JP2010005582A - Blocking prevention device of micro-channel and blocking prevention method - Google Patents

Blocking prevention device of micro-channel and blocking prevention method Download PDF

Info

Publication number
JP2010005582A
JP2010005582A JP2008170443A JP2008170443A JP2010005582A JP 2010005582 A JP2010005582 A JP 2010005582A JP 2008170443 A JP2008170443 A JP 2008170443A JP 2008170443 A JP2008170443 A JP 2008170443A JP 2010005582 A JP2010005582 A JP 2010005582A
Authority
JP
Japan
Prior art keywords
ultrasonic vibration
flow path
micro
liquid
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008170443A
Other languages
Japanese (ja)
Inventor
Takeshi Iwamoto
猛 岩本
Masakazu Kuroda
政計 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2008170443A priority Critical patent/JP2010005582A/en
Publication of JP2010005582A publication Critical patent/JP2010005582A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blocking prevention device of a micro-channel which reduces the expense of working cost and time cost in maintenance of a micro-reactor to enhance the productivity and to provide a blocking prevention method. <P>SOLUTION: The blocking prevention device of the micro-channel is provided with a passage formed body (11) to form the micro-channel (R) that advances the reaction of a fluid (L3) to be reacted and an ultrasonic vibration imparting means (13) to impart the ultrasonic vibration to the passage formed body (11). The ultrasonic vibration that the ultrasonic vibration imparting means (13) emits is transmitted to the fluid (L3) to be reacted flowing in the micro-channel (R) via the passage formed body (11). The characteristics of vibration is set to the frequency and amplitude so as to inhibit the bonding between molecules because the molecule of the fluid (L3) within the micro-channel (R) generates microvibration. Thus, the accumulation of high-viscosity fluid or granules that can be produced during the reaction progress, or the deposit of crystal is avoided. Resultingly, the blocking of the micro-channel (R) can be prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はマイクロ流路の閉塞防止装置及び閉塞防止方法に関する。より詳しくは、マイクロ流路内で被反応流体の反応を進行させるマイクロリアクタにおける当該マイクロ流路の閉塞を防止する装置及び方法に関する。   The present invention relates to a microchannel blockage prevention device and a blockage prevention method. More specifically, the present invention relates to an apparatus and a method for preventing clogging of a microchannel in a microreactor that causes a reaction of a reaction fluid in the microchannel.

マイクロ化学プラントは、マイクロスケールの空間内での混合、化学反応、分離などを利用した生産設備であり、大型タンク等を用いた従来のバッチ方式のプラントと比較して多くの有利点を備える。例えば、複数の流体の混合や化学反応を短時間且つ微量の試料で行えること、装置が小型であるため実験室レベルで生成物の製造技術を確立できればナンバリングアップを行うことで容易に量産用の設備化ができること、爆発などの危険を伴う反応にも適用可能であること、多品種少量生産を必要とする化合物の生成などにも素早く適応できること、需要量に合わせた生産量の調整が容易にできることなどである。このため、化学工業や医薬品工業の分野では、流体の混合または反応を行い材料や製品を製造するための好適な装置として注目され、近年、その研究開発が盛んに行われている。   A microchemical plant is a production facility that uses mixing, chemical reaction, separation, etc. in a microscale space, and has many advantages over conventional batch-type plants using large tanks and the like. For example, mixing of multiple fluids and chemical reactions can be performed in a short amount of time with a small amount of sample, and if the production technology of the product can be established at the laboratory level because the device is small, it can be easily used for mass production by numbering up. It can be installed in equipment, can be applied to reactions involving dangers such as explosions, can be quickly adapted to the production of compounds that require high-mix low-volume production, and production volume can be easily adjusted to meet demand It can be done. For this reason, in the fields of chemical industry and pharmaceutical industry, it has been attracting attention as a suitable apparatus for producing materials and products by mixing or reacting fluids, and research and development has been actively conducted in recent years.

マイクロ化学プラントでは、マイクロ流路を備えたマイクロリアクタが用いられる。このマイクロ流路は、流路幅が数μm〜数mm程度のオーダーである。このようなマイクロリアクタに関する公知文献として、例えば下記特許文献1〜4を挙げることができる。特許文献1は、チューブ体をジグザグ直線状に配置してマイクロ流路を形成したものを開示している。特許文献2は、チューブ体を螺旋状に巻いてマイクロ流路を形成したものを開示している。特許文献3は、入口部が略Y字状に分岐されたマイクロ流路を有し、一方の入口から第1流体が圧入供給され、他方の入口から第2流体が圧入供給され、分岐点で界面接触させるものを開示している。特許文献4は、時計周り方向の旋回と反時計周り方向の旋回とを交互に繰り返すマイクロ流路を開示している。
特開2007−007570号公報 特開2007−029887号公報 特開2006−239640号公報 特開2006−305505号公報
In a microchemical plant, a microreactor having a microchannel is used. The microchannel has a channel width on the order of several μm to several mm. As publicly known literatures concerning such microreactors, for example, the following patent documents 1 to 4 can be cited. Patent Document 1 discloses a tube body arranged in a zigzag straight line to form a microchannel. Japanese Patent Application Laid-Open No. H10-228667 discloses a micro-channel formed by spirally winding a tube body. Patent Document 3 has a micro-channel having an inlet portion branched in a substantially Y shape, and the first fluid is press-fitted and supplied from one inlet, and the second fluid is press-fitted and supplied from the other inlet. An interface contact is disclosed. Patent Document 4 discloses a micro flow path that alternately repeats clockwise rotation and counterclockwise rotation.
JP 2007-007570 A JP 2007-029887 A JP 2006-239640 A JP 2006-305505 A

上記各マイクロリアクタにおけるマイクロ流路は、いずれも流れ方向に垂直な面で切ったときの断面積が数mm以下という狭い流路であるため、流体の高粘性化または顆粒や結晶の析出を伴う反応用途に用いた場合に、流路が閉塞することがある。流路の閉塞は、定期的にマイクロリアクタを分解清掃したり、マイクロ流路に洗浄液を流したりすることで予防または対処することができるが、これらメンテナンスに費やす作業コスト及び時間コストが多くかかり、生産性の低下を招く。 The microchannels in the above microreactors are all narrow channels with a cross-sectional area of several mm 2 or less when cut by a plane perpendicular to the flow direction, and therefore, increase the viscosity of the fluid or precipitation of granules and crystals. When used for reaction, the flow path may be blocked. Blockage of the flow path can be prevented or dealt with by periodically disassembling and cleaning the microreactor or flowing a cleaning solution into the microflow path, but this requires a lot of work and time costs for maintenance, and production It causes a decline in sex.

