JP2010005517A - Method and apparatus for manufacturing nitrite-type nitrification reaction carrier, wastewater treatment method and wastewater treatment apparatus - Google Patents

Method and apparatus for manufacturing nitrite-type nitrification reaction carrier, wastewater treatment method and wastewater treatment apparatus Download PDF

Info

Publication number
JP2010005517A
JP2010005517A JP2008166444A JP2008166444A JP2010005517A JP 2010005517 A JP2010005517 A JP 2010005517A JP 2008166444 A JP2008166444 A JP 2008166444A JP 2008166444 A JP2008166444 A JP 2008166444A JP 2010005517 A JP2010005517 A JP 2010005517A
Authority
JP
Japan
Prior art keywords
nitrite
carrier
ammonia
nitrification reaction
type nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008166444A
Other languages
Japanese (ja)
Other versions
JP4883493B2 (en
Inventor
So Ikuta
創 生田
Tatsuo Sumino
立夫 角野
Kazuichi Isaka
和一 井坂
Hiroya Kimura
裕哉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008166444A priority Critical patent/JP4883493B2/en
Publication of JP2010005517A publication Critical patent/JP2010005517A/en
Application granted granted Critical
Publication of JP4883493B2 publication Critical patent/JP4883493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for manufacturing nitrite-type a nitrification reaction carrier capable of surely carrying out nitrite-type nitrification reaction at a low cost, and a wastewater treatment method and apparatus. <P>SOLUTION: The apparatus 90 for manufacturing the nitrite-type nitrification reaction carrier includes a washing device 94 for washing a deposited immobilized carrier formed by depositing sludge of a composite microorganism system comprising ammonia-oxidizing bacteria and nitrite-oxidizing bacteria and having nitrification performance on a carrier material, an included immobilized carrier formed by including the sludge of the composite microorganism system in the carrier material, or a nitrification granular carrier formed by self-granulating capacity of the sludge of the composite microorganism system with alkaline water, and manufactures the nitrite-type nitrification reaction carrier in which the ammonia-oxidizing bacteria for oxidizing ammonia nitrogen to nitrous acid are dominantly accumulated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は亜硝酸型硝化反応担体の製造方法、製造装置、排水処理方法、排水処理装置に係り、特に、嫌気性アンモニア酸化の前段で亜硝酸型硝化反応を行うための亜硝酸型硝化反応担体を製造する方法及び装置と、それを用いた排水処理方法及び装置に関する。   The present invention relates to a manufacturing method, a manufacturing apparatus, a wastewater treatment method, and a wastewater treatment apparatus for a nitrite-type nitrification reaction carrier, and in particular, a nitrite-type nitrification reaction carrier for performing a nitrite-type nitrification reaction before anaerobic ammonia oxidation. The present invention relates to a method and an apparatus for manufacturing the waste water and a waste water treatment method and apparatus using the same.

排水処理設備では、硝化菌が生息している活性汚泥や、湖沼や河川や海の底泥、浄水処理場の汚泥、地表の土壌等を微生物供給源としており、これらの微生物は担体に固定化されて使用されている。微生物を固定化する方法としては、例えば特許文献1のように、微生物をゲルの内部に固定化した包括固定化担体が用いられる。また、特許文献2のように、微生物を担体材料の表面に付着させて固定化する付着固定化担体も用いられており、担体材料を活性汚泥処理内に投入して、自然に表面に付着させたものが使用される。さらに、特許文献3のように、硝化菌等粘性を有する微生物では、微生物自体の自己造粒力によりグラニュール形成できるので、そのグラニュールを担体として廃水処理に利用する例もある。   In wastewater treatment facilities, activated sludge inhabiting nitrifying bacteria, sludge from lakes, rivers and sea, sludge from water treatment plants, surface soil, etc. are used as the source of microorganisms, and these microorganisms are immobilized on the carrier. Has been used. As a method for immobilizing microorganisms, for example, as in Patent Document 1, a entrapping immobilization carrier in which microorganisms are immobilized in a gel is used. In addition, as in Patent Document 2, there is also used an adhesion-immobilized carrier that attaches microorganisms to the surface of the carrier material and immobilizes it. The carrier material is introduced into the activated sludge treatment and allowed to adhere to the surface naturally. Is used. Further, as in Patent Document 3, a microorganism having viscosity such as nitrifying bacteria can form granules by the self-granulating force of the microorganism itself, and there is an example in which the granules are used for wastewater treatment as a carrier.

