JP2010007124A - Method for producing silver-containing powder, silver-containing powder, and dispersion liquid thereof - Google Patents

Method for producing silver-containing powder, silver-containing powder, and dispersion liquid thereof Download PDF

Info

Publication number
JP2010007124A
JP2010007124A JP2008167262A JP2008167262A JP2010007124A JP 2010007124 A JP2010007124 A JP 2010007124A JP 2008167262 A JP2008167262 A JP 2008167262A JP 2008167262 A JP2008167262 A JP 2008167262A JP 2010007124 A JP2010007124 A JP 2010007124A
Authority
JP
Japan
Prior art keywords
silver
containing powder
compound
dispersion
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008167262A
Other languages
Japanese (ja)
Other versions
JP4573138B2 (en
JP2010007124A5 (en
Inventor
Akio Takahashi
暁雄 高橋
Shiyoutaku Ri
承澤 李
Jinka Kin
仁華 金
Koichiro Matsuki
光一郎 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008167262A priority Critical patent/JP4573138B2/en
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to CN200980123935.6A priority patent/CN102066024B/en
Priority to KR1020107020662A priority patent/KR101239816B1/en
Priority to EP09770019.9A priority patent/EP2305402B1/en
Priority to PCT/JP2009/060587 priority patent/WO2009157309A1/en
Priority to US12/737,220 priority patent/US20110180764A1/en
Publication of JP2010007124A publication Critical patent/JP2010007124A/en
Publication of JP2010007124A5 publication Critical patent/JP2010007124A5/ja
Application granted granted Critical
Publication of JP4573138B2 publication Critical patent/JP4573138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide silver-containing powder in a dry state comprising silver nanoparticles of ≥95 mass% in silver-containing powder and having preservation stability and re-dispersibility, to provide a dispersion liquid of silver-containing powder obtained by re-dispersing the same and capable of low temperature fusion, and to provide their production methods having excellent industrial productivity. <P>SOLUTION: Disclosed is a method for producing silver-containing powder comprising: a step (1) wherein a silver compound is reduced into silver nanoparticles (Z) in an aqueous medium in the presence of a compound (X) formed in such a manner that polyethylene glycol is combined with an amino group in polyethylene imine or a compound (Y) formed in such a manner that polyethylene glycol and an epoxy resin are combined with an amino group in polyethylene imine; a step (2) wherein an organic solvent is added to a mixture of the compound (X) or the compound (Y), the silver nanoparticles (Z) and the aqueous medium, and centrifugal concentration is performed; and a step (3) wherein the concentrate obtained in the step (2) is dried. Also disclosed is silver-containing powder obtained by the method. Also disclosed is a dispersion liquid obtained by re-dispersing the same. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、平均粒子径が2〜50nmの銀ナノ粒子を含有する粉体とその粉体の分散液に関するものであり、詳しくは、特定の化合物の存在下、銀化合物の還元反応、濃縮、乾燥工程を経ることにより得られる、固体状態で安定な銀含有粉体と、これを溶剤に再分散させて得られる分散液、及びそれらの製造方法に関するものである。   The present invention relates to a powder containing silver nanoparticles having an average particle diameter of 2 to 50 nm and a dispersion of the powder. Specifically, in the presence of a specific compound, the reduction reaction, concentration, The present invention relates to a silver-containing powder that is stable in a solid state, obtained by passing through a drying step, a dispersion obtained by redispersing it in a solvent, and a method for producing the same.

高集積化された高機能で小型・薄型の情報機器の開発には、半導体の微細加工技術の更なる開発と同時に、その微細加工を生かし支える信頼性の高い実装技術が必要である。その実装技術の要素技術には、金属微粒子の製造と、それをペースト化して用いる微細配線・接続技術があり、インクジェット等の印刷技術との組み合わせが注目され、近年各社が競って様々なアプローチで技術開発を行っている(例えば、特許文献1参照。)。   In order to develop highly integrated, highly functional, small, and thin information devices, it is necessary to develop semiconductor microfabrication technology and at the same time have highly reliable mounting technology that supports the microfabrication. The component technology of the mounting technology includes the production of fine metal particles and the fine wiring / connection technology using the paste as a paste. The combination with printing technology such as inkjet has been attracting attention. Technology development is underway (for example, see Patent Document 1).

一般に金属微粒子を製造するには、いわゆるトップダウンと呼ばれる粉砕技術に基づくもの(例えば、特許文献2及び3参照。)と、ボトムアップと呼ばれる分子または原子の化学的・物理的挙動を把握しこれを制御することによって構造を制御する方法(例えば、特許文献4〜6参照。)があり、トップダウン法ではその粒子径をナノメートルオーダーまで均一粉砕することが困難であることから、近年ではボトムアップ法が注目されている。   In general, metal fine particles are produced by grasping the chemical / physical behavior of molecules or atoms based on a so-called top-down pulverization technique (see, for example, Patent Documents 2 and 3) and bottom-up. There is a method for controlling the structure by controlling the thickness (for example, see Patent Documents 4 to 6), and it is difficult to uniformly pulverize the particle diameter to the nanometer order by the top-down method. The up method is attracting attention.

粒子径がナノサイズまで小さくなった金属ナノ粒子は、表面エネルギーが増大するため該粒子表面での融点降下が生じ、その結果、金属ナノ粒子同士の融着が起こりやすく保存安定性が悪くなることが知られている。従って金属ナノ粒子は該融着を防止するための保護剤等で被覆されで、分散溶媒中にコロイド状に分散した分散液としたものが多く提供されている。   Metal nanoparticles whose particle size has been reduced to nano-sizes have increased surface energy, resulting in a melting point drop on the surface of the particles. As a result, metal nanoparticles tend to fuse with each other, resulting in poor storage stability. It has been known. Accordingly, many metal nanoparticles are provided which are coated with a protective agent or the like for preventing the fusion and dispersed in a colloidal form in a dispersion solvent.

それに対して、乾燥状態(固体)の金属ナノ粒子は、それを様々な用途における液状組成物や固体の混合物に容易に配合可能である点から、保護剤で保護された金属ナノ粒子のコロイド状分散液よりもその応用範囲が広く、また、輸送、保管の面からも工業的には有利であると考えられる。例えば、分散溶媒中にコロイド状に安定分散した分散液から分散溶媒を留去、蒸散させて、金属ナノ粒子を含む粉体(固体)を得ようとした場合、隣接した粉体の表面に存在する保護剤同士の粘着や、十分に保護されていない箇所からの金属ナノ粒子同士の融合等により安定に保存することができず、実用的ではない。   In contrast, dried (solid) metal nanoparticles can be easily incorporated into liquid compositions and solid mixtures in various applications, so that the colloidal form of metal nanoparticles protected with a protective agent is used. The application range is wider than that of the dispersion, and it is considered industrially advantageous in terms of transportation and storage. For example, when the dispersion solvent is distilled off from a dispersion that has been stably dispersed in a dispersion solvent and evaporated to obtain a powder (solid) containing metal nanoparticles, it exists on the surface of the adjacent powder. It is not practical because it cannot be stably stored due to adhesion between protective agents to be protected or fusion of metal nanoparticles from a location that is not sufficiently protected.

また、既に本発明者らが前記特許文献6等で提供した技術では、金属イオンの還元によって得られた金属ナノ粒子と高分子化合物とからなる分散体を単離する際に、原料とした金属化合物から発生する対イオン等を除去するために透析法を用いているが、この手法では製造サイクル・コスト的に工業的実施には不向きである。また、該特許文献6等の実施例で記載した、透析した後、乾燥して得られる粉体中における金属含有率はいずれも92質量%未満であり、導電性材料として使用するには高温での処理が必要であった。   Further, in the technique already provided by the present inventors in Patent Document 6 and the like, the metal used as a raw material when isolating a dispersion composed of metal nanoparticles obtained by reduction of metal ions and a polymer compound is used. A dialysis method is used to remove counter ions and the like generated from the compound, but this method is not suitable for industrial implementation in terms of production cycle and cost. In addition, the metal content in the powder obtained by dialysis and drying, as described in the Examples of Patent Document 6 and the like, is less than 92% by mass, and is not suitable for use as a conductive material. It was necessary to process.

金属微粒子の製造方法としては、例えば、アルカリ可溶性ポリマーの存在下で金属イオンを還元して得られる金属微粒子含有液を凍結乾燥法により乾燥する方法が提供されている(例えば、特許文献7参照)。該手法では、アルカリ可溶性ポリマーを完全に溶解させる必要があることから、pHが12程度のアルカリ水溶液を多量に必要とするため、一定量の金属含有粉体を得るためには、使用したアルカリ性水溶液の廃液処理の環境負荷が高く、工業的製法としてふさわしくないものである。更に、前記特許文献7の実施例で得られる金属含有粉体中における金属含有率はいずれも90質量%未満と低いものであり、導電性ペースト等の導電性材料として使用した際には、粉体中の金属以外の固形分が多いことから、導電性発現のために高温での処理が必要と考えられる。また前記特許文献7における安定性は、粉体を得てからすぐに有機溶剤に再分散させた際の分散安定性と該再分散液の経時保存安定性である点から、固体状態(粉体)での保存安定性を保証するものでもない。   As a method for producing metal fine particles, for example, a method of drying a metal fine particle-containing liquid obtained by reducing metal ions in the presence of an alkali-soluble polymer by a freeze-drying method is provided (see, for example, Patent Document 7). . In this method, since it is necessary to completely dissolve the alkali-soluble polymer, a large amount of an alkaline aqueous solution having a pH of about 12 is required. Therefore, in order to obtain a certain amount of metal-containing powder, the alkaline aqueous solution used is used. The wastewater treatment has a high environmental impact and is not suitable as an industrial production method. Further, the metal content in the metal-containing powder obtained in the example of Patent Document 7 is as low as less than 90% by mass, and when used as a conductive material such as a conductive paste, Since there are many solids other than the metal in a body, it is thought that the process at high temperature is required for electroconductivity expression. Further, the stability in Patent Document 7 is the solid state (powder) from the viewpoint of the dispersion stability when redispersed in an organic solvent immediately after obtaining the powder and the storage stability over time of the redispersed liquid. ) Does not guarantee storage stability.

また、金属微粒子の分散液から余剰の分散剤等を除去し、乾燥することによって固体粉末状態の金属微粒子を得る方法も提供されているが(例えば、特許文献8参照。)、その手法は煩雑であり、また再分散可能な溶媒が限定され応用面での制約が大きい。
特開2004−74267号公報 特開2007−265801号公報 特開2007−254845号公報 特開平11−319538号公報 特開2006−257484号公報 特開2008−37884号公報 特開2007−86777号公報 国際公開2005/037465号パンフレット
Further, there is also provided a method of obtaining metal fine particles in a solid powder state by removing excess dispersant and the like from a dispersion of metal fine particles and drying (see, for example, Patent Document 8), but the method is complicated. In addition, the redispersible solvent is limited, and there is a great limitation in application.
JP 2004-74267 A JP 2007-265801 A JP 2007-254845 A JP 11-319538 A JP 2006-257484 A JP 2008-37884 A JP 2007-86777 A International Publication No. 2005/037465 Pamphlet

上記実情に鑑み、本発明が解決しようとする課題は、銀含有粉体中に平均粒子径が2〜50nmの銀ナノ粒子を95質量%以上で含有する、良好な保存安定性と優れた再分散性とを有する乾燥状態の銀含有粉体と、それを各種溶剤に再分散して得られる、低温融着可能な銀含有粉体の分散液、及び工業的生産性に優れるそれらの製造方法を提供することにある。   In view of the above circumstances, the problem to be solved by the present invention is that the silver-containing powder contains silver nanoparticles having an average particle diameter of 2 to 50 nm in an amount of 95% by mass or more, and has excellent storage stability and excellent reproducibility. A silver-containing powder in a dry state having dispersibility, a dispersion of a silver-containing powder that can be fused at low temperature obtained by redispersing it in various solvents, and a method for producing them that is excellent in industrial productivity Is to provide.

本発明者は上記課題を解決するために鋭意検討した結果、高い分散性を発現することに寄与するセグメントと、金属の微粒子を固定化したり、金属イオンを還元したりすることが可能なセグメントの、少なくとも2種のセグメントを有する化合物の存在下で銀化合物を還元した後、濃縮・乾燥工程を経ることにより、平均粒径が小さく、且つ銀含有率が高い銀含有粉体が得られること、得られた銀含有粉体は固体状態での保存安定性に優れ、かつ各種溶剤への再分散が容易で、その他の分散剤を使用しなくても安定性に優れる分散液が得られること、得られた分散液を塗布すると、低温での融着により高い導電性を発現しうることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a segment that contributes to the development of high dispersibility and a segment that can immobilize metal fine particles or reduce metal ions. In addition, after reducing the silver compound in the presence of a compound having at least two kinds of segments, a silver-containing powder having a small average particle diameter and a high silver content can be obtained by passing through a concentration and drying step. The obtained silver-containing powder is excellent in storage stability in a solid state, can be easily redispersed in various solvents, and a dispersion having excellent stability can be obtained without using other dispersants. When the obtained dispersion was applied, it was found that high conductivity could be expressed by fusion at low temperature, and the present invention was completed.

即ち本発明は、
(1)数平均分子量が500〜50,000のポリエチレンイミン(a)中のアミノ基に数平均分子量が500〜5,000のポリエチレングリコール(b)が結合してなる化合物(X)、または、
数平均分子量が500〜50,000のポリエチレンイミン(a)中のアミノ基に、数平均分子量が500〜5,000のポリエチレングリコール(b)と、エポキシ樹脂(c)とが結合してなる化合物(Y)の存在下、水性媒体中で、銀化合物を銀ナノ粒子(Z)に還元する工程、
(2)(1)で得られた、化合物(X)又は化合物(Y)と、銀ナノ粒子(Z)と、水性媒体との混合物に有機溶剤を加え、その後濃縮する工程、
(3)(2)で得られた濃縮物を乾燥する工程
とを有することを特徴とする銀含有粉体の製造方法、及び該製造方法で得られる平均粒子径が2〜50nmの銀ナノ粒子を95質量%以上で含有する銀含有粉体を提供するものである。
That is, the present invention
(1) Compound (X) obtained by bonding polyethylene glycol (b) having a number average molecular weight of 500 to 5,000 to an amino group in polyethyleneimine (a) having a number average molecular weight of 500 to 50,000, or
A compound in which polyethylene glycol (b) having a number average molecular weight of 500 to 5,000 and an epoxy resin (c) are bonded to an amino group in polyethyleneimine (a) having a number average molecular weight of 500 to 50,000. Reducing the silver compound to silver nanoparticles (Z) in an aqueous medium in the presence of (Y);
(2) A step of adding an organic solvent to the mixture of the compound (X) or the compound (Y) obtained in (1), the silver nanoparticles (Z), and the aqueous medium, and then concentrating the mixture,
(3) A method for producing a silver-containing powder characterized by having a step of drying the concentrate obtained in (2), and silver nanoparticles having an average particle diameter of 2 to 50 nm obtained by the production method The silver containing powder which contains 95 mass% or more is provided.

更に、本発明は、前記銀含有粉体を各種溶剤に再分散して得られる銀含有粉体の分散液及びこれを用いる導電性ペーストを提供するものである。   Furthermore, this invention provides the dispersion liquid of the silver containing powder obtained by re-dispersing the said silver containing powder in various solvents, and the electrically conductive paste using this.

