輪用軸受装置において、前記小径段部の端部が、加締前において中空状の円筒部に形成され、前記内輪の大端面を基準にして、前記円筒部の底面までの軸方向寸法をL1、前記複列の転動体列のうちインナー側の転動体列の転動体の作用線と前記小径段部との交点までの軸方向寸法をL2、前記加締部の断面積をA(mm)、前記インナー側の転動体列の基本静定格ラジアル荷重をC0r(kN)、当該転動体の個数をZi、接触角をθとした時、L2>L1であり、かつ、0.672Amin≧C0r×Zi×tanθ+80の基準式を満足するように、前記加締部の形状・寸法が設定されている。 A vehicle body mounting flange to be attached to the knuckle on the outer periphery, an outer member in which a double row outer rolling surface is integrally formed on the inner periphery, and a wheel mounting flange to mount a wheel on one end A hub wheel integrally formed and having one inner rolling surface opposed to the double-row outer rolling surface on the outer periphery, and a small-diameter step portion extending in the axial direction from the inner rolling surface, and the hub wheel An inner member formed of an inner ring that is press-fitted into a small-diameter step portion and has the other inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and both the inner member and the outer member. A double row rolling element housed in a rolling manner between the rolling surfaces via a cage, and the hub ring is formed by a caulking portion formed by plastic deformation of the small diameter step portion radially outward. On the other hand, in the wheel bearing device in which the inner ring is fixed in the axial direction, the end of the small diameter step portion is Formed in a hollow cylindrical portion before caulking, with reference to the large end surface of the inner ring, the axial dimension to the bottom surface of the cylindrical portion is L1, and the inner side rolling element in the double row rolling element row L2 is the axial dimension to the intersection of the line of rolling elements of the row and the small diameter step, the cross sectional area of the crimped portion is A (mm 2 ), and the basic static rated radial load of the inner rolling element row Is C0r (kN), the number of the rolling elements is Zi, and the contact angle is θ, L2> L1 and the above-mentioned addition is satisfied so that the standard expression of 0.672 Amin ≧ C0r × Zi × tan θ + 80 is satisfied. The shape and dimensions of the fastening part are set.

以下、本発明の実施の形態を図面に基いて詳細に説明する。
図1は、本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図、図2は、図1の要部拡大図、図3は、図2の変形例を示す要部拡大図、図4は、図2の他の変形例を示す要部拡大図である。なお、以下の説明では、車両に組み付けた状態で車両の外側寄りとなる側をアウター側(図1の左側)、中央寄り側をインナー側(図1の右側)という。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention, FIG. 2 is an enlarged view of a main part of FIG. 1, and FIG. 3 is an enlarged main part of a modification of FIG. FIG. 4 and FIG. 4 are enlarged views of main parts showing another modification of FIG. In the following description, the side closer to the outer side of the vehicle when assembled to the vehicle is referred to as the outer side (left side in FIG. 1), and the side closer to the center is referred to as the inner side (right side in FIG. 1).

この車輪用軸受装置は従動輪側の第3世代と称され、内方部材1と外方部材10、および両部材1、10間に転動自在に収容された複列の転動体(ボール)6、6とを備えている。内方部材1は、ハブ輪2と、このハブ輪2に所定のシメシロを介して圧入された内輪3とからなる。   This wheel bearing device is referred to as the third generation on the driven wheel side, and is a double row rolling element (ball) accommodated between the inner member 1 and the outer member 10 and between both members 1 and 10 so as to roll freely. 6 and 6. The inner member 1 includes a hub ring 2 and an inner ring 3 that is press-fitted into the hub ring 2 through a predetermined scissors.

ハブ輪2は、アウター側の端部に車輪(図示せず)を取り付けるための車輪取付フランジ4を一体に有し、この車輪取付フランジ4にはハブボルト5が周方向等配に植設されると共に、これらハブボルト5間には円孔4aが形成されている。この円孔4aは軽量化に寄与できるだけでなく、装置の組立・分解工程において、レンチ等の締結治具をこの円孔4aから挿入することができ作業を簡便化することができる。また、ハブ輪2の外周には一方(アウター側)の内側転走面2aと、この内側転走面2aから肩部11を介して軸方向に延びる軸状の小径段部2bが形成されている。そして、外周に他方(インナー側)の内側転走面3aが形成された内輪3がこの小径段部2bに所定のシメシロを介して圧入されている。   The hub wheel 2 integrally has a wheel mounting flange 4 for mounting a wheel (not shown) at an end portion on the outer side, and hub bolts 5 are implanted in the wheel mounting flange 4 at equal intervals in the circumferential direction. At the same time, a circular hole 4 a is formed between the hub bolts 5. This circular hole 4a can not only contribute to weight reduction, but also a fastening jig such as a wrench can be inserted from the circular hole 4a in the assembly / disassembly process of the apparatus, and the work can be simplified. Further, one (outer side) inner rolling surface 2a and an axial small-diameter step portion 2b extending in the axial direction from the inner rolling surface 2a via the shoulder portion 11 are formed on the outer periphery of the hub wheel 2. Yes. And the inner ring | wheel 3 in which the inner side rolling surface 3a of the other (inner side) was formed in the outer periphery is press-fitted in this small diameter step part 2b via predetermined | prescribed shimiro.

そして、内輪3の小端面3cをハブ輪2の肩部11に突き当てた状態で、小径段部2bの端部を径方向外方に塑性変形させて加締部2cが形成されている。すなわち、この加締部2cとハブ輪2の肩部11とで内輪3を挟持し、ハブ輪2に対して内輪3が軸方向に固定されている。加締部2cは内輪3のインナー側の外郭に沿って密着した状態で塑性変形させて形成され、内輪3の大端面3bを押え付けて所望の軸力を確保することができる。   Then, with the small end surface 3c of the inner ring 3 abutted against the shoulder 11 of the hub wheel 2, the end portion of the small diameter step portion 2b is plastically deformed radially outward to form a crimped portion 2c. That is, the inner ring 3 is sandwiched between the caulking portion 2 c and the shoulder portion 11 of the hub wheel 2, and the inner ring 3 is fixed to the hub wheel 2 in the axial direction. The caulking portion 2c is formed by being plastically deformed in close contact with the outer side of the inner ring 3 and can press the large end surface 3b of the inner ring 3 to ensure a desired axial force.

