JP2010008342A - Moisturizing force measuring method - Google Patents

Moisturizing force measuring method Download PDF

Info

Publication number
JP2010008342A
JP2010008342A JP2008170547A JP2008170547A JP2010008342A JP 2010008342 A JP2010008342 A JP 2010008342A JP 2008170547 A JP2008170547 A JP 2008170547A JP 2008170547 A JP2008170547 A JP 2008170547A JP 2010008342 A JP2010008342 A JP 2010008342A
Authority
JP
Japan
Prior art keywords
mol
moisture
hair
measured
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008170547A
Other languages
Japanese (ja)
Inventor
Nobuaki Ogawa
信明 小川
Maiko Takeyama
舞子 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2008170547A priority Critical patent/JP2010008342A/en
Publication of JP2010008342A publication Critical patent/JP2010008342A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily measuring a moisturizing force of an object material to be measured, such as hair of which water content changes with the change of a surrounding environment, namely a force to keep the water content of the object material. <P>SOLUTION: The method for measuring a moisturizing force includes the steps of determining reference moisture data at, at least, two levels of absolute temperatures T (K) for a material to be measured and determining the slope of a line on which 1/T (K<SP>-1</SP>) is plotted with logarithmic values lnw (mol/kg) of moisture contents w (mol/kg) of each determined reference moisture data. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は保湿力測定方法に関するもので、殊に近赤外分光分析法を用いて非破壊的に保湿力を測定することのできる保湿力測定方法に関するものである。   The present invention relates to a moisturizing power measuring method, and more particularly to a moisturizing power measuring method capable of non-destructively measuring moisturizing power using near infrared spectroscopy.

皮膚や毛髪あるいは繊維、紙など周囲の環境の変化により水分を含有しうる量が変化する物質は、その表面の柔軟性および弾力性等の性質が、該物質に含まれている水分量に依存し、水分保持能により調節されている。   Substances that change the amount of water that can be contained due to changes in the surrounding environment, such as skin, hair, fiber, paper, etc., depend on the amount of water contained in the substance for properties such as surface flexibility and elasticity. However, it is regulated by the water retention capacity.

例えば毛髪は、キューティクルと細胞膜複合体(CMC:Cell Membrane Complex)を含むキューティクル領域(5〜10μm)、コルテックスとCMCを含むコルテックス領域(40〜140μm)、メデュラ(0〜8μm)と呼ばれる三層に分けられる。キューティクルはケラチンを主成分とした無色透明なウロコ状の薄い細胞が4〜8枚重なったものである。キューティクル領域にあるCMCはキューティクル同士を接着し、外部からの物理的・化学的刺激からキューティクルを守って毛髪成分の流出を防いでいる。   For example, hair is called a cuticle region (5 to 10 μm) containing a cuticle and a cell membrane complex (CMC), a cortex region (40 to 140 μm) containing cortex and CMC, and a medura (0 to 8 μm). Divided into layers. The cuticle is a combination of 4 to 8 colorless and transparent urine-like thin cells composed mainly of keratin. The CMC in the cuticle region adheres the cuticles and protects the cuticle from physical and chemical stimuli from the outside to prevent the hair components from flowing out.

このうちコルテックスは葉巻状の形をしており、縦方向につながり比較的規則正しく並んでいる。主成分はケラチンである。コルテックス同士はコルテックス領域にあるCMCで接着されており、またCMCは水分を保持し水や薬剤の通り道となっている。このコルテックス領域が毛髪全体の85〜90%を占め、水分を保持し毛髪の強度や髪色(コルテックス内にあるメラニン色素による)を決定している。毛髪の「しっとり」という好ましい性質はこのコルテックス領域に適度な水分(10〜15%)を含んだ状態といわれている。   Of these, the cortex has a cigar shape, which is connected in the vertical direction and is relatively regularly arranged. The main component is keratin. Cortexes are bonded to each other by CMC in the cortex region, and CMC retains moisture and serves as a path for water and drugs. This cortex region occupies 85 to 90% of the whole hair, retains moisture, and determines the strength and hair color of the hair (depending on the melanin pigment in the cortex). It is said that the preferable property of hair “moisturizing” is that the cortex region contains moderate moisture (10 to 15%).

このような皮膚や毛髪あるいは繊維、紙など周囲の環境の変化により水分を含有しうる量が変化する物質の性質に関して、それらの水分量を測定することにより分析することが重要とされる。その測定方法として、測定対象となる物質について一定環境下での質量を測定した後、高温(100℃以上)で乾燥させた物質の質量を測定し、乾燥物質に対する水質量の割合を算出する質量法(質量法)が従来より広く採用されてきている。   It is important to analyze the properties of substances such as skin, hair, fiber, paper, and the like that change the amount of water that can be contained by changes in the surrounding environment by measuring their water content. As the measurement method, after measuring the mass of the substance to be measured under a certain environment, the mass of the substance dried at a high temperature (100 ° C. or higher) is measured, and the mass of the water mass to the dry substance is calculated. The method (mass method) has been widely adopted.

また、0.8μm〜2.5μmの波長域の近赤外線は、エネルギーの低い電磁波を用いるので、試料を損傷することがほとんどない。つまり、非破壊・無侵襲で測定が可能である、固体、粉体、繊維、フイルム、ペースト、液体、溶液、気体など色々な状態にある試料に適用することができる。近赤外光は、赤外光に比べ、水の吸収強度がかなり弱くなり、水溶液での研究や分析が容易になるなどの利点を有している   In addition, near infrared rays in the wavelength range of 0.8 μm to 2.5 μm use electromagnetic waves with low energy, so that the sample is hardly damaged. That is, the present invention can be applied to samples in various states such as solid, powder, fiber, film, paste, liquid, solution, and gas that can be measured non-destructively and non-invasively. Near-infrared light has the advantage that water absorption intensity is considerably weaker than infrared light, making it easier to study and analyze in aqueous solution.

そのことから、皮膚水分測定装置を用いて複数のサンプル皮膚に対し基準水分データを求め、それから同じ複数のサンプル皮膚に対して近赤外線を照射して反射スペクトルを検出し、検出された反射スペクトルを任意抽出法により検量セットと検証セットに分離し、検量セットの反射スペクトルと基準水分データを多変量回帰分析して標準検量式を求め、この標準検量式を検証セットを用いて補正しメモリーに貯蔵する。この後被測定者の皮膚に近赤外線を照射して反射スペクトルを検出し、この検出スペクトルを既に貯蔵された標準検量式に代入し、被測定者の皮膚水分濃度を測定する(特許文献1参照)方法が提案されている。   Therefore, the reference moisture data is obtained for a plurality of sample skins using a skin moisture measuring device, and then the near infrared rays are irradiated to the same plurality of sample skins to detect the reflection spectrum, and the detected reflection spectrum is obtained. Separated into a calibration set and a verification set by an arbitrary extraction method, multivariate regression analysis of the reflectance spectrum and reference moisture data of the calibration set is performed to obtain a standard calibration formula, and this standard calibration formula is corrected using the verification set and stored in memory To do. Thereafter, the reflection spectrum is detected by irradiating the subject's skin with near infrared rays, and the detected spectrum is substituted into the already stored standard calibration formula to measure the skin moisture concentration of the subject (see Patent Document 1). ) A method has been proposed.