本発明で得られる銀含有粉体は、用いる高分子化合物中のポリエチレンイミン鎖の還元能力、配位結合力や静電的な相互作用等により、銀イオンが銀ナノ粒子に還元された際、その銀ナノ粒子表面に高分子化合物が配位されてなる一定の大きさを有する乾燥状態の粉末であり、保存安定性に優れる。また、この銀含有粉体は水や各種の有機溶剤への再分散性に優れており、分散剤等のその他の化合物を使用することなく、分散液を容易に調製することができる。従って、金属材料、導電材料の各種用途に応じ、粉体そのまま、または分散液に調製してからでも配合に用いることができる。   When the silver-containing powder obtained in the present invention is reduced to silver nanoparticles due to the reducing ability of the polyethyleneimine chain in the polymer compound used, the coordination bond force, electrostatic interaction, etc., It is a dry powder having a certain size obtained by coordination of a polymer compound on the surface of the silver nanoparticles, and is excellent in storage stability. Moreover, this silver-containing powder is excellent in redispersibility in water and various organic solvents, and a dispersion can be easily prepared without using other compounds such as a dispersant. Therefore, according to various uses of the metal material and the conductive material, the powder can be used for blending as it is or after it is prepared into a dispersion.

また、本発明で得られる銀含有粉体の分散液は、該粉体中の銀ナノ粒子を被覆する化合物中の前述のポリエチレンイミン鎖の機能により、銀イオンの還元反応で得られた銀ナノ粒子を安定に保持しており、該化合物中の親水性セグメントや疎水性セグメントが、各種媒体との親和力と、セグメント間の相互作用による強い反発力とをバランスよく発現させることにより、分散性と保存安定性に優れる。   The silver-containing powder dispersion obtained in the present invention is a silver nanoparticle obtained by a silver ion reduction reaction due to the function of the aforementioned polyethyleneimine chain in the compound covering the silver nanoparticles in the powder. The particles are stably held, and the hydrophilic segment and the hydrophobic segment in the compound exhibit a good balance between the affinity with various media and the strong repulsive force due to the interaction between the segments. Excellent storage stability.

また、本発明で得られる銀含有粉体はナノメートルサイズの銀ナノ粒子と有機化合物からなる、一定の構造を有し、且つ銀含有率が高いものである点から、高品位の導電性材料等として好適に用いることができる。更には、比表面積が大きい、表面エネルギーが高い、プラズモン吸収を有する等の金属のナノメートルサイズの微粒子としての特徴を有し、種々の化学的、電気的、磁気的性能を兼備し、多岐にわたる分野、例えば触媒、電子材料、磁気材料、光学材料、各種センサー、色材、医療検査用途等への応用が可能である。また本発明の銀含有粉体及びその分散液の製造方法は、温和な条件下での銀イオンの還元反応に基づくものであり、再現性に優れ、後処理方法も汎用の設備で実施可能であり、工業的製法として優位性が高いものである。   In addition, the silver-containing powder obtained in the present invention is composed of nanometer-sized silver nanoparticles and an organic compound, has a certain structure, and has a high silver content. Etc. can be suitably used. Furthermore, it has the characteristics as nanometer-sized fine particles of metal such as large specific surface area, high surface energy, plasmon absorption, etc., and has various chemical, electrical, and magnetic performances, and has a wide variety Applications to fields such as catalysts, electronic materials, magnetic materials, optical materials, various sensors, color materials, medical examination applications, and the like are possible. In addition, the method for producing the silver-containing powder and the dispersion thereof of the present invention is based on the reduction reaction of silver ions under mild conditions, and is excellent in reproducibility, and the post-treatment method can be performed with general-purpose equipment. It is highly advantageous as an industrial production method.

本発明の銀ナノ粒子粉体の製造方法は
(1)数平均分子量が500〜50,000のポリエチレンイミン(a)中のアミノ基に数平均分子量が500〜5,000のポリエチレングリコール(b)が結合してなる化合物(X)、または、
数平均分子量が500〜50,000のポリエチレンイミン(a)中のアミノ基に、数平均分子量が500〜5,000のポリエチレングリコール(b)と、エポキシ樹脂(c)とが結合してなる化合物(Y)の存在下、水性媒体中で、銀化合物を銀ナノ粒子(Z)に還元する工程、
(2)(1)で得られた、化合物(X)又は化合物(Y)と、銀ナノ粒子(Z)と、水性媒体との混合物に有機溶剤を加え、その後濃縮する工程、
(3)(2)で得られた濃縮物を乾燥する工程
とを有することを特徴とする。
The method for producing a silver nanoparticle powder of the present invention is as follows: (1) Polyethylene glycol (b) having a number average molecular weight of 500 to 5,000 and an amino group in polyethyleneimine (a) having a number average molecular weight of 500 to 50,000. Or a compound (X) formed by binding, or
A compound in which polyethylene glycol (b) having a number average molecular weight of 500 to 5,000 and an epoxy resin (c) are bonded to an amino group in polyethyleneimine (a) having a number average molecular weight of 500 to 50,000. Reducing the silver compound to silver nanoparticles (Z) in an aqueous medium in the presence of (Y);
(2) A step of adding an organic solvent to the mixture of the compound (X) or the compound (Y) obtained in (1), the silver nanoparticles (Z), and the aqueous medium, and then concentrating the mixture,
(3) A step of drying the concentrate obtained in (2).

本発明における銀ナノ粒子とは、透過型電子顕微鏡写真で観測される粒子径がナノメートルオーダーであることを意味するものであり、その形が完全な球体であることを必要としない。又、化合物(X)又は化合物(Y)を構成する各セグメントの数平均分子量は、ゲルパーミュエーションクロマトグラフィー(GPC)によって測定した、ポリスチレン換算値である。   The silver nanoparticle in the present invention means that the particle diameter observed in a transmission electron micrograph is on the order of nanometers, and the shape does not need to be a perfect sphere. Moreover, the number average molecular weight of each segment which comprises a compound (X) or a compound (Y) is a polystyrene conversion value measured by gel permeation chromatography (GPC).

本発明において使用する化合物(X)および化合物(Y)を構成するポリエチレンイミン鎖(a)は、該鎖中のエチレンイミン単位が銀およびそのイオンと配位結合可能であり、更に銀イオンの還元を促して銀ナノ粒子(Z)とし、該銀ナノ粒子(Z)を安定化し保持する高分子鎖である。その構造はエチレンイミン単位を主な繰り返し単位とし、直鎖状、分岐状のいずれであっても良く、市販品・合成品のいずれでも良い。   In the polyethyleneimine chain (a) constituting the compound (X) and the compound (Y) used in the present invention, the ethyleneimine unit in the chain can be coordinated with silver and its ions, and further reduction of silver ions Is a polymer chain that stabilizes and holds silver nanoparticles (Z). The structure has an ethyleneimine unit as the main repeating unit, and may be linear or branched, and may be either a commercial product or a synthetic product.

本発明で得られる銀含有粉体の大きさは、用いる化合物(X)または化合物(Y)の分子量やポリエチレンイミン(a)の分子量だけではなく、該化合物(X)または化合物(Y)を構成する各成分、即ち、ポリエチレンミン(a)、後述する親水性セグメント(b)、化合物(Y)であっては更に後述のエポキシ樹脂(c)の構造や組成比、また原料として用いる銀の種類によっても影響を受ける。また、銀含有粉体における銀ナノ粒子(Z)の含有率を上げるためには、分岐状のポリエチレンイミン鎖を用いることが好ましい。   The size of the silver-containing powder obtained in the present invention is not limited to the molecular weight of the compound (X) or compound (Y) used or the molecular weight of the polyethyleneimine (a), but constitutes the compound (X) or compound (Y). In the case of each component to be processed, that is, polyethylenemin (a), hydrophilic segment (b) described later, compound (Y), the structure and composition ratio of epoxy resin (c) described later, and the kind of silver used as a raw material Also affected by. In order to increase the content of silver nanoparticles (Z) in the silver-containing powder, it is preferable to use a branched polyethyleneimine chain.

一般に市販されている分岐状ポリエチレンイミンは3級アミンによって分岐状となっており、本発明で使用する化合物(X)または化合物(Y)の原料として用いることができる。保存安定性に優れる銀含有粉体やその分散液が得られる、好ましい粒径の銀含有粉体が得られる点からは、分岐度を(3級アミン)/(全てのアミン)のモル比で示すと(1〜49)/(100)の範囲の分岐度であることが好ましく、工業的な製造面、入手のし易さ等も鑑みるとより好ましい分岐度の範囲は(15〜40)/(100)である。   A commercially available branched polyethyleneimine is branched by a tertiary amine and can be used as a raw material for the compound (X) or the compound (Y) used in the present invention. From the viewpoint of obtaining a silver-containing powder having a preferable particle diameter, which can provide a silver-containing powder having excellent storage stability and a dispersion thereof, the degree of branching is expressed as a molar ratio of (tertiary amine) / (all amines). When it shows, it is preferable that it is a branching degree of the range of (1-49) / (100), and the range of a more preferable branching degree is (15-40) / in view of an industrial manufacture surface, availability, etc. (100).

前記ポリエチレンイミン(a)部分の平均分子量としては、低すぎると、化合物(X)または化合物(Y)による銀ナノ粒子(Z)の保持能力が低下しやすく、保存安定性が不十分になることがあり、高すぎると銀含有粉体が巨大化しやすく、該分散液の保存安定性に支障をきたすことがある。従って、得られる銀含有粉体およびその分散液の保存安定性がより優れたものであり、該粉体中の銀ナノ粒子(Z)の含有率を高くすることができる観点から数平均分子量としては500〜50,000の範囲であり、1,000〜40,000の範囲であることが好ましく、1,800〜30,000の範囲であることが最も好ましい。   If the average molecular weight of the polyethyleneimine (a) portion is too low, the retention ability of the silver nanoparticles (Z) by the compound (X) or the compound (Y) tends to be lowered, and the storage stability becomes insufficient. If it is too high, the silver-containing powder tends to become enormous and the storage stability of the dispersion may be hindered. Therefore, the storage stability of the obtained silver-containing powder and its dispersion is more excellent, and the number average molecular weight is from the viewpoint of increasing the content of silver nanoparticles (Z) in the powder. Is in the range of 500 to 50,000, preferably in the range of 1,000 to 40,000, and most preferably in the range of 1,800 to 30,000.

ポリエチレングリコール(b)の分子量としては、親水性有機溶剤に分散させる場合は、分子量が低すぎると分散安定性が悪化し、高すぎると分散体同士が凝集してしまう可能性が考えられる。また、銀含有粉体においては、固体状態における凝集のない保存安定性と、銀含有率を高くすることとのバランスをとることが必要である点から、ポリエチレングリコール(b)部分の数平均分子量としては500〜5,000であり、1,000〜3,000であることがより好ましい。   When the molecular weight of polyethylene glycol (b) is dispersed in a hydrophilic organic solvent, the dispersion stability may be deteriorated if the molecular weight is too low, and the dispersion may be aggregated if the molecular weight is too high. Further, in the silver-containing powder, it is necessary to balance the storage stability without aggregation in the solid state and the increase in the silver content, so that the number average molecular weight of the polyethylene glycol (b) portion. Is 500 to 5,000, more preferably 1,000 to 3,000.

ポリエチレングリコール(b)は一般的に市販品でも、合成品でも良い。また、他の親水性ポリマーとの共重合体等であっても良い。このとき使用できる親水性ポリマーとしては、例えば、ポリビニルアルコール、ポリアクリルアミド、ポリイソプロピルアクリルアミド、ポリビニルピロリドン等が挙げられる。得られる銀含有粉体中の銀含有率を高める点から、共重合体を使用する場合においても、全体の分子量が500〜5,000の範囲であることが好ましい。   Polyethylene glycol (b) may generally be a commercial product or a synthetic product. Further, it may be a copolymer with other hydrophilic polymer. Examples of the hydrophilic polymer that can be used at this time include polyvinyl alcohol, polyacrylamide, polyisopropylacrylamide, and polyvinylpyrrolidone. From the viewpoint of increasing the silver content in the resulting silver-containing powder, even when a copolymer is used, the overall molecular weight is preferably in the range of 500 to 5,000.

本発明において使用する化合物(Y)中には、更に疎水性セグメントとしてエポキシ樹脂(c)を結合してなるものである。化合物(Y)中にエポキシ樹脂(c)由来の構造を含有させることにより、該化合物(Y)を水または親水性溶媒中に再分散した場合には、分子内又は分子間相互の強い会合力により、ミセルのコアを形成し、安定なミセルを形成してその中に銀ナノ粒子(Z)を取り込んで安定な分散液を得ることができる。また疎水性有機溶媒中に再分散させる場合には、該溶剤との高い親和性を有することで、分散安定性に優れたものにすることが可能となる。   In the compound (Y) used in the present invention, an epoxy resin (c) is further bonded as a hydrophobic segment. By incorporating a structure derived from the epoxy resin (c) into the compound (Y), when the compound (Y) is redispersed in water or a hydrophilic solvent, a strong associative force within the molecule or between the molecules. By forming a micelle core, a stable micelle can be formed, and silver nanoparticles (Z) can be taken therein to obtain a stable dispersion. Further, when redispersed in a hydrophobic organic solvent, it has a high affinity with the solvent, so that the dispersion stability can be improved.

エポキシ樹脂(c)は一般的に市販、又は合成可能な構造であれば特に限定されることなく使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、特開2003−201333号記載のキサンテン型エポキシ樹脂等が挙げられ、単独で用いてもよく、2種以上を混合してもよい。これらの中でも、得られる銀含有粉体またはその分散液を導電性ペーストとして用いる際に、基板との密着性に優れる等の観点から、ビスフェノールA型エポキシ樹脂を用いることが好ましく、親水性有機溶剤中での会合力が強く、分散安定性・保存安定性に優れる銀含有粉体の分散液が得られる点から、ナフタレン型4官能エポキシ樹脂等の3官能以上のエポキシ樹脂を用いることが好ましい。また、これらのエポキシ樹脂は、そのまま化合物(Y)の原料としても良く、更には目的とする化合物(Y)の構造等に応じて、種々の変性を加えたものであっても良い。例えば、エポキシ樹脂(c)中のエポキシ基の一部を、金属との相互作用を有する芳香環を有する化合物で予め開環させて、より安定な銀含有粉体とすることもできる。   The epoxy resin (c) can be used without particular limitation as long as it is generally commercially available or can be synthesized. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, Naphthol-phenol co-condensed novolak epoxy resin, Naphthol-cresol co-condensed novolac epoxy resin, Aromatic hydrocarbon form Aldehyde resin modified phenol resin type epoxy resin, a biphenyl novolak type epoxy resin, a xanthene type epoxy resins described in JP-2003-201333, may be used alone, or may be a mixture of two or more. Among these, when using the obtained silver-containing powder or dispersion thereof as a conductive paste, it is preferable to use a bisphenol A type epoxy resin from the viewpoint of excellent adhesion to a substrate, etc., and a hydrophilic organic solvent It is preferable to use a trifunctional or higher functional epoxy resin such as a naphthalene type tetrafunctional epoxy resin from the viewpoint of obtaining a dispersion of a silver-containing powder having a strong associative force and excellent dispersion stability and storage stability. In addition, these epoxy resins may be used as the raw material of the compound (Y) as they are, and further may be those modified in various ways according to the structure of the target compound (Y). For example, a part of the epoxy group in the epoxy resin (c) can be ring-opened in advance with a compound having an aromatic ring having an interaction with a metal to obtain a more stable silver-containing powder.

また、エポキシ樹脂(c)の分子量としては特に限定されるものではないが、親水性有機溶剤中に再分散させる場合は、低すぎると分散安定性が悪化し、高すぎるとミセル同士が凝集してしまう可能性が考えられ、また疎水性有機溶剤中に分散させる場合は、低すぎるとミセルの分散性が乏しくなり、高すぎると溶媒との親和性が保持できなくなる。これらの観点、および銀含有粉体の固形分中における銀含有率を容易に高めることができる点から、エポキシ樹脂(c)の数平均分子量としては通常100〜200,000であることが好ましく、特に300〜100,000であることが好ましい。   Further, the molecular weight of the epoxy resin (c) is not particularly limited, but when redispersed in a hydrophilic organic solvent, the dispersion stability is deteriorated if it is too low, and the micelles are aggregated if it is too high. In the case of dispersing in a hydrophobic organic solvent, if it is too low, the dispersibility of micelles is poor, and if it is too high, the affinity with the solvent cannot be maintained. From these viewpoints and the point that the silver content in the solid content of the silver-containing powder can be easily increased, the number average molecular weight of the epoxy resin (c) is usually preferably 100 to 200,000, In particular, it is preferably 300 to 100,000.