外方部材10は、外周に車体(図示せず)に取り付けるための車体取付フランジ10bを一体に有し、内周に複列の外側転走面10a、10aが一体に形成されている。そして、それぞれの転走面10a、2aと10a、3a間に複列の転動体6、6が収容され、保持器7、7によりこれら複列の転動体6、6が転動自在に保持されている。また、外方部材10と内方部材1との間に形成される環状空間の開口部にはシール8、9が装着され、軸受内部に封入された潤滑グリースの漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。   The outer member 10 integrally has a vehicle body mounting flange 10b for mounting to the vehicle body (not shown) on the outer periphery, and double row outer rolling surfaces 10a, 10a are integrally formed on the inner periphery. And the double row rolling elements 6 and 6 are accommodated between each rolling surface 10a, 2a and 10a, 3a, and these double row rolling elements 6 and 6 are rollably hold | maintained by the holder | retainers 7 and 7. ing. Seals 8 and 9 are attached to the opening of the annular space formed between the outer member 10 and the inner member 1, and leakage of lubricating grease sealed inside the bearing and rainwater and dust from the outside. Etc. are prevented from entering the inside of the bearing.

なお、ここでは、ハブ輪2の外周に直接内側転走面2aが形成された第3世代と呼称される車輪用軸受装置を例示したが、本発明に係る車輪用軸受装置はこうした構造に限定されず、例えば、ハブ輪の小径段部に一対の内輪を圧入した、第1世代あるいは第2世代構造であっても良い。また、転動体6、6をボールとした複列アンギュラ玉軸受を例示したが、これに限らず転動体に円すいころを使用した複列円すいころ軸受であっても良い。   Here, the wheel bearing device referred to as the third generation in which the inner raceway surface 2a is formed directly on the outer periphery of the hub wheel 2 is illustrated, but the wheel bearing device according to the present invention is limited to such a structure. For example, a first generation or second generation structure in which a pair of inner rings are press-fitted into a small-diameter step portion of the hub ring may be used. Moreover, although the double row angular contact ball bearing which used the rolling elements 6 and 6 as the ball | bowl was illustrated, it is not restricted to this, The double row tapered roller bearing which uses a tapered roller for a rolling element may be sufficient.

ハブ輪2はS53C等の炭素0.40〜0.80重量%を含む中高炭素鋼で形成され、アウター側の内側転走面2aをはじめ、アウター側のシール8のシールランド部となる基部4bから小径段部2bに亙り高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。なお、加締部2cは、鍛造後の素材表面硬さの未焼入れ部とされている。   The hub wheel 2 is made of medium and high carbon steel containing carbon of 0.40 to 0.80% by weight such as S53C, and includes a base portion 4b which becomes a seal land portion of the outer side seal 8 including the inner side rolling surface 2a on the outer side. The surface hardness is set to a range of 58 to 64 HRC by induction hardening over the small diameter step 2b. The caulking portion 2c is an unquenched portion of the material surface hardness after forging.

一方、内輪3および転動体6はSUJ2等の高炭素クロム軸受鋼からなり、ズブ焼入れにより芯部まで58〜64HRCの範囲で硬化処理されている。また、外方部材10は、前記ハブ輪2と同様、S53C等の炭素0.40〜0.80重量%を含む中高炭素鋼で形成され、少なくとも複列の外側転走面10a、10aに高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。   On the other hand, the inner ring 3 and the rolling element 6 are made of high carbon chrome bearing steel such as SUJ2, and are hardened in the range of 58 to 64 HRC up to the core by quenching. Similarly to the hub wheel 2, the outer member 10 is made of medium-high carbon steel containing 0.40 to 0.80% by weight of carbon such as S53C, and has high frequency on at least the double row outer rolling surfaces 10a and 10a. The surface hardness is hardened by quenching to a range of 58 to 64 HRC.

ここで、本出願人は、加締部2cの強度を確保すると共に、軸受サイズに応じた最適な加締部2cの形状を設定するために、内輪3の軸力と内輪3に対する加締部2cの形状・寸法との関係に着目した。本実施形態では、図2に示すように、加締前におけるハブ輪2の小径段部2bの端部は中空状の円筒部12として形成されている(図中二点鎖線にて示す)。加締部2cの耐力を検討するにあたり、小径段部2bの外径をD1、加締部2cにおける内輪3の大端面3b位置での内径をD2とした場合、内輪3の大端面3b位置での加締部2cの最小断面積Amin(mm)は、Amin=π(D1−D2max)/4となる。 Here, the present applicant secures the strength of the caulking portion 2c and sets the optimum shape of the caulking portion 2c according to the bearing size, and the caulking portion for the inner ring 3 and the caulking portion for the inner ring 3. We focused on the relationship between the shape and dimensions of 2c. In this embodiment, as shown in FIG. 2, the end portion of the small-diameter step portion 2b of the hub wheel 2 before caulking is formed as a hollow cylindrical portion 12 (indicated by a two-dot chain line in the figure). In examining the proof strength of the caulking portion 2c, when the outer diameter of the small diameter step portion 2b is D1, and the inner diameter of the inner ring 3 at the position of the large end surface 3b in the caulking portion 2c is D2, the inner diameter of the inner ring 3 is determined at the position of the large end surface 3b. The minimum cross-sectional area Amin (mm 2 ) of the caulking portion 2c is Amin = π (D1 2 −D2max 2 ) / 4.