本発明は、このような問題に鑑みてなされたものであり、マイクロリアクタのメンテナンスに費やす作業コスト及び時間コストが少なくて済み、以って生産性を向上させることのできるマイクロ流路の閉塞防止装置及び閉塞防止方法を提供することを目的とする。   The present invention has been made in view of such a problem, and it is possible to reduce the work cost and time cost for maintenance of the microreactor, and thus the productivity can be improved. And it aims at providing the obstruction | occlusion prevention method.

上記目的は、下記の本発明により達成される。なお「特許請求の範囲」及びこの「課題を解決するための手段」の欄において各構成要素に付した括弧書きの符号は、後述する実
施形態に記載の具体的手段との対応関係を示すものである。
The above object is achieved by the present invention described below. The reference numerals in parentheses attached to each component in the “Claims” and “Means for Solving the Problems” column indicate the correspondence with the specific means described in the embodiments described later. It is.

請求項1の発明は、被反応流体(L3)の反応を進行させるためのマイクロ流路(R)を形成する流路形成体(11)と、流路形成体(11)に超音波振動を付与する超音波振動付与手段(13)とを備えることを特徴とする。   According to the first aspect of the present invention, ultrasonic vibration is applied to the flow path forming body (11) forming the micro flow path (R) for advancing the reaction of the reaction fluid (L3) and the flow path forming body (11). Ultrasonic vibration applying means (13) for applying is provided.

請求項1の発明によると、被反応流体(L3)がマイクロ流路(R)内で反応を進行させている最中に、超音波振動付与手段(13)は超音波振動を発することができる。超音波振動付与手段(13)が発した超音波振動は、流路形成体(11)を介してマイクロ流路(R)内を流れる被反応流体(L3)に伝わる。この振動特性は、マイクロ流路(R)内の被反応流体(L3)の分子が微少振動を発生して、分子間の結合を阻止する振動数及び振幅に設定される。これにより反応進行中に生じ得る高粘性流体または顆粒や結晶の析出の蓄積が回避され、その結果、マイクロ流路(R)の閉塞が防止される。なお、本発明において、反応途中段階の流体も被反応流体(L3)に含むものとする。また、超音波振動振動の付与は、連続的または断続的のいずれとしてもよい。   According to the invention of claim 1, the ultrasonic vibration applying means (13) can emit ultrasonic vibration while the reaction fluid (L3) is proceeding with the reaction in the micro flow path (R). . The ultrasonic vibration generated by the ultrasonic vibration applying means (13) is transmitted to the reaction fluid (L3) flowing in the micro flow path (R) through the flow path forming body (11). This vibration characteristic is set to a frequency and an amplitude at which molecules of the reaction fluid (L3) in the micro flow channel (R) generate a minute vibration and prevent a bond between the molecules. This avoids the accumulation of deposits of highly viscous fluids or granules or crystals that can occur during the course of the reaction, and as a result, blockage of the microchannel (R) is prevented. In the present invention, the fluid in the middle of the reaction is also included in the reaction fluid (L3). Moreover, the application of ultrasonic vibration may be either continuous or intermittent.

請求項2の発明では、超音波振動付与手段(13)は、流路形成体(11)の外方から流路形成体(11)に超音波振動を付与する。   In the invention of claim 2, the ultrasonic vibration applying means (13) applies ultrasonic vibration to the flow path forming body (11) from the outside of the flow path forming body (11).

請求項2の発明によると、超音波振動付与手段(13)は、例えばマイクロ流路(R)内に設けたり、マイクロ流路(R)の内壁に凹部を形成してこの凹部に設けたりするのでなく、流路形成体(11)の外方に設けることができる。流路形成体(11)の外方から流路形成体(11)に超音波振動を付与することでマイクロ流路(R)内の被反応流体(L3)に超音波振動を伝搬させるので、マイクロ流路(R)内等に超音波振動付与手段(13)を設けた場合と比較して、被反応流体(L3)の滞留が無く、且つ流路の汚染(コンタミの発生)が少ない。   According to the invention of claim 2, the ultrasonic vibration applying means (13) is provided, for example, in the microchannel (R), or a recess is formed on the inner wall of the microchannel (R), and is provided in the recess. Instead, it can be provided outside the flow path forming body (11). Since ultrasonic vibration is propagated from the outside of the flow path forming body (11) to the reaction fluid (L3) in the micro flow path (R) by applying ultrasonic vibration to the flow path forming body (11), Compared with the case where the ultrasonic vibration applying means (13) is provided in the micro-channel (R) or the like, the reaction fluid (L3) does not stay and the channel is less polluted (contamination).

請求項3の発明は、超音波振動付与手段(13)を冷却するための冷却手段(60)を備える。   The invention of claim 3 includes a cooling means (60) for cooling the ultrasonic vibration applying means (13).

請求項3の発明によると、超音波振動を発することに伴う超音波振動付与手段(13)自体の発熱による温度上昇を抑制することができ、温度上昇による超音波振動付与手段(13)の誤動作や発生振動数の変動などを無くすことができる。   According to the invention of claim 3, it is possible to suppress the temperature rise due to the heat generation of the ultrasonic vibration applying means (13) itself due to the generation of ultrasonic vibration, and the ultrasonic vibration applying means (13) malfunctions due to the temperature rise. And fluctuations in the generated frequency can be eliminated.

請求項4の発明では、超音波振動付与手段(13)と流路形成体(11)との間に液体(W1)を介在させる液室(12H)を設け、超音波振動付与手段(13)は、この液体(W1)を超音波振動の伝搬媒体として流路形成体(11)に超音波振動を付与する。   In the invention of claim 4, the liquid chamber (12H) for interposing the liquid (W1) is provided between the ultrasonic vibration applying means (13) and the flow path forming body (11), and the ultrasonic vibration applying means (13). Applies ultrasonic vibration to the flow path forming body (11) using the liquid (W1) as a propagation medium of ultrasonic vibration.

