JP2010013411A - Anti-inflammatory agent - Google Patents

Anti-inflammatory agent Download PDF

Info

Publication number
JP2010013411A
JP2010013411A JP2008176397A JP2008176397A JP2010013411A JP 2010013411 A JP2010013411 A JP 2010013411A JP 2008176397 A JP2008176397 A JP 2008176397A JP 2008176397 A JP2008176397 A JP 2008176397A JP 2010013411 A JP2010013411 A JP 2010013411A
Authority
JP
Japan
Prior art keywords
ahpp
sma
formula
amino
hydroxypyrazolo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176397A
Other languages
Japanese (ja)
Inventor
Hiroshi Maeda
浩 前田
Gun Kata
軍 方
Takahiro Seki
孝弘 関
Gahinashi Barate
ガヒナシ バラテ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008176397A priority Critical patent/JP2010013411A/en
Publication of JP2010013411A publication Critical patent/JP2010013411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anti-inflammatory agent which can efficiently suppress inflammation and is highly safe with little side effect. <P>SOLUTION: The anti-inflammatory agent contains 4-amino-6-hydroxypyrazolo(3,4-d)pyrimidine, its pharmaceutically acceptable salt, its derivative, or a micelle containing 4-amino-6-hydroxypyrazolo(3,4-d)pyrimidine. Combining 4-amino-6-hydroxypyrazolo(3,4-d)pyrimidine with a polymer such as a styrene-maleic acid copolymer, PEG, polyacrylic acid, and polyvinylacetic acid improves water solubility and retention in blood and allows the resulting anti-inflammatory agent to be more efficiently accumulated in a focus to thereby reduce side effect. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンの水可溶性医薬製剤に係り、詳しくは、抗炎症剤に関する。   The present invention relates to a water-soluble pharmaceutical preparation of 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine, and particularly relates to an anti-inflammatory agent.

組織が損傷を受けると、損傷箇所の血管内皮細胞でプロスタグランジンや炎症性サイトカインが産生される。プロスタグランジンや炎症性サイトカインは、発熱、血管拡張、血管透過性の亢進、白血球の走化性亢進、白血球や血管内皮細胞の活性化、活性化白血球の血管内皮細胞への粘着や浸潤など、様々な生理作用を示す。そしてさらに、活性化した白血球からもプロスタグランジンやロイコトリエンなどが産生され、炎症反応は加速される。走化性の亢進した白血球は、血管内皮細胞の結合部から血管外の炎症部位へ浸潤し、そこで感染防御のために微生物、病原体や不要物質の貪食を行う。その結果、病原体や抗原など有害な不要物質が減少して組織細胞が増殖することで治癒に至る。しかし、白血球の浸潤が持続すると、逆に更なる組織損傷が起きてしまい、炎症が慢性化してしまう。
このような、炎症反応を抑える抗炎症剤としては、従来からステロイド系抗炎症剤や非ステロイド系抗炎症剤、例えばシクロオキシゲナーゼ(以下、COXと記載することもある)阻害剤などが使用されている。非ステロイド系抗炎症剤としては、アスピリン、サリチル酸やインドメタシン等が挙げられる。これらの抗炎症剤は、プロスタグランジンの生合成につながるアラキドン酸カスケードでのCOXとアラキドン酸との結合を阻害することにより、抗炎症活性を示す。このように、ステロイド系抗炎症剤や非ステロイド系抗炎症剤は、シクロオキシゲナーゼ活性を阻害することにより、患部での炎症や痛みは抑えることができる。しかし、反面、COX活性が阻害されることにより、胃や肝臓では血流が減少してしまい、胃潰瘍や腎機能に悪い影響を及ぼすことが指摘されている。
When the tissue is damaged, prostaglandins and inflammatory cytokines are produced in the vascular endothelial cells at the damaged site. Prostaglandins and pro-inflammatory cytokines include fever, vasodilation, increased vascular permeability, leukocyte chemotaxis, leukocyte and vascular endothelial cell activation, activated leukocyte adhesion and invasion to vascular endothelial cells, Shows various physiological effects. Furthermore, prostaglandins and leukotrienes are produced from activated leukocytes, and the inflammatory reaction is accelerated. Leukocytes with enhanced chemotaxis infiltrate inflammatory sites outside the blood vessels from the junctions of vascular endothelial cells, where they phagocytose microorganisms, pathogens and unwanted substances to protect against infection. As a result, harmful unnecessary substances such as pathogens and antigens are reduced and tissue cells proliferate, leading to healing. However, if the infiltration of leukocytes continues, on the contrary, further tissue damage occurs and inflammation becomes chronic.
As such anti-inflammatory agents that suppress inflammatory reactions, steroidal anti-inflammatory agents and non-steroidal anti-inflammatory agents such as cyclooxygenase (hereinafter sometimes referred to as COX) inhibitors have been used. . Non-steroidal anti-inflammatory agents include aspirin, salicylic acid and indomethacin. These anti-inflammatory agents exhibit anti-inflammatory activity by inhibiting the binding of COX and arachidonic acid in the arachidonic acid cascade leading to prostaglandin biosynthesis. Thus, steroidal anti-inflammatory agents and non-steroidal anti-inflammatory agents can suppress inflammation and pain in the affected area by inhibiting cyclooxygenase activity. On the other hand, it has been pointed out that inhibition of COX activity reduces blood flow in the stomach and liver, which adversely affects gastric ulcers and renal function.

また、4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジン(以下、AHPPと記載することもある)の活性に関しては、血圧降下作用を有することが当発明者らの特許文献1に開示されている。しかし、AHPPは、水不溶性であるため、水可溶性とする必要があり、これまで、AHPPを水可溶性にした血圧降下製剤は得られていない。
特開平9−118622号公報 T. Oda et al, Science, 244, 974−976(1989) T. Akaike et al, J. Clin. Invest., 85,739−745 (1990) T. Akaike et al, PNAS., 93, 2448−2453(1996) Y.Matsumura, and H.Maeda, Cancer Res., 46, 6387−6392, (1986)
In addition, regarding the activity of 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine (hereinafter sometimes referred to as AHPP), the inventors have a blood pressure lowering action. Is disclosed. However, since AHPP is insoluble in water, it is necessary to make it water-soluble. So far, no blood pressure-lowering preparation in which AHPP is water-soluble has been obtained.
JP-A-9-118622 T. T. Oda et al, Science, 244, 974-976 (1989) T. T. Akaike et al, J.A. Clin. Invest. , 85, 739-745 (1990) T. T. Akaike et al, PNAS. , 93, 2448-2453 (1996) Y. Matsumura, and H.M. Maeda, Cancer Res. , 46, 6387-6392, (1986)

本発明は、炎症を効率的に抑制でき、且つ副作用を示さず、安全性の高い抗炎症剤を提供することを目的とする。
さらに、また本発明は、水可溶性のキサンチンオキシダーゼ(以下、XOと記載することもある)の阻害能を有するAHPP製剤を提供することを目的とする。水可溶性のAHPP製剤は、活性酸素であるスーパーオキサイド(以下、O -と記載することもある)の生成を抑え、従ってそのO -による一酸化窒素(以下、NOと記載することもある)の消費を抑え、逆に消費されないNOによりその濃度が上昇することにより血圧降下製剤や、さらにまたO -とNOより生じる起炎症性のパーオキシナイトライト(ONOO-)を抑え、従って抗炎症剤として使用することができる。
An object of the present invention is to provide a highly safe anti-inflammatory agent that can efficiently suppress inflammation and that exhibits no side effects.
Furthermore, another object of the present invention is to provide an AHPP preparation having the ability to inhibit water-soluble xanthine oxidase (hereinafter sometimes referred to as XO). The water-soluble AHPP preparation suppresses the generation of superoxide (hereinafter also referred to as O 2 ), which is an active oxygen, and therefore may be described as nitric oxide (hereinafter referred to as NO) due to the O 2 −. ), And conversely, by increasing the concentration of NO that is not consumed, antihypertensive preparations and, furthermore, proinflammatory peroxynitrite (ONOO ) produced from O 2 and NO are suppressed, and thus anti- Can be used as an inflammatory agent.

本発明者らは、これまでにインフルエンザの増悪化のメカニズムにO -やNOが深く関与することを解明した(非特許文献1〜3)。
さらに、O -がXOにより生成されていることも明らかにしている。O -は、NO、即ち血管内皮由来弛緩因子(endothelial−derived relaxing factor;降圧物質EDRF)と反応しONOO-となり、NOを消費することから、血圧降下作用を有するNOの欠乏により正常な血圧が困難となり、高血圧症を招来すると考えられる。本発明者らはそこで、AHPPによりO -を抑えることによりラットの血圧上昇抑制効果を有することを発見し、特許出願を行っている(特許文献1)。
The present inventors have clarified that O 2 and NO are deeply involved in the mechanism of influenza exacerbation so far (Non-Patent Documents 1 to 3).
Furthermore, it is also clarified that O 2 is produced by XO. O 2 reacts with NO, that is, vascular endothelium-derived relaxing factor (hypertensive substance EDRF) to become ONOO , and consumes NO. Therefore, NO is deficient in blood pressure, resulting in normal blood pressure. It becomes difficult to cause hypertension. Therefore, the present inventors have found that the suppression of O 2 by AHPP has the effect of suppressing the increase in blood pressure of rats, and have filed a patent application (Patent Document 1).