本発明で用いる化合物(X)および化合物(Y)の製造方法としては、特に限定されるものではないが、設計どおりの化合物を容易に合成可能である点から、下記の方法によるものが好ましい。   Although it does not specifically limit as a manufacturing method of compound (X) and compound (Y) used by this invention, The thing by the following method is preferable from the point which can synthesize | combine a compound as designed easily.

ポリエチレンイミン(a)は前述したとおり、市販又は合成したものを好適に用いることができる。まず、分岐状ポリエチレンイミン鎖を用いる場合について説明する。   As described above, a commercially available or synthesized polyethyleneimine (a) can be suitably used. First, the case where a branched polyethyleneimine chain is used will be described.

分岐状ポリエチレンイミンの末端は1級アミンとなっているため、ポリエチレングリコール(b)の末端を1級アミンと反応する官能基に予め変性させて、反応させることによって、本発明で用いる事ができる化合物(X)を合成することができる。1級アミンと反応する官能基としては、特に限定されるものではなく、例えば、アルデヒド基、カルボキシ基、イソシアネート基、トシル基、エポキシ基、グリシジル基、イソチオシアネート基、ハロゲン、酸クロライド、スルホン酸クロライド等が挙げられる。なかでもカルボキシ基、イソシアネート基、トシル基、エポキシ基、グリシジル基は反応性、取扱い易さ等、製法上有利であり、好ましい官能基である。   Since the terminal of the branched polyethyleneimine is a primary amine, the terminal of polyethylene glycol (b) can be used in the present invention by pre-modifying and reacting with a functional group that reacts with the primary amine. Compound (X) can be synthesized. The functional group that reacts with the primary amine is not particularly limited. For example, aldehyde group, carboxy group, isocyanate group, tosyl group, epoxy group, glycidyl group, isothiocyanate group, halogen, acid chloride, sulfonic acid Examples include chloride. Among them, a carboxy group, an isocyanate group, a tosyl group, an epoxy group, and a glycidyl group are advantageous in terms of production methods such as reactivity and ease of handling, and are preferable functional groups.

また1級アミンと直接反応する官能基でなくとも、種々の処理を行うことによって1級アミンと反応可能な官能基にできるものであれば良く、例えば、ヒドロキシ基を有するポリエチレングリコールを用いるのであれば、これをグリシジル化する等の手法でポリエチレンイミン鎖と反応させても良い。更には、分岐状ポリエチレンイミン鎖の1級アミンを、官能基を有するポリエチレングリコールと反応可能な他の官能基に変換する処理を施した後、これらを反応させて化合物(X)を合成することも可能である。   In addition, the functional group may not be a functional group that directly reacts with the primary amine, but may be any functional group that can be reacted with the primary amine by performing various treatments. For example, polyethylene glycol having a hydroxy group may be used. For example, it may be reacted with a polyethyleneimine chain by a technique such as glycidylation. Furthermore, after performing the process which converts the primary amine of a branched polyethyleneimine chain | strand into the other functional group which can react with the polyethylene glycol which has a functional group, these are made to react and synthesize | combine a compound (X). Is also possible.

ポリエチレンイミン鎖(a)が直鎖状ポリエチレンイミン鎖の場合は、リビング重合によって、まずポリアシル化エチレンイミン鎖を合成し、引き続き、ポリエチレングリコールを導入することによって高分子化合物を得た後、ポリアシル化エチレンイミン鎖を加水分解して直鎖状ポリエチレンイミン鎖とする方法が挙げられる。   When the polyethyleneimine chain (a) is a linear polyethyleneimine chain, a polymer compound is obtained by first synthesizing a polyacylated ethyleneimine chain by living polymerization, and subsequently introducing polyethylene glycol. Examples include a method of hydrolyzing an ethyleneimine chain to form a linear polyethyleneimine chain.

また、本発明で用いる化合物(Y)に合成方法については、前記特許文献6や、特開2006−213887号公報、特許第4026662号、特許第4026664号等にて、既に本発明者により提供しているので、それを参照すれば良い。   In addition, the synthesis method for the compound (Y) used in the present invention has already been provided by the present inventor in Patent Document 6, Japanese Patent Application Laid-Open No. 2006-213877, Japanese Patent No. 4026662, Japanese Patent No. 4026664, and the like. You can refer to it.

本発明で用いる化合物(X)および化合物(Y)中のポリエチレンイミン(a)とポリエチレングリコール(b)の各成分の鎖を構成するポリマーのモル比(a):(b)としては特に限定されるものではないが、得られる銀含有粉体の保存安定性、その分散液の分散安定性及び保存安定性に優れる点から、通常(a):(b)=1:1〜100の範囲であり、特に1:1〜30になるように設計することが好ましい。   The molar ratio (a) :( b) of the polymer constituting the chain of each component of polyethyleneimine (a) and polyethylene glycol (b) in compound (X) and compound (Y) used in the present invention is particularly limited. Although it is not a thing, from the point which is excellent in the storage stability of the obtained silver containing powder, the dispersion stability of the dispersion liquid, and storage stability, Usually in the range of (a) :( b) = 1: 1-100. In particular, it is preferable to design such that the ratio is 1: 1 to 30.

また、化合物(Y)を用いる場合、ポリエチレンイミン(a)とポリエチレングリコール(b)、エポキシ樹脂(c)の各成分の鎖を構成するポリマーのモル比(a):(b):(c)としては特に限定されるものではないが、得られる銀含有粉体の保存安定性、その分散液の分散安定性及び保存安定性に優れる点から、通常(a):(b):(c)=1:1〜100:1〜100の範囲であり、特に1:1〜30:1〜30になるよう設計することが好ましい。   Moreover, when using a compound (Y), the molar ratio (a) :( b) :( c) of the polymer which comprises the chain | strand of each component of a polyethyleneimine (a), polyethyleneglycol (b), and an epoxy resin (c) Is not particularly limited, but is usually (a) :( b) :( c) from the viewpoint of excellent storage stability of the resulting silver-containing powder, dispersion stability of the dispersion, and storage stability. = 1: 1 to 100: 1 to 100, and it is particularly preferable that the design is 1: 1 to 30: 1 to 30.

本発明に使用する化合物(X)および化合物(Y)は、銀ナノ粒子(Z)を安定に存在させることが出来るポリエチレンイミン(a)とは別に、ポリエチレングリコール(b)、又は、更にエポキシ樹脂(c)に由来する構造を有する。上記したように、ポリエチレングリコール(b)の部分は、親水性有機溶剤中では溶媒と高い親和性を示し、また、エポキシ樹脂(c)の部分は親水性有機溶剤中で強い会合力を示す。さらには、エポキシ樹脂(c)中に芳香環を有する場合には、該芳香環の有するπ電子が銀と相互作用することによって、さらに銀含有粉体を安定化することに寄与するとも考えられる。   The compound (X) and the compound (Y) used in the present invention include polyethylene glycol (b), or further an epoxy resin, separately from the polyethyleneimine (a) capable of stably presenting silver nanoparticles (Z). It has a structure derived from (c). As described above, the polyethylene glycol (b) portion exhibits a high affinity with the solvent in the hydrophilic organic solvent, and the epoxy resin (c) portion exhibits a strong associating force in the hydrophilic organic solvent. Furthermore, when the epoxy resin (c) has an aromatic ring, it is considered that the π electrons of the aromatic ring interact with silver to further contribute to stabilizing the silver-containing powder. .

また、化合物(X)および化合物(Y)中に存在するポリエチレングリコール(b)由来構造部分は、後の精製工程において、一度濃縮した後、水または水と親水性有機溶剤との混合溶剤に再分散させる際、該化合物(X)または化合物(Y)と銀ナノ粒子(Z)との効率的な再配置を行なうことに寄与すると考えられる。即ち、ポリエチレングリコール(b)由来構造が再分散のときに溶剤側へ偏在することによって、化合物中のポリエチレンイミン(a)由来構造の全てが銀ナノ粒子(Z)の安定的な保持に関与するようになると考えられ、このことが、必要最低限の化合物(X)又は化合物(Y)で銀ナノ粒子(X)を安定化することになり、得られる銀含有粉体中の銀含有率を高くすることができるものと推察できる。従って、この様にして得られる銀含有粉体はその最表面がポリエチレングリコール(b)由来構造で覆われた状態になっていると考えられ、該粉体を再分散させて分散液を調製する際に、新たな分散剤を使用しなくても最分散が容易でかつ安定性に優れたものとなる要因であると考えられる。   Further, the polyethylene glycol (b) -derived structural portion present in the compound (X) and the compound (Y) is once concentrated in a subsequent purification step, and then reconstituted in water or a mixed solvent of water and a hydrophilic organic solvent. When dispersed, the compound (X) or the compound (Y) and the silver nanoparticles (Z) are considered to contribute to efficient rearrangement. That is, since the polyethylene glycol (b) -derived structure is unevenly distributed to the solvent side during redispersion, all of the polyethyleneimine (a) -derived structures in the compound are involved in the stable retention of the silver nanoparticles (Z). This will stabilize the silver nanoparticles (X) with the minimum necessary compound (X) or compound (Y), and the silver content in the resulting silver-containing powder will be reduced. It can be inferred that it can be increased. Therefore, it is considered that the silver-containing powder obtained in this manner is in a state where the outermost surface is covered with a structure derived from polyethylene glycol (b), and a dispersion is prepared by redispersing the powder. In this case, it is considered that this is a factor that facilitates the most dispersion and has excellent stability without using a new dispersant.

本発明の製造方法における第一工程は、前述の化合物(X)又は化合物(Y)を水性媒体、即ち水又は水と親水性有機溶剤との混合溶剤に溶解又は分散させる工程である。ポリエチレンイミン(a)とポリエチレングリコール(b)と、更に化合物(Y)である場合には、エポキシ樹脂(c)との組合せにより、水性媒体への溶解性・分散性が異なるが、均一に溶解または分散させることが必要となる。ここで用いることができる親水性有機溶剤としては、25〜35℃で、水100質量部に対して、少なくとも5質量部混和し、均一な混合溶剤が得られるものであればよく、例えば、メタノール、エタノール、イソプロピルアルコール、n−プロピルアルコール、テトラヒドロフラン、ジオキサン、アセトン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコール、グリセリン、ジメチルスルフォンオキシド、ジオキシラン、N−メチルピロリドン、ジメチルイミダゾリジノン、スルホラン等を挙げることができ、単独でも、2種以上を混合して用いても良い。また、各種イオン液体を用いても良い。   The first step in the production method of the present invention is a step of dissolving or dispersing the aforementioned compound (X) or compound (Y) in an aqueous medium, that is, water or a mixed solvent of water and a hydrophilic organic solvent. In the case of polyethyleneimine (a), polyethylene glycol (b), and further compound (Y), the solubility and dispersibility in aqueous media differ depending on the combination of epoxy resin (c), but it dissolves uniformly. Or it is necessary to disperse. The hydrophilic organic solvent that can be used here may be any one that can be mixed at least 5 parts by mass with respect to 100 parts by mass of water at 25 to 35 ° C. to obtain a uniform mixed solvent. , Ethanol, isopropyl alcohol, n-propyl alcohol, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, dimethylacetamide, dimethylformamide, ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol Glycerin, dimethylsulfone oxide, dioxirane, N-methylpyrrolidone, dimethylimidazolidinone, sulfo Can be exemplified emissions etc., may be used individually or as a mixture of two or more. Various ionic liquids may be used.

前記化合物(X)又は化合物(Y)と、水性媒体との使用割合としては、取り扱い上の容易性と、銀イオンの還元反応の容易性の観点、得られる銀含有粉体の銀含有率の向上の観点から、化合物(X)又は化合物(Y)の濃度が1〜20質量%になるように用いることが好ましく、2〜15質量%であることがより好ましい。この時、化合物(X)又は化合物(Y)の溶解性・分散性が不足する場合には、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等を併用した混合溶剤を用いることで溶解性・分散性を調整することができる。化合物(X)又は化合物(Y)を溶解または分散させるには、通常、室温で静置、又は攪拌を行えばよく、必要に応じて超音波処理、加熱処理等を行ってもよい。また化合物(X)又は化合物(Y)の結晶性等により、水性媒体とのなじみが低い場合には、例えば、化合物(X)又は化合物(Y)を少量の良溶媒で、溶解又は膨潤させた後、目的とする水性媒体中へ分散させる方法でもよい。このとき、超音波処理又は加熱処理を行うとより効果的である。   As the use ratio of the compound (X) or the compound (Y) and the aqueous medium, the silver content of the silver-containing powder obtained from the viewpoint of easy handling and ease of silver ion reduction reaction. From the viewpoint of improvement, the concentration of the compound (X) or the compound (Y) is preferably 1 to 20% by mass, and more preferably 2 to 15% by mass. At this time, when the solubility / dispersibility of compound (X) or compound (Y) is insufficient, for example, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate Solubility and dispersibility can be adjusted by using a mixed solvent in combination. In order to dissolve or disperse the compound (X) or the compound (Y), usually, the compound (X) or the compound (Y) may be allowed to stand at room temperature or stirred, and may be subjected to ultrasonic treatment, heat treatment or the like as necessary. Further, when the familiarity with the aqueous medium is low due to the crystallinity of the compound (X) or the compound (Y), for example, the compound (X) or the compound (Y) is dissolved or swollen with a small amount of a good solvent. Thereafter, it may be dispersed in a target aqueous medium. At this time, it is more effective to perform ultrasonic treatment or heat treatment.

化合物(X)または化合物(Y)の溶液または分散液を調製した後、銀化合物を混合するが、このとき、得られる銀含有粉体中の銀含有率を高める観点から、化合物(X)又は化合物(Y)100質量部に対して、銀として400〜9900質量部になるよう用いることが好ましい。さらに水性媒体の使用量を削減することによって生産性を高めることと、還元反応の制御を容易に行なうことができる観点から、不揮発分として2〜80質量%になるよう混合することが好ましい。より好ましくは、化合物(X)又は化合物(Y)100質量部に対して、銀として900〜9900質量部、不揮発分として3〜50質量%となるように用いることである。   After preparing a solution or dispersion of compound (X) or compound (Y), a silver compound is mixed. At this time, from the viewpoint of increasing the silver content in the obtained silver-containing powder, compound (X) or It is preferable to use it so that it may become 400-9900 mass parts as silver with respect to 100 mass parts of compounds (Y). Furthermore, it is preferable to mix so that it may become 2-80 mass% as a non volatile matter from a viewpoint which improves productivity by reducing the usage-amount of an aqueous medium, and can control a reductive reaction easily. More preferably, it is used so that it may become 900-9900 mass parts as silver and 3-50 mass% as a non volatile matter with respect to 100 mass parts of compound (X) or compound (Y).

この時、用いることができる銀化合物としては、還元反応によって銀ナノ粒子(Z)が得られるものであればよく、例えば、硝酸銀、酸化銀、酢酸銀、フッ化銀、銀アセチルアセトナート、安息香酸銀、炭酸銀、クエン酸銀、銀ヘキサフルオロフォスフェート、乳酸銀、亜硝酸銀、ペンタフルオロプロピオン酸銀、過塩素酸銀、硫酸銀、塩化銀、臭化銀、ヨウ化銀、亜硫酸銀、銀テトラフルオロボレート、p−トルエンスルホン酸銀、トリフルオロ酢酸銀、等が挙げられ、取り扱い容易性、工業的入手容易性の観点から、硝酸銀または酸化銀を用いることが好ましい。   At this time, as a silver compound that can be used, any silver compound (Z) can be obtained by a reduction reaction. For example, silver nitrate, silver oxide, silver acetate, silver fluoride, silver acetylacetonate, benzoic acid Silver oxide, silver carbonate, silver citrate, silver hexafluorophosphate, silver lactate, silver nitrite, silver pentafluoropropionate, silver perchlorate, silver sulfate, silver chloride, silver bromide, silver iodide, silver sulfite, Examples thereof include silver tetrafluoroborate, silver p-toluenesulfonate, and silver trifluoroacetate. From the viewpoint of easy handling and industrial availability, it is preferable to use silver nitrate or silver oxide.

