JP2010012386A - Wastewater treatment method and apparatus - Google Patents

Wastewater treatment method and apparatus Download PDF

Info

Publication number
JP2010012386A
JP2010012386A JP2008173052A JP2008173052A JP2010012386A JP 2010012386 A JP2010012386 A JP 2010012386A JP 2008173052 A JP2008173052 A JP 2008173052A JP 2008173052 A JP2008173052 A JP 2008173052A JP 2010012386 A JP2010012386 A JP 2010012386A
Authority
JP
Japan
Prior art keywords
water
treated water
treated
separation
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008173052A
Other languages
Japanese (ja)
Other versions
JP5051029B2 (en
Inventor
Takashi Majima
隆司 真島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008173052A priority Critical patent/JP5051029B2/en
Publication of JP2010012386A publication Critical patent/JP2010012386A/en
Application granted granted Critical
Publication of JP5051029B2 publication Critical patent/JP5051029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable carrying out flotation treatment without using a pressure apparatus and an air nozzle. <P>SOLUTION: A nozzle 22 is formed which has a passage 25 between a cylindrical outer peripheral electrode 5a and a center electrode 5b disposed in the axial position. The nozzle 22 is installed at the treating water inlet 4a of a flotation tank 4, and is connected to a sedimention separation-treated water collecting line 17 for introducing sedimention separation-treated water 3a after previously sedimenting and separating a washing wastewater 3 produced by washing a combuntion exhaust gas 2 of a boiler 1 with water in a sedimentation tank 12. A power source 6 is connected to the outer peripheral electrode 5a and the center electrode 5b. When the sedimention separation-treated water 3a is made to flow into the flotation tank 4 through the passage 25 of the nozzle 22, fast pulse discharge is caused between both electrodes 5a, 5b to which fast high-voltage pulse is applied from the power source 6 to generate fine air bubbles 7 in the sedimention separation-treated water 3a flowing into the flotation tank 4, and the fine air bubbles 7 float and separate suspended material in the sedimentation separation-treated water 3a stored in the flotation tank 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排水中に含まれる懸濁物を除去するための排水の処理方法及び装置に関するもので、特に、各種プラントで発生するタール等を懸濁物として含んだ排水を処理するのに適した排水の処理方法及び装置に関するものである。   TECHNICAL FIELD The present invention relates to a wastewater treatment method and apparatus for removing suspended matter contained in wastewater, and is particularly suitable for treating wastewater containing tar and the like generated in various plants as a suspended matter. The present invention relates to a wastewater treatment method and apparatus.

プラントの化学プロセスではタールを含んだ排水(廃液)が発生することがある。又、石炭焚きやオイル焚きのボイラや排ガス処理プラントでは、燃焼排ガスをスプレー塔等で水洗浄して、該燃焼排ガス中に含まれているタール分を除去することが行われており、この場合、上記スプレー塔等で燃焼排ガスの水洗浄に使用された後の洗浄排水には、タールが含まれている。   In plant chemical processes, tar-containing waste water (waste liquid) may be generated. Also, in coal-fired and oil-fired boilers and exhaust gas treatment plants, the combustion exhaust gas is washed with water using a spray tower or the like to remove tar contained in the combustion exhaust gas. The cleaning waste water after being used for cleaning the combustion exhaust gas in the spray tower or the like contains tar.

上記のようなタールを含んだ排水は、排出基準を満たすレベルになるまで排水中に含まれているタールの除去処理を行う必要がある。なお、上記タールを含んだ排水中では、通常、タールは懸濁状態となっている。   The wastewater containing tar as described above needs to be subjected to a removal treatment of the tar contained in the wastewater until it reaches a level satisfying the emission standard. In the wastewater containing tar, the tar is usually in a suspended state.

ところで、水中に浮遊している油脂や懸濁している有機物等の水中の懸濁物を除去するための固液分離手法の1つとして、加圧浮上分離処理が知られている。   By the way, a pressurized flotation separation process is known as one of the solid-liquid separation techniques for removing suspended matters in water such as fats and oils floating in water and suspended organic substances.

これは、被処理水に、予め、加圧ポンプで加圧された水にコンプレッサーで圧縮した圧縮空気を加圧下で溶解させて製造してなる加圧空気溶解水を混合し、この加圧空気溶解水が常圧に戻されるときに溶解していた空気が気化して微小な気泡となることを利用して、上記被処理水中に微小な気泡を発生させて、該被処理水中の懸濁物の浮上分離を行わせるようにしたものである。   This is because the water to be treated is mixed with pressurized air dissolved water produced by dissolving under pressure the compressed air compressed by the compressor into the water previously pressurized by the pressure pump. Utilizing the fact that the dissolved air is vaporized into fine bubbles when the dissolved water is returned to normal pressure, the fine bubbles are generated in the treated water and suspended in the treated water. It is designed to allow the floating separation of objects.

又、被処理水に、予め分離対象物を吸着する凝集剤を添加し、その後、該凝集剤が添加された被処理水に対して上記と同様の加圧浮上分離処理を行なうことで、上記分離対象物を、該分離対象物を吸着すると共に凝集した凝集剤と一緒に浮上分離させるようにした凝集加圧浮上分離処理も知られている(たとえば、特許文献1参照)。   Moreover, by adding a flocculant that adsorbs the separation target in advance to the water to be treated, and then subjecting the water to be treated to which the flocculant has been added, the same pressure levitation separation treatment as described above, There is also known an agglomeration pressure flotation separation process in which a separation object is floated and separated together with an aggregating agent that adsorbs the separation object and agglomerated (see, for example, Patent Document 1).

更に、分離槽に貯留した被処理水に、空気ノズルより気泡を直接吹き込んで該被処理水中の懸濁物を浮上させて分離するという単純な形式の浮上分離処理も広く一般的に知られている。   In addition, a simple type of floating separation treatment is generally known in which bubbles are blown directly into the water to be treated stored in the separation tank to float and separate the suspension in the water to be treated. Yes.