請求項4の発明によると、超音波振動付与手段(13)は、液体(W1)を超音波振動の伝搬媒体として流路形成体(11)に超音波振動を付与する。これにより、流路形成体(11)に付与される超音波振動が、局所的にならず、流路形成体(11)の全体に一様となるため、マイクロ流路(R)の全体に亘った隈の無い閉塞防止を達成することができる。   According to the invention of claim 4, the ultrasonic vibration applying means (13) applies ultrasonic vibration to the flow path forming body (11) using the liquid (W1) as a propagation medium of ultrasonic vibration. As a result, the ultrasonic vibration applied to the flow path forming body (11) is not localized and is uniform throughout the flow path forming body (11). It is possible to achieve blockage prevention without wrinkles.

請求項5の発明は、液室(12H)内の液体(W1)の温度を調節する液温調節手段(55)を備える。   The invention of claim 5 includes a liquid temperature adjusting means (55) for adjusting the temperature of the liquid (W1) in the liquid chamber (12H).

請求項5の発明によると、液温調節手段(55)により液室(12H)内の液体(W1)の温度を調節することで、マイクロ流路(R)内の被反応流体(L3)の温度を制御することができ、高精度で良質の反応を達成することができる。このように液体(W1)は、一つの密閉空間である液室(12H)で超音波伝搬用及び温度調節用の両方の機能を備えるようになっており、装置効率が良い。   According to the invention of claim 5, by adjusting the temperature of the liquid (W1) in the liquid chamber (12H) by the liquid temperature adjusting means (55), the reaction fluid (L3) in the microchannel (R) is adjusted. The temperature can be controlled, and a high-quality reaction with high accuracy can be achieved. Thus, the liquid (W1) is provided with functions for both ultrasonic wave propagation and temperature adjustment in the liquid chamber (12H) which is one sealed space, and the apparatus efficiency is high.

請求項6の発明は、被反応流体(L3)の反応を進行させるためのマイクロ流路(R)を形成する流路形成体(11)に、超音波振動付与手段(13)により超音波振動を付与することで、マイクロ流路(R)の閉塞を防止することを特徴とする。   According to the sixth aspect of the present invention, ultrasonic vibration is applied to the flow path forming body (11) that forms the micro flow path (R) for advancing the reaction of the reaction fluid (L3) by the ultrasonic vibration applying means (13). To prevent the microchannel (R) from being blocked.

請求項6の発明によると、請求項1の作用効果と同様に、被反応流体(L3)の分子が微少振動を発生して、分子間の結合を阻止する振動特性の超音波振動を付与することで、マイクロ流路(R)の閉塞が防止される。   According to the sixth aspect of the invention, similarly to the effect of the first aspect, the molecules of the fluid to be reacted (L3) generate minute vibrations and impart ultrasonic vibration having vibration characteristics for preventing the bonds between the molecules. This prevents the micro flow path (R) from being blocked.

本発明によると、マイクロリアクタのメンテナンスに費やす作業コスト及び時間コストが少なくて済み、以って生産性を向上させることのできるマイクロ流路の閉塞防止装置及び閉塞防止方法が提供される。   According to the present invention, it is possible to provide a microchannel blockage prevention device and a blockage prevention method that can reduce the work cost and time cost required for maintenance of a microreactor and thereby improve productivity.

以下、添付図面を参照して、本発明を実施するための最良の形態について説明する。図1は本発明に係るマイクロ流路閉塞防止装置10を備えたマイクロ化学プラント100を示す構成概要図、図2は本発明に係るマイクロ流路閉塞防止装置10の構成概要を示す正面一部断面図、図3は本発明に係るマイクロ流路閉塞防止装置10の構成概要を示す側面一部断面図、図4は超音波振動子13の概略構成を示す正面断面図、図5は別形態の流路形成体11’を示す2面一部断面図(A図は平面一部断面図を示し、B図は正面一部断面図を示す)である。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing a microchemical plant 100 including a microchannel blockage prevention device 10 according to the present invention, and FIG. 2 is a partial front cross-sectional view showing a configuration overview of the microchannel blockage prevention device 10 according to the present invention. FIG. 3, FIG. 3 is a side sectional view showing an outline of the configuration of the microchannel blockage prevention device 10 according to the present invention, FIG. 4 is a front sectional view showing the schematic configuration of the ultrasonic transducer 13, and FIG. FIG. 2 is a partial cross-sectional view of two surfaces showing a flow path forming body 11 ′ (FIG. A shows a plan partial cross-sectional view and FIG. B shows a front partial cross-sectional view).

図1に示すように、マイクロ化学プラント100は、マイクロ流路閉塞防止装置10、混合部20、第1液供給部30、第2液供給部40、熱冷媒循環部50、冷却用ガス循環部60、制御部70及び電源80を備える。   As shown in FIG. 1, the microchemical plant 100 includes a microchannel blockage prevention device 10, a mixing unit 20, a first liquid supply unit 30, a second liquid supply unit 40, a thermal refrigerant circulation unit 50, and a cooling gas circulation unit. 60, a control unit 70 and a power source 80.

マイクロ流路閉塞防止装置10は、図2,3に示すように、流路形成体11、ケーシング12及び超音波振動子13を備える。   As shown in FIGS. 2 and 3, the microchannel blockage prevention device 10 includes a channel formation body 11, a casing 12, and an ultrasonic transducer 13.

流路形成体11は、長尺可撓性のチューブ体をコイル状に巻回したものである。このチューブ体は、流れ方向に垂直な面で切ったときの断面積が1μm以上且つ数mm以下の中空部を有し、この中空部が流れ方向に連続することでマイクロ流路Rを形成している。流路形成体11の材質は、マイクロ流路Rを流れる被反応液、反応途中液及び反応済液の種類に応じて、これら各液により浸食または腐食されないものとされる。例えば、ステンレス鋼やハステロイ(米国ヘインズ・インターナショナル社の登録商標)等の金属またはテフロン(米国デュポン社の登録商標)等の耐薬品性または耐腐食性の高い樹脂などを用いることができる。 The flow path forming body 11 is obtained by winding a long flexible tube body into a coil shape. This tube body has a hollow portion having a cross-sectional area of 1 μm 2 or more and several mm 2 or less when cut by a plane perpendicular to the flow direction. Forming. The material of the flow path forming body 11 is not eroded or corroded by these liquids depending on the types of the liquid to be reacted, the liquid in the middle of the reaction, and the reacted liquid flowing through the micro flow path R. For example, a metal such as stainless steel or Hastelloy (registered trademark of US Haynes International) or a resin having high chemical resistance or corrosion resistance such as Teflon (registered trademark of US DuPont) can be used.

