JP2010010243A - Optical fiber radiation mechanism - Google Patents

Optical fiber radiation mechanism Download PDF

Info

Publication number
JP2010010243A
JP2010010243A JP2008165376A JP2008165376A JP2010010243A JP 2010010243 A JP2010010243 A JP 2010010243A JP 2008165376 A JP2008165376 A JP 2008165376A JP 2008165376 A JP2008165376 A JP 2008165376A JP 2010010243 A JP2010010243 A JP 2010010243A
Authority
JP
Japan
Prior art keywords
optical fiber
molecular adhesive
plating layer
heat dissipation
metal plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165376A
Other languages
Japanese (ja)
Inventor
Takashi Serizawa
岳志 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP2008165376A priority Critical patent/JP2010010243A/en
Publication of JP2010010243A publication Critical patent/JP2010010243A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To exert a heat conduction characteristic of a metal substrate as much as possible in an optical fiber radiation mechanism formed of the metal substrate and an optical fiber. <P>SOLUTION: Molecular adhesive layers which are chemically coupled to the metal substrate and the optical fiber are installed on both surfaces. An electroless metal plating layer where metals not inferior in thermal conductivity as compared with the metal substrate are chemically coupled is formed on the surface of each molecular adhesive layers. The electroless metal plating layer is laminated on the surface of the electroless metal plating layer in the optical fiber radiation mechanism. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ファイバ型レーザーあるいはファイバ型光増幅器に使用される光ファイバの放熱機構に関する。   The present invention relates to a heat dissipation mechanism for an optical fiber used in a fiber type laser or a fiber type optical amplifier.

光ファイバの放熱手段としては、ペルチェ素子、冷風や冷水による冷却手段が一般的である。更に、このような特別な冷却手段に替わる簡易手段として、光ファイバを2枚の金属板で挟み込み、該金属間に熱伝導性グリースを充填した放熱機構が提案されている(例えば、特許文献1参照。)。 As a heat dissipation means for an optical fiber, a Peltier element, a cooling means using cold air or cold water is generally used. Furthermore, as a simple means to replace such a special cooling means, a heat dissipation mechanism has been proposed in which an optical fiber is sandwiched between two metal plates and a thermally conductive grease is filled between the metals (for example, Patent Document 1). reference.).

しかし、上記グリースの熱伝導性には自ずと限界があり、金属板の熱伝導性に匹敵するようなものは存在しない。したがって、放熱機構全体としての放熱特性は、グリースの熱伝導性に支配されるので、該金属板の高い熱伝導特性を生かしきれないという不利益がある。 However, the thermal conductivity of the grease is naturally limited, and there is nothing comparable to the thermal conductivity of the metal plate. Therefore, since the heat dissipation characteristics of the entire heat dissipation mechanism are governed by the thermal conductivity of the grease, there is a disadvantage that the high thermal conductivity characteristics of the metal plate cannot be fully utilized.

特開2001−274489号公報JP 2001-274489 A

本発明の課題は、金属基材と光ファイバとからなる光ファイバ放熱機構において、該金属基材の熱伝導特性を最大限に発揮させることにある。 An object of the present invention is to maximize the heat conduction characteristics of a metal base material in an optical fiber heat dissipation mechanism comprising a metal base material and an optical fiber.

本発明者は、上記の金属基材に比して熱伝導性の面で遜色のない金属メッキ層で、金属基材と光ファイバとを一体的に固着することを想到し、更に検討した結果、本発明に到達した。 The inventor has conceived that the metal substrate and the optical fiber are fixed integrally with a metal plating layer that is inferior in terms of thermal conductivity as compared with the above metal substrate, and results of further investigation The present invention has been reached.

本発明によれば、熱伝導性の金属基材に光ファイバが接触配置された放熱機構において、(a)該金属基材と光ファイバの表面は、両者に化学結合した分子接着剤層が被覆され、(b)該分子接着剤層の表面には、これに化学結合した無電解金属メッキ層が形成され、更に、(c)該無電解金属メッキ層表面に電解金属メッキ層が上乗せされている、ことを特徴とする光ファイバ放熱機構が提供される。 According to the present invention, in a heat dissipation mechanism in which an optical fiber is placed in contact with a thermally conductive metal substrate, (a) the surface of the metal substrate and the optical fiber is covered with a molecular adhesive layer chemically bonded to both. (B) an electroless metal plating layer chemically bonded thereto is formed on the surface of the molecular adhesive layer; and (c) an electrolytic metal plating layer is placed on the surface of the electroless metal plating layer. An optical fiber heat dissipating mechanism is provided.