あるいは水分量既知の複数の毛髪試料に対して近赤外線を照射して複数の拡散反射または透過反射スペクトルデータを求めて、毛髪の水分量の検量線を作成する検量線作成工程と、被験者の毛髪に対して近赤外線を直接照射して拡散反射または透過反射スペクトルデータを求めて、該検量線を用いて毛髪の水分量を測定する水分量測定工程とを有することを特徴とする毛髪水分の測定方法(特許文献2参照)などが提案されている。
特開2002−90298号 特開2003−344279号
Alternatively, a calibration curve creating step of creating a calibration curve for the moisture content of the hair by irradiating a plurality of hair samples with known moisture amounts to obtain a plurality of diffuse reflection or transmission reflection spectrum data, and a subject's hair A moisture content measuring step comprising: directly irradiating near-infrared rays to obtain diffuse reflection or transmission reflection spectrum data and measuring the moisture content of the hair using the calibration curve. The method (refer patent document 2) etc. are proposed.
JP 2002-90298 A JP 2003-344279 A

上記のような従来の水分量の測定方法により、測定対象物質の水分量はその置かれた温度、湿度などの環境において実用的に測定可能となっている。また測定対象物質の水分量を環境の変化に応じて個々に測定することにより、水分量の多寡を保湿力として捉えるという試みも行われている。   By the conventional method for measuring the amount of water as described above, the amount of water of the substance to be measured can be practically measured in the environment such as the temperature and humidity where it is placed. Attempts have also been made to capture the amount of moisture as a moisturizing power by individually measuring the amount of moisture of a substance to be measured according to environmental changes.

しかしながら、上記従来の水分量の測定方法では個々の測定から、その環境における水分量を測定対象物質のその時の保湿力と捉えており、測定対象物質個々がその特性として有する保湿力を定量的に表現するものではなかった。   However, in the above conventional method for measuring the amount of moisture, the amount of moisture in the environment is regarded as the moisturizing power at that time of the measurement target substance from each measurement, and the moisture retention power that each measurement target substance has as a characteristic is quantitatively determined. It was not something to express.

そこで、本発明者らは、温度によって変化する測定対象物質の水分量が、環境の変化によって水分を失いにくい性質と一定の関係を有する可能性に着目し、本発明に至ったものであり、その目的は測定対象物質固有の保湿力を定量的に測定することを可能にさせるところにある。   Therefore, the present inventors have focused on the possibility that the amount of moisture of the measurement target substance that changes with temperature has a certain relationship with the property that it is difficult to lose moisture due to changes in the environment, and have reached the present invention. The purpose is to make it possible to quantitatively measure the moisturizing power unique to the substance to be measured.

上記のような目的を達成するため、本発明の保湿力測定方法は、測定対象物質に対して少なくとも2水準の絶対温度T(K)における基準水分データを求める段階、得られた各基準水分データの水分量w(mol/kg)の対数lnw(mol/kg)を、1/T
(K-1)に対してプロットした直線の傾きを求めることを特徴とする。上記単位(K-1)は絶対温度T(K)の逆数を示す。
In order to achieve the above object, the method of measuring the moisturizing power of the present invention is a step of obtaining reference moisture data at at least two levels of absolute temperature T (K) for a substance to be measured, and each obtained reference moisture data. The logarithm lnw (mol / kg) of the water content w (mol / kg) of 1 / T
The inclination of the straight line plotted against (K −1 ) is obtained. The unit (K −1 ) represents the reciprocal of the absolute temperature T (K).

ここで、本発明の保湿力測定方法は、近赤外分光分析法を用い、測定対象物質に対して少なくとも2水準の絶対温度T(K)における基準水分データを求める段階、上記各基準水分データに対してスムージング、Kubelka-Munk変換、正規標準化からなる前処理計算を行う段階、上記前処理を行った各基準水分スペクトルデータから重回帰分析を用いて検量線を作成する段階、測定対象物質に対して近赤外線を照射し少なくとも2水準の絶対温度T(K)における基準水分スペクトルデータを求め上記検量線を用いて測定対象物質の水分量を算出する段階、得られた各基準水分データの水分量w(mol/kg)の対数
lnw(mol/kg)を、1/T(K-1)に対してプロットした直線の傾きを求めることを含む。
Here, the moisturizing power measuring method of the present invention is a step of obtaining reference moisture data at at least two levels of absolute temperature T (K) for a measurement target substance using near infrared spectroscopy, and each of the above reference moisture data. To perform pre-processing calculations consisting of smoothing, Kubelka-Munk transformation, and normalization, to create a calibration curve using multiple regression analysis from each pre-processed reference moisture spectrum data, The step of irradiating near infrared rays to obtain reference moisture spectrum data at at least two levels of absolute temperature T (K) and calculating the moisture content of the substance to be measured using the calibration curve, and the moisture content of each obtained reference moisture data It includes determining the slope of a straight line in which the logarithm lnw (mol / kg) of the quantity w (mol / kg) is plotted against 1 / T (K −1 ).

以上に説明したとおり、本発明の測定対象物質に対して少なくとも2水準の絶対温度T(K)における基準水分データを求める段階、得られた各基準水分データの水分量w
(mol/kg)の対数lnw(mol/kg)を、1/T(K-1)に対してプロットした直線の傾きを求めることにより、測定対象物質固有の保湿力を定量的に測定することができる。
As described above, the step of obtaining the reference moisture data at at least two levels of the absolute temperature T (K) for the measurement target substance of the present invention, the moisture amount w of each obtained reference moisture data
Quantitatively measure the moisturizing power specific to the substance to be measured by determining the slope of a straight line plotting the logarithm lnw (mol / kg) of (mol / kg) against 1 / T (K −1 ) Can do.