一方、硬さと引張強さの関係をあらわす式としては次の式が知られている(日本規格協会)。この式を引用して、加締部2cの表面硬さHk(Hv)と引張強さσk(MPa)との関係は、σk=3.2Hkで表わすことができる。ここで、加締部2cの表面硬さを鍛造後の素材表面硬さのままで13〜30HRCの範囲とした場合、加締部2cの引張強さσkmin=3.2Hk=3.2×210(13HRC相当)=672(MPa)となる。   On the other hand, the following formula is known as a formula representing the relationship between hardness and tensile strength (Japanese Standards Association). By citing this equation, the relationship between the surface hardness Hk (Hv) and the tensile strength σk (MPa) of the caulking portion 2c can be expressed by σk = 3.2Hk. Here, when the surface hardness of the caulking portion 2c remains in the range of 13 to 30 HRC with the material surface hardness after forging, the tensile strength σkmin = 3.2Hk = 3.2 × 210 of the caulking portion 2c. (Equivalent to 13HRC) = 672 (MPa).

したがって、内輪3の軸力、すなわち、加締部2cによって内輪3を固定する力をFとした場合、この軸力Fに加え、軸受部分に振動大、騒音大で継続使用が不可となる荷重、基本静定格ラジアル荷重C0r(kN)が全てのボール6に均一に加わっても、その軸方向分力で加締部2cが破断しないためには、加締部2cの引張耐力は、σkmin×Amin≧C0r×Z×tanθ+F(kN)の基準式を満足すれば良く、また、この基準式を満足するように、加締部2cの形状・寸法を設定すれば良い。これにより、加締作業に伴って予圧や転がり疲労寿命等の耐久性に影響を及ぼす程、内輪3の内径を大きく変形させるような力が作用するのを防止することができると共に、加締部2cは充分な耐力を確保することができる。ここで、Ziはインナー側の軸受列の転動体6の個数、θはインナー側の軸受列の接触角である。   Therefore, when the axial force of the inner ring 3, that is, the force that fixes the inner ring 3 by the crimping portion 2 c is F, in addition to this axial force F, the bearing portion has a large vibration and noise that cannot be used continuously. Even if the basic static rated radial load C0r (kN) is uniformly applied to all the balls 6, the tensile strength of the crimped portion 2c is σkmin × What is necessary is just to satisfy the reference formula of Amin ≧ C0r × Z × tan θ + F (kN), and the shape and dimensions of the crimped portion 2c may be set so as to satisfy this reference formula. Accordingly, it is possible to prevent a force that greatly deforms the inner diameter of the inner ring 3 from acting so as to affect the durability such as the preload and the rolling fatigue life accompanying the caulking work, and the caulking portion. 2c can ensure sufficient yield strength. Here, Zi is the number of rolling elements 6 in the inner side bearing row, and θ is the contact angle of the inner side bearing row.

一般的に、この種の車輪用軸受では、内輪3の軸力F=20〜80kNの範囲に設定されるため、F=80kNを前述した基準式、すなわち、σkmin×Amin≧C0r×Zi×tanθ+F(kN)に当てはめると、加締部2cの引張耐力として、0.672Amin≧C0r×Zi×tanθ+80(kN)を満足すれば充分である。さらに、加締前の円筒部12の底面12aから内輪3の大端面3bまでの軸方向寸法をL1、インナー側の軸受列の作用線Sと小径段部2bとの交点Pから内輪3の大端面3bまでの軸方向寸法をL2とした場合、L2>L1であれば、加締加工が容易にでき、また、加締作業に伴って加締部2cに亀裂等の損傷が発生するのを防止できると共に、軸受部に負荷される荷重が加締部2cに負荷されることはなく、耐久性を向上させることができる。   Generally, in this type of wheel bearing, since the axial force F of the inner ring 3 is set in a range of 20 to 80 kN, F = 80 kN is set to the above-described reference equation, that is, σkmin × Amin ≧ C0r × Zi × tan θ + F. When applied to (kN), it is sufficient to satisfy 0.672 Amin ≧ C0r × Zi × tan θ + 80 (kN) as the tensile strength of the crimped portion 2 c. Furthermore, the axial dimension from the bottom surface 12a of the cylindrical portion 12 before caulking to the large end surface 3b of the inner ring 3 is L1, and the inner ring 3 has a large dimension from the intersection P between the action line S of the inner bearing row and the small diameter step portion 2b. When the axial dimension to the end face 3b is L2, if L2> L1, the caulking process can be easily performed, and the caulking portion 2c is damaged by the caulking work. While being able to prevent, the load applied to a bearing part is not applied to the crimping part 2c, and durability can be improved.

本実施形態では、内輪3の軸力と加締部2cの引張耐力を同時に確保するために、加締側の軸受列の基本静定格ラジアル荷重C0rから決定される加締部2cの引張耐力の基準式に基き、加締部2cの形状・寸法を設定するようにしたので、軽量・コンパクト化を図ると共に、内輪3の軸力と加締部2cの引張耐力を確保した車輪用軸受装置を提供することができる。   In this embodiment, in order to ensure the axial force of the inner ring 3 and the tensile strength of the caulking portion 2c at the same time, the tensile strength of the caulking portion 2c determined from the basic static rated radial load C0r of the bearing row on the caulking side is determined. Based on the standard formula, the shape and dimensions of the caulking portion 2c are set, so that a wheel bearing device that achieves light weight and compactness and ensures the axial force of the inner ring 3 and the tensile strength of the caulking portion 2c is provided. Can be provided.

なお、ここでは、加締前におけるハブ輪2の小径段部2bの端部が中空状の円筒部12として形成され、その内径面が端部に向って漸次拡径するようなテーパ面に形成されたものを例示したが、本発明に係る加締部2cの形状はこれに限らず、例えば、図3に示すように、加締前の円筒部12’が、その肉厚が底部12aから端部に亙って略均一に形成されたものであっても良い。これにより、円筒部12’の内径の加工バラツキを抑え、加締部2cの強度を安定させることができる。   Here, the end portion of the small-diameter step portion 2b of the hub wheel 2 before caulking is formed as a hollow cylindrical portion 12, and the inner diameter surface thereof is formed into a tapered surface that gradually increases in diameter toward the end portion. However, the shape of the caulking portion 2c according to the present invention is not limited to this, and for example, as shown in FIG. 3, the cylindrical portion 12 'before caulking has a wall thickness from the bottom portion 12a. It may be formed substantially uniformly over the end. Thereby, the process variation of the internal diameter of cylindrical part 12 'can be suppressed, and the intensity | strength of the crimping part 2c can be stabilized.