ところで、近年では、排水中のアンモニアと亜硝酸とを嫌気性アンモニア酸化細菌によって同時に脱窒する排水処理設備が開発されている。この排水処理設備では、嫌気性アンモニア酸化反応の前段として、アンモニア性窒素を硝酸まで酸化させずに亜硝酸までの酸化反応で止める反応(以下、亜硝酸型硝化反応という)を行う必要がある。   By the way, in recent years, wastewater treatment facilities have been developed that simultaneously denitrify ammonia and nitrous acid in wastewater by anaerobic ammonia oxidizing bacteria. In this wastewater treatment facility, it is necessary to perform a reaction (hereinafter referred to as a nitrite-type nitrification reaction) that stops ammonia gas from being oxidized to nitric acid without oxidizing ammonia nitrogen to nitric acid as a preceding stage of the anaerobic ammonia oxidation reaction.

そこで、従来は、高濃度アンモニア負荷による処理や、低濃度溶存酸素濃度、高pH調整、高水温によって亜硝酸型硝化反応を制御していた。
特開平11−33578号公報 特開平8−267081号公報 特開2003−266095号公報
Therefore, conventionally, the nitrite type nitrification reaction was controlled by treatment with a high concentration ammonia load, low concentration dissolved oxygen concentration, high pH adjustment, and high water temperature.
Japanese Patent Laid-Open No. 11-33578 JP-A-8-267081 JP 2003-266095 A

しかしながら、従来の方法は、亜硝酸型硝化反応のためにエネルギーを供給し続ける必要があり、嫌気性アンモニア酸化によって得られる省エネルギーの利点が相殺されてしまうという問題があった。   However, in the conventional method, it is necessary to continue to supply energy for the nitrite type nitrification reaction, and there is a problem that an energy saving advantage obtained by anaerobic ammonia oxidation is offset.

本発明はこのような事情に鑑みて成されたもので、亜硝酸型硝化反応を低コストで確実に行うことのできる亜硝酸型硝化反応担体の製造方法、製造装置、排水処理方法、及び、排水処理装置を提供することを目的とする。   The present invention has been made in view of such circumstances, a method for manufacturing a nitrite type nitrification reaction carrier capable of reliably performing a nitrite type nitrification reaction at low cost, a manufacturing apparatus, a wastewater treatment method, and An object is to provide a wastewater treatment apparatus.

請求項1に記載の発明は前記目的を達成するために、アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体を製造する製造方法において、少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を担体材料に付着させて形成される付着固定化担体、前記複合微生物系の汚泥を担体材料に包括させて形成される包括固定化担体、又は、前記複合微生物系の汚泥の自己造粒力により形成される硝化グラニュール担体を、アルカリ水によって洗浄するアルカリ洗浄工程を備えたことを特徴とする。   In order to achieve the above object, the invention described in claim 1 is a production method for producing a nitrite-type nitrification reaction carrier in which ammonia-oxidizing bacteria that oxidize ammoniacal nitrogen to nitrite are preferentially accumulated. Adhesion-immobilized support formed by adhering a sludge of a complex microbial system having ammonia-oxidizing bacteria and nitrite-oxidizing bacteria having a nitrification performance to a carrier material, formed by including the sludge of the complex microorganism system in a carrier material It is characterized by comprising an alkali washing step of washing the entrapped immobilization carrier or the nitrification granule carrier formed by the self-granulating force of the complex microorganism sludge with alkaline water.