ケーシング12は、内筒1、外筒2、横蓋3及び横蓋4からなり、その内部には、熱冷媒室12H及び冷却用ガス室12Cが形成される。内筒1は、流路形成体11を囲繞する円筒体である。外筒2は、内筒1と同心状に配置した状態で内筒1を入れ子状とした円筒体である。横蓋3は、外筒2及び内筒1の一端側にそれらの開口を閉塞するように設けられる。横蓋3の中央部には、マイクロ流路Rの一端に連通し被反応液L3の入口となる入口ポート11Iが設けられる。横蓋4は、外筒2及び内筒1の他端側にそれらの開口を閉塞するように設けられる。横蓋4の中央部には、マイクロ流路Rの他端に連通し反応済液L4の出口となる出口ポート11Dが設けられる。   The casing 12 includes an inner cylinder 1, an outer cylinder 2, a horizontal lid 3, and a horizontal lid 4, and a thermal refrigerant chamber 12H and a cooling gas chamber 12C are formed therein. The inner cylinder 1 is a cylindrical body that surrounds the flow path forming body 11. The outer cylinder 2 is a cylindrical body in which the inner cylinder 1 is nested while being arranged concentrically with the inner cylinder 1. The horizontal lid 3 is provided on one end side of the outer cylinder 2 and the inner cylinder 1 so as to close their openings. An inlet port 11I that communicates with one end of the microchannel R and serves as an inlet of the reaction liquid L3 is provided at the center of the horizontal lid 3. The horizontal lid 4 is provided on the other end side of the outer cylinder 2 and the inner cylinder 1 so as to close their openings. An outlet port 11D that communicates with the other end of the microchannel R and serves as an outlet of the reacted liquid L4 is provided at the center of the horizontal lid 4.

熱冷媒室12Hは、内筒1の内周面と横蓋3の内側面と横蓋4の内側面とにより囲まれた密閉空間であり、この密閉空間を熱冷媒(熱媒または冷媒)W1が循環するようになっている。熱冷媒W1には、例えば冷水、温水、熱水などが用いられる。冷却用ガス室12Cは、外筒2の内周面と内筒1の外周面と横蓋3の内側面と横蓋4の内側面とにより囲まれた密閉空間であり、この密閉空間を冷却用ガスW2が循環するようになっている。冷却用ガスW2には、例えば冷却空気等の低温気体が用いられる。内筒1には、熱冷媒室12Hに連通し熱冷媒W1の入口となる入口ポート1I、及び出口となる出口ポート1Dが形成される。外筒2には、冷却用ガス室12Cに連通し冷却用ガスW2の入口となる入口ポート2I、及び出口となる出口ポート2Dが形成される。   The thermal refrigerant chamber 12H is a sealed space surrounded by the inner circumferential surface of the inner cylinder 1, the inner side surface of the horizontal lid 3, and the inner side surface of the horizontal lid 4, and this sealed space is a thermal refrigerant (heat medium or refrigerant) W1. Has come to circulate. For example, cold water, hot water, hot water, or the like is used as the thermal refrigerant W1. The cooling gas chamber 12 </ b> C is a sealed space surrounded by the inner peripheral surface of the outer cylinder 2, the outer peripheral surface of the inner cylinder 1, the inner side surface of the horizontal lid 3, and the inner side surface of the horizontal lid 4. The working gas W2 is circulated. For the cooling gas W2, for example, a low-temperature gas such as cooling air is used. The inner cylinder 1 is formed with an inlet port 1I that communicates with the thermal refrigerant chamber 12H and serves as an inlet for the thermal refrigerant W1, and an outlet port 1D that serves as an outlet. The outer cylinder 2 is formed with an inlet port 2I that communicates with the cooling gas chamber 12C and serves as an inlet for the cooling gas W2, and an outlet port 2D that serves as an outlet.

ケーシング12には、液温センサ14が設けられている。液温センサ14は、熱冷媒室12Hを流れる熱冷媒W1の温度を測定してその温度信号S1を制御部70に送るように構成される。   The casing 12 is provided with a liquid temperature sensor 14. The liquid temperature sensor 14 is configured to measure the temperature of the thermal refrigerant W1 flowing through the thermal refrigerant chamber 12H and send the temperature signal S1 to the control unit 70.

超音波振動子13は、図4に示すように、超音波発生源となる圧電材131、圧電材131の上下に付設された電極132,133、下側電極133の表面に貼り付けられた吸音材134、及び上側電極132の表面に貼り付けらた音響整合層135からなる。超音波振動子13は、上側表面(超音波放射面)136を凹型に湾曲させて湾曲面とできる可撓性タイプのものである。超音波振動子13は、上側表面136を凹型に湾曲させた状態で、図3に示すように、上記内筒1の外周面の2箇所に接着剤等の固着手段により取り付けられる。超音波振動子13は、電源80から電力の供給を受けるようになっている。超音波振動子13が発する振動の特性は、制御信号S3により可変とされる。   As shown in FIG. 4, the ultrasonic transducer 13 includes a piezoelectric material 131 that is an ultrasonic wave generation source, electrodes 132 and 133 that are provided above and below the piezoelectric material 131, and a sound absorbing material that is attached to the surface of the lower electrode 133. The acoustic matching layer 135 is attached to the surface of the material 134 and the upper electrode 132. The ultrasonic transducer 13 is a flexible type that can be curved by bending the upper surface (ultrasonic radiation surface) 136 into a concave shape. As shown in FIG. 3, the ultrasonic transducer 13 is attached to two locations on the outer peripheral surface of the inner cylinder 1 by an adhering means such as an adhesive, with the upper surface 136 curved in a concave shape. The ultrasonic transducer 13 is supplied with power from a power source 80. The characteristic of the vibration generated by the ultrasonic transducer 13 is variable by the control signal S3.

図1に戻って、混合部20は、混合前の被反応液である第1液L1と、混合前の被反応液である第2液L2とを合流させた後、両液を混合する装置であり、第1液L1及び第2液L2のそれぞれを導入するための入口ポート20I及び入口ポート20I、混合済みの被反応液L3を導出するための出口ポート20D、並びに入口ポート20I及び入口ポート20Iと出口ポート20Dとの間に設けられた混合用の流路形成体21を備える。流路形成体21は、流路形成体11と同様にコイル状に巻回したチューブ体により形成することができる。 Returning to FIG. 1, the mixing unit 20 joins the first liquid L1 that is the reaction liquid before mixing and the second liquid L2 that is the reaction liquid before mixing, and then mixes both liquids. , and the outlet port 20D for deriving the inlet port 20I 1 and the inlet port 20I 2, blended of the reaction liquid L3 for introducing a respective first liquid L1 and second liquid L2, and the inlet port 20I 1 and an inlet port 20I 2 and the flow passage forming body 21 for mixing disposed between the outlet port 20D. The flow path forming body 21 can be formed of a tube body wound in a coil shape in the same manner as the flow path forming body 11.