次に、基本静定格ラジアル荷重C0rが全ての転動体6に均一に加わった時でも、その軸方向分力で加締部2cが破断しないためには、加締部2cの軸方向許容せん断応力は、τmin×A1=0.605A1≧C0r×Zi×tanθ+F(kN)の基準式を満足すれば良く、また、この基準式を満足するように、加締部2cの形状・寸法を設定すれば良い。前述のように、加締部2cの引張強さσkmin=3.2Hk=3.2×210(13HRC相当)で求められるが、この部位については、加工硬化によって略60Hvの硬さアップが予想されるため、σkmin=3.2×(210+60)Hv=864(MPa)となる。   Next, even when the basic static rated radial load C0r is uniformly applied to all the rolling elements 6, the axially allowable shear stress of the caulking portion 2c is prevented so that the caulking portion 2c is not broken by the axial component force. Satisfies the standard equation of τmin × A1 = 0.605A1 ≧ C0r × Zi × tan θ + F (kN), and if the shape and size of the crimping portion 2c are set so as to satisfy this standard equation good. As described above, the tensile strength of the crimped portion 2c is determined by σkmin = 3.2Hk = 3.2 × 210 (equivalent to 13HRC), but this part is expected to increase in hardness by about 60Hv by work hardening. Therefore, σkmin = 3.2 × (210 + 60) Hv = 864 (MPa).

せん断応力は、一般的に引張応力の70%であるため、許容せん断応力τmin=605MPaとなる。図4に示すように、加締部2cの高さをtとした時、加締部2cの軸方向断面積A1=πD1tとなる。そして、前述したように内輪3の軸力F=80kNを基準式、すなわち、τmin×A1=0.605A1≧C0r×Zi×tanθ+F(kN)に当てはめると、一般的に、加締部2cのせん断耐力として、0.605A1≧C0r×Z×tanθ+80(kN)を満足すれば充分である。   Since the shear stress is generally 70% of the tensile stress, the allowable shear stress τmin = 605 MPa. As shown in FIG. 4, when the height of the crimping portion 2c is t, the axial sectional area A1 = πD1t of the crimping portion 2c is obtained. When the axial force F = 80 kN of the inner ring 3 is applied to the reference equation, that is, τmin × A1 = 0.605A1 ≧ C0r × Zi × tan θ + F (kN) as described above, generally, the shearing force of the caulking portion 2c It is sufficient if the proof stress satisfies 0.605A1 ≧ C0r × Z × tan θ + 80 (kN).

また、基本静定格ラジアル荷重C0r相当の総軸方向荷重が負荷された場合、加締部2cの外径側に力が加わり、加締部2cが開く方向に延ばされる。このため、内輪3の大端面3bに係っている加締部2cの径方向の幅Eを設定し、加締部2cの体積を確保する必要があるため、加締部2cの径方向の幅Eと加締部2cの高さをtを、E/t=0.75〜1.1とすることにより、所望の加締強度を確保することができる。ここで、この比率が小さくなると加締強度が不足し、また、この比率が大きくなると加締部2cの体積も大きくなって重量増となり好ましくない。   Further, when a total axial load equivalent to the basic static rated radial load C0r is applied, a force is applied to the outer diameter side of the crimped portion 2c, and the crimped portion 2c is extended in the opening direction. For this reason, since it is necessary to set the radial width E of the caulking portion 2c related to the large end surface 3b of the inner ring 3 and to secure the volume of the caulking portion 2c, the radial direction of the caulking portion 2c By setting the width E and the height of the caulking portion 2c to t as E / t = 0.75 to 1.1, a desired caulking strength can be ensured. Here, when this ratio is small, the crimping strength is insufficient, and when this ratio is large, the volume of the crimping portion 2c is increased, which is not preferable.

図5は、本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。なお、前述した実施形態と同一部品同一部位あるいは同様の機能を有する部品や部位には同じ符号を付して詳細な説明を省略する。   FIG. 5 is a longitudinal sectional view showing a second embodiment of the wheel bearing device according to the present invention. In addition, the same code | symbol is attached | subjected to the component and site | part which has the same component same part as embodiment mentioned above, or the same function, and detailed description is abbreviate | omitted.

この車輪用軸受装置は第3世代と呼称される従動輪用であって、内方部材13と外方部材14、および両部材13、14間に転動自在に収容された複列の転動体6、6列とを備えている。内方部材13は、ハブ輪15と、このハブ輪15に所定のシメシロを介して圧入された内輪3とからなる。   This wheel bearing device is for a driven wheel referred to as a third generation, and is an inner member 13, an outer member 14, and a double row rolling element accommodated between the members 13 and 14 so as to roll freely. 6 and 6 rows. The inner member 13 includes a hub ring 15 and an inner ring 3 press-fitted into the hub ring 15 via a predetermined shimiro.

ハブ輪15は、アウター側の端部に車輪取付フランジ4を一体に有し、外周に一方(アウター側)の内側転走面15aと、この内側転走面15aから軸方向に延びる軸状部16を介して小径段部2bが形成されている。   The hub wheel 15 integrally has a wheel mounting flange 4 at an end portion on the outer side, one (outer side) inner rolling surface 15a on the outer periphery, and an axial portion extending in the axial direction from the inner rolling surface 15a. A small-diameter step 2 b is formed through 16.

内輪3は、外周に他方(インナー側)の内側転走面3aが形成され、ハブ輪15の小径段部2bに圧入されて背面合せタイプの複列アンギュラ玉軸受を構成すると共に、小径段部2bの端部を塑性変形させて形成した加締部2cによって軸方向に固定されている。   The inner ring 3 is formed with the other (inner side) inner raceway surface 3a on the outer periphery and is press-fitted into the small-diameter stepped portion 2b of the hub wheel 15 to form a back-to-back type double row angular contact ball bearing. The end portion of 2b is fixed in the axial direction by a crimping portion 2c formed by plastic deformation.