特開平10−211499号公報Japanese Patent Laid-Open No. 10-211499

ところが、上記加圧浮上分離処理及び上記凝集加圧浮上分離処理を行なうためには、加圧下で水に空気を溶解させてなる加圧空気溶解水を製造する必要があることから、該加圧空気溶解水の製造容器となる加圧タンクと、該加圧タンクへ水を供給するための加圧ポンプと、加圧容器へ空気を圧縮して供給するためのコンプレッサーが必要とされ、更には、上記加圧ポンプで加圧された水や、コンプレッサーで圧縮された空気を上記加圧容器へ供給するための配管、及び、加圧容器で製造した加圧空気溶解水を被処理水へ供給混合させるための配管として、圧力配管も必要となる。よって、装置を構成する機器の点数が多くなると共に、装置の構成が複雑化し、大型化し、更にコストが嵩むという問題がある
更に、電力でコンプレッサーを運転して空気を加圧し、この加圧された空気を加圧下で水に溶解させ、その後、大気圧に戻すことで、上記加圧水に溶解されていた空気を気化させて微小な気泡を発生させるようにしてあるため、電力を用いて上記微小な気泡を発生させる効率が低いという問題があると共に、被処理水中で発生させる微小な気泡の発生量の制御性が低いという問題もある。
However, in order to carry out the pressurized flotation separation process and the agglomerated pressure flotation separation process, it is necessary to produce pressurized air-dissolved water obtained by dissolving air in water under pressure. There is a need for a pressurized tank that is a container for producing dissolved air, a pressurized pump for supplying water to the pressurized tank, a compressor for compressing and supplying air to the pressurized container, and , Supply water to the water to be treated with water pressurized by the pressure pump and air compressed by a compressor to the pressurized container, and pressurized air dissolved water produced by the pressurized container As piping for mixing, pressure piping is also required. Therefore, there is a problem that the number of devices constituting the apparatus is increased, the structure of the apparatus is complicated, the size is increased, and the cost is increased. Further, the compressor is operated with electric power to pressurize the air, and this pressure is increased. The air is dissolved in water under pressure, and then returned to atmospheric pressure to vaporize the air dissolved in the pressurized water and generate minute bubbles. In addition to the problem that the efficiency of generating simple bubbles is low, there is also the problem that the controllability of the amount of minute bubbles generated in the water to be treated is low.

一方、分離槽に貯留した被処理水に対し、ノズルを用いて細かい気泡を直接吹き込む浮上分離処理であれば、上記のような加圧タンクや加圧ポンプ、コンプレッサー、加圧配管は不要になると考えられるが、一般に、ノズルを用いて発生させる気泡は、上記加圧浮上分離処理で発生させる気泡よりも大きいため、分離効率が低いという問題があり、しかも、被処理水中の懸濁物がタールのような付着性を有する物質である場合は、空気ノズルが懸濁物によって詰まる虞が懸念される。更に、空気ノズルの摩耗も生じるため、空気ノズルの頻繁な交換が必要になるという問題もある。   On the other hand, if it is a floating separation process in which fine bubbles are directly blown into the water to be treated stored in the separation tank, a pressurized tank, a pressurized pump, a compressor, and a pressurized pipe are not necessary. In general, however, bubbles generated using a nozzle are larger than bubbles generated by the above-described pressurized flotation separation process, so that there is a problem that the separation efficiency is low. In the case of a substance having such adhesive properties, there is a concern that the air nozzle may be clogged with the suspension. Further, since the air nozzle is also worn, there is a problem that frequent replacement of the air nozzle is required.

そこで、本発明は、上記加圧浮上分離で要するような加圧タンクやその他の加圧用機器を不要にできると共に、被処理水に空気を吹き込むための空気ノズルを用いることなく、被処理水中に微小な気泡を発生させて懸濁物の浮上分離を行って、該懸濁物の含有量の低減された処理水を得ることができ、しかも、上記浮上分離を行うために被処理水中に分散させる微小な気泡の発生効率を高めることができると共に、該微小な気泡の発生量の制御性を高めることができる排水の処理方法及び装置を提供しようとするものである。   Therefore, the present invention can eliminate the need for a pressurized tank and other pressurizing equipment required for the above-described pressurized floating separation, and can be used in the water to be treated without using an air nozzle for blowing air into the water to be treated. By generating fine bubbles and floating and separating the suspension, treated water with a reduced content of the suspension can be obtained, and dispersed in the water to be treated to perform the floating separation. It is an object of the present invention to provide a wastewater treatment method and apparatus capable of improving the generation efficiency of microbubbles to be generated and improving the controllability of the generation amount of the microbubbles.

本発明は、上記課題を解決するために、請求項1に対応して、浮上分離槽に貯留させる被処理水、又は、浮上分離槽に貯留している被処理水に対して高速パルス放電を行うことで該被処理水中に微小気泡を発生させ、該微小気泡により上記被処理水中の懸濁物を浮上分離させるようにする排水の処理方法とする。   In order to solve the above-mentioned problem, the present invention, corresponding to claim 1, performs high-speed pulse discharge on the water to be treated stored in the floating separation tank or the water to be treated stored in the floating separation tank. By performing, it is set as the waste-water treatment method which produces | generates a micro bubble in this to-be-processed water, and makes the suspension in the said to-be-processed water float and separate by this micro bubble.

又、請求項2に対応して、浮上分離槽の所要個所に、該浮上分離槽に貯留する被処理水に没する一組又は複数組の電極対を設け、且つ上記電極対に所要の高速高電圧パルスを印加する電源を備えて、該電源より所要の高速高電圧パルスを印加する上記電極対の間で高速パルス放電を行わせるようにして、上記被処理水中に微小気泡を発生させることができるようにした構成を有する排水の処理装置とする。   Further, in accordance with claim 2, one or a plurality of electrode pairs that are submerged in the water to be treated stored in the levitation separation tank are provided at a required portion of the levitation separation tank, and the electrode pair has a required high speed. A power supply for applying a high-voltage pulse is provided, and a high-speed pulse discharge is performed between the electrode pair to which a required high-speed high-voltage pulse is applied from the power supply to generate microbubbles in the water to be treated. The wastewater treatment device has a configuration that can be used.

更に、上記構成において、電極対を設ける位置を、浮上分離槽における被処理水入口における被処理水の流路を挟む位置とした構成とする。   Furthermore, in the above configuration, the position where the electrode pair is provided is set to a position where the flow path of the water to be treated at the inlet of the water to be treated in the floating separation tank is sandwiched.