本発明の光ファイバ放熱機構にあっては、金属基材と光ファイバは、これらに化学結合した分子接着剤層で被覆された状態で、該接着剤層に化学結合した無電解メッキ層、および該無電解メッキ層に上乗せされた電解金属メッキ層で被覆(オーバーコート)される。つまり、光ファイバ、金属基材および金属メッキ層は三位一体的な密着構造体となる。その結果、光ファイバが発熱した際の熱はナノオーダーの分子接着剤層から瞬時に、放熱特性に優れた金属基材に伝達されるので、放熱機構全体としての放熱特性が格段に改善される。 In the optical fiber heat dissipation mechanism of the present invention, the metal substrate and the optical fiber are covered with a molecular adhesive layer chemically bonded thereto, and an electroless plating layer chemically bonded to the adhesive layer, and It is coated (overcoated) with an electrolytic metal plating layer placed on the electroless plating layer. That is, the optical fiber, the metal base material, and the metal plating layer form a three-piece integrated adhesion structure. As a result, the heat generated when the optical fiber generates heat is instantaneously transferred from the nano-order molecular adhesive layer to the metal substrate with excellent heat dissipation characteristics, so the heat dissipation characteristics of the entire heat dissipation mechanism are greatly improved. .

以下、本発明の実施形態の一例について、添付図面に基づいて詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の光ファイバ放熱機構の基本構造を示す模式的断面図である。
図2は、金属基材と光ファイバとの接触配置体の一例を示す斜視図である。
図3は、図2の接触配置体を、分子接着剤層、無電解メッキ層および電解金属メッキ層の順で被覆してなる放熱機構の模式的斜視図である。
FIG. 1 is a schematic cross-sectional view showing the basic structure of the optical fiber heat dissipation mechanism of the present invention.
FIG. 2 is a perspective view showing an example of a contact arrangement body of a metal substrate and an optical fiber.
FIG. 3 is a schematic perspective view of a heat dissipation mechanism formed by coating the contact arrangement body of FIG. 2 in the order of a molecular adhesive layer, an electroless plating layer, and an electrolytic metal plating layer.

図1において、1は金属基材2と光ファイバ3との接触配置体(以下、“接触配置体”)、4は分子接着剤層、5は無電解金属メッキ層、そして、6は電解金属メッキ層である。ここで、特徴的なことは、接触配置体1と無電解金属メッキ層4との間に、双方に化学接着した分子接着剤層4が介在していることである。 In FIG. 1, 1 is a contact arrangement body (hereinafter referred to as “contact arrangement body”) between a metal substrate 2 and an optical fiber 3, 4 is a molecular adhesive layer, 5 is an electroless metal plating layer, and 6 is an electrolytic metal. It is a plating layer. Here, what is characteristic is that a molecular adhesive layer 4 chemically bonded to each other is interposed between the contact arrangement body 1 and the electroless metal plating layer 4.

図2〜図3には、上記放熱構造の基本原理を実際の放熱製品に適用した一例を示す。図2では、中空円筒体の金属基材2の外周に光ファイバ3を螺旋状に配して接触配置体1としている。この接触配置体の利点としては、レーザー光の増幅時に要求される、ある程度の長さの光ファイバ3を効率的に配置でき、且つ金属基材2が中空円筒体であることと相まって、放熱面積の増大と省スペース化が図れる。図3は、図2の接触配置体1の外表面に、分子接着剤層4、無電界メッキ層5、および電解金属メッキ層6の順にオーバーコートした状態を示す。 2 to 3 show an example in which the basic principle of the heat dissipation structure is applied to an actual heat dissipation product. In FIG. 2, an optical fiber 3 is spirally arranged on the outer periphery of a hollow cylindrical metal base material 2 to form a contact arrangement body 1. As an advantage of this contact arrangement body, it is possible to efficiently arrange an optical fiber 3 of a certain length required at the time of amplification of laser light, and coupled with the fact that the metal substrate 2 is a hollow cylindrical body, Increase and space saving. 3 shows a state in which the molecular adhesive layer 4, the electroless plating layer 5, and the electrolytic metal plating layer 6 are overcoated on the outer surface of the contact arrangement body 1 shown in FIG.

更に、本発明について述べる。 Furthermore, the present invention will be described.