前記工程において、化合物(X)又は化合物(Y)が溶解または分散している水性媒体と銀化合物とを混合する方法としては、特に限定されるものではなく、該化合物(X)又は化合物(Y)が溶解または分散している媒体に銀化合物を加える方法、その逆の方法、或いは別の容器に同時に投入しながら混合する方法でもよい。攪拌等の混合方法についても、特に限定されない。   In the step, the method of mixing the silver compound with the aqueous medium in which the compound (X) or the compound (Y) is dissolved or dispersed is not particularly limited, and the compound (X) or the compound (Y ) May be a method in which a silver compound is added to a medium in which the solution is dissolved or dispersed, or vice versa, or a method in which mixing is performed while simultaneously charging in another container. A mixing method such as stirring is not particularly limited.

この時、還元反応を早めるために、必要に応じて30〜70℃程度に加温しても良く、また、還元剤を併用しても良い。   At this time, in order to accelerate the reduction reaction, it may be heated to about 30 to 70 ° C. as necessary, or a reducing agent may be used in combination.

前記還元剤としては、特に限定されるものではないが、還元反応を容易にコントロールすることができるとともに、後の精製工程で容易に反応系から除去可能である点から、例えば、水素、水素化ホウ素ナトリウム、水素化ホウ素アンモニウム等のホウ素化合物、メタノール、エタノール、プロパノール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド類、アスコルビン酸、クエン酸、クエン酸ナトリウム等の酸類、ヒドラジン、炭酸ヒドラジン等のヒドラジン類等を用いることが好ましい。これらの中でも、工業的入手のし易さ、取扱い面等からより好ましいものとしては、水素化ホウ素ナトリウム、アスコルビン酸、クエン酸ナトリウム等である。   The reducing agent is not particularly limited. For example, hydrogen, hydrogenation can be performed because the reduction reaction can be easily controlled and can be easily removed from the reaction system in a subsequent purification step. Boron compounds such as sodium boron and ammonium borohydride, alcohols such as methanol, ethanol, propanol, isopropyl alcohol, ethylene glycol and propylene glycol, aldehydes such as formaldehyde, acetaldehyde and propionaldehyde, ascorbic acid, citric acid and citric acid It is preferable to use acids such as sodium and hydrazines such as hydrazine and hydrazine carbonate. Among these, sodium borohydride, ascorbic acid, sodium citrate and the like are more preferable from the viewpoint of industrial availability and handling.

前記還元剤の添加量は、銀イオンを還元するのに必要な量以上であれば特に限定されるものではなく、上限は特に規定するものではないが、銀イオンの10モル倍以下であることが好ましく、2モル倍以下であることがより好ましい。   The addition amount of the reducing agent is not particularly limited as long as it is an amount necessary for reducing silver ions, and the upper limit is not particularly specified, but it is 10 mol times or less of silver ions. Is preferable, and it is more preferable that it is 2 mol times or less.

また、還元剤のその添加方法は限定されるものではなく、例えば、還元剤をそのまま、又は水溶液やその他の溶媒に溶解、分散させて混合させることができる。また還元剤を加える順序についても限定されることはなく、予め化合物(X)又は化合物(Y)の溶液または分散液に還元剤を添加しておいても、銀化合物を混合するときに同時に還元剤を加えてもよく、さらには、化合物(X)又は化合物(Y)の溶液または分散液と銀化合物とを混合した後、数時間経過した後、還元剤を混合する方法であってもよい。   Moreover, the addition method of a reducing agent is not limited, For example, a reducing agent can be dissolved and disperse | distributed and mixed as it is in aqueous solution or another solvent. Further, the order in which the reducing agent is added is not limited, and even when the reducing agent is added to the solution or dispersion of the compound (X) or the compound (Y) in advance, the reduction is performed simultaneously with the mixing of the silver compound. An agent may be added, and further, a method of mixing a reducing agent after several hours have elapsed after mixing a solution or dispersion of compound (X) or compound (Y) with a silver compound. .

特に酸化銀や塩化銀等の水性媒体に溶解しない、または溶解しにくい原料を用いる場合には、錯化剤を併用しても良い。前記錯化剤としては、例えば、プロピルアミン、ブチルアミン、ジエチルアミン、ジプロピルアミン、トリエチルアミン、アンモニア、エチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、1,3−ジアミノプロパン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、トリエチレンテトラミン、メチルアミノエタノール、ジメチルアミノエタノール、エタノールアミン、ジエタノールアミン、メチルジエタノールアミン、プロパノールアミン、ブタノールアミン、ジメチルアミノプロパノールなどが挙げられる。   In particular, when using a raw material that does not dissolve or hardly dissolves in an aqueous medium such as silver oxide or silver chloride, a complexing agent may be used in combination. Examples of the complexing agent include propylamine, butylamine, diethylamine, dipropylamine, triethylamine, ammonia, ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, 1,3-diaminopropane, N, N , N ′, N′-tetramethyl-1,3-diaminopropane, triethylenetetramine, methylaminoethanol, dimethylaminoethanol, ethanolamine, diethanolamine, methyldiethanolamine, propanolamine, butanolamine, dimethylaminopropanol and the like. .

上記錯化剤の添加量は、酸化銀等に配位されて錯体をつくるのに充分な量であればよく、上限は特に規定するものではないが、用いる酸化銀等の40モル倍以下であることが好ましく、20モル倍以下であることがより好ましい。また、該錯化剤の添加方法は限定されるものではなく、例えば、錯化剤をそのまま、又は水溶液やその他の溶媒に溶解、分散させて混合させることができる。   The amount of the complexing agent added is not particularly limited as long as it is sufficient to be coordinated with silver oxide or the like to form a complex, and the upper limit is not particularly specified. It is preferable that it is 20 mole times or less. The method for adding the complexing agent is not limited. For example, the complexing agent can be mixed as it is or dissolved or dispersed in an aqueous solution or other solvent.

工程(1)における還元反応にかかる時間は、還元剤の有無や用いる化合物(X)又は化合物(Y)の種類等によって異なるが、通常0.5〜48時間であり、工業的生産の観点から0.5〜24時間に調製することが好ましい。調製する方法としては、加温する温度、還元剤や錯化剤の投入量およびその時期等による方法が挙げられる。   The time required for the reduction reaction in step (1) varies depending on the presence or absence of a reducing agent and the type of compound (X) or compound (Y) used, but is usually 0.5 to 48 hours, from the viewpoint of industrial production. It is preferable to prepare for 0.5 to 24 hours. Examples of the preparation method include a method depending on the heating temperature, the amount of reducing agent and complexing agent added, and the timing thereof.

工程(1)に引き続き、工程(2)である、有機溶剤を加えてからの濃縮を行なうことになるが、濃縮としては特に限定されるものではなく、透析、遠心分離、沈殿法などのいずれを用いても良く、また同時に用いても良い。このとき使用できる有機溶剤としては、特に限定されるものではないが、濃縮工程にかかる時間を短縮できる観点、該有機溶剤の再利用が可能である点、工程(1)で得られた混合物との混合が容易である点から、沸点が120℃以下、好ましくは100℃以下の有機溶剤であることが好ましく、特に親水性有機溶剤と疎水性有機溶剤との混合溶剤を用いることが好ましい。その使用量としても特に限定されるものではないが、工程(1)で得られた混合物に対して1.5〜5倍量、好ましくは2〜3倍量になるよう混合することが好ましい。また、濃縮法としては工業的生産性に優れる点から、遠心分離法を用いることが好ましい。この遠心濃縮工程においては、工程(1)で用いた媒体の一部のほか、必要に応じて添加した還元剤や錯化剤、および銀イオンの対イオン等を除去することを目的とするものである。従って、工程(1)で用いた原料に応じた濃縮方法を用いることが好ましく、不揮発分が30質量%以上、好ましくは50質量%以上まで濃縮する。   Subsequent to step (1), concentration after adding an organic solvent, which is step (2), is not particularly limited, and any of dialysis, centrifugation, precipitation, etc. May be used or may be used simultaneously. Although it does not specifically limit as an organic solvent which can be used at this time, The point which can shorten the time which a concentration process takes, The point which can recycle this organic solvent, The mixture obtained by process (1) and From the viewpoint of easy mixing, it is preferable to use an organic solvent having a boiling point of 120 ° C. or lower, preferably 100 ° C. or lower, and it is particularly preferable to use a mixed solvent of a hydrophilic organic solvent and a hydrophobic organic solvent. The amount used is not particularly limited, but it is preferable to mix the mixture obtained in the step (1) in an amount of 1.5 to 5 times, preferably 2 to 3 times. Further, as a concentration method, it is preferable to use a centrifugal separation method from the viewpoint of excellent industrial productivity. In this centrifugal concentration step, in addition to a part of the medium used in step (1), the purpose is to remove reducing agents and complexing agents added as necessary, counter ions of silver ions, etc. It is. Therefore, it is preferable to use a concentration method according to the raw material used in step (1), and the non-volatile content is concentrated to 30% by mass or more, preferably 50% by mass or more.

遠心濃縮させた後、水性媒体を除去するために、減圧乾燥または凍結乾燥を行なう。特に銀の含有率が高い銀含有粉体を容易に得ることができる点からは、凍結乾燥が好ましい。   After centrifugal concentration, in order to remove the aqueous medium, vacuum drying or freeze drying is performed. In particular, lyophilization is preferred because a silver-containing powder having a high silver content can be easily obtained.

減圧乾燥する場合には、温度は40℃以下で行なうことが好ましく、特に30℃以下で行なうことが好ましい。従って、分散媒体が、この温度で十分の除去できるよう、真空度を調節する必要がある。   When drying under reduced pressure, the temperature is preferably 40 ° C. or lower, particularly preferably 30 ° C. or lower. Therefore, it is necessary to adjust the degree of vacuum so that the dispersion medium can be sufficiently removed at this temperature.

凍結乾燥は、スラリー状、または固体状の銀含有粉体を凍結させ、これを減圧下に放置することで水性媒体を蒸発させるものであるから、まずは予備凍結し、次に減圧する操作が必要である。これを順に説明する。   Freeze-drying involves freezing the slurry or solid silver-containing powder and allowing it to evaporate the aqueous medium by leaving it under reduced pressure. It is. This will be described in order.

まず、予備凍結操作である。実際の操作は、スラリー状または固体状の銀含有粉体を冷却させることによって行う。冷却温度は、銀含有粉体が凍結する温度ならばどのような温度でもかまわないが、例えば、0℃以下、−90℃以上の温度を好ましく採用することができる。これよりも温度を低くしても、エネルギーを余計に使うのみで得られる銀含有粉体の性状等には影響を与えるものではなく、これより温度が高い場合には、実際に凍結させることができない。また、凍結にかける時間は、凍結するのに必要な時間であれば特に限定されないが、30分から6時間程度にするのが一般的である。   First, a preliminary freezing operation. The actual operation is performed by cooling the slurry-like or solid silver-containing powder. The cooling temperature may be any temperature as long as the silver-containing powder is frozen. For example, temperatures of 0 ° C. or lower and −90 ° C. or higher can be preferably used. Even if the temperature is lower than this, it does not affect the properties of the silver-containing powder obtained only by using extra energy, and if the temperature is higher than this, it can be actually frozen. Can not. The time for freezing is not particularly limited as long as it is a time required for freezing, but it is generally 30 minutes to 6 hours.

また、凍結操作を行なう前に工程(2)で得られた濃縮物にさらに水を添加してから凍結させることが好ましい。水を新たに加えることに予って、濃縮物中に存在している水以外の溶剤を、水と共沸させることで容易に除去できるとともに、化合物(X)又は化合物(Y)中のポリエチレンイミン(a)由来構造部分とポリエチレングリコール(b)由来構造部分の間の静電的相互作用や水素結合、及び銀ナノ粒子(Z)とエチレンイミンユニット間の相互作用によって銀ナノ粒子(Z)を効率的に被覆しなおすことができ、乾燥後の粉体の保存安定性が向上し、再び溶剤類に分散させる際には良好な再分散性が得られ、銀含有粉体の粒径の均一化や、これを用いて得られる塗膜の導電性発現等の効果を得ることができる。   Moreover, it is preferable to freeze after adding water further to the concentrate obtained at the process (2) before freezing operation. Prior to newly adding water, a solvent other than water present in the concentrate can be easily removed by azeotropic distillation with water, and polyethylene in compound (X) or compound (Y) Silver nanoparticles (Z) by electrostatic interaction and hydrogen bonding between the imine (a) -derived structural part and the polyethylene glycol (b) -derived structural part, and the interaction between the silver nanoparticle (Z) and the ethyleneimine unit. Can be efficiently coated again, the storage stability of the powder after drying is improved, and good redispersibility is obtained when dispersed in solvents again, and the particle size of the silver-containing powder is improved. Effects such as homogenization and development of conductivity of a coating film obtained using the same can be obtained.

水の添加量としては、特に制限されるものではないが、上述の効果を効率よく発現させることと、乾燥工程にかかる時間短縮のバランスの観点から、濃縮物中の固形分の重量に対して通常0.01〜100倍量であり、0.1〜10倍量の範囲であることが好ましい。   The amount of water to be added is not particularly limited, but from the viewpoint of efficiently expressing the above-described effects and the balance of shortening the time required for the drying process, it is based on the weight of the solid content in the concentrate. Usually, it is 0.01-100 times amount, and it is preferable that it is the range of 0.1-10 times amount.

また、凍結乾燥の速度や凍結の度合いを制御するために、有機溶剤を併用して凍結乾燥することも出来る。用いることができる有機溶剤としては、例えば、メタノール、エタノール、プロパノール等のアルコール類、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリンなどのポリオール類、アセトン、メチルエチルケトンなどのケトン類、酢酸メチル、酢酸エチル、酢酸ブチル、ギ酸エチルなどのエステル類、アセトニトリル、プロピオニトリル等の二トリル類、ジメトキシエタン、ジオキサン、テトラヒドロフラン等のエーテル類、メチレンクロライド、クロロホルム等のハロゲン化炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、エチレンカーボネート、プロピレンカーボネート、ブチロラクトン、プロピオラクトン等の環状エステル類、その他、ジメチルスルホキシド、ジメチルイミダゾリジノン、N−メチルピロリドン、ヘキサメチル燐酸トリアミド、ヘキサメチル亜燐酸トリアミドなどを挙げることができる。またこれらの溶剤の添加量としては、濃縮物中における固形分の重量に対して、0.001〜1倍の範囲であることが好ましい。   Moreover, in order to control the speed of freeze-drying and the degree of freezing, it can also freeze-dry using an organic solvent together. Examples of organic solvents that can be used include alcohols such as methanol, ethanol, and propanol, polyols such as ethylene glycol, diethylene glycol, propylene glycol, trimethylolpropane, and glycerin, ketones such as acetone and methyl ethyl ketone, methyl acetate, Esters such as ethyl acetate, butyl acetate and ethyl formate, nitriles such as acetonitrile and propionitrile, ethers such as dimethoxyethane, dioxane and tetrahydrofuran, halogenated hydrocarbons such as methylene chloride and chloroform, dimethylformamide, Amides such as dimethylacetamide, cyclic esters such as ethylene carbonate, propylene carbonate, butyrolactone, propiolactone, etc. Sulfoxide, dimethyl imidazolidinone, N- methylpyrrolidone, hexamethylphosphoric triamide, and the like hexamethyl phosphorous acid triamide. Further, the amount of these solvents added is preferably in the range of 0.001 to 1 times the weight of the solid content in the concentrate.