本発明の発明者は、複合微生物系の汚泥を固定化した担体をアルカリ水によって洗浄するだけで、担体の亜硝酸型硝化反応の性能が向上し、且つ、その性能が長期間維持されるという知見を得た。本発明はこの知見に基づいて成されたものであり、複合微生物系の汚泥を固定化した担体をアルカリ水によって洗浄したので、アンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体が得られる。また、本発明は、アルカリ水によって担体を洗浄するだけなので、亜硝酸型硝化反応のためにエネルギーを常に供給し続ける必要がなく、コストを削減することができる。   The inventor of the present invention can improve the performance of the nitrite-type nitrification reaction of the support and maintain the performance for a long period only by washing the support on which the sludge of the complex microorganism system is immobilized with alkaline water. Obtained knowledge. The present invention has been made on the basis of this finding. Since the carrier on which the sludge of the complex microorganism system is immobilized is washed with alkaline water, the nitrite type nitrification reaction carrier in which ammonia-oxidizing bacteria are preferentially accumulated Is obtained. Further, in the present invention, since the carrier is only washed with alkaline water, it is not necessary to constantly supply energy for the nitrite type nitrification reaction, and the cost can be reduced.

請求項2に記載の発明は請求項1の発明において、前記アルカリ洗浄工程は、前記アルカリ水のpHを9.0以上に制御することを特徴とする。本発明の発明者は、pHが9.0以上のアルカリ水を用いて担体を洗浄することによって、亜硝酸酸化細菌(すなわち亜硝酸を硝酸に酸化する細菌)の殺菌を促進でき、亜硝酸型硝化反応の効率を高めることができるという知見を得た。本発明はこのような知見に基づいて成されたものであり、アルカリ水のpHを9.0以上としたので、担体の亜硝酸型硝化反応の性能を促進させることができる。また、pH9.0以上のアルカリ水は、アルカリ洗浄に繰り返し使用することができ、エネルギー及びコストの消費を削減することができる。なお、pHの上限は、アンモニア酸化細菌の失活を防止して集積度を上げるために、14未満が好ましい。   According to a second aspect of the present invention, in the first aspect of the invention, the alkaline cleaning step controls the pH of the alkaline water to 9.0 or more. The inventor of the present invention can promote sterilization of nitrite-oxidizing bacteria (that is, bacteria that oxidize nitrite to nitric acid) by washing the carrier with alkaline water having a pH of 9.0 or more. The knowledge that the efficiency of nitrification reaction can be improved was obtained. The present invention has been made based on such knowledge, and since the pH of the alkaline water was set to 9.0 or more, the performance of the nitrite type nitrification reaction of the support can be promoted. Further, alkaline water having a pH of 9.0 or more can be repeatedly used for alkali cleaning, and energy and cost consumption can be reduced. In addition, the upper limit of pH is preferably less than 14 in order to prevent inactivation of ammonia oxidizing bacteria and increase the degree of accumulation.

請求項3に記載の発明は請求項1又は2の発明において、前記アルカリ洗浄工程は、前記アルカリ水のpHが12以上14未満の範囲では1分以上行い、前記pHが10以上12未満の範囲では5分以上行い、前記pHが9・0以上10未満の範囲では20分以上行うことを特徴とする。アルカリ水洗浄を上記の条件で行うことにより、亜硝酸酸化細菌を排除してアンモニア酸化細菌を確実に集積できるとともに、過度のアルカリ水との接触によってアンモニア酸化細菌が失活することを防止できる。これにより、亜硝酸型硝化反応を効率よく行う担体を製造することができる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the alkali cleaning step is performed for 1 minute or more when the pH of the alkaline water is 12 or more and less than 14, and the pH is 10 or more and less than 12. Is performed for 5 minutes or longer, and is performed for 20 minutes or longer when the pH is in the range of 9.0 to less than 10. By performing alkaline water washing under the above conditions, nitrite oxidizing bacteria can be excluded and ammonia oxidizing bacteria can be reliably accumulated, and ammonia oxidizing bacteria can be prevented from being deactivated by contact with excessive alkaline water. Thereby, the support | carrier which performs a nitrite type nitrification reaction efficiently can be manufactured.