また、本発明者らはO -やONOO-となどの活性酸素分子種は、ウィルス感染や薬物、その他による炎症の原因に深く関わっていることを明らかにしている。そこで、O -の生成を触媒する主要な酵素の一つであるXOに対する阻害剤を投与することにより、XOより生成する活性酸素分子種が関わる炎症を抑制することができると考え、鋭意研究を進め、本発明を完成するに至った。 In addition, the present inventors have clarified that reactive oxygen molecular species such as O 2 and ONOO are deeply involved in the cause of inflammation caused by viral infection, drugs, and the like. Therefore, it is thought that by administering an inhibitor against XO, which is one of the main enzymes that catalyze the production of O 2 , it is possible to suppress inflammation involving active oxygen molecular species produced from XO. The present invention has been completed.

本発明は、4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジン、その薬学的に許容される塩、その誘導体、または4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンを含有するミセル体を活性本体とする抗炎症剤である。
本発明はまた、4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンの誘導体、または4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンを含有するミセル体を含有する医薬製剤である。本発明の医薬製剤は、抗炎症剤や血圧降下剤としXOの酵素活性を抑えることによって得られる薬効をめざして使用することができる。
4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンは、式1で表わされる化合物である。そして、その誘導体は、式2で表される化合物である。式2中、Xは、式3〜式6で表わされる何れか1つの置換基である。
The present invention relates to 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine, pharmaceutically acceptable salts thereof, derivatives thereof, or 4-amino-6-hydroxypyrazolo (3,4-d). ) An anti-inflammatory agent whose active body is a micelle containing pyrimidine.
The present invention also includes a derivative of 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine, or a micelle containing 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine. It is a pharmaceutical preparation. The pharmaceutical preparation of the present invention can be used as an anti-inflammatory agent or antihypertensive agent with the aim of achieving a medicinal effect obtained by suppressing the enzyme activity of XO.
4-Amino-6-hydroxypyrazolo (3,4-d) pyrimidine is a compound represented by Formula 1. The derivative is a compound represented by Formula 2. In Formula 2, X is any one substituent represented by Formula 3 to Formula 6.


なお、ここで、kは3〜200の自然数を表わす。重合度の上限を200としたのは、ミセルの形成がSMAの3本鎖により成っていると考えると、1個の薬剤活性部位(AHPP)に対し、SMAは3倍となり、相対的にAHPPの濃度(含量)が希釈される。従って、高い比活性を維持するためにはSMAの量を相対的に低く抑えた。

Here, k represents a natural number of 3 to 200. The upper limit of the degree of polymerization was set to 200. When the micelle formation was composed of three strands of SMA, the SMA was tripled with respect to one drug active site (AHPP), and the AHPP was relatively high. The concentration (content) of is diluted. Therefore, in order to maintain a high specific activity, the amount of SMA was kept relatively low.


なお、ここで、式中のl(エル)は1〜1000の自然数を表わす。1000以上の場合は、水系での溶解度が低下するため実用性に欠ける。

Here, l in the formula represents a natural number of 1 to 1000. In the case of 1000 or more, the solubility in an aqueous system is lowered, so that practicality is lacking.


なお、ここで、m、nは夫々1〜1000の自然数を表わす。なお、m>nが好ましい。1000以上の場合は、水系での溶解度が低下するため実用性に欠ける。

Here, m and n each represent a natural number of 1 to 1000. Note that m> n is preferable. In the case of 1000 or more, the solubility in an aqueous system is lowered, so that practicality is lacking.

また、4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンを含有するミセル体は、4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンの、スチレンマレイン酸コポリマー(以下、SMAと記載することもある)を用いて非共有結合により形成されるミセル化した製剤である。具体的には、式7で表わされる。これはAHPPとSMAは、非共有結合物(複合体)であることが特徴といえる。   A micelle containing 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine is a styrene maleic acid copolymer of 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine ( Hereinafter, it is a micellized preparation formed by non-covalent bonding using SMA). Specifically, it is expressed by Equation 7. It can be said that this is characterized in that AHPP and SMA are non-covalently bound (complex).


なお、ここで、pは3〜200の自然数を表わす。その重合度の範囲が限られているのは、上記kと同じ理由である。

Here, p represents a natural number of 3 to 200. The range of the degree of polymerization is limited for the same reason as k above.

本発明により、炎症を効率的に抑制でき、且つ副作用の少ない安全性の高い抗炎症剤を提供することが可能となる。本発明の抗炎症剤は、AHPPの水可溶性の誘導体ある。これらの誘導体(剤形)は、溶液中、血中、体内では高分子として挙動しているため、血中投与時の血中滞留性の向上と病巣、即ち、炎症部への指向性が一段と強くなっている。これは、その性状の特性である腫瘍部や炎症部におけるEnhanced Permeability and Retention effect (EPR)効果(非特許文献4)による集積性の向上といえる。即ち、これらの手法により一段と優れた医薬品にすることが可能となった。   According to the present invention, it is possible to provide a highly safe anti-inflammatory agent that can efficiently suppress inflammation and has few side effects. The anti-inflammatory agent of the present invention is a water-soluble derivative of AHPP. Since these derivatives (dosage forms) behave as a polymer in solution, blood, and body, the retention in blood at the time of administration in blood and the directivity to the lesion, i.e., the inflamed area, are further improved. It is getting stronger. This can be said to be an improvement in accumulation property due to the Enhanced Permeability and Retention effect (EPR) effect (Non-patent Document 4) in the tumor part and the inflammatory part, which is a characteristic of the property. In other words, these techniques have made it possible to make pharmaceuticals even better.

AHPPは、公知の化合物であり、3−アミノ−4−シアノピラゾールと尿素との反応により合成することができる。またAHPPの薬学的に許容される誘導体としては、特に、ここに例示するものだけに制限されるものではなく、目的に応じて適宜選択することができ、例えば、アミノ酸(アスパラギン酸、グルタミン酸、コハク酸等)、クエン酸塩、グルコン酸塩、アスコルビン酸塩等の有機酸誘導体、グルコース、マルトース、フルクトース、ソルビトール、キシロース、マンノース等、ε‐カプロラクタム等が挙げられる。
また、AHPP誘導体は、AHPPをSMA、ポリエチレングリコール(以下、PEGと記載することもある)、アクリル酸又はポリビニル酢酸(以下、PVと記載することもある)等の水溶性の低〜高分子残基とアミド結合した化合物である。また、AHPPをSMA、PEG、アクリル酸又はPV、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ヒドロキシプロピルメタアクリレート(HPMA)コポリマー、ジビニルマレイン酸(無水)コポリマー(ピランコポリマー)等を用い、非共有結合により形成されるミセル化した製剤である。
AHPPは水不溶性物質であるが、水溶性高分子あるいは重合度の低いPEGなどと結合あるいはミセル化することにより、水可溶性となるばかりでなく高分子化によって一段と優れた医薬品となる。
AHPP is a known compound and can be synthesized by the reaction of 3-amino-4-cyanopyrazole and urea. Further, the pharmaceutically acceptable derivatives of AHPP are not particularly limited to those exemplified here, and can be appropriately selected depending on the purpose. For example, amino acids (aspartic acid, glutamic acid, succinic acid, etc.) Acid), organic acid derivatives such as citrate, gluconate, and ascorbate, glucose, maltose, fructose, sorbitol, xylose, mannose, and ε-caprolactam.
The AHPP derivative is a water-soluble low to high polymer residue such as AHPP, such as SMA, polyethylene glycol (hereinafter sometimes referred to as PEG), acrylic acid or polyvinyl acetic acid (hereinafter sometimes referred to as PV). A compound in which an amide bond is formed with a group. In addition, AHPP using SMA, PEG, acrylic acid or PV, polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), hydroxypropyl methacrylate (HPMA) copolymer, divinylmaleic acid (anhydrous) copolymer (pyran copolymer), etc. It is a micellized formulation formed by covalent bonding.
AHPP is a water-insoluble substance, but not only becomes water-soluble but also becomes a more excellent pharmaceutical product by being polymerized by binding or micellizing with a water-soluble polymer or PEG having a low polymerization degree.