次に減圧にする操作について説明する。減圧操作は、通常の市販の凍結乾燥機を使用して得られる減圧状態でかまわないが、具体的には、凍結している水を昇華させる必要性から通常620Pa以下であり、100Pa以下にすることが好ましく、40Pa以下にすることがより好ましい。   Next, an operation for reducing the pressure will be described. The decompression operation may be performed under reduced pressure obtained by using a normal commercially available lyophilizer, but specifically, it is usually 620 Pa or less and 100 Pa or less because of the necessity of sublimating the frozen water. It is preferable that the pressure be 40 Pa or less.

また、減圧にする時は、必ずしもすぐに所定の減圧度にする必要はなく、揮発物を除くために、比較的圧力の高い状態に放置した後に、所定の減圧度まで下げる方法でも良い。   In addition, when reducing the pressure, it is not always necessary to set the pressure reduction degree immediately, and a method of lowering the pressure reduction degree to a predetermined pressure degree after leaving it in a relatively high pressure state may be used in order to remove volatile substances.

この様な有機溶剤の混合・濃縮・必要により行う再分散・乾燥の工程を経ることによって、得られる銀含有粉体は、固体状態での保存安定性に優れると共に、各種溶剤へ再分散させたときの均一性が高く、またその平均粒径を小さくすることができる。さらに、銀含有粉体中の銀含有率を高くすることができるため、導電性ペースト等として好適に用いることができる銀含有粉体を、高効率で製造することが可能となる。   By passing through the steps of mixing, concentrating, redispersing and drying as necessary, the resulting silver-containing powder has excellent storage stability in a solid state and is redispersed in various solvents. And the average particle size can be reduced. Furthermore, since the silver content rate in a silver containing powder can be made high, it becomes possible to manufacture the silver containing powder which can be used suitably as an electrically conductive paste etc. with high efficiency.

一般に数十nmのサイズ領域にある金属の微粒子は、その金属種に応じて、表面プラズモン励起に起因する特徴的な光学吸収を有する。従って、本発明で得られる銀含有粉体のプラズモン吸収を測定することによって、該粉体中には、銀がナノメートルサイズの微粒子、即ち銀ナノ粒子(Z)として存在していることを確認することが出来、更には、該分散体をキャストして得られる膜のTEM(透過電子顕微鏡)写真等にて、その形状や粒径等を観測することも可能である。   In general, metal fine particles in a size region of several tens of nm have characteristic optical absorption resulting from surface plasmon excitation, depending on the metal species. Therefore, by measuring the plasmon absorption of the silver-containing powder obtained in the present invention, it is confirmed that silver is present as nanometer-sized fine particles, that is, silver nanoparticles (Z) in the powder. Furthermore, it is possible to observe the shape, particle size, and the like in a TEM (transmission electron microscope) photograph of the film obtained by casting the dispersion.

上述のように、本願発明の製造方法では、水性媒体中における自発的な還元反応、汎用の濃縮工程、必要により水の添加、乾燥という、温和な条件下、汎用の設備で行うことが可能であり、また、使用する溶剤等は濃縮や乾燥工程によって単離・分離可能であることから再利用できるものであり、工業的生産性に優れている。また得られる銀含有粉体は、任意の溶剤への再分散が可能であることから、目的とする用途に応じた製品設計が可能であり、有用性が高い。   As described above, in the production method of the present invention, it is possible to carry out with a general-purpose equipment under mild conditions such as a spontaneous reduction reaction in an aqueous medium, a general-purpose concentration step, and if necessary water addition and drying. In addition, since the solvent to be used can be isolated and separated by a concentration or drying process, it can be reused and is excellent in industrial productivity. Further, since the obtained silver-containing powder can be re-dispersed in an arbitrary solvent, it is possible to design a product according to the intended use, and the utility is high.

本発明の銀含有粉体は、ポリエチレンイミン(a)にポリエチレングリコール(b)が結合した化合物(X)、またはポリエチレンイミン(a)にポリエチレングリコール(b)とエポキシ樹脂(c)とが結合した化合物(Y)と、平均粒子径が2〜50nmの銀ナノ粒子(Z)とを含有し、該粉体中の銀ナノ粒子(Z)の含有率が95質量%以上であることを特徴とする。更に本発明の銀含有粉体の分散液は、前述の銀含有粉体を用いて、これを水や各種の有機溶剤に再分散させて得られるものである。   The silver-containing powder of the present invention has a compound (X) in which polyethylene glycol (b) is bonded to polyethylene imine (a), or polyethylene glycol (b) and epoxy resin (c) bonded to polyethylene imine (a). It contains the compound (Y) and silver nanoparticles (Z) having an average particle diameter of 2 to 50 nm, and the content of silver nanoparticles (Z) in the powder is 95% by mass or more. To do. Furthermore, the silver-containing powder dispersion of the present invention is obtained by redispersing the above-mentioned silver-containing powder in water or various organic solvents.

従来、銀含有粉体を用いた水系分散体において、固形分中の銀含有率が90%程度までのものは作られているが、これを超えるものを安価に製造するのは大変困難であった。例えば、親水性モノマーと、金属への配位能力のあるモノマーとのランダム共重合体は多数知られているが、これを使用して銀含有粉体を作ろうとすると、銀に対する配位能力と、親水性との両立が難しく、結果的にポリマーを大量に使用して分散体を得ることしか出来なかった。そこで、銀に対する配位能力を持たせる部分と親水性を持たせる部分とを役割分担させた構造のポリマー、例を挙げれば(マルチ)ブロック共重合体やグラフト共重合体等を使用する場合には、補助的に、低分子錯化剤や還元剤を系中に加える必要があり、分散状態の良い銀含有粉体の分散体を調整した後、余剰の低分子錯化剤、還元剤、さらには錯化剤と還元剤との反応生成物等と銀含有粉体との分離が困難になるという問題がある。これを解決するには透析操作などの工業的生産には不向きな設備投資が必要であるか、または前記特許文献8等で提供されたような煩雑な工程が必要になる。   Conventionally, water-based dispersions using silver-containing powders have been made with a silver content of up to about 90% in the solid content, but it is very difficult to produce those exceeding this at low cost. It was. For example, many random copolymers of a hydrophilic monomer and a monomer capable of coordinating to a metal are known. If an attempt is made to make a silver-containing powder using this, the coordination ability to silver It was difficult to achieve compatibility with hydrophilicity, and as a result, it was only possible to obtain a dispersion using a large amount of polymer. Therefore, when using a polymer having a structure in which the role of coordinating ability to silver and the portion having hydrophilicity are shared, for example, when a (multi) block copolymer or graft copolymer is used In addition, it is necessary to add a low molecular complexing agent and a reducing agent to the system, and after adjusting the dispersion of the silver-containing powder having a good dispersion state, an excessive low molecular complexing agent, reducing agent, Furthermore, there is a problem that it becomes difficult to separate the reaction product of the complexing agent and the reducing agent from the silver-containing powder. In order to solve this, capital investment that is unsuitable for industrial production such as dialysis operation is required, or a complicated process as provided in Patent Document 8 or the like is required.

本願では、特定の化合物(X)又は化合物(Y)を用いて銀化合物の還元反応を行った後、上述の濃縮・乾燥工程を続けて行うことで、上記の問題点を解決するものである。   In this application, after performing the reductive reaction of a silver compound using specific compound (X) or compound (Y), the said problem is solved by performing the above-mentioned concentration and drying process continuously. .

本発明の銀含有粉体、およびこれを用いて得られる分散液において、該粉体固形分中の銀含有率は95質量%以上であることを必須とし、前述の製造方法によれば、96質量%以上にすることもできる。銀の含有率を高くすることによって、導電性材料として必須の物性である低抵抗値を容易に実現できる。即ち、この様な高含有率で銀を含有し、且つ安定性に優れることが、従来提供されている銀微粒子やその分散体、これらを用いた導電性ペーストでは達成できなかった、低温(〜180℃)での加熱のみで、所望の導電性(低抵抗値)を発現させることができるものである。また、前述の微細配線等に好適に用いられる導電性ペーストの原料等に用いるためには、銀含有粉体の平均粒子径が小さいほど好ましいものであるが、本発明で得られる銀含有粉体は、TEM観察で得られる写真から無作為に抽出した100個の粒子の粒子径の平均値が2〜50nmという従来にない小さいものであることも大きな特徴であるとともに、優位性を有するものでもある。   In the silver-containing powder of the present invention and the dispersion obtained by using the same, it is essential that the silver content in the powder solid content is 95% by mass or more. It can also be made into mass% or more. By increasing the silver content, a low resistance value, which is an essential physical property of the conductive material, can be easily realized. In other words, it contains silver at such a high content and is excellent in stability, and it has been difficult to achieve with conventional silver fine particles and dispersions thereof, and conductive pastes using these, at low temperatures (~ The desired conductivity (low resistance value) can be expressed only by heating at 180 ° C.). Further, the silver-containing powder obtained in the present invention is preferable for use as a raw material for a conductive paste suitably used for the fine wiring and the like, as the average particle diameter of the silver-containing powder is smaller. Is characterized by the fact that the average value of the particle size of 100 particles randomly extracted from a photograph obtained by TEM observation is 2-50 nm, which is an unprecedented small size, and has an advantage. is there.

従来、導電性ペーストは高温、例えば、250〜350℃に加熱をしなければ所望の導電性皮膜が得られにくいものであった。即ち、高温に加熱することによって、金属微粒子を安定化していた保護剤等を分解し一部を除去し、皮膜中の金属以外の成分の含有率を下げるとともに、金属微粒子を融着させ導電性を発現させるものである。金属微粒子の粒子径を小さくすれば、融着させるために必要な温度を下げることができるものの、そこまで粒子径を小さくすると、それを保護するために用いる保護剤を多量に必要とすることになり、固形分中の金属含有率を高くすることができない。即ち、従来技術において、金属含有率を高めることと、金属微粒子の粒子径を小さくすることとはトレードオフの関係にあり、本発明はこのトレードオフを解消したものである。   Conventionally, a conductive paste has been difficult to obtain a desired conductive film unless heated to a high temperature, for example, 250 to 350 ° C. That is, by heating to a high temperature, the protective agent that has stabilized the metal fine particles is decomposed and a part thereof is removed, the content of components other than the metal in the film is reduced, and the metal fine particles are fused to make the conductivity. Is expressed. If the particle size of the metal fine particles is reduced, the temperature required for fusing can be lowered, but if the particle size is reduced to that extent, a large amount of protective agent is required to protect it. Therefore, the metal content in the solid content cannot be increased. That is, in the prior art, there is a trade-off relationship between increasing the metal content and reducing the particle size of the metal fine particles, and the present invention eliminates this trade-off.

前記のように本発明の銀含有粉体は、その平均粒子径が小さく、銀含有率が高いものであるが、特に導電性ペースト等に用いて導電性皮膜を形成させる原料として用いる場合には、示差走査熱量測定で求められる融点が100〜250℃であることが好ましく、特に100〜200℃であることが好ましい。この温度範囲に融点があることによって、従来耐熱性が低いためにその上に導電性皮膜を形成させることが困難であった、ガラス基板やプラスチック基板へも応用可能となる。   As described above, the silver-containing powder of the present invention has a small average particle diameter and a high silver content, but particularly when used as a raw material for forming a conductive film using a conductive paste or the like. The melting point determined by differential scanning calorimetry is preferably 100 to 250 ° C, particularly preferably 100 to 200 ° C. By having a melting point in this temperature range, it can be applied to a glass substrate or a plastic substrate, which has conventionally been difficult to form a conductive film on because of its low heat resistance.

本発明の銀含有粉体は、1個の銀ナノ粒子(Z)と1個の化合物(X)または化合物(Y)とからなるものであっても、複数個の銀ナノ粒子(Z)、または複数個、複数種の化合物(X)、化合物(Y)を含むものであっても良い。   Even if the silver-containing powder of the present invention is composed of one silver nanoparticle (Z) and one compound (X) or compound (Y), a plurality of silver nanoparticles (Z), Alternatively, a plurality of compounds (X) and a compound (Y) may be included.

本発明の銀含有粉体は、乾燥状態では粉体同士が凝集しており、浮遊しない。例えば、本発明の銀含有粉体の作業場で採集した空気を用いて浮遊粉塵測定を行なうと、環境管理許容濃度である3mg/mよりもはるか少ない0.005mg/m以下であり、飛散しない特徴を有する。これは、本発明において使用する化合物(X)または化合物(Y)中のポリエチレンイミン(a)中のエチレンイミンユニットが、銀ナノ粒子(Z)と配位結合しながら隣接している銀含有粉体中の化合物(X)又は化合物(Y)と効率的に高い密度で水素結合を形成し、さらに、銀ナノ粒子(Z)に配位結合している化合物(X)または化合物(Y)相互間のファンデルワールス力による相互作用により、銀含有粉体の乾燥状態では該粉体同士が凝集していることによると考えられ、このことは、該粉体をTEMで観測すると数十ミクロンと大きくなっていることから明らかであり、浮遊粉塵の飛散がおさえられていると考えられる。 In the silver-containing powder of the present invention, the powder is aggregated in a dry state and does not float. For example, when using air collected in the workplace of the silver-containing powder of the present invention performs the airborne dust measurement, or less far less 0.005 mg / m 3 than 3 mg / m 3 is an environmental management OEL scattering It has a feature that does not. This is because the silver-containing powder in which the ethyleneimine unit in the polyethyleneimine (a) in the compound (X) or compound (Y) used in the present invention is adjacent to the silver nanoparticles (Z) while being coordinated. Compound (X) or Compound (Y) which forms hydrogen bonds with compound (X) or Compound (Y) in the body efficiently and at a high density and is coordinated to silver nanoparticles (Z). It is considered that the powder is agglomerated in the dry state of the silver-containing powder due to the interaction by van der Waals force between them, which is several tens of microns when the powder is observed by TEM. It is clear from the fact that it is larger, and it is thought that airborne dust has been reduced.

本発明で得られた銀含有粉体は、各種溶剤に再分散させて本発明の分散液とすることができる。このときの濃度としては特に限定されるものではなく、分散液中の銀含有粉体の濃度が10〜70質量%であることが好ましく、特に20〜60質量%であることが好ましい。分散液中の銀含有粉体の濃度は、その分散液を使用する応用分野の形態に応じて調整可能である。尚、この時使用できる溶剤は特に限定されるものではないが、例えば、水、メタノール、エタノール、イソプロピルアルコール、n−プロピルアルコール、テトラヒドロフラン、ジオキサン、アセトン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコール、グリセリン、ジメチルスルフォンオキシド、ジオキシラン、N−メチルピロリドン、ジメチルイミダゾリジノン、スルホラン等を挙げることができ、単独でも、2種以上を混合して用いても良い。特にその中でも、再分散溶剤としては均一分散性を容易に得られる点から、ヒドロキシ基を有する化合物からなる溶剤であることが好ましい。また、再分散の方法としては特に限定されるものではなく、溶剤を撹拌しながら固体状の銀含有粉体を加えることも、固体状の銀含有粉体に溶剤を加えていくことも出来る。   The silver-containing powder obtained in the present invention can be redispersed in various solvents to obtain the dispersion of the present invention. The concentration at this time is not particularly limited, and the concentration of the silver-containing powder in the dispersion is preferably 10 to 70% by mass, and particularly preferably 20 to 60% by mass. The concentration of the silver-containing powder in the dispersion can be adjusted according to the form of the application field in which the dispersion is used. In addition, although the solvent which can be used at this time is not specifically limited, For example, water, methanol, ethanol, isopropyl alcohol, n-propyl alcohol, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, dimethylacetamide, dimethylformamide, ethylene glycol, Propylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol, glycerin, dimethyl sulfone oxide, dioxirane, N-methylpyrrolidone, dimethylimidazolidinone, sulfolane, etc. However, a mixture of two or more types may be used. Among them, the redispersion solvent is preferably a solvent made of a compound having a hydroxy group from the viewpoint that uniform dispersibility can be easily obtained. The redispersion method is not particularly limited, and the solid silver-containing powder can be added while stirring the solvent, or the solvent can be added to the solid silver-containing powder.