金属基材2としては、室温付近での熱伝導率の高いものが用いられる。具体的には、銀、銅、金、およびアルミニウムなどが挙げられるが、耐熱性、耐候性、更には放熱性を考慮すると、銅やアルミニウムが好ましく用いられる。このとき、金属基材2、および金属メッキ層5,6の構成金属として、熱伝導率が200W/m・Kであるようなものを用いることにより、放熱効果が格段に向上する。 As the metal substrate 2, one having a high thermal conductivity around room temperature is used. Specific examples include silver, copper, gold, and aluminum. In consideration of heat resistance, weather resistance, and heat dissipation, copper and aluminum are preferably used. At this time, by using a metal having a thermal conductivity of 200 W / m · K as the constituent metal of the metal base 2 and the metal plating layers 5 and 6, the heat dissipation effect is remarkably improved.

光ファイバ2としては、ガラスファイバの常用品を用いればよい。 As the optical fiber 2, a common glass fiber may be used.

分子接着剤層4を構成する分子接着剤の典型的な例としては、アルコキシ基とトリアジンジチオール基とを有するものが挙げられる。この分子接着剤のアルコキシ基は、接触配置体1の表面に生起させたOH基とエーテル結合し他方、該トリアジンジチオール基は、分子接着剤層4に担持された無電解金属メッキ触媒とイオン結合する。そして、このイオン結合した触媒に無電解メッキ層5が析出する。このようにして、分子接着剤層4は、接触配置体1と無電解メッキ層5の双方に化学接着した形で介在してくる。しかも、分子接着剤自体、10nm以下の超極薄膜の形成能を有している。したがって、光ファイバ2で発生した熱は、この超極薄膜を経て瞬時に金属基材2へ伝達される利点が生じる。 Typical examples of the molecular adhesive constituting the molecular adhesive layer 4 include those having an alkoxy group and a triazine dithiol group. The alkoxy group of this molecular adhesive is ether-bonded to the OH group generated on the surface of the contact arrangement body 1, while the triazine dithiol group is ionically bonded to the electroless metal plating catalyst supported on the molecular adhesive layer 4 To do. Then, the electroless plating layer 5 is deposited on the ion-bonded catalyst. In this way, the molecular adhesive layer 4 is interposed in a form that is chemically bonded to both the contact arrangement body 1 and the electroless plating layer 5. Moreover, the molecular adhesive itself has the ability to form an ultrathin film of 10 nm or less. Therefore, there is an advantage that the heat generated in the optical fiber 2 is instantaneously transferred to the metal substrate 2 through the ultrathin film.

以下に、アルコキシ基とトリアジンジチオール基とを有する分子接着剤の構造の一例を一般式(1)で示す。 Below, an example of the structure of the molecular adhesive agent which has an alkoxy group and a triazine dithiol group is shown by General formula (1).

Figure 2010010243
(1)
Figure 2010010243
(1)

一般式(1)において、RはH−またはC−,n−C−,CH=CHCH−などの残基、Rは−CHCH−,−CHCHCH−,−CHCHSCHCH−,−CHCHNHCHCHCH−,−(CHCHNCHCHCH−,−C−,−C−,−CHCHOCONHCHCHCH−などの残基、YはCHO−,CO−,n−CO−などの残基、nは1〜3の整数、そして、MはHまたはLi,Na,金属基材,Ceなどが例示される。 In the general formula (1), R 1 is a residue such as H— or C 2 H 5 —, nC 3 H 7 —, CH 2 ═CHCH 2 —, and R 2 is —CH 2 CH 2 —, —CH. 2 CH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2 —, —CH 2 CH 2 NHCH 2 CH 2 CH 2 —, — (CH 2 CH 2 ) 2 NCH 2 CH 2 CH 2 —, —C 6 H 4 -, - C 6 H 4 C 6 H 4 -, - CH 2 CH 2 OCONHCH 2 CH 2 CH 2 - residue, such as, Y is CH 3 O-, C 2 H 5 O-, n-C 3 residue, such as H 7 O-, n is an integer of 1 to 3, and, M is H or Li, Na, metal substrates, such as Ce, and the like.

上述した分子接着剤自体は、日本接着学会誌 Vol.43 No.6に、金属、プラスチック、セラミック材料を接着するものとして紹介されている。しかし、この文献には、それら化合物の多官能性と選択的反応性を、メッキ特性が全く異なる金属基材と光ファイバとの接触配置体に応用して、光ファイバを金属基材と金属メッキ層の間に封着するような概念は示されていない。 The molecular adhesive itself described above is described in Journal of the Japan Adhesion Society, Vol. 43 No. 6 is introduced as an adhesive for metal, plastic and ceramic materials. However, in this document, the multifunctional and selective reactivity of these compounds is applied to a contact arrangement body of a metal substrate and an optical fiber having completely different plating characteristics, and the optical fiber is coated with the metal substrate and the metal plating. The concept of sealing between layers is not shown.