本発明の抗炎症剤の投与形態は、経口投与剤又は注射剤あるいは座薬のいずれでもよい。経口での投与量は患者の年齢、体重、疾患の程度に応じて調節すればよく、例えば、成人一人当たり100〜9000mgを1日1回ないし数回に分けて投与するのが好ましい。注射剤は、静脈内投与とするのが好ましく、点滴等により静脈内へ投与してもよい。注射の場合、AHPP含有量は3〜500mg/kgの範囲が好ましい。
以下に実施例に基づき本発明を説明する。
The administration form of the anti-inflammatory agent of the present invention may be an oral administration agent, an injection, or a suppository. The oral dose may be adjusted according to the age, weight, and degree of disease of the patient. For example, 100 to 9000 mg per adult is preferably administered once to several times a day. The injection is preferably administered intravenously, and may be administered intravenously by infusion or the like. In the case of injection, the AHPP content is preferably in the range of 3 to 500 mg / kg.
The present invention will be described below based on examples.

SMA−AHPPを図1に示すスキームで合成した。
36.3mgのAHPP(分子量151.1、微粉末状、和光純薬、大阪)に5.0mlの0.1M NaOHまたは0.1M KOHを加えて溶解させ、7.3mg/ml(48mM)のアルカリ溶液を調製した。得られたAHPP溶液に、撹拌下で約2倍のモル量(分子量を1200と仮定)の576mg(96mM)のSMA無水物(微粉末状)を約50mgずつ数時間にわたりゆっくり加え、反応させた。SMA無水物を完全に加えた後、撹拌させながらさらに6時間反応させた。反応液を、0.1M HClによりpH9.0に調整し、さらに暗所で24時間反応させた。24時間後、0.1M HClを添加し、pH6.0以下で沈澱させ分別取得した。ついで、冷却した0.01M HClと0.1M酢酸の弱酸性水溶液を加え懸濁液となし、遠心沈澱により洗浄した。次いで、得られた沈澱物を5mlの0.1M NaCOで再溶解させ、100mlに希釈しpH9.5付近の溶液となし、分子量3000の分子ふるい膜を用い、Laboscale TFF system(Millipore, Billerica, MA)により加圧下で、低分子を除きつつ濃縮・洗浄した。さらに、濃縮した溶液に0.01M NaCO/NaHCO(pH 9.0)を加え、希釈し、上記システムを用いて、濃縮・洗浄を再度繰り返した。濃縮した高分子分画の溶液を凍結乾燥した。凍結乾燥物を0.1M NaCOに溶かし、Sephadex G−100ゲル(GE Healthcare, Uppsala, Sweden)カラムクロマトグラフィー[size: 35cm(h)×2.5cm(d)]により精製した。また、AHPPは260nmの吸収で検出した。
SMA-AHPP was synthesized according to the scheme shown in FIG.
To 36.3 mg of AHPP (molecular weight 151.1, fine powder, Wako Pure Chemicals, Osaka), 5.0 ml of 0.1 M NaOH or 0.1 M KOH was added and dissolved to obtain 7.3 mg / ml (48 mM). An alkaline solution was prepared. To the resulting AHPP solution, about 50-fold molar amount (assuming the molecular weight is assumed to be 1200) of 576 mg (96 mM) of SMA anhydride (fine powder form) was slowly added over about several hours over several hours with stirring. . After the SMA anhydride was completely added, the mixture was further reacted for 6 hours with stirring. The reaction solution was adjusted to pH 9.0 with 0.1M HCl and further reacted in the dark for 24 hours. After 24 hours, 0.1M HCl was added, and the mixture was precipitated at pH 6.0 or lower and obtained separately. Next, a cooled 0.01 M HCl and 0.1 M acetic acid weakly acidic aqueous solution was added to form a suspension, which was washed by centrifugal precipitation. The resulting precipitate was then redissolved with 5 ml of 0.1 M Na 2 CO 3 , diluted to 100 ml to make a solution around pH 9.5, and using a molecular sieve membrane with a molecular weight of 3000, a Laboscale TFF system (Millipore, Millipore, Billerica, MA) was concentrated and washed under pressure while removing low molecules. Further, 0.01 M Na 2 CO 3 / NaHCO 3 (pH 9.0) was added to the concentrated solution, diluted, and concentration and washing were repeated again using the above system. The concentrated polymer fraction solution was lyophilized. The lyophilizate was dissolved in 0.1 M Na 2 CO 3 and purified by Sephadex G-100 gel (GE Healthcare, Uppsala, Sweden) column chromatography [size: 35 cm (h) × 2.5 cm (d)]. AHPP was detected by absorption at 260 nm.

牛乳由来のXOによるO の生成に対するSMA−AHPPの阻害活性は、10μMのルシゲニン、10μMのキサンチン、10、100μMのAHPPまたは10〜5000μMのSMA−AHPPを含む10mMのリン酸緩衝液(pH7.4)に20mU/mlになるようにXOを添加し、化学発光を測定した(マルチプレートリーダーMTP−700CL,CoronaCo.Ltd.,Ibaraki,Japan)。また、XOの酵素活性に対するSMA−AHPPの阻害活性は、基質のキサンチンを2、5、10、20μMの濃度に対し、SMA−AHPPを22、44及び132μMの含む10mMのリン酸緩衝液(pH7.4)中で反応させた。酵素のXOは、3.33mU/mlになるように添加して撹拌し、生成する尿酸は290nmの吸収で測定(可視紫外分光光度計modelUV/Vis−550,JASCOCorp,Japan)して阻害活性定数(Ki)を求めた。 O 2 by XO-derived milk - the inhibitory activity of SMA-AHPP on the production of, 10 [mu] M lucigenin, xanthine 10 [mu] M, 10 mM phosphate buffer containing SMA-AHPP of AHPP or 10~5000μM of 10, 100 (pH 7 X.4) was added to 20 mU / ml and chemiluminescence was measured (multiplate reader MTP-700CL, CoronaCo. Ltd., Ibaraki, Japan). In addition, the inhibitory activity of SMA-AHPP on the enzyme activity of XO is 10 mM phosphate buffer solution (pH 7) containing SMA-AHPP at 22, 44 and 132 μM with respect to the concentration of substrate xanthine of 2, 5, 10, 20 μM. 4) The reaction was carried out in Enzyme XO was added to 3.33 mU / ml and stirred, and the uric acid produced was measured by absorption at 290 nm (visible ultraviolet spectrophotometer model UV / Vis-550, JASCO Corp, Japan). (Ki) was determined.

SMA−AHPP結合物のFT−IRスペクトラムは図2に示すとおり、1375及び1397cm−1(カルボン酸のC−O−Hに由来)、1477及び1570cm−1(N−H)、1638cm−1(C=O伸縮)、3350−3500cm−1付近(O−H伸縮)の吸収ピークが観察された。
また、元素分析の結果から、SMA−AHPPには、SMAにはないN(AHPP由来)が2.86%含まれていた。このことから、AHPPは、SMA鎖(重合度6)1本に対し、1個結合していると考えられた。
また、図3にAHPPとSMA−AHPPのXO酵素活性の阻害活性を示した。SMA−AHPPのKiは0.25μMであり、AHPPは0.17μMとほぼ同様の強い阻害活性を示した。また、図4にAHPPとSMA−AHPPのXOによるO の生成阻害活性を示した。図4に示すとおり、XOによるO の生成の阻害も濃度依存的に抑制した。なお、測定は前述した方法に準じて行った。
As shown in FIG. 2, the FT-IR spectrum of the SMA-AHPP conjugate is 1375 and 1397 cm −1 (derived from C—O—H of carboxylic acid), 1477 and 1570 cm −1 (N—H), 1638 cm −1 ( Absorption peaks around 3350-3500 cm −1 (O—H stretch) were observed.
From the results of elemental analysis, SMA-AHPP contained 2.86% of N (derived from AHPP) that was not found in SMA. From this, it was considered that one AHPP was bonded to one SMA chain (degree of polymerization 6).
FIG. 3 shows the inhibitory activity of the AOPP and SMA-AHPP XO enzyme activities. The Ki of SMA-AHPP was 0.25 μM, and AHPP showed a strong inhibitory activity almost the same as 0.17 μM. FIG. 4 shows the activity of inhibiting O 2 production by XO of AHPP and SMA-AHPP. As shown in FIG. 4, the inhibition of O 2 production by XO was also suppressed in a concentration-dependent manner. The measurement was performed according to the method described above.