疎水性有機溶剤に再分散させる場合には、化合物(Y)を用いて得られる銀含有粉体であることが好ましく、該化合物(Y)中のエポキシ樹脂(c)由来構造部分が粉体の最表面に再配置することによって、銀含有粉体が溶剤中で安定化されるものと推察される。従って、再分散工程において、水や親水性の有機溶剤、或いはこれらの混合溶剤を用いる場合よりも若干時間がかかることがある。このため、より生産性を高めるためには、濃度を20〜60質量%にすることが好ましく、単純な攪拌の他に、超音波処理等の分散技術を併用することが好ましい。   When redispersed in a hydrophobic organic solvent, it is preferably a silver-containing powder obtained by using the compound (Y), and the epoxy resin (c) -derived structural portion in the compound (Y) is a powder. It is presumed that the silver-containing powder is stabilized in the solvent by rearrangement on the outermost surface. Therefore, the redispersion step may take a little longer than when water, a hydrophilic organic solvent, or a mixed solvent thereof is used. For this reason, in order to raise productivity more, it is preferable to make a density | concentration into 20-60 mass%, and it is preferable to use together dispersion techniques, such as an ultrasonic treatment, besides simple stirring.

本発明の銀含有粉体及びその分散液の用途としては、なんら限定されるものではなく、各種の導電性組成物・接着用組成物等、更には銀ナノ粒子に由来する特殊な発色を利用する塗料用組成物等、様々な分野の組成物に添加・混合して用いることができる。   The use of the silver-containing powder and dispersion thereof of the present invention is not limited in any way, and various conductive compositions, adhesive compositions, etc., and also the special coloration derived from silver nanoparticles are used. It can be added to and mixed with compositions in various fields such as coating compositions.

これらの中でも、特に、導電性ペーストとして好適に用いることができる。代表的な使用方法を挙げるならば、目的に応じて選択された種々の基材上に、キャスト、スピンコーター、バーコーター、アプリケーター、各種印刷機、プリンター、ディスペンサー等によって基材上に加工する方法、銀含有粉体の分散液又はこれを含む組成物中へのディッピングによる加工法等といった基材上に成形加工物を作成する方法や、フローガンやフローコーター等を用いた方法、スプレー等による吹き付け法、刷毛塗りやパフ塗り、ローラー塗り等による方法、複数の同じ又は異なる基材に挟む方法、これらの方法を繰り返し行うことによって厚膜構造又は肉厚構造等とする方法、異なる物質を組み合わせて前述の方法を繰り返すことによって積層構造とする方法等といった、基材上に成形加工物を作成する方法、前記基材上に作成した種々の成形加工物を基材からはずして成形加工物を得る方法、基材とその他の材料等の間に挟む方法、基材上の他の材料の一部若しくは全部を被覆させる方法、同じ又は異なる材料の一部又は全部を被覆させる方法、目的に応じた種々の型、或いは型枠を利用して加工する方法等が挙げられる。   Among these, in particular, it can be suitably used as a conductive paste. A typical method of use is a method of processing on a base material by casting, spin coater, bar coater, applicator, various printing machines, printers, dispensers, etc. on various base materials selected according to the purpose. , A method of creating a molded product on a substrate, such as a processing method by dipping into a dispersion of a silver-containing powder or a composition containing the same, a method using a flow gun or a flow coater, spraying, etc. Method, brush coating, puff coating, roller coating, etc., a method of sandwiching a plurality of same or different substrates, a method of forming a thick film structure or a thick structure by repeating these methods, a combination of different substances A method of creating a molded product on a substrate, such as a method of forming a laminated structure by repeating the above-described method, A method of removing various molded products formed from a substrate to obtain a molded product, a method of sandwiching between a substrate and other materials, a method of coating a part or all of other materials on the substrate, Examples thereof include a method of coating a part or all of the same or different materials, various molds according to purposes, and a method of processing using a mold.

前述の種々の加工の前工程、又は途中、後工程等において、脱水、脱溶剤、乾燥、加熱、紫外線照射、電子線照射等の処理を種々の目的に応じて好適に施すことも可能であり、これらの処理方法は特に限定されることなく用いることができる。   It is also possible to suitably perform treatments such as dehydration, solvent removal, drying, heating, ultraviolet irradiation, electron beam irradiation, etc. according to various purposes in the aforementioned pre-process, various steps, post-process, etc. These processing methods can be used without any particular limitation.

上記加工方法によって得られる形態は、特に限定されるものではない。特に上述した代表例によって得られた加工物の形態の例としては、塗膜、被覆膜、被覆物、接合物、積層板、封止物、フィルム、シート、ボード、繊維状成形加工物、チューブ状成形加工物、立体成形加工物、ゲル状成形加工物、固体ゾル状成形加工物等が挙げられる。   The form obtained by the above processing method is not particularly limited. In particular, as an example of the form of the workpiece obtained by the representative example described above, a coating film, a coating film, a coating, a bonded product, a laminate, a sealing material, a film, a sheet, a board, a fibrous molded product, Examples thereof include tube-shaped molded products, three-dimensional molded products, gel-shaped molded products, and solid sol-shaped molded products.

上記導電性ペーストとして用いる場合には、目的に応じて選択された他の成分と混合することができ、該他の成分は特に限定されるものではない。例えば、電子材料用であれば、種々の導電性成分や、電子材料との親和性や密着性を向上させる成分等であり、表面を平滑、或いは凹凸を制御する成分、各種の沸点を有する溶剤、粘度調節剤等であり、様々な目的に適した各種添加剤等を挙げることができる。   When used as the conductive paste, it can be mixed with other components selected according to the purpose, and the other components are not particularly limited. For example, for electronic materials, various conductive components, components that improve affinity and adhesion with electronic materials, etc., components that smooth the surface or control irregularities, and solvents having various boiling points Viscosity modifiers, and various additives suitable for various purposes.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断わりがない限り「%」は「質量%」を表わす。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “%” represents “mass%”.

合成例1〔化合物(X−1)の合成例〕
窒素雰囲気下、メトキシポリエチレングリコール[Mn=2,000]20.0g(10.0mmol)、ピリジン8.0g(100.0mmol)、クロロホルム20mlの混合溶液に、p−トルエンスルホン酸クロライド9.6g(50.0mmol)を含むクロロホルム(30ml)溶液を、氷冷撹拌しながら30分間滴下した。滴下終了後、浴槽温度40℃でさらに4時間攪拌した。反応終了後、クロロホルム50mlを加えて反応液を希釈した。引き続き、5%塩酸水溶液100ml、飽和炭酸水素ナトリウム水溶液100ml、そして飽和食塩水溶液100mlで順次に洗浄した後、硫酸マグネシウムで乾燥し、濾過、減圧濃縮した。得られた固形物をヘキサンで数回洗浄した後、濾過、80℃で減圧乾燥して、トシル化された生成物22.0gを得た。
Synthesis Example 1 [Synthesis Example of Compound (X-1)]
Under a nitrogen atmosphere, 9.6 g of p-toluenesulfonic acid chloride was added to a mixed solution of 20.0 g (10.0 mmol) of methoxypolyethylene glycol [Mn = 2,000], 8.0 g (100.0 mmol) of pyridine and 20 ml of chloroform ( A chloroform (30 ml) solution containing 50.0 mmol) was added dropwise for 30 minutes with ice-cooling and stirring. After completion of dropping, the mixture was further stirred at a bath temperature of 40 ° C. for 4 hours. After completion of the reaction, 50 ml of chloroform was added to dilute the reaction solution. Subsequently, after sequentially washing with 100 ml of 5% hydrochloric acid aqueous solution, 100 ml of saturated aqueous sodium hydrogen carbonate solution and 100 ml of saturated saline solution, it was dried over magnesium sulfate, filtered and concentrated under reduced pressure. The obtained solid was washed several times with hexane, filtered, and dried under reduced pressure at 80 ° C. to obtain 22.0 g of a tosylated product.

得られた生成物のH−NMR(日本電子株式会社製、AL300、300MHz)の測定結果を以下に示す。
H−NMR(CDCl)測定結果:
δ(ppm):7.82(d),7.28(d),3.74〜3.54(bs),3.41(s),2.40(s)
The measurement result of 1 H-NMR (manufactured by JEOL Ltd., AL300, 300 MHz) of the obtained product is shown below.
1 H-NMR (CDCl 3 ) measurement result:
δ (ppm): 7.82 (d), 7.28 (d), 3.74-3.54 (bs), 3.41 (s), 2.40 (s)

上記で合成した末端にp−トルエンスルホニルオキシ基を有するメトキシポリエチレングリコール化合物5.39g(2.5mmol)、分岐状ポリエチレンイミン(アルドリッチ社製、分子量25,000)を20.0g(0.8mmol)、炭酸カリウム0.07g及びN,N−ジメチルアセトアミド100mlを、窒素雰囲気下、100℃で6時間攪拌した。得られた反応混合物に酢酸エチルとヘキサンの混合溶液(V/V=1/2)300mlを加え、室温で強力攪拌した後、生成物の固形物を濾過した。その固形物を酢酸エチルとヘキサンの混合溶液(V/V=1/2)100mlを用いて2回繰り返し洗浄した後、減圧乾燥して、分岐状ポリエチレンイミンにポリエチレングリコールが結合した化合物(X−1)の固体を24.4g得た。   2.0.0 g (0.8 mmol) of 5.39 g (2.5 mmol) of a methoxypolyethylene glycol compound having a p-toluenesulfonyloxy group at the terminal synthesized above and branched polyethyleneimine (manufactured by Aldrich, molecular weight 25,000) Then, 0.07 g of potassium carbonate and 100 ml of N, N-dimethylacetamide were stirred at 100 ° C. for 6 hours under a nitrogen atmosphere. To the resulting reaction mixture, 300 ml of a mixed solution of ethyl acetate and hexane (V / V = 1/2) was added, and after vigorous stirring at room temperature, the solid product was filtered. The solid was repeatedly washed twice with 100 ml of a mixed solution of ethyl acetate and hexane (V / V = 1/2) and then dried under reduced pressure to give a compound in which polyethylene glycol was bound to branched polyethyleneimine (X- 24.4g of 1) solid was obtained.

得られた生成物のH−NMR(日本電子株式会社製、AL300、300MHz)の測定結果を以下に示す。
H−NMR(CDCl)測定結果:
δ(ppm):3.50(s),3.05〜2.20(m)
1 H-NMR (manufactured by JEOL Ltd., AL300,300MHz) of the product obtained measurement results are shown below.
1 H-NMR (CDCl 3 ) measurement result:
δ (ppm): 3.50 (s), 3.05 to 2.20 (m)

合成例2〔化合物(Y−1)の合成例〕
ビスフェノールA型エポキシ樹脂EPICLON AM−040−P(DIC工業株式会社製、エポキシ当量933)18.7g(20m当量)、4−フェニルフェノール1.28g(7.5mmol)、65%酢酸エチルトリフェニルホスホニウムエタノール溶液0.26ml(0.12mol%)及びN,N−ジメチルアセトアミド50mlを、窒素雰囲気下、120℃で6時間反応させた。放冷後、水150ml中に滴下し、得られた沈殿物をメタノールで2回洗浄した後、60℃で減圧乾燥して、単官能性のエポキシ樹脂を得た。得られた生成物の収量は19.6g、収率は98%であった。
Synthesis Example 2 [Synthesis Example of Compound (Y-1)]
Bisphenol A type epoxy resin EPICLON AM-040-P (manufactured by DIC Industrial Co., Ltd., epoxy equivalent 933) 18.7 g (20 m equivalent), 4-phenylphenol 1.28 g (7.5 mmol), 65% ethyltriphenylphosphonium acetate An ethanol solution (0.26 ml, 0.12 mol%) and N, N-dimethylacetamide (50 ml) were reacted at 120 ° C. for 6 hours in a nitrogen atmosphere. After standing to cool, it was dropped into 150 ml of water, and the resulting precipitate was washed twice with methanol and then dried under reduced pressure at 60 ° C. to obtain a monofunctional epoxy resin. The yield of the obtained product was 19.6 g, and the yield was 98%.

得られた単官能性のエポキシ樹脂のH−NMR(日本電子株式会社製、AL300、300MHz)の測定結果を以下に示す。
H−NMR(CDCl)測定結果:
δ(ppm):7.55〜6.75(m),4.40〜3.90(m),3.33(m),2.89(m),2.73(m),1.62(s)
The measurement results of 1 H-NMR (manufactured by JEOL Ltd., AL300, 300 MHz) of the obtained monofunctional epoxy resin are shown below.
1 H-NMR (CDCl 3 ) measurement result:
δ (ppm): 7.55 to 6.75 (m), 4.40 to 3.90 (m), 3.33 (m), 2.89 (m), 2.73 (m), 1. 62 (s)

上記で得られた単官能性のエポキシ樹脂3.0g(1.5mmol)、アセトン50mlの溶液に合成例1で得られた化合物(X−1)14.4g(0.48mmol)、メタノール60mlの溶液を加えて、窒素雰囲気下、60℃で2時間攪拌した。反応終了した後、脱溶剤することにより、分岐状ポリエチレンイミンにポリエチレングリコールとエポキシ樹脂とが結合してなる化合物(Y−1)を得た。   A solution of the monofunctional epoxy resin obtained above (3.0 g, 1.5 mmol) and acetone (50 ml) in the compound (X-1) 14.4 g (0.48 mmol) obtained in Synthesis Example 1, methanol 60 ml The solution was added and stirred at 60 ° C. for 2 hours under a nitrogen atmosphere. After completion of the reaction, the solvent was removed to obtain a compound (Y-1) in which polyethylene glycol and an epoxy resin were bonded to branched polyethyleneimine.

実施例1
合成例1で得た化合物(X−1)を0.592g用いた水溶液138.8gに酸化銀10.0gを加えて25℃で30分間攪拌した。引き続き、ジメチルエタノールアミン46.0gを攪拌しながら徐々に加えたところ、反応溶液は黒赤色に変わり、若干発熱したが、そのまま放置して25℃で30分間攪拌した。その後、10%アスコルビン酸水溶液15.2gを攪拌しながら徐々に加えた。その温度を保ちしながらさらに20時間攪拌を続けて、黒赤色の分散体を得た。
Example 1
10.0 g of silver oxide was added to 138.8 g of an aqueous solution using 0.592 g of the compound (X-1) obtained in Synthesis Example 1, and the mixture was stirred at 25 ° C. for 30 minutes. Subsequently, when 46.0 g of dimethylethanolamine was gradually added with stirring, the reaction solution turned black-red and slightly exothermic, but was left as it was and stirred at 25 ° C. for 30 minutes. Thereafter, 15.2 g of a 10% ascorbic acid aqueous solution was gradually added with stirring. While maintaining the temperature, stirring was continued for another 20 hours to obtain a black-red dispersion.

得られた分散体をサンプリングし、10倍希釈液の可視吸収スペクトル測定(日立製作所株式会社製、UV−3500)により400nmにプラズモン吸収スペクトルのピークが認められ、銀ナノ粒子の生成を確認した。また、TEM測定(日本電子株式会社製、JEM−2200FS)より球形の銀ナノ粒子が確認された。そして、TG−DTA(SIIナノテクノロジー株式会社製、TG/DTA6300)を用いて、固体中の銀含有量を測定した結果、97.2%を示した。   The obtained dispersion was sampled, and a peak of a plasmon absorption spectrum was observed at 400 nm by measurement of a visible absorption spectrum of a 10-fold diluted solution (manufactured by Hitachi, Ltd., UV-3500), and production of silver nanoparticles was confirmed. In addition, spherical silver nanoparticles were confirmed by TEM measurement (JEM-2200FS, manufactured by JEOL Ltd.). And as a result of measuring silver content in solid, using TG-DTA (SII nanotechnology Co., Ltd. make, TG / DTA6300), 97.2% was shown.