請求項4に記載の発明は前記目的を達成するために、アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体を製造する製造装置において、少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を担体材料に付着させて形成される付着固定化担体、前記複合微生物系の汚泥を担体材料に包括させて形成される包括固定化担体、又は、前記複合微生物系の汚泥の自己造粒力により形成される硝化グラニュール担体を、アルカリ水によって洗浄するアルカリ洗浄装置を備えたことを特徴とする。本発明は上記の方法発明を実施するための装置発明であり、担体をアルカリ水で洗浄するようにしたので、アンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体が得られる。   In order to achieve the above object, a manufacturing apparatus for manufacturing a nitrite-type nitrification reaction carrier in which ammonia-oxidizing bacteria that oxidize ammonia nitrogen to nitrite are preferentially accumulated is provided. Adhesion-immobilized support formed by adhering a sludge of a complex microbial system having ammonia-oxidizing bacteria and nitrite-oxidizing bacteria having a nitrification performance to a carrier material, formed by including the sludge of the complex microorganism system in a carrier material It is characterized by comprising an alkali washing device for washing the entrapped immobilization carrier or the nitrification granule carrier formed by the self-granulating force of the complex microorganism sludge with alkaline water. The present invention is an apparatus invention for carrying out the above-described method invention. Since the carrier is washed with alkaline water, a nitrite-type nitrification reaction carrier in which ammonia-oxidizing bacteria are preferentially accumulated can be obtained.

請求項5に記載の発明は前記目的を達成するために、アンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体によって排水中のアンモニア性窒素を亜硝酸に酸化する亜硝酸生成工程と、前記亜硝酸生成工程で得られた処理水中のアンモニアと亜硝酸を、嫌気性アンモニア酸化細菌によって同時脱窒する嫌気性アンモニア酸化工程と、を備えた排水処理方法において、前記亜硝酸生成工程は、少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を担体材料に付着させて形成される付着固定化担体、前記複合微生物系の汚泥を担体材料に包括させて形成される包括固定化担体、又は、前記複合微生物系の汚泥の自己造粒力により形成される硝化グラニュール担体をアルカリ水で洗浄することによって得られた亜硝酸型硝化反応担体を用いることを特徴とする。   In order to achieve the above object, the invention according to claim 5 oxidizes ammonia nitrogen in waste water to nitrite by a nitrite-type nitrification reaction carrier in which ammonia-oxidizing bacteria are preferentially accumulated. And an anaerobic ammonia oxidation step in which ammonia and nitrous acid in the treated water obtained in the nitrous acid production step are simultaneously denitrified by anaerobic ammonia oxidation bacteria, in the wastewater treatment method, the nitrite production step Is an adhering immobilization support formed by adhering a sludge of a complex microbial system having nitrification performance containing at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria to a carrier material, and including the complex microbial sludge in the carrier material. To wash the entrapped immobilization carrier formed or the nitrification granule carrier formed by the self-granulating force of the complex microbial sludge with alkaline water. Which comprises using a nitrite-type nitrification reaction carrier obtained I.

本発明によれば、アルカリ水で洗浄した亜硝酸型硝化反応担体を用いて亜硝酸型硝化反応を行うので、亜硝酸型硝化反応のためにエネルギーを供給し続ける必要がなく、コストを削減することができる。   According to the present invention, since the nitrite type nitrification reaction is performed using the nitrite type nitrification reaction carrier washed with alkaline water, it is not necessary to continuously supply energy for the nitrite type nitrification reaction, thereby reducing the cost. be able to.

請求項6に記載の発明は請求項5の発明において、前記亜硝酸生成工程では、前記亜硝酸型硝化反応担体が亜硝酸型硝化反応から硝酸型硝化反応に移行した際に、該亜硝酸型硝化反応担体をアルカリ水で洗浄することを特徴とする。本発明によれば、亜硝酸型硝化反応担体の性能が低下した際に洗浄を行うので、亜硝酸型硝化反応担体の性能を常に高く維持することができる。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, in the nitrite production step, when the nitrite type nitrification reaction carrier shifts from a nitrite type nitrification reaction to a nitrate type nitrification reaction, the nitrite type The nitrification reaction carrier is washed with alkaline water. According to the present invention, since the cleaning is performed when the performance of the nitrite type nitrification reaction carrier is lowered, the performance of the nitrite type nitrification reaction carrier can always be maintained high.