SMA−AHPPの虚血再灌流による肝障害に対する防御作用を調べた。
6週令の雄性Wisterラット(平均体重約250gで1群約5匹、九動、熊本)を1週間予備飼育後に実験に供した。ラットは試験を行う9時間前に絶食させた後、SMA−AHPPを各ラット当たり0.5ml中に6、10及び20mg/kgになるように生理食塩水に溶かし尾静脈より投与した。2時間後、ラットを麻酔下で開腹し、門脈をクリップで30分間結紮し阻血した後、クリップを門脈よりはずし、再灌流(Ischemia reperfusion, I/R)させ開腹部を糸で縫合した。3時間後ラットをエーテル麻酔下に屠殺し、血液を採取し、肝障害の指標として血漿中の乳酸脱水素酵素(lactate dehydrogenase, LDH)、アラニンアミノ基転移酵素(alanine aminotransferase, AST)及びアスパラギン酸基転移酵(aspartate aminotransferase, ALT)を測定した(N.Ikebe et al,J.Pharm.Exp.Ther.,295 904−911(2000))。また、肝臓は、病理組織学的観察を行うために、組織の一部を10%ホルマリンで固定し、さらにそのパラフィンブロックを作りその5〜10μm切片をヘマトキシリンエオシンで染色後、顕微鏡観察により肝臓傷害を観察した。さらに、肝臓の過酸化度は、肝ホモジネートを作成し、チオバルビツール(TBA)法(J.Fung et al,Cancer Res.,62 3138−3143(2002))により肝臓中の過酸化物の生成も測定した。
The protective effect of SMA-AHPP against liver damage caused by ischemia-reperfusion was examined.
Six-week-old male Wistar rats (average weight of about 250 g, about 5 mice per group, Kudo, Kumamoto) were subjected to the experiment after preliminary breeding for 1 week. Rats were fasted 9 hours before the test, and SMA-AHPP was dissolved in physiological saline at 0.5, 10 and 20 mg / kg per rat and administered from the tail vein. Two hours later, the rat was laparotomized under anesthesia, the portal vein was ligated with a clip for 30 minutes for ischemia, the clip was removed from the portal vein, reperfusion (Ischemia reperfusion, I / R) was performed, and the laparotomy was sutured with a thread. . Three hours later, the rats were sacrificed under ether anesthesia, blood was collected, and lactate dehydrogenase (LDH), alanine aminotransferase (AST) and aspartic acid in plasma were used as indicators of liver damage. Aspartate aminotransferase (ALT) was measured (N. Ikebe et al, J. Pharm. Exp. Ther., 295 904-911 (2000)). In addition, in order to observe histopathologically, the liver was partially fixed with 10% formalin, and the paraffin block was prepared, and the 5-10 μm section was stained with hematoxylin eosin, followed by microscopic observation. Was observed. Furthermore, the degree of liver peroxidation was determined by preparing liver homogenate and generating peroxide in the liver by the thiobarbitur (TBA) method (J. Fung et al, Cancer Res., 62 3138-3143 (2002)). Was also measured.

図5に示すように、I/R処置ラットにおける血中の肝障害の指標となる酵素LDHはSMA−AHPPの投与により、コントロール(SMA−AHPP投与なし)と比較して濃度依存的に有意に血清中のLDHの増加を抑制した。
図6は、SMA−AHPPによるALT及びASTの変化を示すグラフである。LDHと同様に、SMA−AHPPはALT及びASTの増加を濃度依存的に有意に抑制した。また、図7にI/R処置ラット肝臓中の過酸化物の生成量を示す。I/R処置ラット肝臓中の過酸化物の生成もSMA−AHPPの投与により有意に抑制されている。以上のように、SMA−AHPPはI/Rに起因するXOの活性化によるO -の生成を抑え、肝障害を抑えることが明らかである。
As shown in FIG. 5, the enzyme LDH, which is an indicator of hepatic damage in blood in I / R-treated rats, was significantly increased in a concentration-dependent manner by administration of SMA-AHPP compared to control (no SMA-AHPP administration). The increase of serum LDH was suppressed.
FIG. 6 is a graph showing changes in ALT and AST by SMA-AHPP. Similar to LDH, SMA-AHPP significantly suppressed ALT and AST increases in a concentration-dependent manner. FIG. 7 shows the amount of peroxide produced in the I / R-treated rat liver. Production of peroxide in the liver of I / R-treated rats is also significantly suppressed by administration of SMA-AHPP. As described above, it is clear that SMA-AHPP suppresses the production of O 2 due to the activation of XO caused by I / R and suppresses liver damage.

SMA−AHPPのデキストラン硫酸ナトリウム塩(DSS、MP Biomedicals,LLC、CA、USA)により惹起した大腸炎に対する治療効果を調査した。DSSは蒸留水に2%溶かして、一週間連日飲用水として与えた。
5週令の雄性ICR(平均体重約25g)マウスを1週間予備飼育し、体重を測定し、
(a)正常群(DSS投与なし)、
(b)コントロール大腸炎群(DSS投与し1日後からのSMA−AHPP投与なし)、
(c)治療群(DSS投与し1日後より、100mg/kg SMA−AHPPの経口投与群)、及び
(d)治療群(DSS投与し1日後より、30mg/kg SMA−AHPPの静脈投与群3日間連日)の4群を設けた。
正常群以外の(b)、(c)、(d)の3群に、7日間の2%DSSの飲水投与を開始した。DSSの投与開始から1日後に(c)に100mg/kgでSMA−AHPPをゾンデにより経口投与した。また、(d)に30mg/kgでSMA−AHPPを尾静脈より3日間連日で投与した。
7日後、すべてのマウスの体重を測定した後、エーテル麻酔により屠殺し、血液、肝臓及び大腸を摘出した。肝臓は重量を、大腸は長さを測定した。また、血清中の炎症性サイトカインであるインターロイキン−12(IL−12)及び腫瘍壊死因子(TNF−α)をMouseTNF−αELISA kit、Total IL−12 Mouse ELISA kit(Pierce Biotechnology, Rockford, IL)を用いてELISA法により測定した。
The therapeutic effect on colitis caused by dextran sulfate sodium salt of SMA-AHPP (DSS, MP Biomedicals, LLC, CA, USA) was investigated. DSS was dissolved as 2% in distilled water and given as drinking water for a week.
5 weeks old male ICR (average weight about 25 g) mice were preliminarily raised for 1 week, and the body weight was measured.
(A) Normal group (no DSS administration),
(B) Control colitis group (DSS administered and no SMA-AHPP administered from 1 day later),
(C) Treatment group (100 mg / kg SMA-AHPP oral administration group from 1 day after DSS administration), and (d) Treatment group (30 mg / kg SMA-AHPP intravenous administration group 3 days after DSS administration) Four groups were established every day.
The administration of 2% DSS for 7 days to 3 groups (b), (c) and (d) other than the normal group was started. One day after the start of DSS administration, SMA-AHPP was orally administered at 100 mg / kg with a sonde in (c). In (d), SMA-AHPP was administered at 30 mg / kg for 3 consecutive days from the tail vein.
Seven days later, all mice were weighed and then sacrificed by ether anesthesia, and blood, liver and large intestine were removed. Liver was measured for weight and large intestine for length. In addition, interleukin-12 (IL-12) and tumor necrosis factor (TNF-α), which are inflammatory cytokines in serum, were used as Mouse TNF-α ELISA kit and Total IL-12 Mouse ELISA kit (Pierce Biotechnology, Rockford, IL). And measured by ELISA.

図8に、2%DSS飲水投与の7日目における各群の体重、肝臓重量及び大腸の長さを示した。データは平均±SD(n=5)で表した。なお、ここで印*:P<0.05、**:P<0.01は、正常群あるいはSMA−AHPPの投与群vs.コントロール大腸炎群を示す。
図8に示すように、(b)コントロール大腸炎群(無治療)は(a)正常群(DSS無処理)と比較して、さらに体重の減少を示した。一方、SMA−AHP投与の治療群の(c)群及び(d)群は(a)と同様に体重の減少は見られなかった。また、肝臓の重量も(c)及び(d)は、(a)と比較して同様に変化はなく、副作用はみとめられなかった。
また、(b)コントロール大腸炎群(無治療)は、(a)正常群(DSS無処理)と比較して有意に大腸の長さの減少を示し、萎縮していた。その際に、(b)コントロール大腸炎群(無治療)は、下痢の発生が顕著に増加していた。一方で、SMA−AHPPの投与による治療群の(c)及び(d)は、(b)と比較して有意な大腸の長さの減少を抑制していた。(c)及び(d)は(a)と比較しても有意な差はなく、大腸の長さの萎縮はなかった。
さらに、SMA−AHPP投与の(c)及び(d)は、下痢の発生を抑制した。
炎症性サイトカインの抑制に関しては図9及び図10に示すように、SMA−AHPP投与群の(c)及び(d)においては、無治療群の(b)と比較して血清中のIL−12及びTNF−αの産生を有意に抑制した。
FIG. 8 shows the body weight, liver weight, and length of the large intestine of each group on the 7th day after administration of 2% DSS drinking water. Data were expressed as mean ± SD (n = 5). Here, the symbols *: P <0.05 and **: P <0.01 indicate the normal group or the SMA-AHPP administration group vs. the control colitis group.
As shown in FIG. 8, (b) the control colitis group (no treatment) further showed a decrease in body weight compared to (a) the normal group (DSS untreated). On the other hand, as for (c) group and (d) group of the treatment group of SMA-AHP administration, the weight loss was not seen like (a). In addition, liver weights (c) and (d) did not change as compared with (a), and no side effects were observed.
In addition, (b) the control colitis group (no treatment) showed a significant decrease in the length of the large intestine compared with (a) the normal group (DSS untreated), and was atrophyed. At that time, the occurrence of diarrhea was significantly increased in the (b) control colitis group (no treatment). On the other hand, (c) and (d) of the treatment group by administration of SMA-AHPP suppressed significant decrease in the length of the large intestine as compared with (b). (C) and (d) were not significantly different from (a), and there was no atrophy of the length of the large intestine.
Furthermore, SMA-AHPP administration (c) and (d) suppressed the occurrence of diarrhea.
Regarding the suppression of inflammatory cytokines, as shown in FIG. 9 and FIG. 10, in the (c) and (d) of the SMA-AHPP administration group, the IL-12 in serum was compared with that in the non-treatment group (b) And production of TNF-α was significantly suppressed.