本発明の放熱機構は、好ましくは、以下のA〜Eの工程を経て形成される。
A.所望形状の接触配置体1を形成する工程。
B.得られた接触配置体1の全表面に亘ってOH基を生起させる工程
C.該OH基化接触配置体1を、アルコキシ基とトリアジンジチオール基とを有する分子接着剤の溶液でオーバーコート(例えば、浸漬)して、次いで、該OH基と分子接着剤のアルコキシ基とを反応させ、エーテル結合させる工程、
D.該エーテル反応後に生じる分子接着剤層4の表面に無電解金属メッキ触媒を担持させ、該触媒を分子接着剤層4のSH基とイオン結合させる工程、
E.該イオン結合した触媒に無電解メッキ層5を析出させる工程、および、
F.該析出した無電解金属メッキ層5に電解金属メッキ層6を上乗せする工程。
The heat dissipation mechanism of the present invention is preferably formed through the following steps A to E.
A. A step of forming a contact arrangement body 1 having a desired shape.
B. Step of generating OH groups over the entire surface of the obtained contact arrangement 1 The OH group contact arrangement 1 is overcoated (eg, immersed) with a solution of a molecular adhesive having an alkoxy group and a triazine dithiol group, and then the OH group and the alkoxy group of the molecular adhesive are reacted. An ether bond step,
D. A step of supporting an electroless metal plating catalyst on the surface of the molecular adhesive layer 4 generated after the ether reaction, and ion-bonding the catalyst with an SH group of the molecular adhesive layer 4;
E. Depositing the electroless plating layer 5 on the ion-bonded catalyst; and
F. A step of placing an electrolytic metal plating layer 6 on the deposited electroless metal plating layer 5;

工程Aでは、金属基材2と光ファイバ3との接触配置体1を所望形状に形成する。工程Bでは、接触配置体1に周知のコロナ放電、テトラエッチ処理やSA処理を施して、表面OH基を生起させる。 In the process A, the contact arrangement body 1 of the metal substrate 2 and the optical fiber 3 is formed into a desired shape. In step B, the contact arrangement body 1 is subjected to well-known corona discharge, tetraetch treatment, and SA treatment to generate surface OH groups.

工程Cでは、分子接着剤層4を形成する。このためには、表面OH基化した接触配置体1を、アルコキシ基とトリアジンジチオール基とを有する分子接着剤の溶液に浸漬する。その後、OH基と分子接着剤のアルコキシ基とを加熱反応させ、エーテル結合させる。このとき、アルコキシ基が加水分解され、ついで表面OH基との脱水縮合反応でエーテル結合が生じ、接触配置体1と分子接着剤層4の間に強固な接着界面が生じる。反応形態としては、接触配置体1を分子接着剤の溶液に15℃〜90℃で1秒〜15分程度浸漬してから、50℃〜240℃で30秒〜60分程度加熱するのが有効である。 In step C, the molecular adhesive layer 4 is formed. For this purpose, the surface arrangement OH-grouped contact arrangement body 1 is immersed in a solution of a molecular adhesive having an alkoxy group and a triazinedithiol group. Thereafter, the OH group and the alkoxy group of the molecular adhesive are heated and reacted to form an ether bond. At this time, the alkoxy group is hydrolyzed, and then an ether bond is generated by a dehydration condensation reaction with the surface OH group, and a strong adhesive interface is formed between the contact arrangement body 1 and the molecular adhesive layer 4. As a reaction mode, it is effective to immerse the contact arrangement body 1 in a molecular adhesive solution at 15 ° C. to 90 ° C. for about 1 second to 15 minutes and then to heat at 50 ° C. to 240 ° C. for about 30 seconds to 60 minutes. It is.