本発明によれば、以下のような優れた効果を発揮する。
(1)浮上分離槽に貯留させる被処理水、又は、浮上分離槽に貯留している被処理水に対して高速パルス放電を行うことで該被処理水中に微小気泡を発生させ、該微小気泡により上記被処理水中の懸濁物を浮上分離させるようにする排水の処理方法、及び、浮上分離槽の所要個所に、該浮上分離槽に貯留する被処理水に没する一組又は複数組の電極対を設け、且つ上記電極対に所要の高速高電圧パルスを印加する電源を備えて、該電源より所要の高速高電圧パルスを印加する上記電極対の間で高速パルス放電を行わせるようにして、上記被処理水中に微小気泡を発生させることができるようにした構成を有する排水の処理装置としてあるので、電極対間での高速パルス放電により被処理水中に発生させる微小気泡により、該被処理水中の懸濁物の浮上分離を行うことができるため、浮上したスカムを分離除去することで、上記浮上分離槽より懸濁物が分離除去されて清浄化された水を回収することができるようになる。
(2)したがって、加圧浮上分離処理を行なう場合に必要とされていた、加圧タンクやその他の加圧用機器を不要にでき、又、浮上分離処理を行なう際に懸濁物の付着による詰まりや摩耗が懸念されていた空気ノズルも不要にすることができる。
(3)しかも、上記電極対の間で高速パルス放電を行うと、該高速パルス放電が水分中のOHに作用して、少量のOHラジカルやオゾンの微小バブルを、各電極の表面と、それに接触している液体面との間で生じさせることができるため、被処理水中の懸濁物がタールのような付着性を有するものであっても、上記電極対を形成している各電極が懸濁物の付着の影響を受ける虞を抑制することができる。
(4)更に、上記電極対に高速高電圧パルスを印加して発生させる高速パルス放電という電気放電によって微小気泡を発生させるようにしてあるため、上記高速高電圧パルスの電気的な制御を行うことで、上記微小気泡を発生させるための高速パルス放電を直接制御できることから、微小気泡の発生量の制御性を優れたものとすることができる。
(5)電極対を設ける位置を、浮上分離槽における被処理水入口における被処理水の流路を挟む位置とした構成とすることにより、浮上分離槽に供給される被処理水の全量に対して確実に微小気泡を分散させることができ、被処理水中の懸濁物の分離効率をより高いものとすることができる。
According to the present invention, the following excellent effects are exhibited.
(1) Microbubbles are generated in the treated water by performing high-speed pulse discharge on the treated water stored in the floating separation tank or the treated water stored in the floating separation tank. The wastewater treatment method that floats and separates the suspension in the water to be treated, and a set or a plurality of sets that are submerged in the water to be treated stored in the floatation separation tank at a required portion of the floatation separation tank. An electrode pair is provided, and a power source that applies a required high-speed high-voltage pulse to the electrode pair is provided, and high-speed pulse discharge is performed between the electrode pair that applies the required high-speed high-voltage pulse from the power source. Since the wastewater treatment apparatus has a configuration that can generate microbubbles in the water to be treated, the microbubbles generated in the water to be treated by high-speed pulse discharge between the electrode pairs Suspension in treated water It is possible to perform the flotation, by separating and removing floated scum, it is possible to recover the suspension than the flotation tank has been cleaned is separated off water.
(2) Therefore, it is possible to eliminate the need for a pressurized tank or other pressurizing equipment, which was required when performing the pressure levitation separation process, and clogging due to the attachment of suspension during the levitation separation process. And an air nozzle that has been a concern for wear can be eliminated.
(3) Moreover, when high-speed pulse discharge is performed between the electrode pairs, the high-speed pulse discharge acts on OH in moisture, and a small amount of OH radicals or ozone microbubbles are formed on the surface of each electrode. Since it can be generated between the liquid surfaces in contact with each other, even if the suspension in the water to be treated has adhesive properties such as tar, each electrode forming the electrode pair is The possibility of being affected by the adhesion of the suspension can be suppressed.
(4) Furthermore, since the microbubbles are generated by an electric discharge called high-speed pulse discharge generated by applying a high-speed high-voltage pulse to the electrode pair, the electric control of the high-speed high-voltage pulse is performed. Thus, since the high-speed pulse discharge for generating the microbubbles can be directly controlled, the controllability of the amount of microbubbles generated can be made excellent.
(5) By setting the position where the electrode pair is provided as a position sandwiching the flow path of the treated water at the treated water inlet in the floating separation tank, the total amount of treated water supplied to the floating separation tank Thus, the microbubbles can be reliably dispersed, and the separation efficiency of the suspension in the water to be treated can be increased.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1及び図2は本発明の排水の処理方法及び装置の実施の一形態として、石炭焚き又はオイル焚きのボイラ1の燃焼排ガス2を排ガス処理設備にて水洗浄する際に発生するタール等が懸濁された洗浄排水3を被処理水として処理する場合を示すもので、該被処理水としての洗浄排水3を受け入れて所要期間貯留できるようにしてある浮上分離槽4の所要個所に、少なくとも一組の対をなす電極(電極対)5aと5bを設け、且つ該各電極5a,5bに、高速高電圧パルスを印加するための電源6を接続してなる構成を備えて、上記浮上分離槽4内に貯留される洗浄排水3中に、上記各電極5a,5b間における高速パルス放電に伴う微小気泡7発生させて、この微小気泡7により、上記洗浄排水3中に含まれている上記タール等の懸濁物を浮上分離させるようにする。   1 and 2 show an embodiment of the wastewater treatment method and apparatus according to the present invention, such as tar generated when the combustion exhaust gas 2 of a coal-fired or oil-fired boiler 1 is washed with water in an exhaust gas treatment facility. This shows a case where the suspended washing waste water 3 is treated as treated water, and at least a required portion of the floating separation tank 4 which accepts the washing waste water 3 as the treated water and can store it for a required period of time. Provided with a configuration in which a pair of electrodes (electrode pairs) 5a and 5b are provided and a power source 6 for applying a high-speed high-voltage pulse is connected to each of the electrodes 5a and 5b, In the washing waste water 3 stored in the tank 4, micro bubbles 7 are generated due to the high-speed pulse discharge between the electrodes 5 a and 5 b, and the micro bubbles 7 contain the above-mentioned washing waste water 3. Floating suspensions such as tar So as to separate.

詳述すると、上記ボイラ1の排ガス処理設備は、たとえば、上記ボイラ1より燃焼排ガス2を導く排ガスライン8上に、廃熱回収ボイラ9の熱交換部9aと、燃焼排ガス2を水洗浄するためのスプレー塔10と、燃焼排ガス2の温度を低下させるためのガス冷却器11とを順に備えた構成としてある。   More specifically, the exhaust gas treatment facility of the boiler 1 is for cleaning the heat exchange part 9a of the waste heat recovery boiler 9 and the combustion exhaust gas 2 on the exhaust gas line 8 that guides the combustion exhaust gas 2 from the boiler 1, for example. The spray tower 10 and the gas cooler 11 for lowering the temperature of the combustion exhaust gas 2 are sequentially provided.