PEG(2000)−AHPPを図11に示すスキームにより合成した。
AHPPの微粉末100mg(0.7mmol)を0.1M NaOHの15ml中に溶かしたものと1.3gの活性化PEG(分子量2000、NOF製サンブライトMEC−20AS)を20mlのクロロホルムに溶かした溶液を氷上で撹拌下に滴下しながら40分間懸濁状態で加え反応させた。PEGを完全に加えた後もさらに室温下で2時間反応した。二成分よりなる反応溶液に0.1M HClを加えpH1.0に調整した。反応溶液のクロロホルム相を分液ロートにより分取し、無水硫酸ナトリウムを加え乾燥した。その溶液をろ紙によりろ過し、ロータリーエバポレーターを用いて減圧下にクロロホルムを除去し乾燥標品を得た。ついで、この標品を5〜8mlの蒸留水に溶かし上記Sephadex G−100にてゲルクロマトグラフィーを行った。その溶出画分を260nmの吸収により検出し、そのピークを分取し凍結乾燥して純化物を得た。その標品について動的光散乱解析を行った。また、乾燥標品を元素分析、FT−IR、UV吸収スペクトル、動的散乱による粒子サイズの分布の測定及びXOによるO -の産生に対する阻害効果を実施例1と同様に測定した。
PEG (2000) -AHPP was synthesized according to the scheme shown in FIG.
A solution prepared by dissolving 100 mg (0.7 mmol) of fine powder of AHPP in 15 ml of 0.1 M NaOH and 1.3 g of activated PEG (molecular weight 2000, Sunbright MEC-20AS manufactured by NOF) in 20 ml of chloroform. Was added in a suspended state for 40 minutes while stirring dropwise on ice with stirring. After complete addition of PEG, the reaction was further continued at room temperature for 2 hours. The reaction solution consisting of two components was adjusted to pH 1.0 by adding 0.1 M HCl. The chloroform phase of the reaction solution was separated with a separatory funnel, dried over anhydrous sodium sulfate. The solution was filtered with a filter paper, and chloroform was removed under reduced pressure using a rotary evaporator to obtain a dried sample. Subsequently, this sample was dissolved in 5 to 8 ml of distilled water and subjected to gel chromatography using the Sephadex G-100. The eluted fraction was detected by absorption at 260 nm, and the peak was collected and lyophilized to obtain a purified product. The sample was subjected to dynamic light scattering analysis. In addition, the dry sample was measured in the same manner as in Example 1 for elemental analysis, FT-IR, UV absorption spectrum, measurement of particle size distribution by dynamic scattering, and inhibition of O 2 production by XO.

次に、PEG(300)とAHPPとの合成を行った。例を示す。
縮合反応のための活性化エステルの合成は、まず、5.0gのPEG(分子量300、和光純薬、164−09055、Lot No.WKG6642、大阪)と、0.6gのp−ニトロフェニールクロロフーメイトを、50mlのテトラヒドロフラン(THF)に溶かし、さらに、トリエチルアミンを0.29g添加し、24−30時間室温で撹拌下に反応させた。次第にトリエチルアミン塩酸塩が析出し、これをろ過して除いた。この溶液に対し、300mlのエチルエーテルを加え、沈澱を生じさせて沈澱物を得た。このものをさらに冷エチルエーテルにより洗浄した。この沈澱物を再び約50mlのTHFを加え、溶解させ、このTHF溶液にエチルエーテルを加え、両溶媒の混液より、活性化PEG(p−ニトロフェニールクロロフーメイト)の結晶化物を得た。収量はPEGに対し〜80w/w%)であった。この活性化PEGを1.0gとり、20mlのTHFに溶かし、これに0.1M NaOHにより溶かしたAHPP溶液(0.5g/25mlのNaOH)を撹拌下で滴下しながら加え30〜40時間室温で反応させた。このときすべて可溶化している状態である。この反応溶液をロータリーエバポレーターにより濃縮乾固させ、乾燥物を得た。このものをTHFでさらに溶かし、エチルエーテルで沈澱させ、WhatmanのNo.1フィルターでろ過し、沈澱物を分別した。この沈澱物に10mlの蒸留水を加え、溶解し、凍結乾燥により、PEG(300)−AHPPの標品を得た。このもののUV吸収スペクトル及び光動的散乱法により粒子サイズの分布を測定した。
Next, PEG (300) and AHPP were synthesized. An example is shown.
The synthesis of the activated ester for the condensation reaction begins with 5.0 g of PEG (molecular weight 300, Wako Pure Chemicals, 164-09055, Lot No. WKG6642, Osaka) and 0.6 g of p-nitrophenyl chloroform. The mate was dissolved in 50 ml of tetrahydrofuran (THF), 0.29 g of triethylamine was further added, and the mixture was allowed to react with stirring at room temperature for 24-30 hours. Gradually, triethylamine hydrochloride precipitated and was removed by filtration. To this solution, 300 ml of ethyl ether was added to cause precipitation to obtain a precipitate. This was further washed with cold ethyl ether. About 50 ml of THF was again added to dissolve this precipitate, ethyl ether was added to this THF solution, and a crystallized product of activated PEG (p-nitrophenyl chloroformate) was obtained from a mixture of both solvents. The yield was ˜80 w / w% based on PEG. 1.0 g of this activated PEG was taken and dissolved in 20 ml of THF, and an AHPP solution (0.5 g / 25 ml of NaOH) dissolved in 0.1 M NaOH was added dropwise thereto with stirring for 30 to 40 hours at room temperature. Reacted. At this time, all are in a solubilized state. The reaction solution was concentrated to dryness using a rotary evaporator to obtain a dried product. This was further dissolved in THF, precipitated with ethyl ether, Whatman no. The precipitate was separated by filtration through one filter. To this precipitate, 10 ml of distilled water was added, dissolved, and freeze-dried to obtain a PEG (300) -AHPP preparation. The particle size distribution was measured by UV absorption spectrum and photodynamic scattering method.

AHPPの吸収スペクトラムを図12に、PEG(2000)−AHPP、PEG(300)−AHPPの吸収スペクトラムをそれぞれ図13(A)、(B)に示す。図12に示すとおり、AHPPは、222及び270nmで最大吸収を示した。また、図13(A)に示すとおりPEG(2000)−AHPPは230及びAHPPの特徴的な270nmに最大吸収を示した。図13(B)に示すとおりPEG(300)−AHPPは222及びAHPPの特徴的な270nmに最大吸収を示した。   The absorption spectrum of AHPP is shown in FIG. 12, and the absorption spectra of PEG (2000) -AHPP and PEG (300) -AHPP are shown in FIGS. 13A and 13B, respectively. As shown in FIG. 12, AHPP showed maximum absorption at 222 and 270 nm. Further, as shown in FIG. 13A, PEG (2000) -AHPP showed the maximum absorption at 270 nm, which is characteristic of 230 and AHPP. As shown in FIG. 13B, PEG (300) -AHPP showed maximum absorption at 270 nm, which is characteristic of 222 and AHPP.

AHPPのFT−IRスペクトラムを図14に、PEG(2000)−AHPPのFT−IRスペクトラムを図15に示す。図14に示すとおり、PEG(2000)−AHPPは、特徴的な1638cm−1(C=O伸縮)、2850cm−1付近(−OCH)の吸収ピークが観察された。
図16(A)、(B)は、PEG(2000)−AHPPおよびPEG(300)−AHPPの溶液中での動的散乱による粒子サイズの分布の測定の結果を示した。その結果、PEG(2000)−AHPPおよびPEG(300)−AHPPの粒子サイズは、それぞれ平均約287nm、235.5nmであった。このデータは、PEG−AHPP分子が溶液中で会合体を形成していることを証明している。
また、図17に、AHPPとPEG(2000)−AHPPのXOの酵素活性に対する阻害活性を示した。図17に示すとおり、XOの酵素活性に対するPEG(2000)−AHPPの阻害もAHPPとほぼ同程度に抑制した。
FIG. 14 shows the FT-IR spectrum of AHPP, and FIG. 15 shows the FT-IR spectrum of PEG (2000) -AHPP. As shown in FIG. 14, in PEG (2000) -AHPP, characteristic absorption peaks of 1638 cm −1 (C═O stretching) and around 2850 cm −1 (—OCH 3 ) were observed.
FIGS. 16A and 16B show the results of measurement of particle size distribution by dynamic scattering in a solution of PEG (2000) -AHPP and PEG (300) -AHPP. As a result, the average particle sizes of PEG (2000) -AHPP and PEG (300) -AHPP were about 287 nm and 235.5 nm, respectively. This data demonstrates that the PEG-AHPP molecule forms an aggregate in solution.
Moreover, in FIG. 17, the inhibitory activity with respect to the enzyme activity of XO of AHPP and PEG (2000) -AHPP was shown. As shown in FIG. 17, the inhibition of PEG (2000) -AHPP on the enzyme activity of XO was suppressed to almost the same extent as AHPP.