ハブ輪15はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、内側転走面15aをはじめ、車輪取付フランジ4のインナー側の基部4bから小径段部2bに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。   The hub wheel 15 is made of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the inner raceway 15a and the base portion 4b on the inner side of the wheel mounting flange 4 to the small diameter step portion 2b. Thus, the surface hardness is set to a range of 58 to 64 HRC by induction hardening.

外方部材14は、外周に車体取付フランジ10bを一体に有し、内周にハブ輪15の内側転走面15aに対向するアウター側の外側転走面14aと、内輪3の内側転走面3aに対向するインナー側の外側転走面10aが一体に形成されている。これら両転走面間に複列の転動体6、6が収容され、保持器17、7によって転動自在に保持されている。   The outer member 14 integrally has a vehicle body mounting flange 10 b on the outer periphery, and has an outer outer rolling surface 14 a facing the inner rolling surface 15 a of the hub wheel 15 on the inner periphery, and an inner rolling surface of the inner ring 3. An inner side outer rolling surface 10a facing 3a is integrally formed. Double-row rolling elements 6 and 6 are accommodated between these rolling surfaces and are held by the cages 17 and 7 so as to be freely rollable.

この外方部材14はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、複列の外側転走面14a、10aが高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。そして、外方部材14と内方部材13との間に形成される環状空間の開口部にはシール18、9が装着され、軸受内部に封入されたグリースの外部への漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。   This outer member 14 is formed of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the double row outer rolling surfaces 14a and 10a have a surface hardness in the range of 58 to 64HRC by induction hardening. Has been cured. Seals 18 and 9 are attached to the opening of the annular space formed between the outer member 14 and the inner member 13, and leakage of grease sealed inside the bearing and rainwater from the outside. And dust are prevented from entering the bearing.

本実施形態では、アウター側の転動体3列のピッチ円直径PCDoがインナー側の転動体3列のピッチ円直径PCDiよりも大径に設定されている(PCDo>PCDi)。そして、転動体3のサイズは同じであるが、このピッチ円直径PCDo、PCDiの違いにより、アウター側の転動体3列の転動体個数Zoがインナー側の転動体3列の転動体個数Ziよりも多く設定されている(Zo>Zi)。   In the present embodiment, the pitch circle diameter PCDo of the outer three rolling elements is set to be larger than the pitch circle diameter PCDi of the inner three rolling elements (PCDo> PCDi). The sizes of the rolling elements 3 are the same, but due to the difference in the pitch circle diameters PCDo and PCDi, the number of rolling elements Zo in the outer three rolling elements is greater than the number of rolling elements Zi in the inner three rolling elements. Are also set (Zo> Zi).

ハブ輪15の外郭形状は、内側転走面15aの溝底部からカウンタ部15bと、このカウンタ部15bから円弧状の段部16aを介して軸方向に延びる軸状部16、および内輪3が突き合わされる肩部11を介して小径段部2bに続いている。また、ハブ輪15のアウター側の端部にはすり鉢状の凹所19が形成されている。この凹所19の深さは内側転走面15aの溝底付近までの深さとされ、ハブ輪15のアウター側の端部が略均一な肉厚に形成されている。そして、ピッチ円直径PCDo、PCDiの違いに伴い、ハブ輪15の内側転走面15aは内輪3の内側転走面3aよりも拡径して形成され、軸状部16の外径が内側転走面3aの溝底径と略同一径になるように形成されている。   The outer shape of the hub wheel 15 is such that the counter part 15b from the groove bottom part of the inner rolling surface 15a, the shaft-like part 16 extending in the axial direction from the counter part 15b via the arc-shaped step part 16a, and the inner ring 3 project. It continues to the small diameter step 2b through the shoulder 11 to be fitted. A mortar-shaped recess 19 is formed at the outer end of the hub wheel 15. The depth of the recess 19 is a depth to the vicinity of the groove bottom of the inner rolling surface 15a, and the outer end of the hub wheel 15 is formed to have a substantially uniform thickness. With the difference in pitch circle diameters PCDo and PCDi, the inner rolling surface 15a of the hub wheel 15 is formed to have a larger diameter than the inner rolling surface 3a of the inner ring 3, and the outer diameter of the shaft-shaped portion 16 is increased to the inner rolling surface. The diameter is substantially the same as the groove bottom diameter of the running surface 3a.

一方、外方部材14において、ピッチ円直径PCDo、PCDiの違いに伴い、アウター側の外側転走面14aがインナー側の外側転走面10aよりも拡径して形成され、アウター側の外側転走面14aから円筒状の肩部20とテーパ状の段部20aを介して小径側の肩部21に続き、インナー側の外側転走面10aに到っている。そして、この外側転走面10aの溝底径と大径側の肩部20の内径が略同一径になるように形成されている。   On the other hand, in the outer member 14, the outer side outer rolling surface 14a is formed with a larger diameter than the inner side outer rolling surface 10a in accordance with the difference in pitch circle diameters PCDo and PCDi, and the outer side outer rolling surface 10a is formed. From the running surface 14a through the cylindrical shoulder portion 20 and the tapered step portion 20a to the shoulder portion 21 on the small diameter side, the outer rolling surface 10a on the inner side is reached. And it forms so that the groove bottom diameter of this outer side rolling surface 10a and the internal diameter of the shoulder part 20 by the side of a large diameter may become substantially the same diameter.