上記スプレー塔10は、後述する沈殿槽12における沈降分離処理後に上澄み液として回収される沈降分離処理水3aを洗浄水として使用して、上記燃焼排ガス2を水洗浄するようにしてある。   The spray tower 10 is configured to wash the combustion exhaust gas 2 with water by using, as washing water, sedimentation-treated water 3a recovered as a supernatant after sedimentation-separation processing in a sedimentation tank 12 described later.

上記スプレー塔10より燃焼排ガス2の洗浄に供された後の洗浄排水3を取り出す洗浄排水取出ライン13の下流側には、上記沈殿槽12が設けてあり、上記洗浄排水3を上記浮上分離槽4へ送る前に、該沈殿槽12にて、上記洗浄排水3中に含まれる懸濁物のうち、重質タール等の比重の大きい粒子を予め沈降分離処理できるようにしてある。したがって、上記沈殿槽12からは、上記洗浄排水3より上記比重の大きい粒子が分離除去されてはいるが、上記沈降分離処理では分離し得ない軽質タール等の懸濁物を含んだ状態の沈降分離処理水3aと、重質タール等を含む沈殿槽汚泥(沈降分離処理汚泥)14を、それぞれ回収できるようにしてある。   The settling tank 12 is provided on the downstream side of the washing drainage line 13 for taking out the washing drainage 3 after being used for washing the combustion exhaust gas 2 from the spray tower 10, and the washing drainage 3 is separated from the floating separation tank. Before being sent to 4, in the sedimentation tank 12, particles having a large specific gravity such as heavy tar out of the suspension contained in the washing waste water 3 can be settled and separated in advance. Therefore, the sedimentation tank 12 contains particles such as light tar that cannot be separated by the sedimentation process, although the particles having a higher specific gravity than the washing wastewater 3 are separated and removed from the sedimentation tank 12. The separation treatment water 3a and the sedimentation tank sludge (sedimentation separation treatment sludge) 14 containing heavy tar or the like can be recovered.

上記沈殿槽12における沈降分離処理水3aを回収する処理水回収部12aには、循環ポンプ15を介して洗浄水循環ライン16の上流側端部となる一端部が接続してあり、且つ該洗浄水循環ライン16の下流側端部となる他端部を、上記スプレー塔10に接続した構成として、上記循環ポンプ15の運転により、沈殿槽12で回収される沈降分離処理水3aの一部を、洗浄水循環ライン16を経て上記スプレー塔10に燃焼排ガス2を洗浄するための洗浄水として用いることができるように循環供給させるようにしてある。   One end which is an upstream end of the washing water circulation line 16 is connected to the treated water collection section 12a for collecting the sedimentation treated water 3a in the settling tank 12 through the circulation pump 15, and the washing water circulation The other end portion which becomes the downstream end portion of the line 16 is connected to the spray tower 10, and a part of the settling separation treated water 3 a recovered in the settling tank 12 is washed by the operation of the circulation pump 15. Through the water circulation line 16, the spray tower 10 is circulated and supplied so that it can be used as washing water for washing the combustion exhaust gas 2.

又、上記沈殿槽12における上記処理水回収部12aには、沈降分離処理水回収ライン17を介して上記浮上分離槽4の被処理水入口4aを接続して、上記スプレー塔10に洗浄水として循環供給する以外の余剰の沈降分離処理水3aを、上記沈降分離処理水回収ライン17を経て上記浮上分離槽4へ被処理水入口4aより流入させることができるようにしてある。   The treated water recovery section 12a in the settling tank 12 is connected to the treated water inlet 4a of the floating separation tank 4 via a settling separated treated water collection line 17, and is supplied to the spray tower 10 as washing water. Excess settling separation treated water 3a other than circulating supply can be made to flow into the floating separation tank 4 from the treated water inlet 4a through the settling separated treated water recovery line 17.

更に、上記沈殿槽12より沈殿槽汚泥14を回収する汚泥回収ライン18の下流側には、遠心分離機19を設けて、該遠心分離機19にて上記沈殿槽汚泥14を遠心分離処理することで、上記重質タール等を含む固形分20と、液体部分である遠心分離処理水3bとに固液分離できるようにしてあり、このうち遠心分離処理水3bは、図示しないポンプを備えた遠心分離処理水回収ライン21を通して、上記沈降分離処理水回収ライン17を経て上記浮上分離槽4へ導かれる沈降分離処理水3aに混入させるようにしてある。   Further, a centrifuge 19 is provided on the downstream side of the sludge recovery line 18 for recovering the sedimentation tank sludge 14 from the sedimentation tank 12, and the sedimentation tank sludge 14 is centrifuged by the centrifugal separator 19. Thus, the solid content 20 containing the heavy tar or the like and the centrifugally treated water 3b which is a liquid part can be separated into solid and liquid, and among these, the centrifugally treated water 3b is a centrifugal equipped with a pump (not shown). Through the separated treated water recovery line 21, the separated separated treated water 3 a led to the floating separation tank 4 through the settling separated treated water collecting line 17 is mixed.

一方、上記遠心分離機19より回収される上記重質タール等を含む沈殿槽汚泥14の固形分20は、上記ボイラ1へ送って焼却処理できるようにしてある。   On the other hand, the solid content 20 of the sedimentation tank sludge 14 including the heavy tar recovered from the centrifugal separator 19 is sent to the boiler 1 so that it can be incinerated.