AHPP−アクリレートモノマー結合化合物を図18に示すスキームで合成した。
AHPPの微粉末500mg(3.3mmol)を15mlの0.075M NaOHに溶かしたものと、塩化アクリロイル(アクロイルクロリド)を299mg(3.3mmol)を10mlのクロロホルムに溶かした溶液を、氷上で撹拌下に滴下しながら30分間で加え反応させた。塩化アクリロイルを完全に加えた後もさらに撹拌しながら室温下で30分間反応した。水相反応溶液のクロロホルム相を分液ロートにより除去し、この水溶液を0.1M HClを用いて約pH3.0に調整することで沈澱物が生成する。その沈澱物をろ過により分取し、50mlの0.1M HClで2回洗浄し、50mlのアセトンで2回洗浄し、乾燥した。AHPP−アクリレートモノマーの収量は0.6g(98%)であった。
An AHPP-acrylate monomer-binding compound was synthesized according to the scheme shown in FIG.
A solution of 500 mg (3.3 mmol) of AHPP fine powder dissolved in 15 ml of 0.075 M NaOH and a solution of 299 mg (3.3 mmol) of acryloyl chloride (acryloyl chloride) in 10 ml of chloroform were stirred on ice. It was added and reacted for 30 minutes while dropping. After complete addition of acryloyl chloride, the reaction was continued for 30 minutes at room temperature with further stirring. The chloroform phase of the aqueous phase reaction solution is removed by a separatory funnel, and this aqueous solution is adjusted to about pH 3.0 using 0.1 M HCl to form a precipitate. The precipitate was collected by filtration, washed twice with 50 ml 0.1 M HCl, twice with 50 ml acetone and dried. The yield of AHPP-acrylate monomer was 0.6 g (98%).

AHPP−アクリレートモノマーの吸収スペクトラムを図19に示した。サンプル溶液は1.5mg/mlの0.1M NaOH溶液として測定した。図19に示すとおり、AHPP−アクリレートモノマーは224及び270nmで最大吸収を示した。   The absorption spectrum of the AHPP-acrylate monomer is shown in FIG. The sample solution was measured as a 1.5 mg / ml 0.1 M NaOH solution. As shown in FIG. 19, the AHPP-acrylate monomer showed maximum absorption at 224 and 270 nm.

AHPP−オリゴエチレングリコール(OEG)メタアクリレートコポリマーの合成は図20のスキームのように反応させた。
1.0g 4.0mmol)のオリゴエチレングリコールエチルエステルメタアクリレート(3〜4のエチレングリコールが結合した状態なので、ポリではなくオリゴエチレングリコールとした。平均分子量246, OEG−MA, CatNo.409545、Batch No−02824AH、Aldrich)を20mlのジメチルスルホキシド(以下、DMSOと記載することもある)に溶かした溶液と、0.2gのAHPP−アクリルレートモノマー結合化合物を15mlのDMSOに溶かした溶液を、重合開始剤である2,2’−azobis[2−methylpropanenitrile]を2.0mg加え65℃で24時間反応させた。その反応溶液をロータリーエバポレーターにより濃縮乾固し、乾燥物をジエチルエーテルで3回洗浄し精製した。この標品を上記と同様に蒸留水にとかしSephadex G−100にてゲルクロマトグラフィーを行った。その溶出画分は260nmの吸収により検出し、そのピークを分取して凍結乾燥し純化物を得た。AHPP−OEGメタアクリレートコポリマーの収量は0.95g(79%)であった。
The synthesis of AHPP-oligoethylene glycol (OEG) methacrylate copolymer was reacted as in the scheme of FIG.
1.0 g (4.0 mmol) of oligoethylene glycol ethyl ester methacrylate (3-4 ethylene glycol was bonded, so that it was not poly but oligoethylene glycol. Average molecular weight 246, OEG-MA, Cat No. 409545, Batch No-02824AH (Aldrich) was dissolved in 20 ml of dimethyl sulfoxide (hereinafter sometimes referred to as DMSO), and 0.2 g of AHPP-acrylate monomer-binding compound was dissolved in 15 ml of DMSO. 2.0 mg of 2,2′-azobis [2-methylpropanenitrile] as an initiator was added and reacted at 65 ° C. for 24 hours. The reaction solution was concentrated to dryness by a rotary evaporator, and the dried product was washed with diethyl ether three times and purified. This sample was dissolved in distilled water in the same manner as described above and subjected to gel chromatography using Sephadex G-100. The eluted fraction was detected by absorption at 260 nm, and the peak was collected and lyophilized to obtain a purified product. The yield of AHPP-OEG methacrylate copolymer was 0.95 g (79%).

図21にAHPP−OEGメタアクリレートポリマーの吸収スペクトルを示す。
図21に示すとおり、AHPP−OEGメタアクリレートポリマーは230及び270nmの最大吸収を示した。また、AHPP−OEGメタアクリレートコポリマーのFT−IRスペクトラムを図22に示した。図22に示すとおり、AHPP−OEGメタアクリレートポリマーは1650cm−1付近にピーク(アミドのC=O伸縮)が観察された。
FIG. 21 shows an absorption spectrum of the AHPP-OEG methacrylate polymer.
As shown in FIG. 21, the AHPP-OEG methacrylate polymer showed maximum absorption at 230 and 270 nm. Further, the FT-IR spectrum of the AHPP-OEG methacrylate copolymer is shown in FIG. As shown in FIG. 22, in the AHPP-OEG methacrylate polymer, a peak (C═O stretching of amide) was observed in the vicinity of 1650 cm −1 .

AHPP−OEGメタアクリレートポリマーの分子量をSephadex G−100ゲル(GE Healthcare)クロマトグラフィー[size:35cm(h) × 2.5cm (d)]により、human immunoglobulin IgG(155kDa)、bovine serum albumin(67kDa)、ovalbumin(43kDa)、lysozyme(14kDa)、phenolred(0.3kDa)を分子量マーカーとして用いて、見かけ上の溶液状態での分子量を推定した。結果を図23に示した。AHPP−OEGメタアクリレートポリマーは見かけ上99kDaの分子量を示した。
得られたAHPP−OEGメタアクリレートコポリマーはXOの酵素活性の阻害を実施例1と同様に測定したところ、AHPPとほぼ同程度にXOの酵素活性を阻害した。結果を図24に示す。
The molecular weight of the AHPP-OEG methacrylate polymer was determined by separating human immunoglobulin IgG (155 kDa), bovine serum albumin (67 kDa) by Sephadex G-100 gel (GE Healthcare) chromatography [size: 35 cm (h) × 2.5 cm (d)]. , Ovalbumin (43 kDa), lysozyme (14 kDa), and phenolred (0.3 kDa) were used as molecular weight markers, and the molecular weight in the apparent solution state was estimated. The results are shown in FIG. The AHPP-OEG methacrylate polymer apparently showed a molecular weight of 99 kDa.
When the inhibition of XO enzyme activity was measured in the same manner as in Example 1, the obtained AHPP-OEG methacrylate copolymer inhibited XO enzyme activity to the same extent as AHPP. The results are shown in FIG.