上記で得られた反応終了後の分散液にイソプロピルアルコール200mlとヘキサン200mlの混合溶剤を加えて2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にイソプロピルアルコール50mlとヘキサン50mlの混合溶剤を加えて2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にさらに水20gを加えて2分間攪拌して、減圧下有機溶剤を除去した。さらに水10gを加えて攪拌分散した後、該分散体を−40℃の冷凍機に1昼夜放置して凍結し、これを凍結乾燥機(東京理化器械株式会社社製 FDU−2200)で24時間処理して、灰緑色の金属光沢があるフレーク状の塊9.1gを得た。得られた銀含有粉体(固体)は光学顕微鏡(オリンパス蛍光顕微鏡BX60、オリンパス光学工業株式会社製)による観察結果、数十ミクロンの凝集体になっていることが確認された。この粉体中における銀含有率はTG−DTA(SIIナノテクノロジー株式会社製、TG/DTA6300)を用いて測定したところ97.4質量%であり、透過型電子顕微鏡写真で観測できる銀ナノ粒子の粒子径を無作為に100個抽出し、これの平均値を求めたところ、平均粒子径は16.8nmであり、示差走査熱量測定(SIIナノテクノロジー株式会社製、DSC7200)で求められる融点は140〜170℃であった。   A mixed solvent of 200 ml of isopropyl alcohol and 200 ml of hexane was added to the dispersion obtained after completion of the reaction and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, a mixed solvent of 50 ml of isopropyl alcohol and 50 ml of hexane was added to the precipitate and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, 20 g of water was further added to the precipitate, followed by stirring for 2 minutes, and the organic solvent was removed under reduced pressure. Further, 10 g of water was added and dispersed by stirring, and then the dispersion was left to stand overnight in a −40 ° C. freezer and frozen for 24 hours with a freeze dryer (FDU-2200, Tokyo Rika Kikai Co., Ltd.). Treatment gave 9.1 g of a flaky mass with a grey-green metallic luster. The obtained silver-containing powder (solid) was observed by an optical microscope (Olympus fluorescence microscope BX60, manufactured by Olympus Optical Co., Ltd.), and was confirmed to be an aggregate of several tens of microns. The silver content in the powder was 97.4% by mass measured using TG-DTA (TG / DTA6300, manufactured by SII Nanotechnology Co., Ltd.), and the silver nanoparticles that can be observed with a transmission electron micrograph When 100 particles were randomly extracted and the average value thereof was determined, the average particle size was 16.8 nm, and the melting point determined by differential scanning calorimetry (SII Nanotechnology, DSC7200) was 140. -170 ° C.

また、得られた銀含有粉体約60gを別の容器に移す作業を行ない、その作業場の空気を採集して光散乱式デジタル粉塵計(株式会社レックス製、M−3423)を用いて浮遊粉塵測定を測定した。その結果は0.005mg/m以下であり、作業場の大気中に浮遊粉塵はほぼ無いと考えられる。さらに、子の銀含有粉体を室温(25℃)下で3ヶ月静置した後も、上記性状値に変化がないことを確認した。 Also, the work of transferring about 60 g of the obtained silver-containing powder to another container is carried out, air in the workplace is collected, and floating dust is collected using a light scattering digital dust meter (M-3423, manufactured by Rex Corporation). Measurement was measured. The result is 0.005 mg / m 3 or less, and it is considered that there is almost no suspended dust in the atmosphere of the workplace. Further, it was confirmed that the above property values did not change even after the silver-containing powder of the child was allowed to stand at room temperature (25 ° C.) for 3 months.

上記で得た銀含有粉体を純水に3時間攪拌することより再分散させて固形分率20%の分散液を調製し、スピンコーターを使ってスライドグラス上に700rpmで30秒スピンコートして薄膜にした。これをホットプレート上で180℃、30分間加熱し、フィルムの体積抵抗率を三菱化学株式会社製「低抵抗率計ロレスタEP」で測定し、フィルムの厚さをレーザー共焦点顕微鏡で測定して補正して求めたところ、5.4μΩ・cmであった。   The silver-containing powder obtained above is re-dispersed by stirring in pure water for 3 hours to prepare a dispersion having a solid content of 20%, and spin coated at 700 rpm on a slide glass for 30 seconds using a spin coater. And made a thin film. This was heated on a hot plate at 180 ° C. for 30 minutes, the volume resistivity of the film was measured with “low resistivity meter Loresta EP” manufactured by Mitsubishi Chemical Corporation, and the thickness of the film was measured with a laser confocal microscope. The corrected value was 5.4 μΩ · cm.

上記で得た銀含有粉体を純水の他に、エタノール、イソプロピルアルコール及びエタノールと水の混合溶剤などを用いて3時間攪拌することより再分散させて分散液を調製した。下記の表に種々の分散液の分散安定性及び保存安定性の評価結果を示した。   The silver-containing powder obtained above was redispersed by stirring for 3 hours using ethanol, isopropyl alcohol, a mixed solvent of ethanol and water, etc. in addition to pure water, to prepare a dispersion. The following table shows the evaluation results of the dispersion stability and storage stability of various dispersions.

Figure 2010007124
Figure 2010007124

分散安定性:分散液を5℃冷蔵庫に3日静置後、層分離と分散状態保持を目視観測。
保存安定性:分散液を5℃冷蔵庫に3ヶ月保存後、銀ナノ粒子の透過型電子顕微鏡写真から得られる平均粒子径及び透過型電子顕微鏡写真での形状を比較。
Dispersion stability: The dispersion was allowed to stand in a refrigerator at 5 ° C. for 3 days, and then layer separation and dispersion state retention were visually observed.
Storage stability: After storing the dispersion in a refrigerator at 5 ° C. for 3 months, the average particle diameter obtained from a transmission electron micrograph of silver nanoparticles and the shape of the transmission electron micrograph are compared.

実施例2
合成例2で得た化合物(Y)を0.263g用いた水溶液77.0gにジメチルエタノールアミン23.0gを攪拌しながら徐々に加えたところ、若干発熱した。引き続き、反応温度を45℃にして硝酸銀5.0gに徐々に加えたところ、反応溶液は黒赤色に変わった。その後、反応温度を50℃にして4.5時間攪拌して反応を終了し、黒赤色の分散体を得た。
Example 2
When 23.0 g of dimethylethanolamine was gradually added to 77.0 g of an aqueous solution using 0.263 g of the compound (Y) obtained in Synthesis Example 2, a little heat was generated. Subsequently, when the reaction temperature was changed to 45 ° C. and gradually added to 5.0 g of silver nitrate, the reaction solution turned black-red. Thereafter, the reaction temperature was set to 50 ° C. and stirred for 4.5 hours to complete the reaction, and a black-red dispersion was obtained.

得られた分散体をサンプリングし、10倍希釈液の可視吸収スペクトル測定により400nm付近にプラズモン吸収スペクトルのピークが認められ、銀ナノ粒子の生成を確認した。また、TEM測定より球形の銀ナノ粒子が確認された。また、TG−DTAを用いて、固体中の銀含有量を測定した結果、96.6%を示した。   The obtained dispersion was sampled, and a peak of a plasmon absorption spectrum was observed at around 400 nm by measuring a visible absorption spectrum of a 10-fold diluted solution, thereby confirming the formation of silver nanoparticles. In addition, spherical silver nanoparticles were confirmed by TEM measurement. Moreover, as a result of measuring the silver content in solid using TG-DTA, 96.6% was shown.

上記で得られた反応終了後の分散液にイソプロピルアルコール100mlとヘキサン100mlの混合溶剤を加えて2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にイソプロピルアルコール25mlとヘキサン25mlの混合溶剤を加えて2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物に水10gを加えて2分間攪拌して、減圧下有機溶剤を除去した。ここにさらに水5gを加えて攪拌分散した後、これを−40℃の冷凍機に1昼夜放置して凍結し、これを凍結乾燥機(東京理化器械株式会社製 FDU−2200)で12時間処理して、灰緑色の金属光沢があるフレーク状の塊3.1gを得た。これを純水に再分散させて固形分率30%の分散液を作成し、スピンコーターを使ってスライドグラス上に700rpmで30秒スピンコートして薄膜にした。これをホットプレート上で180℃、30分間加熱し、この抵抗率を測定したところ、3.7μΩ・cmであった。   A mixed solvent of 100 ml of isopropyl alcohol and 100 ml of hexane was added to the dispersion liquid after completion of the reaction obtained above and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, a mixed solvent of 25 ml of isopropyl alcohol and 25 ml of hexane was added to the precipitate and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, 10 g of water was added to the precipitate and stirred for 2 minutes to remove the organic solvent under reduced pressure. 5 g of water was further added and stirred and dispersed, and then left to stand in a freezer at −40 ° C. for one day to freeze, and this was treated with a freeze dryer (FDU-2200 manufactured by Tokyo Rika Kikai Co., Ltd.) for 12 hours. Thus, 3.1 g of a flake-like lump having a grayish green metallic luster was obtained. This was re-dispersed in pure water to prepare a dispersion having a solid content of 30%, and spin coated on a slide glass at 700 rpm for 30 seconds using a spin coater to form a thin film. When this was heated on a hot plate at 180 ° C. for 30 minutes and the resistivity was measured, it was 3.7 μΩ · cm.

上記で得た銀含有粉体を純水の他に、エタノール、イソプロピルアルコール及びエタノールと水の混合溶剤などを用いて3時間攪拌することより再分散させて分散液を調製した。下記の表に種々の分散液の分散安定性及び保存安定性の評価結果を示した。   The silver-containing powder obtained above was redispersed by stirring for 3 hours using ethanol, isopropyl alcohol, a mixed solvent of ethanol and water, etc. in addition to pure water, to prepare a dispersion. The following table shows the evaluation results of the dispersion stability and storage stability of various dispersions.

Figure 2010007124
Figure 2010007124

比較例1
化合物(X−1)の代わりに分岐ポリエチレンイミン(日本触媒株式会社製、SP−200)0.474gを用いた他は実施例1と同様にして銀含有粉体を得ようとした。反応温度を保ちながら攪拌を続けていたが、反応時間と共に沈殿が生じ、銀ナノ粒子の分散体は得られなかった。該沈殿は金属光沢を有し、水または極性溶剤中でも分散せず、銀ナノ粒子特有のプラズモン吸収は観測されなかった。
Comparative Example 1
A silver-containing powder was obtained in the same manner as in Example 1 except that 0.474 g of branched polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., SP-200) was used instead of compound (X-1). While stirring was continued while maintaining the reaction temperature, precipitation occurred with the reaction time, and a dispersion of silver nanoparticles could not be obtained. The precipitate had a metallic luster, was not dispersed in water or a polar solvent, and plasmon absorption peculiar to silver nanoparticles was not observed.

比較例2
化合物(Y−1)の代わりに分岐ポリエチレンイミン(日本触媒株式会社製、SP−200)0.210gを用いた他は実施例2と同様にして銀含有粉体を得ようとした。反応温度を保ちながら攪拌を続けていたが、反応時間と共に沈殿が生じ、銀ナノ粒子の分散体は得られなかった。該沈殿は金属光沢を有し、水または極性溶剤中でも分散せず、銀ナノ粒子特有のプラズモン吸収は観測されなかった。
Comparative Example 2
A silver-containing powder was obtained in the same manner as in Example 2 except that 0.210 g of branched polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., SP-200) was used instead of the compound (Y-1). While stirring was continued while maintaining the reaction temperature, precipitation occurred with the reaction time, and a dispersion of silver nanoparticles could not be obtained. The precipitate had a metallic luster, was not dispersed in water or a polar solvent, and plasmon absorption peculiar to silver nanoparticles was not observed.

比較例3
上記の実施例1の工程(1)で得られた分散液に有機溶剤を用いた遠心濃縮工程を経ずに、すぐに凍結乾燥工程を行った。水量が多いため、凍結乾燥するに約10日間掛かるものの乾燥粉体ではなく粘土状の塊になった。得られた粘土状の銀含有固体を用いて実施例1同様に蒸留水に3時間攪拌して再分散させて固形分率20%の分散液を調製し、スピンコーターを使ってスライドグラス上に700rpmで30秒スピンコートして薄膜にしたが、製膜性の良い薄膜にならなかった。これをホットプレート上で180℃、30分間加熱し、フィルムの体積抵抗率を三菱化学株式会社製「低抵抗率計ロレスタEP」で測定したところ、オーバレンジ(O.L.測定不能)であった。
Comparative Example 3
The dispersion obtained in step (1) of Example 1 was immediately subjected to a freeze-drying step without going through a centrifugal concentration step using an organic solvent. Because of the large amount of water, it took about 10 days to freeze-dry, but it became a clay-like mass instead of a dry powder. The obtained clay-like silver-containing solid was stirred and redispersed in distilled water for 3 hours in the same manner as in Example 1 to prepare a dispersion having a solid content of 20%. A thin film was formed by spin coating at 700 rpm for 30 seconds, but it did not become a thin film with good film forming properties. When this was heated on a hot plate at 180 ° C. for 30 minutes and the volume resistivity of the film was measured with “Low resistivity meter Loresta EP” manufactured by Mitsubishi Chemical Corporation, it was overrange (OL measurement impossible). It was.

比較例4
上記の実施例2の工程(1)より得られた黒赤色の分散液に有機溶剤を用いた遠心濃縮工程を経ずに、すぐに凍結乾燥工程を行った。水量が多いため、凍結乾燥するに約5日間掛かるものの乾燥粉体ではなく高粘性の塊になった。得られた高粘性塊の銀含有固形物を用いて実施例2同様に蒸留水に3時間攪拌して再分散させて固形分率30%の分散液を調製し、スピンコーターを使ってスライドグラス上に700rpmで30秒スピンコートして薄膜にしたが、製膜性の良い薄膜にならなかった。これをホットプレート上で180℃、30分間加熱し、フィルムの体積抵抗率を三菱化学株式会社製「低抵抗率計ロレスタEP」で測定したところ、オーバレンジ(O.L.測定不能)であった。
Comparative Example 4
The black-red dispersion obtained from the step (1) of Example 2 was immediately subjected to a freeze-drying step without going through a centrifugal concentration step using an organic solvent. Because of the large amount of water, it took about 5 days to freeze-dry, but it became a highly viscous mass instead of a dry powder. Using the obtained highly viscous lump containing silver-containing solid material, stirring in distilled water for 3 hours and redispersing in the same manner as in Example 2 to prepare a dispersion with a solid content of 30%, using a spin coater to slide glass A thin film was formed by spin coating at 700 rpm for 30 seconds, but it did not become a thin film with good film forming properties. When this was heated on a hot plate at 180 ° C. for 30 minutes and the volume resistivity of the film was measured with “Low resistivity meter Loresta EP” manufactured by Mitsubishi Chemical Corporation, it was overrange (OL measurement impossible). It was.

比較例5
実施例2の工程(1)で得られた黒赤色の分散液中の硝酸イオンを除去するために、得られた分散体100gを透析チューブ(RVDF 500,000、スペクトラ社製)に入れて2.5Lの水中に約16時間水交換を3回繰り返して行った。引き続き、透析液を用いて2回繰り返し遠心分離(8000回転、5分)して、固形分50%に濃縮されたペースト状の銀含有粉体を得た。処理時間は実施例2の約1時間以下に比べて、合計で約55時間かかり、後処理工程中で発生した廃液量は実施例2の30倍以上であった。これらのことから、本発明の製造方法は、後処理工程が容易で、工業的に実用性の高い銀含有粉体の製造方法であることが明白である。
Comparative Example 5
In order to remove nitrate ions in the black-red dispersion obtained in the step (1) of Example 2, 100 g of the obtained dispersion was placed in a dialysis tube (RVDF 500,000, manufactured by Spectra). The water exchange was repeated 3 times for about 16 hours in 5 L of water. Subsequently, centrifugation was repeated twice using the dialysate (8000 rpm, 5 minutes) to obtain a paste-like silver-containing powder concentrated to a solid content of 50%. The treatment time took about 55 hours in total compared to about 1 hour or less in Example 2, and the amount of waste liquid generated in the post-treatment process was 30 times or more that in Example 2. From these facts, it is clear that the production method of the present invention is a method for producing a silver-containing powder that is easy in the post-treatment process and industrially highly practical.