上記浮上分離槽4は、下部所要位置、たとえば、側壁の下部位置に上記被処理水入口4aを設けた構成としてある。更に、図2(イ)(ロ)に示す如く、上記電極対を形成させるための電極5aと5bのうちの一方の電極としての中心部に所要径の貫通孔23を備えた筒状の外周電極5aの上記貫通孔23の内側に、該貫通孔23の内径よりも所要寸法小さい外径を有する他方の電極としての円柱形状の中心電極5bを軸心方向に沿わせて配置すると共に、該中心電極5bの所要個所を、たとえば、放射方向に延びる固定部材24を介して上記外周電極5aの対応する個所に絶縁状態で取り付けて、上記外周電極5aと中心電極5bとの間に、筒形の液体の流路25を設けてなるノズル22を形成し、該ノズル22を、上記浮上分離槽4における被処理水入口4aに設置すると共に、該ノズル22に対して上記沈降分離処理水回収ライン17の下流側端部を接続した構成としてある。これにより、上記沈降分離処理水回収ライン17より浮上分離槽4へ供給される上記沈降分離処理水3aは、その全量が上記被処理水入口4aに設けたノズル22の両電極5aと5b間の流路25を通過してから上記浮上分離槽4内へ流入するようにしてある。   The floating separation tank 4 is configured such that the water inlet 4a to be treated is provided at a lower required position, for example, a lower position of a side wall. Further, as shown in FIGS. 2 (a) and 2 (b), a cylindrical outer periphery provided with a through-hole 23 having a required diameter at the center as one of the electrodes 5a and 5b for forming the electrode pair. Inside the through hole 23 of the electrode 5a, a cylindrical center electrode 5b as the other electrode having an outer diameter smaller than the inner diameter of the through hole 23 is arranged along the axial direction, A required portion of the center electrode 5b is attached in an insulated state to a corresponding portion of the outer peripheral electrode 5a via, for example, a fixing member 24 extending in the radial direction, and a cylindrical shape is provided between the outer peripheral electrode 5a and the central electrode 5b. A nozzle 22 having a liquid flow path 25 is formed, and the nozzle 22 is installed at the treated water inlet 4 a in the floating separation tank 4, and the settling separated treated water recovery line is connected to the nozzle 22. 17 downstream end There as a connection configuration. As a result, the total amount of the settling separation treated water 3a supplied from the settling separation treated water recovery line 17 to the floating separation tank 4 is between the electrodes 5a and 5b of the nozzle 22 provided at the treated water inlet 4a. After passing through the flow path 25, it flows into the floating separation tank 4.

更に、上記ノズル22の外周電極5aと中心電極5bには、高速高電圧パルスを印加するための電源6が接続してある。これにより、上記沈降分離処理水3aが、沈降分離処理水回収ライン17より上記ノズル22の両電極5aと5bの間の流路25を経て上記浮上分離槽4へ流入するようにした状態で、上記電源6より上記ノズル22の両電極5aと5bに高速高電圧パルスを印加することで、該ノズル22の両電極5aと5b間の流路25を通過して上記浮上分離槽4へ流入させる沈降分離処理水3aに対して高速パルス放電を行うことができるようにしてある。よって、上記高速パルス放電に伴う衝撃波で、水中に溶存している溶存気体を気化させたり、熱膨張させることによって微小な気泡を発生させると共に、上記高速パルス放電による水の蒸発によっても微小な気泡を発生させることで、上記浮上分離槽4に流入させる沈降分離処理水3aの水中に、数十μmから数百μm程度の直径を有する微小気泡7を存在させることができるようにしてある(なお、図1及び図2では、図示する便宜上、上記微小気泡7のサイズを大きく記載してある)。   Further, a power source 6 for applying a high-speed high-voltage pulse is connected to the outer peripheral electrode 5a and the center electrode 5b of the nozzle 22. Thereby, in the state in which the sedimentation separation treated water 3a flows from the sedimentation separation treated water recovery line 17 into the floating separation tank 4 through the flow path 25 between both electrodes 5a and 5b of the nozzle 22, By applying a high-speed and high-voltage pulse from the power source 6 to the electrodes 5a and 5b of the nozzle 22, it passes through the flow path 25 between the electrodes 5a and 5b of the nozzle 22 and flows into the floating separation tank 4. High-speed pulse discharge can be performed on the sedimentation-treated water 3a. Therefore, with the shock wave accompanying the high-speed pulse discharge, fine bubbles are generated by vaporizing or thermally expanding the dissolved gas dissolved in water, and also by the evaporation of water by the high-speed pulse discharge. Is generated so that the microbubbles 7 having a diameter of about several tens of μm to several hundreds of μm can be present in the water of the settling separation treated water 3a flowing into the floating separation tank 4 (note that In FIGS. 1 and 2, for convenience of illustration, the size of the microbubbles 7 is shown large).

又、上記浮上分離槽4には、上記ガス冷却器11にてボイラ1の燃焼排ガス2を冷却する際に発生するドレン水26を、ドレンライン27を通して導いて、該浮上分離槽4に貯留される上記沈降分離処理水3aに混入させることができるようにしてある。   Further, drain water 26 generated when the combustion exhaust gas 2 of the boiler 1 is cooled by the gas cooler 11 is guided to the floating separation tank 4 through a drain line 27 and stored in the floating separation tank 4. It can be mixed in the sedimentation-treated water 3a.

したがって、上記浮上分離槽4内では、貯留される上記沈降分離処理水3a(上記遠心分離処理水3b及びドレン水26を含む)の水中に、上記ノズル22の流路25を通過する際に上記高速パルス放電によって発生させた微小気泡7を含んだ沈降分離処理水3aを、被処理水入口4aより所要流量で順次流入させることで、該浮上分離槽4内の被処理水に対して、上記微小気泡7を分散させることができるため、該浮上分離槽4内にて分散された微小気泡7により、上記沈降分離処理水3aに含まれている軽質タール等の懸濁物の浮上分離処理を行うことができるようにしてある。   Therefore, in the floating separation tank 4, when passing through the flow path 25 of the nozzle 22 into the stored sedimentation-treated water 3 a (including the centrifugally-treated water 3 b and the drain water 26), The sedimentation treated water 3a containing the microbubbles 7 generated by the high-speed pulse discharge is sequentially introduced at a required flow rate from the treated water inlet 4a, whereby the treated water in the floating separation tank 4 is Since the fine bubbles 7 can be dispersed, the fine bubbles 7 dispersed in the flotation separation tank 4 can be used for the flotation separation treatment of the suspended matter such as the light tar contained in the settling separation treated water 3a. So that you can do it.

上記浮上分離槽4の上端部には、上記浮上分離処理によって固液分離されて浮上した改質タールを含む懸濁物のスカム(浮上物)28を回収するための図示しないスカム回収装置が設けてあり、該スカム回収装置によって回収されるスカム28は、上記ボイラ1へ送って焼却処理できるようにしてある。   A scum recovery device (not shown) is provided at the upper end of the levitation separation tank 4 for recovering the suspended scum (floating matter) 28 containing the modified tar that has been solid-liquid separated and floated by the levitation separation process. The scum 28 collected by the scum collecting device is sent to the boiler 1 so that it can be incinerated.

上記浮上分離槽4における浮上分離処理によって軽質タールを含む懸濁物が分離除去された後の清浄化された処理水3cを取り出す処理水取出口の下流側には、ポンプ30を備えた処理水ライン29を介して蒸発缶31が接続してある。   Treated water provided with a pump 30 on the downstream side of the treated water take-out port for taking out the treated water 3c that has been purified after the suspension containing light tar is separated and removed by the floating separation treatment in the floating separation tank 4. An evaporator 31 is connected via a line 29.