上記の分子接着剤の溶液は、水、メタノールやエタノールなどのアルコール類、アセトンやメチルエチルケトンなどのケトン類、酢酸エチルや安息香酸エチルなどのエステル類、ジブチルエーテルやアニソールなどのエーテル類、あるいはベンゼンやトルエンなどの芳香族炭化水素類の単独または混合溶剤を用いて得られる。このときの分子接着剤の濃度は0.01wt%〜1wt%の範囲で調整すればよい。また、このような溶液のオーバーコートの手段としては、浸漬、スプレコーティングやパッディングなどがある。 The molecular adhesive solution is water, alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and ethyl benzoate, ethers such as dibutyl ether and anisole, benzene, It can be obtained using a single or mixed solvent of aromatic hydrocarbons such as toluene. The concentration of the molecular adhesive at this time may be adjusted in the range of 0.01 wt% to 1 wt%. Further, as means for overcoating such a solution, there are dipping, spray coating, padding and the like.

工程Dでは、上記分子接着剤層4に無電解金属メッキ触媒を担持する。このためには、工程Cを経た接触配置体1を、パラジウム塩、白金塩、銀塩、塩化スズ、あるいはアミン錯体などのメッキ触媒の水溶液に浸漬すればよい。触媒濃度は、触媒の種類によって多少変わるが、一般には、0.5wt%〜5wt%の範囲にあればよい。浸漬条件は15℃〜70℃、30秒〜60分程度でよい。この浸漬処理中に、上記のメッキ触媒は分子接着剤のSH基にイオン結合する。 In step D, an electroless metal plating catalyst is supported on the molecular adhesive layer 4. For this purpose, the contact arrangement body 1 having undergone the step C may be immersed in an aqueous solution of a plating catalyst such as a palladium salt, a platinum salt, a silver salt, tin chloride, or an amine complex. The catalyst concentration varies somewhat depending on the type of the catalyst, but generally it may be in the range of 0.5 wt% to 5 wt%. The immersion conditions may be 15 ° C to 70 ° C for about 30 seconds to 60 minutes. During the dipping process, the plating catalyst is ionically bonded to the SH group of the molecular adhesive.

工程Eでは、工程Dを経た接触配置体1を無電解メッキ浴に浸漬して、分子接着剤層4のSH基にイオン結合した触媒上に無電解金属メッキ層4を析出させる。この時点で、接触配置体1と無電解金属メッキ層5との間に介在する分子接着剤層4は、両者に双方向的に化学結合した形態を取るに至る。該無電解メッキ浴は斯界で常用されている浴であればよい。この無電解金属メッキ層5としては、特に膜厚が0.02μm〜3μmの銅メッキ層が好ましい。 In the process E, the contact arrangement body 1 that has undergone the process D is immersed in an electroless plating bath to deposit the electroless metal plating layer 4 on the catalyst ionically bonded to the SH group of the molecular adhesive layer 4. At this point, the molecular adhesive layer 4 interposed between the contact arrangement body 1 and the electroless metal plating layer 5 is in a form in which both are chemically bonded to each other. The electroless plating bath may be any bath commonly used in this field. The electroless metal plating layer 5 is particularly preferably a copper plating layer having a film thickness of 0.02 μm to 3 μm.

最終段階の工程Fでは、無電解金属メッキ層5の外表面に、電解金属メッキ層6を上乗せして、本発明の放熱機構を得る。この電解金属メッキ層6を形成する際には、硫酸銅電気メッキやシアン化銅電気メッキ等の通常のメッキ処方を採用すればよい。この電解金属メッキ層6は、特に膜厚が0.5μm〜30μmの銅メッキ層が好ましい。 In the final stage F, the electrolytic metal plating layer 6 is placed on the outer surface of the electroless metal plating layer 5 to obtain the heat dissipation mechanism of the present invention. When this electrolytic metal plating layer 6 is formed, a normal plating prescription such as copper sulfate electroplating or copper cyanide electroplating may be employed. The electrolytic metal plating layer 6 is particularly preferably a copper plating layer having a thickness of 0.5 μm to 30 μm.

以下は、図3の光ファイバ放熱機構の製造例である。 The following is an example of manufacturing the optical fiber heat dissipation mechanism of FIG.

先ず、線径が0.5mmのアクティブ光ファイバ3を、長さが10cm、外径が10cm、内径が8cmの銅製の中空円筒体(金属基材)2の外表面に巻きピッチ0.5mmで、巻付回数30回で螺旋状に巻きつけて、光ファイバ−金属基材の接触配置体1を得た。その際、巻付け後の光ファイバの両端を保持治具にて固定した(工程A)。次いで、この接触配置体1を1cm/secの速さで全周・全面を2度、コロナ処理して、表面をOH基化した(工程B)。 First, an active optical fiber 3 having a wire diameter of 0.5 mm is wound around the outer surface of a copper hollow cylindrical body (metal substrate) 2 having a length of 10 cm, an outer diameter of 10 cm, and an inner diameter of 8 cm at a pitch of 0.5 mm. The contact arrangement body 1 of the optical fiber-metal base material was obtained by spirally winding with 30 winding times. At that time, both ends of the wound optical fiber were fixed with a holding jig (step A). Next, the contact arrangement body 1 was subjected to corona treatment twice at the entire circumference and the entire surface at a speed of 1 cm / sec to OH-base the surface (Step B).