第1液供給部30は、第1液貯留タンク31、ポンプ32及びバルブ33などを備え、配管34を介して混合装置20の入口ポート20Iに接続され、第1液L1を所定の圧力で圧送可能に構成される。第2液供給部40は、第1液供給部30と同様に、第2液貯留タンク41、ポンプ42及びバルブ43などを備え、配管44を介して混合装置20の入口ポート20Iに接続され、第2液L2を所定の圧力で圧送可能に構成される。 The first liquid supply unit 30 includes a first liquid storage tank 31, and the like pump 32 and valve 33, is connected to the inlet port 20I 1 of the mixing device 20 through the pipe 34, the first liquid L1 at a predetermined pressure It is configured to be pumpable. The second liquid supply unit 40, similarly to the first liquid supply unit 30, the second liquid storage tank 41, and the like pump 42 and valve 43, is connected to the inlet port 20I 2 of the mixing device 20 via a pipe 44 The second liquid L2 is configured to be pumped at a predetermined pressure.

熱冷媒循環部50は、熱冷媒貯留タンク51、ポンプ52、バルブ53及び温度制御部55などを備え、配管54を介してマイクロ流路閉塞防止装置10の入口ポート1I及び出口ポート1Dに接続され、熱冷媒W1を熱冷媒室12Hで所定の流量で循環させるように構成される。   The thermal refrigerant circulation unit 50 includes a thermal refrigerant storage tank 51, a pump 52, a valve 53, a temperature control unit 55, and the like, and is connected to an inlet port 1I and an outlet port 1D of the microchannel blockage prevention device 10 via a pipe 54. The heat refrigerant W1 is configured to circulate at a predetermined flow rate in the heat refrigerant chamber 12H.

冷却用ガス循環部60は、冷却用ガス生成部61、ポンプ62及びバルブ63などを備え、配管64を介してマイクロ流路閉塞防止装置10の入口ポート2I及び出口ポート2Dに接続され、冷却用ガスW2を冷却用ガス室12Cで所定の圧力で循環させるように構成される。   The cooling gas circulation unit 60 includes a cooling gas generation unit 61, a pump 62, a valve 63, and the like, and is connected to the inlet port 2I and the outlet port 2D of the microchannel blockage prevention device 10 via the pipe 64 for cooling. The gas W2 is configured to circulate at a predetermined pressure in the cooling gas chamber 12C.

制御部70は、液温センサ14から送られた温度信号S1に基づいて、マイクロ流路Rを流れる被反応液L3の温度が反応に最適な温度となるように、熱冷媒W1を加熱または冷却して、上記被反応液L3の温度を制御する構成とされる。この制御は制御信号S2により行われる。また、制御部70は、反応形態に応じて超音波振動子13が発する振動の特性が変化するように、電源80の振幅及び振動数を設定可変とされる。振動の特性は、マイクロ流路Rを流れる被反応液L3の分子が微少振動を発生して、分子間の結合を阻止するものが選択される。この制御は制御信号S3により行われる。   Based on the temperature signal S1 sent from the liquid temperature sensor 14, the control unit 70 heats or cools the thermal refrigerant W1 so that the temperature of the reaction liquid L3 flowing through the microchannel R becomes an optimum temperature for the reaction. Thus, the temperature of the reaction liquid L3 is controlled. This control is performed by a control signal S2. Further, the control unit 70 can set and change the amplitude and frequency of the power supply 80 so that the characteristics of the vibration generated by the ultrasonic transducer 13 change according to the reaction mode. The vibration characteristic is selected such that the molecules of the reaction liquid L3 flowing through the micro flow path R generate minute vibrations and prevent the bonds between the molecules. This control is performed by a control signal S3.

次に、マイクロ化学プラント100の動作及び効果について説明する。図1において、第1液供給部30及び第2液供給部40からそれぞれ所定の圧力で導出された第1液L1及び第2液L2は、混合部20に導入される。混合部20に導入された第1液L1及び第2液L2は、合流点r0で合流した後、流路形成体21に形成された流路内を通過することで混合を進行させていき、混合を終えた後、被反応液L3として導出される。混合部20から導出された被反応液L3は、流路形成体11の入口ポート11Iに導入され、マイクロ流路Rを通過しながら反応を進行させ、最終的には反応済液L4として出口ポート11Dから導出される。   Next, the operation and effect of the microchemical plant 100 will be described. In FIG. 1, the first liquid L <b> 1 and the second liquid L <b> 2 derived from the first liquid supply unit 30 and the second liquid supply unit 40 at a predetermined pressure, respectively, are introduced into the mixing unit 20. After the first liquid L1 and the second liquid L2 introduced into the mixing unit 20 merge at the merge point r0, the mixing proceeds by passing through the flow path formed in the flow path forming body 21, After the mixing is completed, the reaction liquid L3 is derived. The to-be-reacted liquid L3 led out from the mixing unit 20 is introduced into the inlet port 11I of the flow path forming body 11 to advance the reaction while passing through the micro flow path R, and finally as the reacted liquid L4 at the outlet port. 11D.