AHPPのSMAによるミセル化物(SMA−AHPPミセル化包摂物ともいう)を調製した。
SMA無水物(200mg)を0.1M NaOHまたは0.1M KOHを加え、50〜60℃の保温下にスターラーにより撹拌させ、SMA無水物の加水分解反応を約12時間かけて進行させ、ついで、このSMA加水分解を行った。反応溶液に、撹拌下に0.1M HClを滴下し、SMA加水分解物を沈澱させた。得られた沈殿物をガラスろ過フィルター(2〜4μm)を通して分取し、さらに冷0.001MHClで洗浄後凍結乾燥し、SMA加水分解物を調製した。
SMAとは別に、AHPP(微粉末状)378mgを50mlの0.1M NaOHに加え、37〜40℃撹拌下に一夜放置し、AHPPの飽和溶液を調製した。このAHPPの飽和溶液をPTFEフィルター(0.45μm、Toyo Roshi Kaisha, Ltd, Tokyo, Japan)でろ過し、SMA加水分解物576mgを10mlの0.01M NaCO/NaHCO(pH9.0)で溶解したものを、ゆっくりと室温下にスターラーで撹拌しながら滴下した。SMA加水分解溶液を完全に加えた後、さらに撹拌させながら、5時間反応させた。撹拌下、生成した水可溶性のミセルに0.01M HClを加えpHを4.0とし、生じた沈澱物を遠心分離し、もう一度、冷0.001M HClで洗浄した。次に0.1M NaHCOを加え再溶解させた後、分子量1000〜10000の分子ふるい膜を用いて実施例1に準じて濃縮し、凍結乾燥物を得た。この凍結乾燥物を0.1M NaCOに溶かしSephadex G−100ゲル(GE Healthcare)クロマトグラフィー[size:35cm(h) × 2.5cm (d)]により単一ピークとして精製した。また、AHPPは260nmの吸収で検出した。推定されるミセル化会合/包摂物を図25に示す。
A micelle of AHPP by SMA (also referred to as SMA-AHPP micelle inclusion) was prepared.
SMA anhydride (200 mg) was added with 0.1 M NaOH or 0.1 M KOH, and stirred with a stirrer while maintaining a temperature of 50 to 60 ° C., and the hydrolysis reaction of SMA anhydride was allowed to proceed over about 12 hours, This SMA hydrolysis was performed. To the reaction solution, 0.1M HCl was added dropwise with stirring to precipitate the SMA hydrolyzate. The resulting precipitate was collected through a glass filtration filter (2 to 4 μm), further washed with cold 0.001 M HCl and lyophilized to prepare an SMA hydrolyzate.
Separately from SMA, 378 mg of AHPP (fine powder) was added to 50 ml of 0.1 M NaOH and allowed to stand overnight at 37-40 ° C. to prepare a saturated solution of AHPP. The saturated solution of AHPP was filtered through a PTFE filter (0.45 μm, Toyo Roshi Kaisha, Ltd, Tokyo, Japan), and 576 mg of SMA hydrolyzate was added to 10 ml of 0.01 M Na 2 CO 3 / NaHCO 3 (pH 9.0). The solution dissolved in was slowly added dropwise with stirring with a stirrer at room temperature. After complete addition of the SMA hydrolysis solution, the reaction was allowed to proceed for 5 hours with further stirring. Under stirring, 0.01 M HCl was added to the resulting water-soluble micelle to adjust the pH to 4.0, and the resulting precipitate was centrifuged and washed once more with cold 0.001 M HCl. Next, 0.1 M NaHCO 3 was added and redissolved, and then concentrated according to Example 1 using a molecular sieve membrane having a molecular weight of 1000 to 10,000 to obtain a lyophilized product. This lyophilizate was dissolved in 0.1 M Na 2 CO 3 and purified as a single peak by Sephadex G-100 gel (GE Healthcare) chromatography [size: 35 cm (h) × 2.5 cm (d)]. AHPP was detected by absorption at 260 nm. Estimated micellar association / inclusion is shown in FIG.

SMA−AHPPを各ラット当たり0.5ml中に15及び30mg/kg(AHPP換算)になるように生理食塩水に溶解し、自然高血圧ラット(spontaneoushypertensive rat, SHR、平均体重約300g、1群3−4匹)に尾静脈より投与した。また、もう1群には100mg/kgラット(AHPP換算)のSMA−AHPPをSHRにゾンデにより経口投与した。投与してから3時間後に無加温型非観血式血圧計(ModelMK−2000MT、室町機器)を用いて血圧の変動を測定した。   SMA-AHPP was dissolved in physiological saline so as to be 15 and 30 mg / kg (converted to AHPP) in 0.5 ml per rat, and spontaneously hypertensive rats (spontaneous hypertensive rat, SHR, average body weight of about 300 g, 1 group 3- 4 animals) were administered via the tail vein. In another group, 100 mg / kg rat (AHPP equivalent) of SMA-AHPP was orally administered to the SHR with a sonde. Three hours after administration, blood pressure fluctuations were measured using an unheated non-invasive blood pressure monitor (Model MK-2000MT, Muromachi Kikai).

図26にSMA−AHPPの尾静脈投与の結果を示す。SMA−AHPPの15及び30mg/kgを1回尾静脈投与後、24時間にわたり観察したところ、SMA−AHPP投与群はコントロール群と比較して血圧降下作用(抗高血圧作用)を示した。30mg/kgのSMA−AHPPの静脈投与ではSHR高血圧ラットの無治療コントロール群の血圧の約75%(−25%低下)にまで有意に抑制した。この作用は、1回の投与により、24時間以上にわたり降圧作用を持続した。図中◆プロットは、コントロール、■プロットは30mg/kg、▲プロットは30mg/kgの投与量を示す。
さらに重要なことに、図27に示すように、100mg/kgのSMA−AHPPの経口投与では、投与24時間後に血圧のもとの値より20mmHg低値と有意に血圧を減少させ、さらに48時間後まで有意に低い血圧を維持した。しかし、その後は緩やかな上昇を示しつつも、72時間後に二回目の治療をした結果、216時間後までコントロール群と比較して、有意に降圧作用を示した(P<0.01)。図中▲プロットはコントロール、●プロットは100mg/kgのSMA−AHPP投与量を示す。
FIG. 26 shows the results of tail vein administration of SMA-AHPP. When SMA-AHPP 15 and 30 mg / kg were observed over 24 hours after the tail vein administration, the SMA-AHPP administration group showed a blood pressure lowering effect (antihypertensive effect) compared to the control group. Intravenous administration of SMA-AHPP at 30 mg / kg significantly suppressed the blood pressure in the untreated control group of SHR hypertensive rats to about 75% (−25% reduction). This action sustained the antihypertensive effect for 24 hours or more by a single administration. In the figure, the ◆ plot indicates the control, the ■ plot indicates 30 mg / kg, and the ▲ plot indicates 30 mg / kg.
More importantly, as shown in FIG. 27, oral administration of 100 mg / kg SMA-AHPP significantly reduced the blood pressure by 20 mmHg lower than the original value of blood pressure 24 hours after administration, and further increased for 48 hours. Significantly lower blood pressure was maintained until later. However, after that, while showing a gradual increase, the second treatment after 72 hours showed a significant antihypertensive effect as compared with the control group until 216 hours (P <0.01). In the figure, the ▲ plot represents the control, and the ● plot represents the SMA-AHPP dose of 100 mg / kg.

本発明にかかるSMA−AHPPの合成スキームを示す。The synthesis scheme of SMA-AHPP concerning this invention is shown. SMAとSMA−AHPPのFT−IRスペクトラムを示す。The FT-IR spectrum of SMA and SMA-AHPP is shown. XO酵素の活性に対するAHPPとSMA−AHPPの阻害活性を示す。The inhibitory activity of AHPP and SMA-AHPP on the activity of XO enzyme is shown. AHPPとSMA−AHPPのXOによるO 生成の阻害活性を示す。According to XO of AHPP and SMA-AHPP O 2 - it shows the inhibitory activity of production. ラット肝臓中のLDH変化を示すグラフである。It is a graph which shows the LDH change in a rat liver. ラット肝臓中のALT及びASTの変化を示す。2 shows changes in ALT and AST in rat liver. ラット肝臓中の過酸化物量の変化を示す。The change of the amount of peroxide in a rat liver is shown. DSS飲水投与によるマウスの体重、肝臓重量及び大腸の長さの変化を示す。The change of the body weight of a mouse | mouth, a liver weight, and the length of a large intestine by DSS drinking water administration is shown. マウス血清中のIL−12の変化を示す。The change of IL-12 in mouse serum is shown. マウス血清中のTNF−αの変化を示す。The change of TNF-α in mouse serum is shown. 本発明にかかるPEG−AHPPの合成スキームを示す。The synthesis scheme of PEG-AHPP concerning this invention is shown. AHPPの吸収スペクトラムを示す。The absorption spectrum of AHPP is shown. (A)はPEG(2000)−AHPP、(B)はPEG(300)―AHPPの吸収スペクトラムを示す。(A) shows the absorption spectrum of PEG (2000) -AHPP, and (B) shows the absorption spectrum of PEG (300) -AHPP. AHPPのFT−IRスペクトラムを示す。The FT-IR spectrum of AHPP is shown. PEG−AHPPのFT−IRスペクトラムを示す。The FT-IR spectrum of PEG-AHPP is shown. (A)はPEG(2000)−AHPP、(B)はPEG(300)−AHPPの光動的散乱による溶液中の粒子分布を示す。(A) shows the particle distribution in the solution by light dynamic scattering of PEG (2000) -AHPP, and (B) shows PEG (300) -AHPP. PEGとPEG−AHPPのXOによるO 生成の阻害活性を示す。 O 2 by XO of PEG and PEG-AHPP - shows the inhibitory activity of production. AHPP−アクリレートモノマー結合化合物の合成スキームを示す。The synthetic scheme of an AHPP-acrylate monomer coupling | bonding compound is shown. AHPP−アクリレートモノマーの吸収スペクトラムを示す。The absorption spectrum of an AHPP-acrylate monomer is shown. AHPP−オリゴエチレングリコール(OEG)メタアクリレートコポリマーの合成スキームを示す。1 shows a synthesis scheme of AHPP-oligoethylene glycol (OEG) methacrylate copolymer. AHPP−OEGメタアクリレートポリマーの吸収スペクトルを示す。The absorption spectrum of an AHPP-OEG methacrylate polymer is shown. AHPP−OEGメタアクリレートコポリマーのFT−IRスペクトラムを示す。2 shows an FT-IR spectrum of an AHPP-OEG methacrylate copolymer. AHPP−OEGメタアクリレートポリマーの分子量を示す。The molecular weight of AHPP-OEG methacrylate polymer is shown. AHPP−OEGメタアクリレートポリマーのXOによるO 生成の阻害活性を示す。According to XO of AHPP-OEG methacrylate polymers O 2 - shows the inhibitory activity of production. AHPPのSMAミセル化物の会合体/包摂物の構造概念図である。It is a structure conceptual diagram of the aggregate / inclusion of the SMA micelle of AHPP. AHPPのSMA−AHPPの注射投与による降血圧作用を示す。The blood pressure-lowering effect by the injection administration of SMA-AHPP of AHPP is shown. AHPPのSMA−AHPPの経口投与による降血圧作用を示す。The blood pressure-lowering effect by oral administration of SMA-AHPP of AHPP is shown.