上記のOH基化された接触配置体1を、分子接着材の0.1g/Lのエタノール溶液中に、25℃で10分浸漬放置してから、70℃で30分間の加熱した後、未反応の分子接着剤を洗浄・除去した(工程C)。ここで、用いた分子接着剤の構造は、一般式(1)において、R=−H、R=−CHCHCH−、Y=CO−、M=−H、およびn=3である。 The OH-based contact arrangement 1 is immersed in a 0.1 g / L ethanol solution of a molecular adhesive at 25 ° C. for 10 minutes, and then heated at 70 ° C. for 30 minutes. The reactive molecular adhesive was washed and removed (step C). Here, the structure of the molecular adhesive used in the general formula (1) is as follows: R 1 = −H, R 2 = —CH 2 CH 2 CH 2 —, Y = C 2 H 5 O—, M = —H. , And n = 3.

次に、工程Cを経た接触配置体1を、塩化パラジウム(無電解金属メッキ触媒)を0.03wt%の濃度で含有する触媒処理液に32℃で3分間浸漬して、分子接着剤層4に該触媒を担持させた。その後、該触媒が担持された接触配置体1を触媒処理液から取り出し、0.97wt%フッ化水素系水溶液で洗浄した(工程D)。 Next, the contact arrangement body 1 that has undergone the process C is immersed in a catalyst treatment solution containing palladium chloride (electroless metal plating catalyst) at a concentration of 0.03 wt% for 3 minutes at 32 ° C., and the molecular adhesive layer 4 The catalyst was supported on. Thereafter, the contact arrangement body 1 carrying the catalyst was taken out from the catalyst treatment liquid and washed with a 0.97 wt% hydrogen fluoride aqueous solution (step D).

更に、工程Dを経た接触配置体1を無電解メッキ槽に30分間浸漬した。このときのメッキ槽には、硫酸銅濃度7.7g/L、還元剤量2.15g/L、水酸化ナトリウム濃度5.7g/L、および水溶液pH12.5の硫酸銅水溶液を投入し、槽温度を36℃に設定した。無電解金属メッキ層5で被覆された接触配置体1をメッキ槽から取り出し、乾燥・固化させた。このときの無電解金属メッキ層5の膜厚は0.5μmであった(工程E)。この時点で、分子接着材は、光ファイバ・金属基材−無電解金属メッキ層5間に介在して、両者を双方向的に化学接着させた分子接着層4として機能している。 Furthermore, the contact arrangement body 1 which passed through the process D was immersed in the electroless plating tank for 30 minutes. In this case, a copper sulfate aqueous solution having a copper sulfate concentration of 7.7 g / L, a reducing agent amount of 2.15 g / L, a sodium hydroxide concentration of 5.7 g / L, and an aqueous solution pH of 12.5 was put into the plating tank. The temperature was set at 36 ° C. The contact arrangement body 1 covered with the electroless metal plating layer 5 was taken out of the plating tank, dried and solidified. The film thickness of the electroless metal plating layer 5 at this time was 0.5 μm (step E). At this point, the molecular adhesive material functions as a molecular adhesive layer 4 that is interposed between the optical fiber / metal substrate-electroless metal plating layer 5 and chemically bonds them both ways.

最終段階の工程Fでは、工程Eを経た接触配置体1を、70g/Lの硫酸銅水溶液に浸漬し、電流密度3.0A/dm2、通電時間60分間の条件下で電解メッキを施した。このとき、無電解金属メッキ層5の外表面に、膜厚が30μmの電解金属メッキ層6が形成された(工程F)。 In the final stage F, the contact arrangement body 1 that had undergone the process E was immersed in a 70 g / L copper sulfate aqueous solution, and was subjected to electrolytic plating under the conditions of a current density of 3.0 A / dm 2 and an energization time of 60 minutes. At this time, an electrolytic metal plating layer 6 having a thickness of 30 μm was formed on the outer surface of the electroless metal plating layer 5 (step F).