被反応液L3がマイクロ流路R内で反応を進行させている最中に、超音波振動子13は、超音波振動を発している。超音波振動子13が発した超音波振動は、内筒1に伝わった後、熱冷媒W1を介して流路形成体11に伝わる。流路形成体11に伝わった超音波振動は、マイクロ流路R内を流れる被反応液L3に伝わる。この超音波振動の振動特性は、被反応液L3の分子が微少振動を発生して、分子間の結合を阻止する値に設定されている。つまり、マイクロ流路R内の被反応液L3には、被反応液L3の各分子が微少振動を発生して、分子間の結合を阻止する振動数及び振幅の超音波振動が付与される。これにより反応進行中に生じ得る高粘性流体または顆粒や結晶の析出の蓄積が回避され、その結果、マイクロ流路Rの閉塞が防止される。また、マイクロ流路R内で被反応液L3が停止しているときも、上と同様な理由で、マイクロ流路Rの閉塞が防止される。   While the reaction liquid L3 is proceeding with the reaction in the micro flow path R, the ultrasonic vibrator 13 emits ultrasonic vibration. The ultrasonic vibration generated by the ultrasonic vibrator 13 is transmitted to the inner cylinder 1 and then transmitted to the flow path forming body 11 via the thermal refrigerant W1. The ultrasonic vibration transmitted to the flow path forming body 11 is transmitted to the reaction liquid L3 flowing in the micro flow path R. The vibration characteristic of this ultrasonic vibration is set to a value that prevents the molecules of the reaction liquid L3 from generating minute vibrations and preventing the bonds between the molecules. That is, to the reaction liquid L3 in the micro flow path R, each molecule of the reaction liquid L3 generates a minute vibration, and an ultrasonic vibration having a frequency and an amplitude that prevents the binding between the molecules is applied. This avoids accumulation of deposits of highly viscous fluids or granules or crystals that may occur during the course of the reaction, and as a result, blockage of the microchannel R is prevented. Further, even when the reaction liquid L3 is stopped in the microchannel R, the microchannel R is prevented from being blocked for the same reason as above.

本形態では、超音波振動子13は、熱冷媒W1を超音波振動の伝搬媒体として、流路形成体11に超音波振動を付与する。これにより、流路形成体11に付与される超音波振動が、局所的にならず、流路形成体11の全体に一様となるため、マイクロ流路Rの全体に亘った隈の無い閉塞防止を達成することができる。   In this embodiment, the ultrasonic transducer 13 imparts ultrasonic vibration to the flow path forming body 11 using the thermal refrigerant W1 as a propagation medium for ultrasonic vibration. As a result, the ultrasonic vibration applied to the flow path forming body 11 is not localized, and is uniform throughout the flow path forming body 11, so that there is no wrinkle over the entire micro flow path R. Prevention can be achieved.

一方、熱冷媒W1は、熱冷媒室12H内で所定の流量で循環している。熱冷媒W1は、液温センサ14から送られた温度信号S1を基に、マイクロ流路Rを流れる被反応液L3の温度が反応に最適な温度となるように、温度制御部55により加熱または冷却されて温度制御される。これにより、高精度で良質の反応を達成することができる。このように熱冷媒W1は、一つの密閉空間である熱冷媒室12H内で超音波伝搬用及び温度調節用の両方の機能を備えるようになっており、装置効率が良い。   On the other hand, the thermal refrigerant W1 is circulated at a predetermined flow rate in the thermal refrigerant chamber 12H. The thermal refrigerant W1 is heated by the temperature control unit 55 based on the temperature signal S1 sent from the liquid temperature sensor 14 so that the temperature of the liquid to be reacted L3 flowing through the microchannel R becomes an optimum temperature for the reaction. Cooled and temperature controlled. Thereby, a high-quality reaction with high accuracy can be achieved. As described above, the thermal refrigerant W1 has both the functions of ultrasonic wave propagation and temperature adjustment in the thermal refrigerant chamber 12H which is one sealed space, and the apparatus efficiency is high.

また、冷却用ガス室12C内には、冷却用ガスW2が所定の流量で循環している。これにより、超音波振動を発することに伴う超音波振動子13自体の発熱による温度上昇を抑制することができ、温度上昇による超音波振動子13の誤動作や発生振動数の変動などを無くすことができる。   Further, the cooling gas W2 is circulated at a predetermined flow rate in the cooling gas chamber 12C. As a result, the temperature rise due to the heat generation of the ultrasonic vibrator 13 itself due to the generation of the ultrasonic vibration can be suppressed, and the malfunction of the ultrasonic vibrator 13 due to the temperature rise and the fluctuation of the generated frequency can be eliminated. it can.

上述の実施形態において流路形成体11は、長尺可撓性のチューブ体をコイル状に巻回したもの以外に、次の形態とすることもできる。   In the above-described embodiment, the flow path forming body 11 may have the following form in addition to the long flexible tube body wound in a coil shape.

例えば流路形成体は、長尺可撓性のチューブ体を単に直線状に配置したものであってもよい。   For example, the flow path forming body may be one in which long flexible tube bodies are simply arranged linearly.

また、特開2006−305505号公報(特許文献4)に示すような、時計周り方向の旋回と反時計周り方向の旋回とを交互に繰り返すマイクロ流路を有する形態としてもよい。   Moreover, it is good also as a form which has a micro flow path as shown in Unexamined-Japanese-Patent No. 2006-305505 (patent document 4) which repeats clockwise rotation and counterclockwise rotation alternately.

また、例えば、図5に示す流路形成体11’のように、マイクロ流路R’の入口部が略Y字状に分岐されており、一方の入口ポート11’Iから第1液L1が圧入供給され、他方の入口ポート11’Iから第2液L2が圧入供給され、分岐点R’で衝突させて反応を生起させる形態としてもよい。この流路形成体11’は、マイクロ貫通溝プレート91と蓋プレート92,93とからなる。マイクロ貫通溝プレート91は、厚さ方向に貫通し且つ面方向に連続するマイクロ貫通溝94を備える。マイクロ貫通溝94の平面視は略Y字形を呈する。蓋プレート92,93の平坦面をそれぞれマイクロ貫通溝プレート91に対面させた状態で、マイクロ貫通溝プレート91の厚さ方向両面を蓋プレート92,93で挟圧させることにより、平面視が略Y字形となるマイクロ流路R’が形成されている。この形態を用いる場合、分岐点R’に対応する外壁部分に超音波振動子13’を直接に取り付けてもよい。分岐点R’に、局所的に強い超音波振動を付与し、第1液L1と第2液L2との衝突時に生じ得る高粘性流体または顆粒や結晶の析出の蓄積による閉塞を効率良く防止することができるからである。 Further, for example, as in the flow path forming body 11 ′ shown in FIG. 5, the inlet portion of the micro flow path R ′ is branched in a substantially Y shape, and the first liquid L1 is supplied from one inlet port 11′I1. Is injected and supplied, and the second liquid L2 is injected and supplied from the other inlet port 11′I 2 and collides at the branch point R ′ 0 to cause a reaction. The flow path forming body 11 ′ includes a micro through groove plate 91 and lid plates 92 and 93. The micro through groove plate 91 includes a micro through groove 94 that penetrates in the thickness direction and continues in the surface direction. The plan view of the micro through-groove 94 has a substantially Y shape. With the flat surfaces of the lid plates 92 and 93 facing the micro through-groove plate 91, respectively, both sides in the thickness direction of the micro through-groove plate 91 are clamped by the lid plates 92 and 93 so that the plan view is substantially Y. A micro-channel R ′ having a letter shape is formed. When using this embodiment, the may be directly attached 'ultrasonic transducer 13 to the outer wall portion corresponding to 0' branch point R. A strong ultrasonic vibration is locally applied to the branch point R ′ 0 to effectively prevent clogging due to accumulation of high-viscosity fluid or precipitation of granules or crystals that may occur at the time of collision between the first liquid L1 and the second liquid L2. Because it can be done.