また、近赤外分光分析法を用い、測定対象物質に対して少なくとも2水準の絶対温度T(K)における基準水分データを求める段階、上記各基準水分データに対してスムージング、Kubelka-Munk変換、正規標準化からなる前処理計算を行う段階、上記前処理を行った各基準水分スペクトルデータから重回帰分析を用いて検量線を作成する段階、測定対象物質に対して近赤外線を照射し少なくとも2水準の絶対温度T(K)における基準水分スペクトルデータを求め上記検量線を用いて測定対象物質の水分量を算出する段階、得られた各基準水分データの水分量w(mol/kg)の対数lnw(mol/kg)を、1/T(K-1)に対してプロットした直線の傾きを求めることにより、小型携帯用近赤外分光分析器により温度や湿度のような外部環境にも安定して再現性良く、何処でも迅速かつ簡便な保湿力の測定ができる。 In addition, using near-infrared spectroscopy, a step of obtaining reference moisture data at at least two levels of absolute temperature T (K) for the measurement target substance, smoothing, Kubelka-Munk conversion, A step of performing pre-processing calculation consisting of normal standardization, a step of creating a calibration curve using multiple regression analysis from each reference moisture spectrum data subjected to the above pre-processing, and irradiating the measurement target substance with near infrared rays to at least two levels Calculating the moisture content of the substance to be measured using the above calibration curve, and calculating the logarithm lnw of the moisture content w (mol / kg) of each of the obtained reference moisture data By calculating the slope of the straight line (mol / kg) plotted against 1 / T (K −1 ), the external size such as temperature and humidity can be measured by a small portable near infrared spectrometer. It is stable and reproducible in the environment, and it is possible to measure moisture retention quickly and easily anywhere.

本発明を適用できる測定対象物質としては、毛髪、皮膚、紙、繊維、食品など水分量によって好ましい性質を保持することのできる物質があげられる。中でも近赤外分光分析法による保湿力測定方法は、非破壊的に用いることができるので、毛髪や皮膚などの生体を構成する物質や、近赤外線に対して透明な包装体中の食品などに好ましく適用できる。   Examples of substances to be measured to which the present invention can be applied include substances that can maintain desirable properties depending on the amount of water, such as hair, skin, paper, fibers, and foods. In particular, the method for measuring moisturizing power by near infrared spectroscopy can be used nondestructively, so it can be applied to substances that make up living organisms such as hair and skin, and food in packaging that is transparent to near infrared rays. It can be preferably applied.

本発明における少なくとも2水準の絶対温度T(K)とは、通常273K(0℃)から373K(100℃)、好ましくは293K(20℃)から353K(80℃)の範囲から選ぶことができる。   The absolute temperature T (K) of at least two levels in the present invention can usually be selected from the range of 273 K (0 ° C.) to 373 K (100 ° C.), preferably 293 K (20 ° C.) to 353 K (80 ° C.).

本発明において基準水分データを求める方法としては、前記2水準の絶対温度T(K)における水分量を測定できる方法であればよく、質量法、電気伝導法、インピーダンス法、発色分析法、近赤外分光分析法などを使用することができ、特に好ましくは近赤外分光分析法を使用することができる。   In the present invention, the method for obtaining the reference moisture data may be any method that can measure the moisture content at the two levels of absolute temperature T (K), such as mass method, electrical conduction method, impedance method, color analysis method, near red color. An external spectroscopic method or the like can be used, and a near infrared spectroscopic method can be used particularly preferably.

本発明において基準水分データは水分量で表され、水分量は絶対温度T(K)における湿潤状態の質量A(g)と絶対乾燥状態の質量B(g)を測定し、次の算式により求める。
(数1)
水分量w(mol/kg)=((A−B)÷水の分子量)÷(B÷1000)
上記単位(mol/kg)は水以外の毛髪成分全て(ケラチン、油分など)の重さ、つまりマトリックス内の水のモル数を表す。
In the present invention, the reference moisture data is expressed as a moisture content, and the moisture content is obtained by measuring the mass A (g) in a wet state and the mass B (g) in an absolute dry state at an absolute temperature T (K), and obtaining the following formula. .
(Equation 1)
Water content w (mol / kg) = ((A−B) ÷ molecular weight of water) ÷ (B ÷ 1000)
The unit (mol / kg) represents the weight of all hair components (keratin, oil, etc.) other than water, that is, the number of moles of water in the matrix.

本発明の保湿力測定方法により測定対象物質の保湿力を特定できる理由は、毛髪を例にとると以下のように考えられる。毛髪内の水分と毛髪から蒸発した水分が一定温度下で平衡に達することを基に、蒸発エンタルピーΔH(kJ/mol)を保湿力と考えると、
(数2)
∂(ln[w])/∂(1/T)=ΔH/R
上記の式より、毛髪内に存在する水分の濃度w(mol/kg)の対数lnw
(mol/kg)を1/T(K-1)に対してプロットし、その傾きにR
(=0.0083145kJ/(K・mol))を乗算することでΔH(kJ/mol)を求めることができる。
The reason why the moisturizing power of the substance to be measured can be specified by the moisturizing power measuring method of the present invention is considered as follows when taking hair as an example. Considering the enthalpy of evaporation ΔH (kJ / mol) as the moisturizing power based on the fact that the moisture in the hair and the moisture evaporated from the hair reach equilibrium at a constant temperature,
(Equation 2)
∂ (ln [w]) / ∂ (1 / T) = ΔH / R
From the above formula, the logarithm lnw of the concentration w (mol / kg) of water present in the hair
(Mol / kg) is plotted against 1 / T (K −1 ), and the slope is R
By multiplying (= 0.0083145 kJ / (K · mol)), ΔH (kJ / mol) can be obtained.

∂(lnw(mol/kg))/∂(1/T(K-1))の、つまりlnw(mol/
kg)vs.1/T(K-1)プロットの傾きは蒸発エンタルピーに相当する。よって、得られた傾きΔH(kJ/mol)は常温における純水の蒸発エンタルピー値
(43.991kJ/mol)と比較して保湿力の大小を議論できるものと考えられる。
∂ (lnw (mol / kg)) / ∂ (1 / T (K −1 )), that is, lnw (mol /
kg) vs. The slope of the 1 / T (K −1 ) plot corresponds to the evaporation enthalpy. Therefore, it is considered that the obtained slope ΔH (kJ / mol) can discuss the magnitude of the moisturizing power as compared with the evaporation enthalpy value of pure water (43.991 kJ / mol) at room temperature.

また、一般的に用いられる水分量w(%)からのw(mol/kg)への換算は次の算式により求める。
(数3)
水分量w(%)=((A−B)÷A)×100
(数4)
水分量w(mol/kg)=(w(%)×10)÷水の分子量
近赤外分光分析法においては、重回帰分析により水分量w(%)を算出し、w(mol/kg)に換算して蒸発エンタルピーΔH(kJ/mol)を求める。
Moreover, conversion from the generally used water content w (%) to w (mol / kg) is obtained by the following formula.
(Equation 3)
Water content w (%) = ((A−B) ÷ A) × 100
(Equation 4)
Water content w (mol / kg) = (w (%) × 10) ÷ water molecular weight In the near-infrared spectroscopy, the water content w (%) is calculated by multiple regression analysis, and w (mol / kg) Evaporation enthalpy ΔH (kJ / mol) is determined in terms of.