上記蒸発缶31は、上記ボイラ1の燃焼排ガス2より廃熱の回収を行う上記廃熱回収ボイラ9で発生させる高温蒸気33を循環流通させる伝熱管32を備えてなる構成として、上記浮上分離槽4より処理水ライン29を通して蒸発缶31へ導かれる上記処理水3cを、上記廃熱回収ボイラ9で発生させた高温蒸気33を熱源として伝熱管32壁を介し間接加熱して、該処理水3c中の水分及びその他の蒸発分34を蒸発させることで、非蒸発成分を凝縮させて濃縮液35として回収できるようにしてある。なお、上記蒸発缶31より回収される濃縮液35は、上記ボイラ1へ供給して燃焼処理させる構成としてもよい。   The evaporator 31 includes the heat transfer pipe 32 for circulating the high-temperature steam 33 generated in the waste heat recovery boiler 9 that recovers waste heat from the combustion exhaust gas 2 of the boiler 1. 4, the treated water 3 c guided to the evaporator 31 through the treated water line 29 is indirectly heated through the wall of the heat transfer pipe 32 using the high-temperature steam 33 generated in the waste heat recovery boiler 9 as a heat source, and the treated water 3 c By evaporating the moisture and other evaporation components 34 therein, the non-evaporated components can be condensed and recovered as a concentrate 35. Note that the concentrated liquid 35 recovered from the evaporator 31 may be supplied to the boiler 1 for combustion treatment.

一方、上記蒸発缶31で発生する水分及びその他の蒸発分34は、蒸発分ライン36を通して上記ボイラ1とスプレー塔10との間の排ガスライン8へ導いて、該部分の排ガスライン8を流通する燃焼排ガス2に混入させることで、水分を上記排ガスライン8上に設けてある上記スプレー塔10、あるいは、ガス冷却器11で回収して循環利用できるようにしてある。   On the other hand, moisture generated in the evaporator 31 and other evaporated components 34 are led to the exhaust gas line 8 between the boiler 1 and the spray tower 10 through the evaporated component line 36 and circulate through the exhaust gas line 8 of the portion. By mixing in the combustion exhaust gas 2, moisture is recovered by the spray tower 10 provided on the exhaust gas line 8 or the gas cooler 11 and can be recycled.

37は上記廃熱回収ボイラ9より蒸発缶31の伝熱管32へ高温蒸気33を供給する蒸気供給ライン、38は上記蒸発缶31にて処理水3cの加熱用熱源に供された後の温度低下した蒸気や凝縮水33aを上記廃熱回収ボイラ9へ戻すためのポンプ39付きの戻しラインである。   37 is a steam supply line for supplying the high-temperature steam 33 from the waste heat recovery boiler 9 to the heat transfer pipe 32 of the evaporator 31, and 38 is a temperature drop after being supplied to the heat source for heating the treated water 3 c in the evaporator 31. This is a return line with a pump 39 for returning the steam and condensed water 33a to the waste heat recovery boiler 9.

以上の構成としてある排水の処理装置を用いて、上記ボイラ1の燃焼排ガス2をスプレー塔10で水洗浄することで発生するタール等が懸濁された洗浄排水3を処理する場合は、該洗浄排水3を、先ず、上記沈殿槽12に供給して沈降分離処理すると、重質タール等の比重の大きい粒子が、沈殿槽汚泥14として分離除去される。   When the wastewater treatment apparatus having the above structure is used to treat the washing wastewater 3 in which tar generated by washing the combustion exhaust gas 2 of the boiler 1 with the spray tower 10 is suspended, When the waste water 3 is first supplied to the settling tank 12 and subjected to settling and separation, particles having a large specific gravity such as heavy tar are separated and removed as settling tank sludge 14.

次に、上記沈降分離処理後に沈殿槽12より回収される軽質タール等の懸濁物が懸濁された状態の沈降分離処理水3aを、上記沈殿槽汚泥14に含まれていた水分を遠心分離機19で回収して得られる遠心分離処理水3bを混入させた状態で、上記浮上分離槽4へ被処理水入口4aに設けてあるノズル22の外周電極5aと中心電極5bとの間の流路25を通して供給するときに、上記各電極5aと5bに電源6より高速高電圧パルスを印加して、該各電極5aと5b間に高速パルス放電を発生させると、該ノズル22の流路25を流通して上記浮上分離槽4内へ流入する上記沈降分離処理水3aの水中には、上記高速パルス放電によって発生した微小気泡7が確実に含まれるようになるため、上記浮上分離槽4に貯留された上記沈降分離処理水3aの全量に対して上記微小気泡を分散されるようになる。これにより、上記沈降分離処理水3aの水中では、該沈降分離処理水3a中に懸濁されている軽質タール等の懸濁物に、上記微小気泡7が付着、あるいは、タールの場合はその内部に上記微小気泡7が入り込むようにして付着することで、該微小気泡7を含めた懸濁物の比重が小さくなるため、懸濁物の浮上分離が行われるようになる。   Next, the sedimentation-treated water 3a in which a suspension such as light tar recovered from the sedimentation tank 12 after the sedimentation-separation process is suspended is centrifuged from the water contained in the sedimentation tank sludge 14. The flow between the outer peripheral electrode 5a and the center electrode 5b of the nozzle 22 provided at the treated water inlet 4a to the floating separation tank 4 in a state where the centrifugally treated water 3b obtained by collecting with the machine 19 is mixed. When a high-speed high-voltage pulse is applied to the electrodes 5a and 5b from the power source 6 to generate a high-speed pulse discharge between the electrodes 5a and 5b when supplying through the path 25, the flow path 25 of the nozzle 22 is generated. Since the fine bubbles 7 generated by the high-speed pulse discharge are surely contained in the water of the sedimentation-treated water 3a flowing through the floating separation tank 4 and flowing into the floating separation tank 4, the floating separation tank 4 The stored sedimentation process It comes to be dispersed the microbubbles on the total amount of water 3a. Accordingly, in the water of the sedimentation-treated water 3a, the microbubbles 7 adhere to the suspension of light tar or the like suspended in the sedimentation-treated water 3a, or in the case of tar, the inside By adhering the microbubbles 7 so as to enter, the specific gravity of the suspension including the microbubbles 7 is reduced, so that the suspension is floated and separated.