Claims (6)

4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジン、その薬学的に許容される塩、その誘導体、または4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンを含有するミセル体を有効成分として含有する、抗炎症剤。   Contains 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine, pharmaceutically acceptable salts, derivatives thereof, or 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine An anti-inflammatory agent containing a micelle body as an active ingredient. 前記4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンは、式1で表わされる化合物であり、その誘導体は式2で表わされる化合物である、請求項1記載の抗炎症剤。〔なお、式2中、Xは、式3〜式6で表わされる1つの置換基である。〕



なお、式中のkは2〜300の自然数を表わす。


なお、式中のlは1〜1000の自然数を表わす。


なお、式中、m、nは1〜1000の自然数を表わす。
The anti-inflammatory agent according to claim 1, wherein the 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine is a compound represented by Formula 1, and a derivative thereof is a compound represented by Formula 2. [In Formula 2, X is one substituent represented by Formula 3 to Formula 6. ]



Note that k in the formula represents a natural number of 2 to 300.


In the formula, l represents a natural number of 1 to 1000.


In the formula, m and n represent natural numbers of 1 to 1000.
前記4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジン誘導体が、4−アミノ−6−ハイドロキシピラゾロ(3,4−d)ピリミジンとスチレンマレイン酸コポリマーとのミセル化物(式7)である、請求項1記載の抗炎症剤。なお、

なお、ここで、pは3〜200の自然数を表わす。
The 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine derivative is a micellar product of 4-amino-6-hydroxypyrazolo (3,4-d) pyrimidine and a styrene maleic acid copolymer (formula 7 The anti-inflammatory agent according to claim 1, wherein In addition,

Here, p represents a natural number of 3 to 200.
炎症反応が活性酸素により起因する炎症である、請求項1〜3の何れかに記載の抗炎症剤。   The anti-inflammatory agent according to any one of claims 1 to 3, wherein the inflammatory reaction is inflammation caused by active oxygen. 前記炎症が虚血再還流由来の炎症である、請求項1〜3の何れかに記載の抗炎症剤。   The anti-inflammatory agent according to any one of claims 1 to 3, wherein the inflammation is inflammation derived from ischemia reperfusion. 前記炎症が、肺炎、肝炎、胃炎、大腸炎、皮膚炎、口内炎、咽頭炎、気管支炎、膵炎等の各種炎症性疾患のいずれかである、請求項1〜3の何れかに記載の抗炎症剤。   The anti-inflammatory according to any one of claims 1 to 3, wherein the inflammation is one of various inflammatory diseases such as pneumonia, hepatitis, gastritis, colitis, dermatitis, stomatitis, pharyngitis, bronchitis, pancreatitis and the like. Agent.
JP2008176397A 2008-07-05 2008-07-05 Anti-inflammatory agent Pending JP2010013411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176397A JP2010013411A (en) 2008-07-05 2008-07-05 Anti-inflammatory agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176397A JP2010013411A (en) 2008-07-05 2008-07-05 Anti-inflammatory agent

Publications (1)

Publication Number Publication Date
JP2010013411A true JP2010013411A (en) 2010-01-21

Family

ID=41699870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176397A Pending JP2010013411A (en) 2008-07-05 2008-07-05 Anti-inflammatory agent

Country Status (1)

Country Link
JP (1) JP2010013411A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118622A (en) * 1995-08-22 1997-05-06 Nippon Oil & Fats Co Ltd Hypotensive agent
JP2001072606A (en) * 1999-07-07 2001-03-21 Hiroshi Maeda Polymer type cancer metastasis and recurrence preventive
WO2004103409A1 (en) * 2003-05-26 2004-12-02 Hiroshi Maeda Antitumor agent and process for producing the same
WO2008045534A2 (en) * 2006-10-12 2008-04-17 Research Foundation Of The City University Of New York Novel curcumin and tetrahydrocurcumin derivatives
WO2008066902A2 (en) * 2006-11-30 2008-06-05 Nektar Therapeutics Al, Corporation Method for preparing a polymer conjugate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118622A (en) * 1995-08-22 1997-05-06 Nippon Oil & Fats Co Ltd Hypotensive agent
JP2001072606A (en) * 1999-07-07 2001-03-21 Hiroshi Maeda Polymer type cancer metastasis and recurrence preventive
WO2004103409A1 (en) * 2003-05-26 2004-12-02 Hiroshi Maeda Antitumor agent and process for producing the same
WO2008045534A2 (en) * 2006-10-12 2008-04-17 Research Foundation Of The City University Of New York Novel curcumin and tetrahydrocurcumin derivatives
JP2010506836A (en) * 2006-10-12 2010-03-04 リサーチ ファウンデイション オブ ザ シティー ユニヴァーシティ オブ ニューヨーク Novel curcumin and tetrahydrocurcumin derivatives
WO2008066902A2 (en) * 2006-11-30 2008-06-05 Nektar Therapeutics Al, Corporation Method for preparing a polymer conjugate
JP2010511744A (en) * 2006-11-30 2010-04-15 ネクター セラピューティックス エイエル,コーポレイション Method for preparing a polymer composite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013019730; PEREDA,J. et al: 'Effect of simultaneous inhibition of TNF-alpha production and xanthine oxidase in experimental acute' Ann Surg Vol.240, No.1, 2004, p.108-16 *
JPN6013019731; RIAZ,A.A. et al: 'Oxygen radical-dependent expression of CXC chemokines regulate ischemia/reperfusion-induced leukocyt' Free Radic Biol Med Vol.35, No.7, 2003, p.782-9 *
JPN6013019733; MCCORD,J.M. et al: 'The pathophysiology of superoxide: roles in inflammation and ischemia' Can J Physiol Pharmacol Vol.60, No.11, 1982, p.1346-52 *

Similar Documents

Publication Publication Date Title
JP5737705B2 (en) Polymerized cyclic nitroxide radical compound and use thereof
ES2488841T3 (en) High molecular weight derivatives of camptothecins
US8920788B2 (en) High-molecular weight conjugate of physiologically active substances
Guan et al. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy
JP5369137B2 (en) Novel block copolymer, micelle preparation, and anticancer agent containing the same as an active ingredient
JP5349318B2 (en) Steroids polymer conjugates
Giammona et al. Chemical stability and bioavailability of acyclovir coupled to α, β-poly (N-2-hydroxyethyl)-dl-aspartamide
JP5856069B2 (en) Polymer derivatives of novel cytidine antimetabolites
US20080318898A1 (en) Inclusion complexes of butylphthalide with cyclodextrin or its derivatives, a process for their preparation and the use thereof
KR20080106254A (en) Polymer conjugate of taxane
CN1617890A (en) Cyclodextrin grafted biocompatible amphiphilic polymer and methods of preparation and use thereof
JPWO2008010463A1 (en) Polymer conjugates of combretastatins
CN112047952B (en) Camptothecin-photosensitizer prodrug and preparation method and application thereof
JPWO2010013836A1 (en) Drug-encapsulating active target polymer micelle, pharmaceutical composition
JP2018524389A (en) PH-sensitive linker for delivering therapeutic agents
JPWO2004082718A1 (en) Micellar preparation containing poorly water-soluble anticancer agent and novel block copolymer
WO2013067767A1 (en) Polyethylene glycol-amino acid oligopeptide-irinotecan drug conjugate and drug composition thereof
KR101739816B1 (en) Injectable liquid composition or injectable dried powder containing revaprazan or its salt
WO2021168996A1 (en) Catalase nanocapsules and methods for use
CN108976318A (en) Mono- 6-(biotin amido group) -6- deoxidation-beta-cyclodextrin and its preparation method and application
JP2011162569A (en) Camptothecin polymer derivative and use thereof
JP2010013411A (en) Anti-inflammatory agent
EP3442594B1 (en) Block copolymer for overcoming drug resistance of tumours to chemotherapy, its polymer-drug conjugate, pharmaceutical composition containing them, method of preparation and use thereof
KR102314558B1 (en) Water-soluble polymer derivatives of Venetoclax
CN118043077A (en) Drug-loaded single-molecule nano polymer, prodrug, micelle, drug delivery system, preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008