本発明において近赤外分光分析法とは、光源に近赤外光を発するものを用い、この光を分光してサンプルに照射し、透過光又は反射光を検出し、透光度、反射率などに変換する分析方法である。   In the present invention, near-infrared spectroscopic analysis uses a light source that emits near-infrared light, divides this light and irradiates the sample, detects transmitted light or reflected light, and transmits light and reflectivity. It is an analysis method that converts to

本発明において近赤外分光分析法で得られた上記各基準水分データに対してスムージングを行う手順としては、近赤外線スペクトルは多数の倍音や結合音によるピークが重なって観測されるため、ブロードなピークとなりバンドの帰属は容易ではない。その原スペクトルに対して二次微分を行うことで、シャープなピークが得られ、ピークの帰属および定量が可能となる。しかし、原スペクトルをそのまま二次微分しても意味を持つピークが現れない場合がある。これは、二次微分処理が小さなノイズを強調することや、試料の整列状態、密度などの物理的影響が拡散反射に影響することによる。このような影響を取り除くために、まず移動平均を用いてスムージングを行いノイズを除去した。   As a procedure for performing smoothing on each of the above-mentioned reference moisture data obtained by the near-infrared spectroscopy in the present invention, the near-infrared spectrum is observed by overlapping peaks due to many overtones and combined sounds. It becomes a peak and band assignment is not easy. By performing the second derivative on the original spectrum, a sharp peak is obtained, and peak assignment and quantification are possible. However, there are cases where no meaningful peak appears even if the original spectrum is subjected to second-order differentiation. This is because the secondary differential processing emphasizes small noise, and physical influences such as sample alignment and density affect diffuse reflection. In order to remove such influence, first, smoothing was performed using a moving average to remove noise.

次いで本発明においては、拡散反射法における吸光度の非線形性を線形近似するための
Kubelka-Munkの式から導かれる式により原スペクトルの吸光度を変換した。
(数5)
K(λ)/S(λ)=coshA(λ)−1
ここで、K(λ)は散乱物質の吸光係数、S(λ)は散乱係数、A(λ)は吸光度を示している。
Next, in the present invention, the linear approximation of the nonlinearity of absorbance in the diffuse reflection method is performed.
The absorbance of the original spectrum was converted by the formula derived from the Kubelka-Munk formula.
(Equation 5)
K (λ) / S (λ) = coshA (λ) −1
Here, K (λ) represents the absorption coefficient of the scattering material, S (λ) represents the scattering coefficient, and A (λ) represents the absorbance.

さらに本発明において上記変換後、正規標準化を行う必要がある。これは、加算的、乗算的散乱因子の影響を除去し、スペクトル全範囲の吸光度値が平均0、標準偏差1にする処理方法である。
(数6)
正規標準化吸光度=(吸光度An−吸光度平均)/吸光度標準偏差
Further, in the present invention, it is necessary to perform normal standardization after the conversion. This is a processing method in which the influence of additive and multiplicative scattering factors is removed, and the absorbance values in the entire spectrum range are average 0 and standard deviation 1.
(Equation 6)
Normalized absorbance = (Absorbance An−Absorbance average) / Absorbance standard deviation

以上のような原スペクトルの前処理を行ったスペクトルは、ピークが分離でき帰属が可能であることを示した。   The spectrum obtained by pre-processing the original spectrum as described above showed that peaks could be separated and assigned.

以下、本発明の保湿力測定方法について、毛髪を例にとり、質量法を用いて測定した実施例に関し、図1〜図4を、また近赤外分光法を用いて測定した実施例に関し、図5〜
図10を参照して詳細に説明する。
Hereinafter, with respect to the method for measuring the moisturizing power of the present invention, the hair is taken as an example, examples relating to measurement using the mass method, FIGS. 1 to 4, and examples relating to measurement using near infrared spectroscopy, 5
This will be described in detail with reference to FIG.

図1は本発明が適用された質量法による保湿力測定方法の手順を示すフロー図であり、図2は一定温度下での毛髪内の水分量w(g)を乾燥時間(h)に対してプロットしたグラフであり、図3は乾燥温度(℃)と水分量(g)との関係を測定対象A〜Jにつき個別にグラフ化したものであり、図4は水分量w(mol/kg)の対数lnw(mol/
kg)を、1/T(K-1)に対してプロットした直線と、傾きから算出した測定対象別の蒸発エンタルピー値と純水の蒸発エンタルピー値を示した表である。
FIG. 1 is a flow chart showing the procedure of a method for measuring moisture retention by a mass method to which the present invention is applied, and FIG. 2 shows the amount of water w (g) in hair at a constant temperature with respect to the drying time (h). FIG. 3 is a graph in which the relationship between the drying temperature (° C.) and the moisture content (g) is individually graphed for each of the measurement objects A to J, and FIG. 4 is the moisture content w (mol / kg). ) Logarithm lnw (mol /
kg) is a table showing a straight line plotted with respect to 1 / T (K −1 ), and an evaporation enthalpy value and a vaporization enthalpy value of pure water calculated from the slope.

図5は近赤外分光法による保湿力測定方法の手順を示すフロー図であり、図6は本発明が適用された保湿力測定装置の近赤外分光装置であるIFSジャパン(株)製の
PlaScan−Wの構成を概略的に示した構成図であり、図7は測定対象A〜Jについての毛髪の原スペクトルであり、図8は前記原スペクトルにスムージング、Kubelka-Munk変換、正規標準化、二次微分処理を施した毛髪の正規標準化二次微分スペクトルである。
FIG. 5 is a flow chart showing the procedure of the method for measuring the moisturizing power by the near infrared spectroscopy, and FIG. 6 is a product made by IFS Japan Co., Ltd. which is a near infrared spectroscopic device of the moisturizing power measuring apparatus to which the present invention is applied. FIG. 7 is a block diagram schematically showing the configuration of PlaScan-W, FIG. 7 is an original hair spectrum for measurement objects A to J, and FIG. 8 is a graph showing smoothing, Kubelka-Munk conversion, normal standardization, It is a normal standardization 2nd derivative spectrum of the hair which gave the 2nd derivative treatment.

図9は正規標準化二次微分スペクトルに重回帰分析を適用し、毛髪内の水分量w(%)を求める予測式とその選択波長、実測値(%)とNIR予測値(%)の相関を示したグラフであり、図10はNIRスペクトルから求められた水分量w(mol/kg)の対数
lnw(mol/kg)を、1/T(K-1)に対してプロットした直線と、傾きから算出した測定対象別の蒸発エンタルピー値を示した表であり、図11は質量法から求めたΔHの実測値(kJ/mol)と、近赤外分光法から求めたNIR予測値(kJ/mol)との相関を示したグラフである。
FIG. 9 shows the correlation between the prediction formula for obtaining the moisture content w (%) in hair and the selected wavelength, the actual measurement value (%) and the NIR prediction value (%) by applying multiple regression analysis to the normal standardized second derivative spectrum. FIG. 10 is a graph in which the logarithm lnw (mol / kg) of the water content w (mol / kg) obtained from the NIR spectrum is plotted against 1 / T (K −1 ), and the slope. 11 is a table showing the evaporation enthalpy value for each measurement object calculated from FIG. 11. FIG. 11 shows an actual measurement value (kJ / mol) of ΔH obtained from the mass method and a predicted NIR value (kJ / mol) obtained from the near infrared spectroscopy. mol).