こうした構成の車輪用軸受装置では、アウター側の転動体3列のピッチ円直径PCDoがインナー側の転動体3列のピッチ円直径PCDiよりも大径に形成され、その分、転動体個数もアウター側の転動体3列の転動体個数Zoがインナー側の転動体3列の転動体個数Ziよりも多く設定されているため、有効に軸受スペースを活用してインナー側に比べアウター側部分の軸受剛性を増大させることができ、軸受の長寿命化を図ることができる。さらに、ハブ輪15のアウター側端部に凹所19が外郭形状に沿って形成され、ハブ輪15のアウター側の端部が均一な肉厚に設定されているので、装置の軽量・コンパクト化と高剛性化という相反する課題を解決することができる。   In the wheel bearing device having such a configuration, the pitch circle diameter PCDo of the three outer rolling elements is formed larger than the pitch circle diameter PCDi of the three inner rolling elements, and the number of the rolling elements is accordingly increased. Since the number of rolling elements Zo of the three rolling elements on the side is set to be larger than the number of rolling elements Zi of the three rolling elements on the inner side, the bearings on the outer side portion are effectively utilized compared to the inner side by utilizing the bearing space. The rigidity can be increased and the life of the bearing can be extended. Further, the recess 19 is formed in the outer end portion of the hub wheel 15 along the outer shape, and the outer end portion of the hub wheel 15 is set to have a uniform thickness. And the conflicting problem of high rigidity can be solved.

ここで、本実施形態では、前述した第1の実施形態と同様、加締部2cの引張耐力として、0.672Amin≧C0r×Zi×tanθ+80(kN)、かつ、加締前の円筒部12の底面12aから内輪3の大端面3bまでの軸方向寸法をL1よりも、インナー側の軸受列の作用線Sと小径段部2bとの交点Pから内輪3の大端面3bまでの軸方向寸法L2が大きくなるように加締部2cの形状・寸法が設定されているので、有効に軸受スペースを活用してインナー側に比べアウター側部分の軸受剛性を増大させることができ、軸受の長寿命化を図ることができると共に、加締部2cの強度を確保しつつ、軸受サイズに応じた最適な加締部2cの形状が設定された車輪用軸受装置を提供することができる。   Here, in this embodiment, as in the first embodiment described above, the tensile strength of the crimped portion 2c is 0.672 Amin ≧ C0r × Zi × tan θ + 80 (kN), and the cylindrical portion 12 before crimping The axial dimension from the bottom surface 12a to the large end surface 3b of the inner ring 3 is smaller than the axial dimension L2 from the bottom surface 12a to the large end surface 3b of the inner ring 3. Since the shape and dimensions of the caulking portion 2c are set so that the bearing becomes larger, it is possible to effectively utilize the bearing space and increase the bearing rigidity of the outer side portion compared to the inner side, thus extending the life of the bearing. In addition, it is possible to provide a wheel bearing device in which the optimum shape of the caulking portion 2c corresponding to the bearing size is set while ensuring the strength of the caulking portion 2c.

また、加締部2cのせん断耐力として、0.605A1≧C0r×Zi×tanθ+80(kN)を満足するように加締部2cの高さtが設定されると共に、加締部2cの径方向の幅Eと加締部2cの高さをtを、E/t=0.75〜1.1の範囲に設定されているので、軽量・コンパクト化を図ると共に、所望の加締強度を確保することができる。   Further, the height t of the crimping portion 2c is set so as to satisfy 0.605A1 ≧ C0r × Zi × tan θ + 80 (kN) as the shear strength of the crimping portion 2c, and the radial direction of the crimping portion 2c is set. Since the width E and the height of the caulking portion 2c are set in the range of E / t = 0.75 to 1.1, the weight and the size are reduced, and a desired caulking strength is secured. be able to.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.

本発明に係る車輪用軸受装置は、ハブ輪の小径段部に内輪を圧入し、小径段部の端部を塑性変形させて形成した加締部によって内輪を固定した第1世代乃至第3世代のセルフリテイン構造の車輪用軸受装置に適用できる。   In the wheel bearing device according to the present invention, the inner ring is fixed by a caulking portion formed by press-fitting an inner ring into a small-diameter step portion of a hub wheel and plastically deforming an end portion of the small-diameter step portion. It can be applied to a self-retained wheel bearing device.

本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of a bearing device for wheels concerning the present invention. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 図2の変形例を示す要部拡大図である。It is a principal part enlarged view which shows the modification of FIG. 図2の他の変形例を示す要部拡大図である。It is a principal part enlarged view which shows the other modification of FIG. 本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the wheel bearing apparatus which concerns on this invention. 従来の車輪用軸受装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional wheel bearing apparatus.