よって、浮上したスカム28を回収して分離除去することで、上記浮上分離槽4からは、上記沈降分離処理水3a中に懸濁していた懸濁物が分離除去されて清浄化された処理水3cを回収することができるようになる。   Therefore, the suspended scum 28 is recovered and separated and removed, so that the suspended water suspended in the settling separation treated water 3a is separated and removed from the floating separation tank 4 and purified. 3c can be recovered.

更に、上記実施の形態では、上記回収された処理水3cを、蒸発缶31へ供給し、上記ボイラ1に付設してある廃熱回収ボイラ9にて発生させた高温蒸気33を熱源として蒸留することで、水分及びその他の蒸発分34と、非蒸発分を濃縮させてなる濃縮液35を分離させるようにしてある。   Further, in the above embodiment, the recovered treated water 3c is supplied to the evaporator 31 and distilled using the high-temperature steam 33 generated in the waste heat recovery boiler 9 attached to the boiler 1 as a heat source. Thus, the concentrated liquid 35 formed by concentrating the non-evaporated component from the moisture and other evaporated components 34 is separated.

このように、本発明の排水の処理方法及び装置によれば、ボイラ1の燃焼排ガス2の水洗浄で生じる洗浄排水3を予め沈降分離処理してなる沈降分離処理水3aに懸濁している軽質タール等の懸濁物を浮上分離処理する際、ノズル22に設けた外周電極5aと中心電極5bからなる電極対の間で、高速パルス放電を行わせることで、上記懸濁物の浮上分離を行わせるために必要とされる微小気泡7を発生させることができる。   Thus, according to the waste water treatment method and apparatus of the present invention, the light waste water 3 suspended in the sedimentation-treated water 3a formed by the sedimentation-separation process in advance is generated by the water washing of the combustion exhaust gas 2 of the boiler 1. When suspension of suspension such as tar is floated and separated, the suspension is floated and separated by causing high-speed pulse discharge to occur between the electrode pair consisting of the outer peripheral electrode 5a and the center electrode 5b provided in the nozzle 22. It is possible to generate the microbubbles 7 that are necessary for the operation.

したがって、従来の加圧浮上分離処理を行なう場合に必要とされていた、加圧タンクやその他の加圧用機器を不要にできる。又、従来の浮上分離処理を行なう際に懸濁物の付着による詰まりや摩耗が懸念されていた空気ノズルも不要にすることができる。   Therefore, it is possible to eliminate the need for a pressurized tank and other pressurizing equipment that are required when performing the conventional pressurized levitation separation process. Further, it is possible to eliminate the need for an air nozzle that has been concerned about clogging or wear due to adhesion of suspensions during the conventional floating separation process.

しかも、上記各電極5aと5bの間で高速パルス放電を行うと、該高速パルス放電が水分中のOHに作用して、少量のOHラジカルやオゾンの微小バブルが、各電極5a,5bの表面と、それに接触している液体面との間で生じるため、懸濁物がタールのような付着性を有するものであっても、上記各電極5a,5bが懸濁物の付着の影響を受ける虞を抑制することができる。   In addition, when high-speed pulse discharge is performed between the electrodes 5a and 5b, the high-speed pulse discharge acts on OH in moisture, and a small amount of OH radicals or ozone microbubbles are generated on the surfaces of the electrodes 5a and 5b. And the liquid surface in contact therewith, the electrodes 5a and 5b are affected by the adhesion of the suspension even if the suspension has adhesive properties such as tar. The fear can be suppressed.

更に、上記各電極5a,5bに電源6より高速高電圧パルスを与えることで発生させる高速パルス放電という電気放電により、上記微小気泡7を発生させるようにしてあるため、上記電源6より各電極5a,5bに与える高速高電圧パルスの制御により、上記微小気泡7を発生させるための各電極5a,5b間の高速パルス放電を直接制御できることから、微小気泡7の発生量の制御性を優れたものとすることができる。   Further, since the microbubbles 7 are generated by an electric discharge called high-speed pulse discharge generated by applying a high-speed high-voltage pulse from the power source 6 to the electrodes 5a and 5b, the electrodes 5a from the power source 6 are generated. , 5b can be controlled directly by the high-speed pulse discharge between the electrodes 5a, 5b for generating the microbubbles 7 by controlling the high-speed high-voltage pulse applied to the microbubbles 7. It can be.

なお、上記各電極5aと5bの間での高速パルス放電による微小気泡7の発生は、主に、衝撃波、熱膨張、水の蒸発によるものであって、水の電気分解が生じるとしてもその量を抑えることができるため、水素や酸素が大量に発生する虞はない。   The generation of the microbubbles 7 by the high-speed pulse discharge between the electrodes 5a and 5b is mainly due to shock waves, thermal expansion, and water evaporation. Therefore, there is no possibility that a large amount of hydrogen or oxygen is generated.

なお、本発明は、上記実施の形態にのみ限定されるものではなく、浮上分離槽4の被処理水入口4aに設けるノズル22は、中心部とその外周に電極5bと5aを備えてなる構成として示したが、上記浮上分離槽4へ流入させる被処理水の流路を挟むようにして電極対を設けて、該流路を流通して浮上分離槽4へ流入する被処理液に対して上記電極対の間で高速パルス放電を行うことができるようにしてあれば、たとえば、一対の平行平板電極を設けて該各電極間に扁平な流路を形成する等、流路形状及び電極形状は適宜変更してもよい。   In addition, this invention is not limited only to the said embodiment, The nozzle 22 provided in the to-be-processed water inlet 4a of the floating separation tank 4 is equipped with the electrode 5b and 5a in the center part and its outer periphery. As shown, the electrode pair is provided so as to sandwich the flow path of the water to be treated flowing into the floating separation tank 4, and the electrode is provided for the liquid to be treated flowing through the flow path and flowing into the floating separation tank 4. As long as high-speed pulse discharge can be performed between the pair, for example, by providing a pair of parallel plate electrodes and forming a flat channel between the electrodes, the channel shape and the electrode shape are appropriately determined. It may be changed.

又、浮上分離槽4の内部における被処理水入口4aの付近や、浮上分離槽4の内部の下部所要位置に、上記高速パルス放電を行わせるための電極対を、一組、あるいは、浮上分離槽4のサイズに応じて複数組設けるようにしてもよい。   Further, a pair of electrode pairs for performing the high-speed pulse discharge or a levitating separation in the vicinity of the water inlet 4a to be treated inside the levitating separation tank 4 or a lower required position inside the levitating separation tank 4 A plurality of sets may be provided according to the size of the tank 4.