以上、本発明の実施形態について説明を行ったが、上に開示した実施形態は、あくまで例示であって、本発明の範囲はこの実施の形態に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、更に特許請求の範囲と均等の意味及び範囲内でのすべての変更を含むことが意図される。即ち、マイクロ流路閉塞防止装置10の全体または一部の構造、形状、サイズ、材質、個数などは、本発明の趣旨に沿って種々に変更することができる。また、本発明は、化学反応を伴わない単なる混合に適用することも可能である。   As mentioned above, although embodiment of this invention was described, embodiment disclosed above is an illustration to the last, Comprising: The scope of the present invention is not limited to this embodiment. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. That is, the structure, shape, size, material, number, etc. of the whole or a part of the microchannel blockage prevention device 10 can be variously changed in accordance with the spirit of the present invention. The present invention can also be applied to simple mixing without chemical reaction.

本発明に係るマイクロ流路閉塞防止装置を備えたマイクロ化学プラントを示す構成概要図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a structure schematic diagram which shows the microchemical plant provided with the microchannel blockage | blocking prevention apparatus which concerns on this invention. 本発明に係るマイクロ流路閉塞防止装置の構成概要を示す正面一部断面図である。It is a front partial sectional view showing the composition outline of the micro channel blockade prevention device concerning the present invention. 本発明に係るマイクロ流路閉塞防止装置の構成概要を示す側面一部断面図である。It is side surface partial sectional drawing which shows the structure outline | summary of the microchannel obstruction | occlusion prevention apparatus which concerns on this invention. 超音波振動子の概略構成を示す正面断面図である。It is front sectional drawing which shows schematic structure of an ultrasonic transducer | vibrator. 別形態の流路形成体を示す2面一部断面図である。It is 2 surface partial sectional drawing which shows the flow-path formation body of another form.

符号の説明Explanation of symbols

10 マイクロ流路閉塞防止装置(マイクロ流路の閉塞防止装置)
11 流路形成体
11’ 流路形成体
12H 熱冷媒室(液室)
13 超音波振動子(超音波振動付与手段)
55 温度制御部(液温調節手段)
60 冷却用ガス循環部(冷却手段)
L3 被反応液(被反応流体)
R マイクロ流路
W1 熱冷媒(液体)
10 Micro-channel blockage prevention device (Micro-channel blockage prevention device)
11 Channel formation body 11 'Channel formation body 12H Thermal refrigerant chamber (liquid chamber)
13 Ultrasonic vibrator (Ultrasonic vibration applying means)
55 Temperature controller (liquid temperature control means)
60 Cooling gas circulation part (cooling means)
L3 Reaction liquid (reaction fluid)
R Micro flow path W1 Thermal refrigerant (liquid)

Claims (6)

被反応流体(L3)の反応を進行させるためのマイクロ流路(R)を形成する流路形成体(11)と、流路形成体(11)に超音波振動を付与する超音波振動付与手段(13)とを備えることを特徴とするマイクロ流路の閉塞防止装置。   A flow path forming body (11) that forms a micro flow path (R) for advancing the reaction of the reaction fluid (L3), and an ultrasonic vibration applying means that applies ultrasonic vibration to the flow path forming body (11). (13) A device for preventing clogging of a micro flow path. 超音波振動付与手段(13)は、流路形成体(11)の外方から流路形成体(11)に超音波振動を付与する請求項1に記載のマイクロ流路の閉塞防止装置。   The microchannel blockage prevention device according to claim 1, wherein the ultrasonic vibration applying means (13) applies ultrasonic vibration to the flow path forming body (11) from the outside of the flow path forming body (11). 超音波振動付与手段(13)を冷却するための冷却手段(60)を備える請求項1または請求項2に記載のマイクロ流路の閉塞防止装置。   The microchannel blockage prevention device according to claim 1 or 2, further comprising a cooling means (60) for cooling the ultrasonic vibration applying means (13). 超音波振動付与手段(13)と流路形成体(11)との間に液体(W1)を介在させる液室(12H)を設け、超音波振動付与手段(13)は、この液体(W1)を超音波振動の伝搬媒体として流路形成体(11)に超音波振動を付与する請求項1から請求項3のいずれかに記載のマイクロ流路の閉塞防止装置。   A liquid chamber (12H) for interposing the liquid (W1) is provided between the ultrasonic vibration applying means (13) and the flow path forming body (11), and the ultrasonic vibration applying means (13) The microchannel blockage prevention device according to any one of claims 1 to 3, wherein ultrasonic vibration is applied to the flow path forming body (11) by using ultrasonic vibration as a propagation medium. 液室(12H)内の液体(W1)の温度を調節する液温調節手段(55)を備える請求項4に記載のマイクロ流路の閉塞防止装置。   The microchannel blockage prevention device according to claim 4, further comprising a liquid temperature adjusting means (55) for adjusting the temperature of the liquid (W1) in the liquid chamber (12H). 被反応流体(L3)の反応を進行させるためのマイクロ流路(R)を形成する流路形成体(11)に、超音波振動付与手段(13)により超音波振動を付与することで、マイクロ流路(R)の閉塞を防止することを特徴とするマイクロ流路の閉塞防止方法。   By applying ultrasonic vibration to the flow path forming body (11) that forms the micro flow path (R) for advancing the reaction of the reaction fluid (L3) by the ultrasonic vibration applying means (13), A method for preventing clogging of a microchannel, wherein the clogging of the channel (R) is prevented.
JP2008170443A 2008-06-30 2008-06-30 Blocking prevention device of micro-channel and blocking prevention method Pending JP2010005582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170443A JP2010005582A (en) 2008-06-30 2008-06-30 Blocking prevention device of micro-channel and blocking prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170443A JP2010005582A (en) 2008-06-30 2008-06-30 Blocking prevention device of micro-channel and blocking prevention method

Publications (1)

Publication Number Publication Date
JP2010005582A true JP2010005582A (en) 2010-01-14