符号の説明Explanation of symbols

1、13・・・・・・内方部材
2、15・・・・・・ハブ輪
2a、3a、15a・内側転走面
2b・・・・・・・・小径段部
2c・・・・・・・・加締部
3・・・・・・・・・内輪
3b・・・・・・・・大端面
3c・・・・・・・・小端面
4・・・・・・・・・車輪取付フランジ
4a・・・・・・・・円孔
4b・・・・・・・・基部
5・・・・・・・・・ハブボルト
6・・・・・・・・・転動体
7、17・・・・・・保持器
8、9、18・・・・シール
10、14・・・・・外方部材
10a、14a・・・外側転走面
10b・・・・・・・車体取付フランジ
11、20、21・・肩部
12、12’・・・・円筒部
15b・・・・・・・カウンタ部
16・・・・・・・・軸状部
16a、20a・・・段部
19・・・・・・・・凹所
51・・・・・・・・ハブ輪
51a、52a・・・内側転走面
51b・・・・・・・小径段部
51c・・・・・・・加締部
52・・・・・・・・内輪
52b・・・・・・・大端面
53・・・・・・・・外輪
53a・・・・・・・外側転走面
53b・・・・・・・車体取付フランジ
54・・・・・・・・ボール
55・・・・・・・・車輪取付フランジ
56・・・・・・・・円筒部
A・・・・・・・・・加締部の断面積
A1・・・・・・・・加締部の軸方向断面積
C0r・・・・・・・基本静定格ラジアル荷重
D1・・・・・・・・小径段部の外径
D2・・・・・・・・加締部における内輪の大端面位置での内径
F・・・・・・・・・内輪の軸力
Hk・・・・・・・・加締部の表面硬さ
L1・・・・・・・・加締前の円筒部の底面から内輪の大端面までの寸法
L2・・・・・・・・作用線と小径段部との交点から内輪の大端面までの寸法
P・・・・・・・・・インナー側の軸受列の作用線と小径段部との交点
S・・・・・・・・・インナー側の軸受列の作用線
Zi・・・・・・・・インナー側の軸受列の転動体個数
Zo・・・・・・・・アウター側の軸受列の転動体個数
θ・・・・・・・・・インナー側の軸受列の接触角
σk・・・・・・・・加締部の引張強さ
τ・・・・・・・・・加締部の許容せん断応力
1, 13 ... Inner member 2, 15 ... Hub wheels 2a, 3a, 15a Inner rolling surface 2b ... Small diameter step 2c ... ············································································································ Small edge surface 4 Wheel mounting flange 4a ... Circular hole 4b ... Base 5 ... Hub bolt 6 ... Rolling elements 7, 17 ·········· Retainer 8, 9, 18 ··· Seals 10 and 14 · · · Outer members 10a and 14a · · · Outer rolling surface 10b ············ Body mounting flange 11, 20, 21... Shoulder portion 12, 12 ′... Cylindrical portion 15 b... Counter portion 16... Shaft portion 16 a, 20 a. ......... Recess 51 ... ... Hub wheels 51a, 52a ... Inner rolling surface 51b ... Small diameter step 51c ... Clamping part 52 ... Inner ring 52b ...・ ・ ・ ・ ・ Large end surface 53 ・ ・ ・ ・ ・ ・ ・ ・ Outer ring 53a ・ ・ ・ ・ ・ ・ Outside rolling surface 53b ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Car body mounting flange 54 ・ ・ ・ ・ ・ ・ ・ ・ Ball 55 ········ Wheel mounting flange 56 ································· Cross sectional area A1 Axial cross-sectional area C0r ... Basic static rated radial load D1 ... Small diameter step outer diameter D2 ... Large inner ring in the caulking section Inner diameter F at the end face position ······ Axial force Hk of the inner ring ···· Surface hardness L1 ·································· Dimension L from the bottom surface of the inner ring to the large end surface of the inner ring・ ・ ・ ・ ・ ・ ・ ・ Dimension P from the intersection of the action line and the small diameter step to the large end face of the inner ring ・ ・ ・ ・ ・ ・ ・ ・ Intersection between the action line of the inner bearing row and the small diameter step S ... Action line Zi of inner side bearing row ... ... Number of rolling elements Zo of inner side bearing row ... Outer side bearing row The number of rolling elements of θ ·············· Contact angle σk of the inner side bearing row ··································· Allowable shear stress

Claims (7)