このようにして得た光ファイバ放熱機構の放熱特性について試験したところ、本実施例による放熱機構の放熱特性は、200W/m・K以上の熱伝導率を呈し、常温下での十分な放熱特性が確保されていることが分かる。 When the heat dissipation characteristics of the optical fiber heat dissipation mechanism obtained in this way were tested, the heat dissipation characteristics of the heat dissipation mechanism according to this example exhibited a thermal conductivity of 200 W / m · K or more, and sufficient heat dissipation characteristics at room temperature. It can be seen that is secured.

上記の放熱特性の試験条件は、以下のとおりである。 The test conditions for the heat dissipation characteristics are as follows.

以上の例は、本発明の一例に過ぎず、本発明の思想の範囲内であれば、種々の変更および応用が可能であることは言うまでもない。例えば、本発明の光ファイバ放熱機構は、その設置空間に応じた形状に対応して、種々変形されて供されることは言うまでもない。 The above examples are merely examples of the present invention, and it goes without saying that various modifications and applications are possible within the scope of the idea of the present invention. For example, it goes without saying that the optical fiber heat dissipation mechanism of the present invention is provided with various modifications corresponding to the shape according to the installation space.

また、図2の中空円筒体2において、その内表面に光ファイバ3を配してもよい。この場合は、巻回した光ファイバ3の反発力が該内表面で吸収されるので、取扱性が向上する。併せて、中空円筒体2の外周表面には、別体の放熱フィンを設け易いので、高温下での放熱効果を高めることもできる。更に、中空円筒体2の内外表面は勿論、それ以外の棒状金属基材の表面にも光ファイバ3の巻回路を確保するための案内溝を設けることも有用である。 Further, in the hollow cylindrical body 2 of FIG. 2, the optical fiber 3 may be disposed on the inner surface thereof. In this case, since the repulsive force of the wound optical fiber 3 is absorbed by the inner surface, the handleability is improved. In addition, since a separate heat dissipating fin is easily provided on the outer peripheral surface of the hollow cylindrical body 2, it is possible to enhance the heat dissipating effect at high temperatures. Furthermore, it is also useful to provide guide grooves for securing the winding circuit of the optical fiber 3 not only on the inner and outer surfaces of the hollow cylindrical body 2 but also on the surface of the other rod-shaped metal substrate.

本発明の光ファイバ放熱機構の基本構造を示す断面図。Sectional drawing which shows the basic structure of the optical fiber thermal radiation mechanism of this invention. 金属基材と光ファイバとの接触配置体の一例を示す斜視図。The perspective view which shows an example of the contact arrangement body of a metal base material and an optical fiber. 図2の接触配置体を、分子接着剤層、無電解メッキ層および電解金属メッキ層の順で被覆してなる放熱機構の斜視図。The perspective view of the thermal radiation mechanism formed by coat | covering the contact arrangement body of FIG. 2 in order of the molecular adhesive layer, the electroless plating layer, and the electrolytic metal plating layer.

符号の説明Explanation of symbols

1 金属基材と光ファイバの接触配置体
2 金属基材
3 光ファイバ
4 分子接着剤層
5 無電解金属メッキ層
6 電解金属メッキ層






















DESCRIPTION OF SYMBOLS 1 Contact arrangement body of metal base material and optical fiber 2 Metal base material 3 Optical fiber 4 Molecular adhesive layer 5 Electroless metal plating layer 6 Electrolytic metal plating layer






















Claims (6)