Family

ID=41586658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170443A Pending JP2010005582A (en) 2008-06-30 2008-06-30 Blocking prevention device of micro-channel and blocking prevention method

Country Status (1)

Country Link
JP (1) JP2010005582A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185839A (en) * 2010-03-10 2011-09-22 Nokodai Tlo Kk Micro fluid device
JP2012228666A (en) * 2011-04-27 2012-11-22 Toray Eng Co Ltd Micro flow channel clogging prevention device and method using the same
US20170348667A1 (en) * 2012-05-31 2017-12-07 Resodyn Corporation Continuous acoustic chemical microreactor
WO2019040835A1 (en) * 2017-08-25 2019-02-28 Resodyn Corporation Continuous acoustic chemical microreactor
US10335749B2 (en) 2012-05-31 2019-07-02 Resodyn Corporation Mechanical system that fluidizes, mixes, coats, dries, combines, chemically reacts, and segregates materials
EP3511069A1 (en) * 2012-08-20 2019-07-17 Resodyn Corporation Mechanical system that continuously processes a combination of materials
US10835880B2 (en) 2017-09-05 2020-11-17 Resodyn Corporation Continuous acoustic mixer
CN114471347A (en) * 2022-01-29 2022-05-13 浙江汉信科技有限公司 Mixing equipment and discharging device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101282A (en) * 1984-10-23 1986-05-20 株式会社 システムメンテナンス Partial ultrasonic washing method and device
JPH0212202A (en) * 1988-06-30 1990-01-17 Honda Electron Co Ltd Ultrasonic cleaning device
JP2004337649A (en) * 2003-05-13 2004-12-02 Hitachi Ltd Organochlorine compound treatment apparatus
JP2005060281A (en) * 2003-07-29 2005-03-10 Idemitsu Kosan Co Ltd Method for dimerizing vinyl compound or vinylidene compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101282A (en) * 1984-10-23 1986-05-20 株式会社 システムメンテナンス Partial ultrasonic washing method and device
JPH0212202A (en) * 1988-06-30 1990-01-17 Honda Electron Co Ltd Ultrasonic cleaning device
JP2004337649A (en) * 2003-05-13 2004-12-02 Hitachi Ltd Organochlorine compound treatment apparatus
JP2005060281A (en) * 2003-07-29 2005-03-10 Idemitsu Kosan Co Ltd Method for dimerizing vinyl compound or vinylidene compound

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185839A (en) * 2010-03-10 2011-09-22 Nokodai Tlo Kk Micro fluid device
JP2012228666A (en) * 2011-04-27 2012-11-22 Toray Eng Co Ltd Micro flow channel clogging prevention device and method using the same
US20210197168A1 (en) * 2012-05-31 2021-07-01 Resodyn Corporation Continuous acoustic chemical microreactor
US20230173451A1 (en) * 2012-05-31 2023-06-08 Resodyn Corporation Continuous acoustic chemical microreactor
US10335749B2 (en) 2012-05-31 2019-07-02 Resodyn Corporation Mechanical system that fluidizes, mixes, coats, dries, combines, chemically reacts, and segregates materials
US10967355B2 (en) 2012-05-31 2021-04-06 Resodyn Corporation Continuous acoustic chemical microreactor
US20170348667A1 (en) * 2012-05-31 2017-12-07 Resodyn Corporation Continuous acoustic chemical microreactor
US11110413B2 (en) 2012-05-31 2021-09-07 Resodyn Corporation Mechanical system that fluidizes, mixes, coats, dries, combines, chemically reacts, and segregates materials
US11794155B2 (en) 2012-05-31 2023-10-24 Resodyn Corporation Mechanical system that fluidizes, mixes, coats, dries, combines, chemically reacts, and segregates materials
US11565234B2 (en) 2012-05-31 2023-01-31 Resodyn Corporation Continuous acoustic chemical microreactor
EP3511069A1 (en) * 2012-08-20 2019-07-17 Resodyn Corporation Mechanical system that continuously processes a combination of materials
WO2019040835A1 (en) * 2017-08-25 2019-02-28 Resodyn Corporation Continuous acoustic chemical microreactor
US10835880B2 (en) 2017-09-05 2020-11-17 Resodyn Corporation Continuous acoustic mixer
US11623189B2 (en) 2017-09-05 2023-04-11 Resodyn Corporation Continuous acoustic mixer
US11938455B2 (en) 2017-09-05 2024-03-26 Resodyn Corporation Continuous acoustic mixer
CN114471347A (en) * 2022-01-29 2022-05-13 浙江汉信科技有限公司 Mixing equipment and discharging device thereof

Similar Documents

Publication Publication Date Title
JP2010005582A (en) Blocking prevention device of micro-channel and blocking prevention method
WO2011027569A1 (en) Tubular flow reactor
Dong et al. Mixing and residence time distribution in ultrasonic microreactors
JP5604038B2 (en) Reaction apparatus and reaction plant
Jamshidi et al. Investigation of the effect of ultrasound parameters on continuous sonocrystallization in a millifluidic device
Banakar et al. Ultrasound assisted continuous processing in microreactors with focus on crystallization and chemical synthesis: A critical review
Dong et al. Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors
Rahimi et al. CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor
JP2012228666A (en) Micro flow channel clogging prevention device and method using the same
CN110681332B (en) Modular temperature control type ultrasonic microreactor
JP2012533417A (en) Chemical reactor and its use in chemical reactions
JP2009262106A (en) Microreactor
JP5718335B2 (en) Method for preventing clogging of continuous reaction channel system and ultra-small reactor for carrying out this method
JP3939556B2 (en) Micro mixer
JP2014198327A (en) Method and apparatus for producing fine bubble
KR20100127805A (en) Injector assemblies and microreactors incorporating the same
JP2013188642A (en) Method for operating multi-flow channel apparatus, and multi-flow channel apparatus
KR101801927B1 (en) Non-separable cleaning apparatus for plate type heat exchanger with easy transfer of ultrasonic waves
JP2011036773A (en) Reactor and reaction plant
JP2006275023A (en) Flow control mechanism
Navarro-Brull et al. Enabling low power acoustics for capillary sonoreactors
JP2001096243A (en) Ultrasonic nozzle unit and device and method for treating with ultrasonic wave using the same
JP5211426B2 (en) Microreactor system
JP2007268395A (en) Cooling system of microreactor
RU2218970C2 (en) Film-type evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Effective date: 20110425

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110530

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117