内周に複列の外側転走面が一体に形成された外方部材と、
一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面に対向する内側転走面が形成された少なくとも一つの内輪からなる内方部材と、
この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、
前記小径段部を径方向外方に塑性変形させて形成した加締部により前記ハブ輪に対して前記内輪が軸方向に固定された車輪用軸受装置において、
前記加締部の引張強さをσk(MPa)、断面積をA(mm)、前記複列の転動体列のうちインナー側の転動体列の基本静定格ラジアル荷重をC0r(kN)、当該転動体の個数をZi、接触角をθとした時、σkmin×Amin=0.672Amin≧C0r×Zi×tanθ+80の基準式を満足すると共に、
加締前における前記ハブ輪の小径段部の端部が中空状の円筒部に形成され、この円筒部の底面から前記内輪の大端面までの軸方向寸法をL1、前記インナー側の転動体列の転動体の作用線と前記小径段部との交点から前記内輪の大端面までの軸方向寸法をL2とした時、L2>L1が成立するように前記加締部の形状・寸法が設定されていることを特徴とする車輪用軸受装置。
An outer member in which a double row outer rolling surface is integrally formed on the inner periphery;
A hub wheel integrally having a wheel mounting flange for mounting a wheel at one end, a small diameter step portion extending in the axial direction on the outer periphery, and a small diameter step portion of the hub wheel are press-fitted, and the double row is disposed on the outer periphery. An inner member composed of at least one inner ring formed with an inner rolling surface facing the outer rolling surface of
A double-row rolling element accommodated between the rolling surfaces of the inner member and the outer member via a cage so as to freely roll,
In the wheel bearing device in which the inner ring is fixed in the axial direction with respect to the hub wheel by a caulking part formed by plastically deforming the small diameter step part radially outwardly,
The tensile strength of the caulking portion is σk (MPa), the cross-sectional area is A (mm 2 ), the basic static rated radial load of the inner rolling element row of the double row rolling element rows is C0r (kN), When the number of the rolling elements is Zi and the contact angle is θ, the standard equation of σkmin × Amin = 0.672 Amin ≧ C0r × Zi × tan θ + 80 is satisfied,
The end portion of the small diameter step portion of the hub wheel before caulking is formed in a hollow cylindrical portion, and the axial dimension from the bottom surface of the cylindrical portion to the large end surface of the inner ring is L1, and the inner rolling element row The shape and dimensions of the caulking portion are set so that L2> L1 is established, where L2 is the axial dimension from the intersection of the line of action of the rolling element and the small diameter step portion to the large end surface of the inner ring. A bearing device for a wheel.
前記加締部の許容せん断応力をτ、加締部軸方向断面積をA1、加締部高さをtとした時、τmin×A1=0.605A1≧C0r×Z×tanθ+80(kN)の基準式を満足するように、当該加締部の形状・寸法が設定されている請求項1に記載の車輪用軸受装置。   The standard of τmin × A1 = 0.605A1 ≧ C0r × Z × tan θ + 80 (kN), where τ is the allowable shear stress of the caulking portion, A1 is the axial sectional area of the caulking portion, and t is the height of the caulking portion. The wheel bearing device according to claim 1, wherein the shape and dimensions of the caulking portion are set so as to satisfy the equation. 前記加締部の径方向の幅をE、高さをtとした時、E/t=0.75〜1.1の範囲に設定されている請求項1または2に記載の車輪用軸受装置。   3. The wheel bearing device according to claim 1, wherein E is set to a range of E / t = 0.75 to 1.1, where E is a radial width of the caulking portion and t is a height. . 前記小径段部の端部が、加締前において中空状の円筒部に形成され、その内径面が端部に向って漸次拡径するテーパ面に形成されている請求項1乃至3いずれかに記載の車輪用軸受装置。   The end portion of the small-diameter step portion is formed in a hollow cylindrical portion before caulking, and the inner diameter surface thereof is formed in a tapered surface that gradually increases in diameter toward the end portion. The wheel bearing device described. 前記小径段部の端部が、加締前において中空状の円筒部に形成され、その肉厚が底部から端部に亙って略均一に形成されている請求項1乃至3いずれかに記載の車輪用軸受装置。   The end portion of the small diameter step portion is formed in a hollow cylindrical portion before caulking, and the thickness thereof is formed substantially uniformly from the bottom portion to the end portion. Wheel bearing device. 前記ハブ輪が炭素0.40〜0.80重量%を含む中高炭素鋼からなり、外周に前記複列の外側転走面に対向する一方の内側転走面が直接形成され、この内側転走面から前記小径段部に亙り高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理され、前記加締部が鍛造後の素材表面硬さ30HRC以下の未焼入れ部とされると共に、前記内輪が高炭素クロム軸受鋼からなり、外周に前記複列の外側転走面に対向する他方の内側転走面が形成され、ズブ焼入れにより芯部まで58〜64HRCの範囲で硬化処理されている請求項1乃至5いずれかに記載の車輪用軸受装置。   The hub wheel is made of medium-high carbon steel containing carbon of 0.40 to 0.80% by weight, and one inner rolling surface facing the outer rolling surface of the double row is directly formed on the outer periphery. The surface hardness is set to a range of 58 to 64 HRC by induction hardening from the surface to the small diameter step portion, and the caulking portion is an unquenched portion having a material surface hardness of 30 HRC or less after forging, and the inner ring Is made of high carbon chrome bearing steel, the other inner rolling surface facing the outer rolling surface of the double row is formed on the outer periphery, and is hardened in the range of 58 to 64 HRC to the core part by quenching. Item 6. A wheel bearing device according to any one of Items 1 to 5. 前記アウター側の転動体列のピッチ円直径PCDoが前記インナー側の転動体列のピッチ円直径PCDiよりも大径(PCDo>PCDi)に形成されると共に、前記アウター側の転動体列の転動体個数Zoが、前記インナー側の転動体列の転動体個数Ziよりも多く(Zo>Zi)設定されている請求項1乃至6いずれかに記載の車輪用軸受装置。   A pitch circle diameter PCDo of the outer rolling element row is formed to be larger than a pitch circle diameter PCDi of the inner rolling element row (PCDo> PCDi), and the outer rolling element row rolling element is formed. 7. The wheel bearing device according to claim 1, wherein the number Zo is set to be greater than the number of rolling elements Zi in the inner-side rolling element array (Zo> Zi).
JP2008173089A 2008-07-02 2008-07-02 Wheel bearing device Active JP5121603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173089A JP5121603B2 (en) 2008-07-02 2008-07-02 Wheel bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173089A JP5121603B2 (en) 2008-07-02 2008-07-02 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2010014163A true JP2010014163A (en) 2010-01-21
JP5121603B2 JP5121603B2 (en) 2013-01-16

Family

ID=41700451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173089A Active JP5121603B2 (en) 2008-07-02 2008-07-02 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP5121603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230349454A1 (en) * 2020-09-28 2023-11-02 Cie Automotive, S.A. Mechanical actuator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196661A (en) * 1997-01-17 1998-07-31 Nippon Seiko Kk Wheel supporting hub unit
JP2006002799A (en) * 2004-06-15 2006-01-05 Nsk Ltd Wheel hub unit
JP2007218305A (en) * 2006-02-15 2007-08-30 Ntn Corp Bearing device for wheel
JP2008115949A (en) * 2006-11-06 2008-05-22 Ntn Corp Bearing device for wheel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196661A (en) * 1997-01-17 1998-07-31 Nippon Seiko Kk Wheel supporting hub unit
JP2006002799A (en) * 2004-06-15 2006-01-05 Nsk Ltd Wheel hub unit
JP2007218305A (en) * 2006-02-15 2007-08-30 Ntn Corp Bearing device for wheel
JP2008115949A (en) * 2006-11-06 2008-05-22 Ntn Corp Bearing device for wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230349454A1 (en) * 2020-09-28 2023-11-02 Cie Automotive, S.A. Mechanical actuator

Also Published As

Publication number Publication date
JP5121603B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP2008055984A (en) Bearing device for wheel
JP5025137B2 (en) Wheel bearing device
JP6114556B2 (en) Wheel bearing device
JP4462629B2 (en) Wheel bearing device
WO2006019071A1 (en) Bearing device for wheel
JP5506181B2 (en) Wheel bearing device
JP5121603B2 (en) Wheel bearing device
JP2009079654A (en) Wheel bearing device
JP4994717B2 (en) Wheel bearing device
JP4807775B2 (en) Wheel bearing device
JP4697963B2 (en) Wheel bearing device
JP4998979B2 (en) Wheel bearing device
JP4994713B2 (en) Wheel bearing device
JP2006242257A (en) Bearing device for wheel
JP4321714B2 (en) Wheel bearing device
JP5024850B2 (en) Wheel bearing device
JP4780707B2 (en) Wheel bearing device
JP2006052752A (en) Bearing unit for wheel
JP2006046401A (en) Bearing device for wheel
JP2009255644A (en) Wheel bearing device
JP5236097B2 (en) Wheel bearing device
JP5000206B2 (en) Wheel bearing device
JP2009293731A (en) Bearing device for wheel
JP4998978B2 (en) Wheel bearing device
JP4034799B2 (en) Wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250