本発明の排水の処理方法及び装置は、懸濁物の浮上分離が望まれる排水であれば、いかなる排水を被処理水として上記浮上分離槽4で浮上分離処理を行なわせる場合に適用してもよいこと、その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   The wastewater treatment method and apparatus of the present invention can be applied to the case where any floating wastewater is treated as floating water in the floatation separation tank 4 as long as the wastewater is desired to be floated and separated. Of course, various modifications can be made without departing from the scope of the present invention.

本発明の排水の処理方法及び装置の実施の一形態を示す概要図である。It is a schematic diagram showing one embodiment of a wastewater treatment method and apparatus of the present invention. 図1の装置の浮上分離槽の被処理水入口部分を拡大して示すもので、(イ)は切断側面図、(ロ)は(イ)のA−A方向矢視図である。FIG. 2 is an enlarged view of the treated water inlet portion of the floating separation tank of the apparatus of FIG. 1, (A) is a cut side view, and (B) is a view taken in the direction of arrows A-A in (A).

符号の説明Explanation of symbols

3 洗浄排水(被処理水)
3a 沈降分離処理水(被処理水)
4 浮上分離槽
4a 被処理水入口
5a 外周電極(電極)
5b 中心電極(電極)
6 電源
7 微小気泡
25 流路
3 Washing wastewater (treated water)
3a Sedimentation separation treated water (treated water)
4 Floating separation tank 4a Water inlet 5a Peripheral electrode (electrode)
5b Center electrode (electrode)
6 Power supply 7 Microbubbles 25 Flow path

Claims (3)

浮上分離槽に貯留させる被処理水、又は、浮上分離槽に貯留している被処理水に対して高速パルス放電を行うことで該被処理水中に微小気泡を発生させ、該微小気泡により上記被処理水中の懸濁物を浮上分離させるようにすることを特徴とする排水の処理方法。   Microbubbles are generated in the treated water by performing high-speed pulse discharge on the treated water stored in the floating separation tank or the treated water stored in the floating separation tank. A method for treating waste water, characterized in that a suspension in treated water is floated and separated. 浮上分離槽の所要個所に、該浮上分離槽に貯留する被処理水に没する一組又は複数組の電極対を設け、且つ上記電極対に所要の高速高電圧パルスを印加する電源を備えて、該電源より所要の高速高電圧パルスを印加する上記電極対の間で高速パルス放電を行わせるようにして、上記被処理水中に微小気泡を発生させることができるようにした構成を有することを特徴とする排水の処理装置。   Provided with one or more electrode pairs submerged in the water to be treated stored in the levitation separation tank at a required location of the levitation separation tank, and provided with a power source for applying a required high-speed high-voltage pulse to the electrode pair And having a configuration in which microbubbles can be generated in the water to be treated by causing high-speed pulse discharge to be performed between the electrode pairs to which a required high-speed high-voltage pulse is applied from the power source. Characterized wastewater treatment equipment. 電極対を設ける位置を、浮上分離槽における被処理水入口における被処理水の流路を挟む位置とした請求項2記載の排水の処理装置。   The wastewater treatment apparatus according to claim 2, wherein a position where the electrode pair is provided is a position sandwiching a flow path of the treated water at the treated water inlet in the floating separation tank.
JP2008173052A 2008-07-02 2008-07-02 Wastewater treatment method and apparatus Active JP5051029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173052A JP5051029B2 (en) 2008-07-02 2008-07-02 Wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173052A JP5051029B2 (en) 2008-07-02 2008-07-02 Wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2010012386A true JP2010012386A (en) 2010-01-21
JP5051029B2 JP5051029B2 (en) 2012-10-17

Family

ID=41699034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173052A Active JP5051029B2 (en) 2008-07-02 2008-07-02 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP5051029B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628281B1 (en) * 2015-07-10 2016-06-22 (주)우광하이텍 System for waste water trust management
JP2017508612A (en) * 2014-03-11 2017-03-30 ジェイピーエム エンジニアリング 株式会社 Wastewater purification system using high voltage discharge and fine foaming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508612A (en) * 2014-03-11 2017-03-30 ジェイピーエム エンジニアリング 株式会社 Wastewater purification system using high voltage discharge and fine foaming
KR101628281B1 (en) * 2015-07-10 2016-06-22 (주)우광하이텍 System for waste water trust management

Also Published As

Publication number Publication date
JP5051029B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
US20170088441A1 (en) Method and device for deep oil removal from wastewater containing low concentration dirty oil
US7531096B2 (en) System and method of reducing organic contaminants in feed water
US9199861B2 (en) Wastewater processing systems for power plants and other industrial sources
US9731989B2 (en) Chemical oxidation or electromagnetic treatment in SAGD operations
TW201840485A (en) Water treatment and desalination
JP5157279B2 (en) Oily water reuse system
US20160096744A1 (en) Wastewater processing systems for power plant flue gas desulfurization water and other industrial wastewaters
JP2011084676A (en) Oil-water separator, oil-water separating system, oil-water separating method, and water reusing method using oil-water separating method
CN101565251B (en) Technique for using composite demulsification-membrane method to treat high-concentration emulsified liquid waste water and device
KR101437816B1 (en) Method for Treating Wastewater, System for Treating Wastewater and BENZENE&#39;s Separating and Eliminating Apparatus used for the same
CN104926011B (en) The evaporative crystallization zero-discharge treatment system and processing method of a kind of high-COD waste water
KR101188726B1 (en) System and method for eliminating ammonia nitrogen from wastewater
KR102169490B1 (en) Non-discharge wastewater treatment using multi-step vacuum decompression evaporation concentration of high concentration wastewater
CN104108822B (en) Useless oil emulsion cryogenic separation system
WO2013170507A1 (en) Water treatment process for recycling produced water from heavy oil recovery to serve as boiler feed water
KR101690065B1 (en) Apparatus for removing pollutant in evaporated concentrating system
JP5051029B2 (en) Wastewater treatment method and apparatus
KR101904156B1 (en) Vacuum evaporation apparatus with function of removing the scale and bubble
KR20110088058A (en) Apparatus and method for refining waste oil with membrane filtration process
RU2671746C1 (en) Method for removing dissolved gas from feed stream of evaporator
CN214528556U (en) Wastewater zero-discharge treatment device
BG64339B1 (en) Device for cleaning a fluid in the form of a vapour and plant for treating waste waters
JP7298936B2 (en) Waste liquid treatment equipment
KR102336707B1 (en) Wastewater Treatment System
CN211394218U (en) High-salt-content phenol-containing organic wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R151 Written notification of patent or utility model registration

Ref document number: 5051029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250