実施例1で得られた銀含有粉体のTEM画像である。2 is a TEM image of the silver-containing powder obtained in Example 1. FIG. 実施例1で得られた銀含有粉体の写真である。2 is a photograph of the silver-containing powder obtained in Example 1. 実施例1で得られた銀含有粉体の光学顕微鏡写真である。2 is an optical micrograph of the silver-containing powder obtained in Example 1. 実施例1で得られた銀含有粉体の水分散液の写真である。2 is a photograph of an aqueous dispersion of silver-containing powder obtained in Example 1. 実施例2で得られた銀含有粉体のTEM画像である。3 is a TEM image of the silver-containing powder obtained in Example 2. 実施例2で得られた銀含有粉体の写真である。2 is a photograph of the silver-containing powder obtained in Example 2. 実施例2で得られた銀含有粉体の水分散液の写真である。2 is a photograph of an aqueous dispersion of silver-containing powder obtained in Example 2.

Claims (9)

(1)数平均分子量が500〜50,000のポリエチレンイミン(a)中のアミノ基に数平均分子量が500〜5,000のポリエチレングリコール(b)が結合してなる化合物(X)、または、
数平均分子量が500〜50,000のポリエチレンイミン(a)中のアミノ基に、数平均分子量が500〜5,000のポリエチレングリコール(b)と、エポキシ樹脂(c)とが結合してなる化合物(Y)の存在下、水性媒体中で、銀化合物を銀ナノ粒子(Z)に還元する工程、
(2)(1)で得られた、化合物(X)又は化合物(Y)と、銀ナノ粒子(Z)と、水性媒体との混合物に有機溶剤を加え、その後濃縮する工程、
(3)(2)で得られた濃縮物を乾燥する工程
とを有することを特徴とする銀含有粉体の製造方法。
(1) Compound (X) obtained by bonding polyethylene glycol (b) having a number average molecular weight of 500 to 5,000 to an amino group in polyethyleneimine (a) having a number average molecular weight of 500 to 50,000, or
A compound in which polyethylene glycol (b) having a number average molecular weight of 500 to 5,000 and an epoxy resin (c) are bonded to an amino group in polyethyleneimine (a) having a number average molecular weight of 500 to 50,000. Reducing the silver compound to silver nanoparticles (Z) in an aqueous medium in the presence of (Y);
(2) A step of adding an organic solvent to the mixture of the compound (X) or the compound (Y) obtained in (1), the silver nanoparticles (Z), and the aqueous medium, and then concentrating the mixture,
(3) A method for producing a silver-containing powder, comprising a step of drying the concentrate obtained in (2).
前記(3)の乾燥工程が凍結乾燥である請求項1記載の銀含有粉体の製造方法。 The method for producing a silver-containing powder according to claim 1, wherein the drying step (3) is freeze-drying. 数平均分子量が500〜50,000のポリエチレンイミン(a)中のアミノ基に数平均分子量が500〜5,000のポリエチレングリコール(b)が結合してなる化合物(X)、または、
数平均分子量が500〜50,000のポリエチレンイミン(a)中のアミノ基に、数平均分子量が500〜5,000のポリエチレングリコール(b)と、エポキシ樹脂(c)とが結合してなる化合物(Y)が、
透過型電子顕微鏡写真から求められる平均粒子径が2〜50nmの銀ナノ粒子(Z)の表面を被覆してなる銀含有粉体であって、
該銀含有粉体中の銀含有率が95質量%以上であることを特徴とする銀含有粉体。
Compound (X) formed by binding polyethylene glycol (b) having a number average molecular weight of 500 to 5,000 to an amino group in polyethyleneimine (a) having a number average molecular weight of 500 to 50,000, or
A compound in which polyethylene glycol (b) having a number average molecular weight of 500 to 5,000 and an epoxy resin (c) are bonded to an amino group in polyethyleneimine (a) having a number average molecular weight of 500 to 50,000. (Y)
A silver-containing powder obtained by coating the surface of silver nanoparticles (Z) having an average particle diameter of 2 to 50 nm determined from a transmission electron micrograph,
A silver-containing powder, wherein a silver content in the silver-containing powder is 95% by mass or more.
示差走査熱量測定で求められる融点が100〜200℃の範囲である請求項3記載の銀含有粉体。 The silver-containing powder according to claim 3, wherein the melting point obtained by differential scanning calorimetry is in the range of 100 to 200 ° C. 前記銀含有粉体が、乾燥状態では凝集しており、且つ溶剤(I)の存在下では分散するものである請求項3または4記載の銀含有粉体。 The silver-containing powder according to claim 3 or 4, wherein the silver-containing powder is agglomerated in a dry state and dispersed in the presence of the solvent (I). 前記溶剤(I)が、ヒドロキシ基含有溶剤である請求項5記載の銀含有粉体。 The silver-containing powder according to claim 5, wherein the solvent (I) is a hydroxy group-containing solvent. 請求項3〜6の何れか一項に記載の銀含有粉体を溶剤(I)に分散させてなることを特徴とする銀含有粉体の分散液。 A silver-containing powder dispersion comprising the silver-containing powder according to any one of claims 3 to 6 dispersed in a solvent (I). 銀含有粉体の濃度が20〜60質量%である請求項7記載の銀含有粉体の分散液。 The silver-containing powder dispersion according to claim 7, wherein the concentration of the silver-containing powder is 20 to 60% by mass. 請求項3〜6の何れか一項に記載の銀含有粉体を用いて得られることを特徴とする導電性ペースト。 A conductive paste obtained by using the silver-containing powder according to any one of claims 3 to 6.
JP2008167262A 2008-06-26 2008-06-26 Method for producing silver-containing powder, silver-containing powder and dispersion thereof Active JP4573138B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008167262A JP4573138B2 (en) 2008-06-26 2008-06-26 Method for producing silver-containing powder, silver-containing powder and dispersion thereof
KR1020107020662A KR101239816B1 (en) 2008-06-26 2009-06-10 Method for producing silver-containing powder, silver-containing powder, conductive paste and plastic substrate
EP09770019.9A EP2305402B1 (en) 2008-06-26 2009-06-10 Method for producing silver-containing powder and conductive paste using the same
PCT/JP2009/060587 WO2009157309A1 (en) 2008-06-26 2009-06-10 Silver-containing powder, method for producing the same, conductive paste using the same, and plastic substrate
CN200980123935.6A CN102066024B (en) 2008-06-26 2009-06-10 Silver-containing powder, method for producing the same, conductive paste using the same, and plastic substrate
US12/737,220 US20110180764A1 (en) 2008-06-26 2009-06-10 Silver-containing powder, method for producing the same, conductive paste using the same, and plastic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167262A JP4573138B2 (en) 2008-06-26 2008-06-26 Method for producing silver-containing powder, silver-containing powder and dispersion thereof

Publications (3)

Publication Number Publication Date
JP2010007124A true JP2010007124A (en) 2010-01-14
JP2010007124A5 JP2010007124A5 (en) 2010-03-25
JP4573138B2 JP4573138B2 (en) 2010-11-04

Family

ID=41587934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167262A Active JP4573138B2 (en) 2008-06-26 2008-06-26 Method for producing silver-containing powder, silver-containing powder and dispersion thereof

Country Status (1)

Country Link
JP (1) JP4573138B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4075C1 (en) * 2009-12-31 2011-07-31 Анатолий ЭФКАРПИДИС Process for obtaining highly dispersed colloidal silver
JP2014034495A (en) * 2012-08-09 2014-02-24 Kawamura Institute Of Chemical Research Metal oxide nanostructure and method for manufacturing the same
JP2014189896A (en) * 2013-03-28 2014-10-06 Mitsubishi Materials Corp Clay composition for noble metal sintered body
JP2014196556A (en) * 2013-03-07 2014-10-16 Dic株式会社 Method for manufacturing conductive material, and conductive material
JP2014205905A (en) * 2013-03-19 2014-10-30 Dic株式会社 Conductive material production method, and conductive material
WO2016136723A1 (en) * 2015-02-23 2016-09-01 株式会社フルヤ金属 Method for nanoparticle purification
WO2017195621A1 (en) * 2016-05-09 2017-11-16 Dic株式会社 Metal nanoparticle ink for flexography and method for producing laminate using same
WO2017199833A1 (en) * 2016-05-17 2017-11-23 Dic株式会社 Electroless nickel plating method
JP2019014188A (en) * 2017-07-10 2019-01-31 Dic株式会社 Laminate, and printed wiring board, flexible printed wiring board and molded article using the same
CN110014168A (en) * 2019-05-23 2019-07-16 深圳先进技术研究院 A kind of nano-Ag particles and preparation method thereof
CN113263183A (en) * 2021-04-09 2021-08-17 宁夏中色新材料有限公司 Nano silver lipid dispersion liquid and preparation method thereof
CN114746270A (en) * 2019-12-24 2022-07-12 Dic株式会社 Laminate, printed wiring board, flexible printed wiring board, electromagnetic wave shield, and molded article
JP7498585B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
JP7498584B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
JP7498583B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI819048B (en) 2018-08-23 2023-10-21 日商Dic股份有限公司 Laminated bodies, molded products, conductive patterns and electronic circuits
CN114450157A (en) 2019-10-10 2022-05-06 Dic株式会社 Laminate, molded article, printed wiring board, and electromagnetic wave shield

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013106A (en) * 2001-06-28 2003-01-15 Ube Nitto Kasei Co Ltd Method for manufacturing silica-coated metallic composite powder, and silica-coated metallic composite powder
JP2003103158A (en) * 2001-09-28 2003-04-08 Nippon Paint Co Ltd High concentrated metallic colloid particle solution and its manufacturing method and method for forming metallic film
JP2006097097A (en) * 2004-09-30 2006-04-13 Aica Kogyo Co Ltd Method for producing ferrite-coated metal magnetic particulate
JP2007308797A (en) * 2006-05-18 2007-11-29 Ranco Co Ltd Method for regenerating metal powder
JP2008037884A (en) * 2006-08-01 2008-02-21 Dainippon Ink & Chem Inc Metal nano-particle dispersion and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013106A (en) * 2001-06-28 2003-01-15 Ube Nitto Kasei Co Ltd Method for manufacturing silica-coated metallic composite powder, and silica-coated metallic composite powder
JP2003103158A (en) * 2001-09-28 2003-04-08 Nippon Paint Co Ltd High concentrated metallic colloid particle solution and its manufacturing method and method for forming metallic film
JP2006097097A (en) * 2004-09-30 2006-04-13 Aica Kogyo Co Ltd Method for producing ferrite-coated metal magnetic particulate
JP2007308797A (en) * 2006-05-18 2007-11-29 Ranco Co Ltd Method for regenerating metal powder
JP2008037884A (en) * 2006-08-01 2008-02-21 Dainippon Ink & Chem Inc Metal nano-particle dispersion and method for producing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4075C1 (en) * 2009-12-31 2011-07-31 Анатолий ЭФКАРПИДИС Process for obtaining highly dispersed colloidal silver
JP2014034495A (en) * 2012-08-09 2014-02-24 Kawamura Institute Of Chemical Research Metal oxide nanostructure and method for manufacturing the same
JP2014196556A (en) * 2013-03-07 2014-10-16 Dic株式会社 Method for manufacturing conductive material, and conductive material
JP2014205905A (en) * 2013-03-19 2014-10-30 Dic株式会社 Conductive material production method, and conductive material
JP2014189896A (en) * 2013-03-28 2014-10-06 Mitsubishi Materials Corp Clay composition for noble metal sintered body
WO2016136723A1 (en) * 2015-02-23 2016-09-01 株式会社フルヤ金属 Method for nanoparticle purification
JPWO2017195621A1 (en) * 2016-05-09 2018-05-24 Dic株式会社 Method for producing laminate using metal nanoparticle ink for flexographic printing
WO2017195621A1 (en) * 2016-05-09 2017-11-16 Dic株式会社 Metal nanoparticle ink for flexography and method for producing laminate using same
KR20180101527A (en) * 2016-05-09 2018-09-12 디아이씨 가부시끼가이샤 Metal nano-particle ink for flexo printing and method for producing laminate using same
KR102119002B1 (en) 2016-05-09 2020-06-04 디아이씨 가부시끼가이샤 Metal nanoparticle ink for flexographic printing and manufacturing method of laminate using same
WO2017199833A1 (en) * 2016-05-17 2017-11-23 Dic株式会社 Electroless nickel plating method
JP2019014188A (en) * 2017-07-10 2019-01-31 Dic株式会社 Laminate, and printed wiring board, flexible printed wiring board and molded article using the same
CN110014168A (en) * 2019-05-23 2019-07-16 深圳先进技术研究院 A kind of nano-Ag particles and preparation method thereof
CN114746270A (en) * 2019-12-24 2022-07-12 Dic株式会社 Laminate, printed wiring board, flexible printed wiring board, electromagnetic wave shield, and molded article
JP7498585B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
JP7498584B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
JP7498583B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
CN113263183A (en) * 2021-04-09 2021-08-17 宁夏中色新材料有限公司 Nano silver lipid dispersion liquid and preparation method thereof

Also Published As

Publication number Publication date
JP4573138B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4573138B2 (en) Method for producing silver-containing powder, silver-containing powder and dispersion thereof
WO2009157309A1 (en) Silver-containing powder, method for producing the same, conductive paste using the same, and plastic substrate
JP6120124B2 (en) Silver paste and conductive molded product obtained using the same
JP5651299B2 (en) Process for producing conductive molded product, conductive molded product, and silver paste used therefor
US8088437B2 (en) Method for production of silver-containing nano-structure, and silver-containing nano-structure
Li et al. A General and Efficient Route to Fabricate Carbon Nanotube‐Metal Nanoparticles and Carbon Nanotube‐Inorganic Oxides Hybrids
JP5531504B2 (en) Method for producing joined body using silver nanoparticles, and joined body
JP2008045024A (en) Molded processed product obtained by using metal nanoparticle dispersion, metal laminate and coating film
WO2004078641A1 (en) Metal nano-particles coated with silicon oxide and manufacturing method thereof
Mallakpour et al. An eco-friendly approach for the synthesis of biocompatible poly (vinyl alcohol) nanocomposite with aid of modified CuO nanoparticles with citric acid and vitamin C: mechanical, thermal and optical properties
WO2014057976A1 (en) Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
JP2010269516A (en) Writing utensil filled with conductive aqueous ink, silver wiring circuit, and manufacturing method therefor
Tao et al. Modification of multi-wall carbon nanotube surfaces with poly (amidoamine) dendrons: synthesis and metal templating
JP5621950B2 (en) Organic-inorganic composite silica nanoparticles, dispersion having the same, and production method thereof
KR20150114552A (en) Metal nanoparticle-protecting polymer and metal colloidal solution, and method for producing the same
Shi et al. Facile preparation of highly luminescent CdTe quantum dots within hyperbranched poly (amidoamine) s and their application in bio-imaging
JP4026664B1 (en) Metal nanoparticle dispersion and method for producing the same
JP6119348B2 (en) Core-shell type silica composite particles and method for producing the same
JP5521536B2 (en) Metal film substrate manufacturing method and flexible plastic substrate
WO2007010937A1 (en) Microparticle having needle-like surface and process for production thereof
JP5617891B2 (en) Core-shell type silica nanoparticles and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100128

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Ref document number: 4573138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250