図1に示すとおり毛髪の水分量はまず以下イ〜ヘで示す手順で、いわゆる質量法によって測定した。(この質量法による測定が基本的なデータとなり実測値と言う場合がある。また、この実測値に対して近赤外分光分析法による測定値を予測値ということがある。)毛髪はランダムに10本以上をカットし採取した。測定対象としたのは21〜23歳の男性A〜E5名、女性F〜J5名(ヘアカラーやパーマネント、ウェーブ履歴の無い対象B、Fを含む)である。   As shown in FIG. 1, the moisture content of the hair was first measured by the so-called mass method according to the procedures shown in (a) to (f) below. (Measurement by this mass method becomes basic data and may be referred to as an actual measurement value. In addition, a measurement value by near infrared spectroscopy may be referred to as a predicted value for this actual measurement value.) Ten or more pieces were cut and collected. The measurement targets were 21 to 23 year old men A to E5 and women F to J5 (including hair colors, permanents, and objects B and F without wave history).

次いで、イ)毛髪の水分量の測定は、純水で軽く洗浄し乾燥させた後にスライドガラスに乗せ、ロ)一定温度下に一時間静置して質量を測定した。静置は内寸が縦30cm×横30cm×高さ30cmの定温乾燥器内に入れて行った。一時間静置温度は20℃(常温)から10℃ずつ上げていき、100℃まで測定した。最高温度を100℃としたのは、 100〜130℃において質量の変化が見られなかったためである。このとき室内の温度は18℃60%RHと変化なく、庫内の相対湿度は20℃で56.4%RH、30℃で 37.5%RH、40℃で20.6%RH、50℃で13.4%RHであった。また、乾燥時間を一時間としたのは、図2に示すように、一定温度下で乾燥中の毛髪内の水分量w
(g)が一定になる時間、つまり蒸発した水分と毛髪内の水分が平衡に達する乾燥時間
(h)が一時間であったためである。
Next, a) the moisture content of the hair was measured by washing it lightly with pure water and drying it, then placing it on a slide glass, and b) allowing it to stand at a constant temperature for 1 hour and measuring the mass. The standing was carried out by placing it in a constant temperature drier having an internal size of 30 cm long × 30 cm wide × 30 cm high. The standing temperature for one hour was increased from 20 ° C. (room temperature) by 10 ° C. and measured to 100 ° C. The reason why the maximum temperature was set to 100 ° C. was that no change in mass was observed at 100 to 130 ° C. At this time, the room temperature remains unchanged at 18 ° C. and 60% RH, and the relative humidity in the cabinet is 56.4% RH at 20 ° C., 37.5% RH at 30 ° C., 20.6% RH at 40 ° C., 50 ° C. And 13.4% RH. Also, the drying time was set to one hour, as shown in FIG. 2, the amount of water in the hair being dried at a constant temperature w.
This is because the time when (g) is constant, that is, the drying time (h) at which the evaporated moisture and the moisture in the hair reach equilibrium is one hour.

ハ)重量測定により2水準以上の温度下での重量を取得する。ここで、一時間静置したサンプルは質量と近赤外スペクトルの両方を測定後、すぐに次の温度下に一時間静置して次の測定を行い、100℃まで測定した後、質量が元に戻るまで常温に静置させた
(100℃まで温度を上げても毛髪は水分の蒸発だけで質量が変わっており、常温に戻すと水分を吸い元の質量に戻る)。その温度での水分量は、100℃での水分量を0gとし、その温度での測定質量との差とした。毛髪の水分量を測定し、測定対象の性別(年齢)、(一時間静置)測定温度(℃)、水分量(g)を図3に示す。
C) Obtain the weight at a temperature of two or more levels by weighing. Here, after measuring both the mass and the near-infrared spectrum, the sample allowed to stand for 1 hour was immediately left at the next temperature for 1 hour to perform the next measurement. The hair was allowed to stand at room temperature until it returned to its original state (even if the temperature was raised to 100 ° C., the hair changed its mass only by the evaporation of water, and when it was returned to room temperature, it absorbed water and returned to its original mass). The amount of water at that temperature was 0 g at 100 ° C., and the difference from the measured mass at that temperature. The moisture content of the hair is measured, and the gender (age), (one hour standing) measurement temperature (° C.), and moisture content (g) are shown in FIG.

図1ニ)に示される手順において、図3に示される水分量w(g)から、(数1)に示す式により、質量モル濃度(mol/kg)を求め、図1ホ)に示される手順において、その対数lnw(mol/kg)をとってこれらを縦軸とし、横軸として前記測定温度を絶対温度T(K)に換算したものの逆数1/T(K-1)をとって、図4に示した。図4に示されるように、各測定対象A〜Jによって異なる傾きの直線を引くことができる。 In the procedure shown in FIG. 1 d), the molar molar concentration (mol / kg) is obtained from the water content w (g) shown in FIG. 3 by the equation shown in (Equation 1) and shown in FIG. In the procedure, taking the logarithm lnw (mol / kg) and taking these as the vertical axis, taking the reciprocal 1 / T (K −1 ) of the measured temperature converted to the absolute temperature T (K) as the horizontal axis, This is shown in FIG. As shown in FIG. 4, straight lines having different slopes can be drawn depending on the measurement objects A to J.

図1へ)に示される手順において、(数2)に示される式によりこの直線の傾きにR
(=0.0083145kJ/(K・mol))を乗算し、ΔH(kJ/mol)を算出したところ、測定対象A〜Jについて25〜48kJ/molの間に分布した。これらの
ΔH(kJ/mol)を、常温における純水の蒸発エンタルピー値(43.991kJ/
mol)と比較することにより保湿力の大小を議論することができる。つまり、常温での水分量が多いほど毛髪はしっとりしていると考えられるが、それだけでなく純水の蒸発エンタルピー値より小さい値であるほど蒸発しにくく、保湿力があると言える。
In the procedure shown in FIG. 1), the slope of this straight line is expressed as R by the equation shown in (Expression 2).
Multiplying (= 0.0083145 kJ / (K · mol)) to calculate ΔH (kJ / mol), it was distributed between 25 to 48 kJ / mol with respect to measurement objects A to J. These ΔH (kJ / mol) are calculated from the enthalpy value of pure water at room temperature (43.991 kJ / mol).
mol), the magnitude of the moisturizing power can be discussed. In other words, it can be said that the greater the amount of water at room temperature, the more moisturized the hair is.