金属基材に光ファイバが接触配置された放熱機構において、
(a)該金属基材と光ファイバの表面は、両者に化学結合した分子接着剤層で被覆され、
(b)該分子接着剤層の表面には、これに化学結合した無電解金属メッキ層が形成され、更に、
(c)該無電解金属メッキ層の表面に電解金属メッキ層が上乗せされている、ことを特徴とする光ファイバ放熱機構。
In a heat dissipation mechanism in which an optical fiber is placed in contact with a metal substrate,
(A) The surface of the metal substrate and the optical fiber is coated with a molecular adhesive layer chemically bonded to both,
(B) On the surface of the molecular adhesive layer, an electroless metal plating layer chemically bonded thereto is formed;
(C) An optical fiber heat dissipation mechanism, wherein an electrolytic metal plating layer is placed on the surface of the electroless metal plating layer.
該金属基材が棒状体である請求項1に記載の光ファイバ放熱機構。 The optical fiber heat radiation mechanism according to claim 1, wherein the metal substrate is a rod-shaped body. 該棒状体が中空円筒体である請求項2に記載の光ファイバ放熱機構。 The optical fiber heat radiation mechanism according to claim 2, wherein the rod-shaped body is a hollow cylindrical body. 該光ファイバが、該中空円筒体の外周面ないし内周面に螺旋状に配されている請求項3に記載の光ファイバ放熱機構。 The optical fiber heat dissipating mechanism according to claim 3, wherein the optical fiber is spirally disposed on an outer peripheral surface or an inner peripheral surface of the hollow cylindrical body. 該分子接着剤層が、アルコキシ基とトリアジンジチオール基とを有する分子接着剤からなる請求項1〜4のいずれかに記載の光ファイバ放熱機構。 The optical fiber heat dissipation mechanism according to any one of claims 1 to 4, wherein the molecular adhesive layer is made of a molecular adhesive having an alkoxy group and a triazine dithiol group. 該アルコキシ基が、該金属基材および光ファイバ表面に発生させたOH基とエーテル結合し他方、該トリアジンジチオール基が、該分子接着剤層に担持された無電解金属メッキ触媒とイオン結合している請求項1〜5のいずれかに記載の光ファイバ放熱機構。
































The alkoxy group is ether-bonded to the OH group generated on the metal substrate and the optical fiber surface, while the triazine dithiol group is ion-bonded to the electroless metal plating catalyst supported on the molecular adhesive layer. The optical fiber heat dissipation mechanism according to claim 1.
































JP2008165376A 2008-06-25 2008-06-25 Optical fiber radiation mechanism Pending JP2010010243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165376A JP2010010243A (en) 2008-06-25 2008-06-25 Optical fiber radiation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165376A JP2010010243A (en) 2008-06-25 2008-06-25 Optical fiber radiation mechanism

Publications (1)

Publication Number Publication Date
JP2010010243A true JP2010010243A (en) 2010-01-14

Family

ID=41590412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165376A Pending JP2010010243A (en) 2008-06-25 2008-06-25 Optical fiber radiation mechanism

Country Status (1)

Country Link
JP (1) JP2010010243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023274A (en) * 2010-07-16 2012-02-02 Miyachi Technos Corp Active fiber cooling device and fiber laser oscillator equipped with it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023274A (en) * 2010-07-16 2012-02-02 Miyachi Technos Corp Active fiber cooling device and fiber laser oscillator equipped with it

Similar Documents

Publication Publication Date Title
Patil et al. Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling
Osaka et al. Electroless nickel ternary alloy deposition on SiO2 for application to diffusion barrier layer in copper interconnect technology
RU2745644C1 (en) Basic evaporator with coating film-containing silicon substrate for electronic cigarette coating film and method for its production
CN1285763C (en) Selective fiber metallization
US10379442B2 (en) Method of manufacturing graphene film and graphene film manufactured thereby
JP2015134958A (en) heat-resistant mirror surface coating
TW201009117A (en) Surface treating agent for copper or copper alloy and use thereof
TW201233932A (en) Jacket heater and heating method using jacket heater
JP2010010243A (en) Optical fiber radiation mechanism
CN101517386B (en) Method for producing a temperature measuring sensor
JPWO2016076264A1 (en) CONNECTED BODY, ITS MANUFACTURING METHOD, COOLING DEVICE, AND ELECTRONIC DEVICE USING THE COOLING DEVICE
Lin et al. Ultrastrong spontaneous surface wetting of room temperature liquid metal on treated metal surface
JP2009170113A (en) Shielded wire
CN102951604B (en) Preparation method for three-dimensional metal micro-nanometer device
JP2010067637A (en) Heat dissipation member, semiconductor device using the same, and methods of manufacturing the heat dissipation member and the semiconductor device
JP2007258714A (en) Insulating structure suitable for high-temperature process, and its manufacturing method
JP2013189661A (en) Method for producing laminate, and laminate
JP2010224303A (en) Terminal processed optical fiber
JPH1123172A (en) Latent heat storage capsule
JP2012188305A (en) Infrared-absorbing heat-conductive member
JPS6210317B2 (en)
JP2005072524A (en) Photoelectric conversion element and solar cell using it
US9981871B2 (en) Fabricating highly durable nanostructured coatings on polymer substrate
JP2001295058A (en) Method for manufacturing metallized substrate
TW201220992A (en) Method for manufacturing printed wiring board, and printed wiring board