ついで、本発明の近赤外分光分析法による保湿力測定方法を図5から図11を参照して詳細に説明すれば次のとおりである。   Next, the moisturizing power measuring method by the near-infrared spectroscopy of the present invention will be described in detail with reference to FIGS.

図5は近赤外分光分析法による測定手順をイ〜トで示すものである。図6は本発明が適用された近赤外分光分析法による保湿力測定装置の構成を概略的に示したブロック構成であり、本発明ではIFSジャパン(株)製のPlaScan−Wを用いておりそのスペックは次のとおりである。   FIG. 5 shows the measurement procedure by the near-infrared spectroscopic method. FIG. 6 is a block diagram schematically showing the configuration of a moisture retention measuring device by near infrared spectroscopy to which the present invention is applied. In the present invention, PlaScan-W manufactured by IFS Japan Co., Ltd. is used. The specifications are as follows.

本体寸法:220長×110幅×40厚(単位mm)
質量:0.6kg
分光方式1:音響光学可変波長フィルター(AOTF:acousto optic tunable filter)
波長範囲:1200〜2400nm
測定時間:0.1〜1秒
測定方法:透過反射法又は拡散反射法による測定。測定対象2に接触計測(反射が僅かな黒色のものは測定困難、透明・半透明なものは反射板3として白色セラミック板を使用)
Body dimensions: 220 length x 110 width x 40 thickness (unit: mm)
Mass: 0.6kg
Spectroscopy 1: Acousto-optic tunable filter (AOTF)
Wavelength range: 1200-2400 nm
Measurement time: 0.1 to 1 second Measurement method: Measurement by transmission reflection method or diffuse reflection method. Contact measurement on measurement object 2 (measurement is difficult for black objects with slight reflection, white ceramic plate is used as reflector 3 for transparent and translucent objects)

スポット径:0.8〜2mm
受光素子4:受光格子がPbS
光源5:タングステン・ハロゲンランプ
分解能:0.6nm
方式:Bragg回折(Raman-Nath回折の2束分光に対して1束光)
結晶体:二酸化テルル
振動子:ピエゾ素子
振動数:約30〜90MHz
Spot diameter: 0.8-2mm
Light receiving element 4: light receiving grating is PbS
Light source 5: Tungsten / halogen lamp Resolution: 0.6 nm
Method: Bragg diffraction (one bundle of light for two bundles of Raman-Nath diffraction)
Crystal: Tellurium dioxide vibrator: Piezo element frequency: about 30-90 MHz

本実施例2では実施例1の質量法による測定と同じ測定対象A〜Jの毛髪について測定したが、この近赤外分光分析法は測定対象物質に対する前処理がほぼ必要なくしかも非接触で近赤外線を照射する方法なので非破壊分析法と言える。本実施例2では図5に従って以下の手順で測定できる。   In this Example 2, measurement was performed on the hairs of the same measurement objects A to J as in the measurement by the mass method of Example 1, but this near-infrared spectroscopic analysis method requires almost no pretreatment on the measurement object substance and is non-contact and near-by. Since it is a method of irradiating with infrared rays, it can be said to be a nondestructive analysis method. In Example 2, measurement can be performed according to the following procedure according to FIG.

透過反射の参照物質(ブランク)として白色セラミック板(PlaScan−Wの付属
品)を使用した。測定対象2をセラミック製の反射板3上に置き、セラミック製の反射板3とPlaScan−W窓部を密着させて測定を行った。
A white ceramic plate (attached to PlaScan-W) was used as a reference material for transmission and reflection (blank). The measurement object 2 was placed on the ceramic reflector 3, and the ceramic reflector 3 and the PlaScan-W window were brought into close contact with each other for measurement.

髪の毛の測定は、図5のイ)で示すように純水で軽く洗浄し乾燥させた後にスライドガラスに乗せ、ロ)で示す手順で前記電熱乾燥庫を用い、一定温度下に一時間静置して実施例1の質量と同時に近赤外スペクトルを測定した。   To measure the hair, lightly wash with pure water as shown in Fig. 5 (a) and dry it, then place it on a slide glass and leave it at a constant temperature for 1 hour using the above-mentioned electric drying cabinet in the procedure shown in (b). The near-infrared spectrum was measured simultaneously with the mass of Example 1.

ハ)で示す手順において近赤外スペクトルを測定する際は、上からカバーガラスを乗せて測定した。また、毛髪10本を重ならないように、隙間ができないように束ねて、真っ直ぐに張った状態で測定した。   When measuring the near-infrared spectrum in the procedure shown in (c), a cover glass was placed from above. In addition, the measurement was performed in a state where 10 hairs were bundled so as not to overlap so as not to overlap and were stretched straight.

図7は図1のハ)の手順で測定した測定対象A〜Jに関する毛髪の原スペクトルであり、吸光度Aを縦軸に、波長λ(nm)を横軸にとっている。本発明において近赤外分光分析法で得られた前記原スペクトルに対してスムージングを行う手順としては、原スペクトルに対して二次微分を行うが、二次微分処理が小さなノイズを強調することや、試料の整列状態、密度などの物理的影響が拡散反射に影響することがある。このような影響を取り除くために、まず移動平均を用いてスムージングを行ってノイズを除去する。   FIG. 7 shows the original spectrum of the hairs related to the measurement objects A to J measured in the procedure of FIG. 1C), with the absorbance A on the vertical axis and the wavelength λ (nm) on the horizontal axis. As a procedure for performing smoothing on the original spectrum obtained by the near-infrared spectroscopy in the present invention, second derivative is performed on the original spectrum, but the second derivative process emphasizes small noise or Physical effects such as sample alignment and density may affect diffuse reflection. In order to remove such an influence, first, smoothing is performed using a moving average to remove noise.

ニ)で示す手順においては、図7に示す原スペクトルにスムージング、Kubelka-Munk変換、正規標準化、二次微分処理を施して二次微分吸光度d2A/dλ2を縦軸にとり、波長λ(nm)を横軸にとって図8に示すような毛髪の正規標準化二次微分スペクトルが得られる。 In the procedure shown in d), smoothing the raw spectrum shown in FIG. 7, Kubelka-Munk conversion, normalization standardization, secondary differential processing is subjected to second derivative absorbance d 2 A / dλ 2 placed vertically, the wavelength lambda ( nm) on the horizontal axis, a normal standardized second derivative spectrum of hair as shown in FIG. 8 is obtained.

さらに、正規標準化二次微分スペクトルをホ)で示す手順において重回帰分析のデータ処理を行うが、Excelなどで解析しやすくするため、PlaScan−Wの800データポイントをそれぞれ移動平均(n=4)をとり、200データポイントしたものを用いた。重回帰分析にはフリーソフト重回帰変数選択1(栃木県農業試験場森聖二)をダウンロードして用いた。   Furthermore, the data processing of the multiple regression analysis is performed in the procedure indicated by the normal standardized second derivative spectrum as shown in e). However, in order to facilitate the analysis by Excel or the like, each of the 800 data points of PlaScan-W is a moving average (n = 4). And 200 data points were used. For the multiple regression analysis, free software multiple regression variable selection 1 (Tojigi Prefectural Agricultural Experiment Station, Seiji Mori) was downloaded and used.

こうして得られた毛髪内の水分量w(%)を求める予測式とその選択波長、実測値
(%)とNIR予測値(%)の相関を示したグラフを図9に示す。両者の相関はr2
0.96となり、重回帰分析によって良好な検量線が得られ、NIRスペクトルから毛髪の水分量w(%)を予測できることがわかった。
前記検量線から質量法によって求めた実測値に対するNIR予測値w(%)を(数4)に示される式によりw(mol/kg)に換算し、へ)その対数lnw(mol/kg)を、1/T(K-1)に対してプロットした直線を図10に示す。測定対象A〜Jについて直線を引くことができる。ト)に示される手順において、この直線の傾きにR
(=0.0083145kJ/(K・mol))を乗算し、ΔH(kJ/mol)を算出する。
FIG. 9 is a graph showing the correlation between the prediction formula for determining the moisture content w (%) in the hair thus obtained, its selected wavelength, the actual measurement value (%), and the NIR prediction value (%). The correlation between the two is r 2 =
It was 0.96, and it was found that a good calibration curve was obtained by multiple regression analysis, and the moisture content w (%) of the hair could be predicted from the NIR spectrum.
The NIR predicted value w (%) for the actual value obtained by the mass method from the calibration curve is converted to w (mol / kg) by the formula shown in (Equation 4), and the logarithmic lnw (mol / kg) is calculated. FIG. 10 shows a straight line plotted against 1 / T (K −1 ). A straight line can be drawn for the measurement objects A to J. In the procedure shown in (g), R
Multiply (= 0.0083145 kJ / (K · mol)) to calculate ΔH (kJ / mol).

図11において質量法から求めたΔHの実測値(kJ/mol)と、近赤外分光法から求めたNIR予測値(kJ/mol)との相関を示したグラフが得られ、両者の相関が
2=0.99となり、NIRスペクトルから蒸発エンタルピーΔH(kJ/mol)を予測できることがわかった。実測値w(%)と、重回帰分析で求めた検量線の予測値w
(%)との相関が良いためw(mol/kg)の相関も良いものと考えられる。このことから測定対象物質固有の保湿力を定量的に測定することができ、非破壊検査に好適なNIR法を用いて保湿力測定が可能になるものと考えられる。
In FIG. 11, a graph showing the correlation between the actually measured value of ΔH obtained from the mass method (kJ / mol) and the predicted NIR value obtained from the near infrared spectroscopy (kJ / mol) is obtained. r 2 = 0.99, and it was found that the evaporation enthalpy ΔH (kJ / mol) can be predicted from the NIR spectrum. Measured value w (%) and predicted value w of calibration curve obtained by multiple regression analysis
Since the correlation with (%) is good, the correlation with w (mol / kg) is also considered to be good. From this, it is considered that the moisture retention power specific to the substance to be measured can be quantitatively measured, and the moisture retention capacity can be measured using the NIR method suitable for nondestructive inspection.

以上に説明したとおり、本発明は測定対象物質に対して少なくとも2水準の絶対温度T(K)における基準水分データを求める段階、得られた各基準水分データの水分量w
(mol/kg)の対数lnw(mol/kg)を、1/T(K-1)に対してプロットした直線の傾きを求めることを特徴とするによる保湿力測定方法であるので、特に毛髪や肌などや、繊維、紙あるいは食品などの保湿力を定量的に測定することができる。
As described above, the present invention obtains the reference moisture data at at least two levels of the absolute temperature T (K) for the substance to be measured, and the moisture content w of each obtained reference moisture data.
Since the moisturizing power measurement method is characterized in that the logarithm lnw (mol / kg) of (mol / kg) is obtained by calculating the slope of a straight line plotted against 1 / T (K −1 ), Moisturizing power of skin, fibers, paper or food can be quantitatively measured.

本発明が適用された質量法による保湿力測定方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the moisture retention measuring method by the mass method to which this invention was applied. 一定温度下での毛髪内の水分量w/gを乾燥時間/hに対してプロットしたグラフである。It is the graph which plotted the moisture content w / g in the hair under fixed temperature with respect to drying time / h. 乾燥温度/℃と水分量/gとの関係を測定対象A〜Jにつき個別にグラフ化したものである。The relationship between the drying temperature / ° C. and the amount of moisture / g is graphed individually for each of the measurement objects A to J. 水分量w/mol/kgの対数lnw/mol/kgを、1/T/K-1に対してプロットした直線およびそれぞれの傾きから算出したΔH/kJ/molの表である。It is the table | surface of (DELTA) H / kJ / mol computed from the straight line which plotted the logarithm lnw / mol / kg of water content w / mol / kg with respect to 1 / T / K < -1 >, and each inclination. 近赤外分光法による保湿力測定方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the moisture retention measuring method by a near-infrared spectroscopy. 本発明が適用された保湿力測定装置の近赤外分光装置であるIFSジャパン(株)製のPlaScan−Wの構成を概略的に示した構成図。The block diagram which showed schematically the structure of PlaScan-W by IFS Japan Co., Ltd. which is a near-infrared spectrometer of the moisture retention measuring apparatus to which this invention was applied. 測定対象A〜Jについての毛髪の原スペクトルである。It is the original spectrum of the hair about measurement object AJ. 前記原スペクトルにスムージング、Kubelka-Munk変換、正規標準化、二次微分処理を施した毛髪の正規標準化二次微分スペクトルである。It is a normal standardized second derivative spectrum of hair obtained by performing smoothing, Kubelka-Munk conversion, normal standardization, and second derivative processing on the original spectrum. 正規標準化二次微分スペクトルに重回帰分析を適用し、毛髪内の水分量w/%を求める予測式とその選択波長、実測値/%とNIR予測値/%の相関を示したグラフである。It is the graph which showed the correlation of the prediction formula which applies the multiple regression analysis to a normal standardization secondary differential spectrum, and calculates | requires the moisture content w /% in hair, its selection wavelength, actual measurement value /%, and NIR prediction value /%. NIRスペクトルから求められた水分量w/%をw/mol/kgに換算し、対数lnw/mol/kgを、1/T/K-1に対してプロットした直線およびそれぞれの傾きから算出したΔH/kJ/molの表である。The water content w /% determined from the NIR spectrum was converted to w / mol / kg, and the logarithm lnw / mol / kg was calculated from the straight line plotted against 1 / T / K −1 and ΔH calculated from the respective slopes. It is a table of / kJ / mol. 質量法から求めたΔHの実測値kJ/molと、近赤外分光法から求めたNIR予測値kJ/molとの相関を示したグラフである。It is the graph which showed the correlation with the measured value kJ / mol of (DELTA) H calculated | required from the mass method, and the NIR prediction value kJ / mol calculated | required from the near-infrared spectroscopy.

符号の説明Explanation of symbols

1:音響光学可変波長フィルター(AOTF:acousto optic tunable filter)
2:測定対象
3:反射板(セラミック)
4:受光素子
5:光源
1: Acousto-optic tunable filter (AOTF)
2: Measurement object 3: Reflector (ceramic)
4: Light receiving element 5: Light source

Claims (2)

測定対象物質に対して少なくとも2水準の絶対温度T(K)における基準水分データを求める段階、得られた各基準水分データの水分量w(mol/kg)の対数lnw
(mol/kg)を、1/T(K-1)に対してプロットした直線の傾きを求めることを特徴とすることによる保湿力測定方法。
A step of obtaining reference moisture data at at least two levels of absolute temperature T (K) for the substance to be measured, a logarithm lnw of the moisture content w (mol / kg) of each obtained reference moisture data
A method for measuring moisture retention by determining the slope of a straight line in which (mol / kg) is plotted against 1 / T (K −1 ).
近赤外分光分析法を用い、測定対象物質に対して少なくとも2水準の絶対温度T(K)における基準水分データを求める段階、上記各基準水分データに対してスムージング、
Kubelka-Munk変換、正規標準化からなる前処理計算を行う段階、上記前処理を行った各基準水分スペクトルデータから重回帰分析を用いて検量線を作成する段階、測定対象物質に対して近赤外線を照射し少なくとも2水準の絶対温度T(K)における基準水分スペクトルデータを求め上記検量線を用いて測定対象物質の水分量を算出する段階、得られた各基準水分データの水分量w(mol/kg)の対数lnw(mol/kg)を、1/T
(K-1)に対してプロットした直線の傾きを求めることを特徴とする近赤外分光分析法による保湿力測定方法。
A step of obtaining reference moisture data at an absolute temperature T (K) of at least two levels for a measurement target substance using near-infrared spectroscopy, smoothing the reference moisture data,
The stage of performing pre-processing calculations consisting of Kubelka-Munk conversion and normalization, the stage of creating a calibration curve using multiple regression analysis from each reference moisture spectrum data that has been subjected to the above pre-processing, Irradiating to obtain reference moisture spectrum data at at least two levels of absolute temperature T (K) and calculating the moisture content of the substance to be measured using the calibration curve, the moisture content w (mol / mol) of each obtained reference moisture data log) lnw (mol / kg) of 1 / T
A method for measuring a moisturizing power by a near infrared spectroscopic analysis method, wherein the slope of a straight line plotted against (K −1 ) is obtained.
JP2008170547A 2008-06-30 2008-06-30 Moisturizing force measuring method Pending JP2010008342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170547A JP2010008342A (en) 2008-06-30 2008-06-30 Moisturizing force measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170547A JP2010008342A (en) 2008-06-30 2008-06-30 Moisturizing force measuring method

Publications (1)

Publication Number Publication Date
JP2010008342A true JP2010008342A (en) 2010-01-14

Family

ID=41589018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170547A Pending JP2010008342A (en) 2008-06-30 2008-06-30 Moisturizing force measuring method

Country Status (1)

Country Link
JP (1) JP2010008342A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136142A (en) * 2017-02-20 2018-08-30 株式会社トプコン Measurement device, measurement method, and control program for measurement device
JP2018136141A (en) * 2017-02-20 2018-08-30 株式会社トプコン Measuring device, method of controlling measuring device, and control program for measuring device
JP2022008658A (en) * 2017-02-20 2022-01-13 株式会社トプコン Measurement device, measurement method, and control program of measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136142A (en) * 2017-02-20 2018-08-30 株式会社トプコン Measurement device, measurement method, and control program for measurement device
JP2018136141A (en) * 2017-02-20 2018-08-30 株式会社トプコン Measuring device, method of controlling measuring device, and control program for measuring device
JP2022008658A (en) * 2017-02-20 2022-01-13 株式会社トプコン Measurement device, measurement method, and control program of measurement device
JP7013131B2 (en) 2017-02-20 2022-01-31 株式会社トプコン Measuring device, measuring device control method and measuring device control program
JP7331058B2 (en) 2017-02-20 2023-08-22 株式会社トプコン Measuring device, measuring method and measuring device control program

Similar Documents

Publication Publication Date Title
KR100398362B1 (en) Method and apparatus for measuring skin moisture by using near-infrared reflectance spectroscopy
Ma et al. Noncontact evaluation of soluble solids content in apples by near-infrared hyperspectral imaging
McGlone et al. Dry-matter—a better predictor of the post-storage soluble solids in apples?
Huang et al. Quality assessment of tomato fruit by optical absorption and scattering properties
CN106535760B (en) Non-invasive substance analysis
Boldrini et al. Hyperspectral imaging: a review of best practice, performance and pitfalls for in-line and on-line applications
Smith et al. Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges
US6983176B2 (en) Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy
Shao et al. Quantitative determination by temperature dependent near-infrared spectra
Walling et al. Moisture in skin by near-infrared reflectance spectroscopy
KR100889411B1 (en) Method and apparatus for controlling the manufacturing quality of a moving web
Vyumvuhore et al. Raman spectroscopy: a tool for biomechanical characterization of Stratum Corneum
JP2007010584A (en) Method and device for evaluating amount of urea in object, method and device for evaluating amounts of urea and moisture in object, program, and computer-readable recording medium
Xie et al. Measurement and calculation methods on absorption and scattering properties of turbid food in Vis/NIR range
JP2003344279A (en) Method for measuring hair moisture
Xiong et al. Composition analysis of scattering liquids based on spatially offset visible-near-infrared spectroscopy
JP2010008342A (en) Moisturizing force measuring method
WO2020130942A1 (en) A non-destructive system and method for determining the quality of chinese herb using terahertz time-domain spectroscopy
Inagaki et al. Selective assessment of duplex heat-treated wood by near-infrared spectroscopy with principal component and kinetic analyses
Dixit et al. Identification and quantification of industrial grade glycerol adulteration in red wine with Fourier transform infrared spectroscopy using chemometrics and artificial neural networks
Hu et al. Characterizing pear tissue with optical absorption and scattering properties using spatially-resolved diffuse reflectance
Egawa et al. Near‐infrared imaging of water in human hair
Lehtinen Spectroscopic studies of human hair, nail, and saliva samples using a cantilever-based photoacoustic detection
Pomerantsev et al. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection–Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films
Dixit et al. NIR spectrophotometry with integrated beam splitter as a process analytical technology for meat composition analysis