請求項7に記載の発明は前記目的を達成するために、アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体が投入された亜硝酸生成槽と、前記亜硝酸生成槽の後段に配設され、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌によって同時脱窒する嫌気性アンモニア酸化槽と、を備えた排水処理装置において、前記亜硝酸生成槽内の前記亜硝酸型硝化反応担体をアルカリ水で洗浄するアルカリ洗浄装置を備えたことを特徴とする。   In order to achieve the above object, the invention according to claim 7 is a nitrite production tank in which a nitrite-type nitrification reaction carrier in which ammonia-oxidizing bacteria that oxidize ammonia nitrogen to nitrite are preferentially accumulated is introduced. And an anaerobic ammonia oxidation tank that is disposed downstream of the nitrous acid production tank and simultaneously denitrifies ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria, in the nitrous acid production tank The nitrite type nitrification reaction carrier is provided with an alkali cleaning device for cleaning with alkaline water.

本発明によれば、亜硝酸生成槽内の亜硝酸型硝化反応担体をアルカリ洗浄装置によってアルカリ水で洗浄することができる。したがって、使用前の亜硝酸型硝化反応担体をアルカリ水で洗浄し、性能を高めてから使用したり、使用中の亜硝酸型硝化反応担体をアルカリ水で洗浄し、性能を回復させたりすることができる。   According to the present invention, the nitrite type nitrification reaction carrier in the nitrous acid production tank can be washed with alkaline water by the alkali washing device. Therefore, wash the nitrite-type nitrification reaction carrier before use with alkaline water to improve its performance, or wash the nitrite-type nitrification reaction carrier in use with alkaline water to restore performance. Can do.

本発明によれば、複合微生物系の汚泥が固定化された担体をアルカリ水で洗浄したので、アンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体が得られ、その結果、亜硝酸型硝化反応のためにエネルギーを連続して供給する必要がなくなり、コストを削減することができる。   According to the present invention, since the carrier on which the sludge of complex microorganisms is immobilized is washed with alkaline water, a nitrite-type nitrification reaction carrier on which ammonia-oxidizing bacteria are preferentially accumulated is obtained. It is not necessary to supply energy continuously for the nitric acid type nitrification reaction, and the cost can be reduced.

以下添付図面に従って本発明に係る亜硝酸型硝化反応担体の製造方法、製造装置、排水処理方法、及び、排水処理装置の好ましい実施形態について説明する。   DESCRIPTION OF EMBODIMENTS Preferred embodiments of a manufacturing method, a manufacturing apparatus, a wastewater treatment method, and a wastewater treatment apparatus according to the present invention will be described below with reference to the accompanying drawings.

まず、本発明の理論的根拠となる第1の試験について説明する。図1は第1の試験で使用された実験装置を示している。同図において、各槽は透視した状態を示している。   First, the first test that is the theoretical basis of the present invention will be described. FIG. 1 shows the experimental apparatus used in the first test. In the figure, each tank is shown in a transparent state.

図1に示すように、実験装置10は反応槽12を備え、この反応槽12の内部に多数の担体14、14…が投入されている。反応槽12は、原水配管16を介して原水タンク18に接続される。原水タンク18には、下水を模擬した合成排水が貯留されており、原水配管16上の原水ポンプ20を駆動することによって、原水タンク18内の合成排水が原水配管16を介して反応槽12に送液される。   As shown in FIG. 1, the experimental apparatus 10 includes a reaction tank 12, and a large number of carriers 14, 14. The reaction tank 12 is connected to a raw water tank 18 through a raw water pipe 16. Synthetic waste water simulating sewage is stored in the raw water tank 18. By driving the raw water pump 20 on the raw water pipe 16, the synthetic waste water in the raw water tank 18 is sent to the reaction tank 12 through the raw water pipe 16. To be liquidated.

反応槽12には、調整液配管22を介して調整液タンク24が接続される。調整液配管22には調整液ポンプ26が配設されており、この調整液ポンプ26を駆動することによって調整液タンク24内のpH調整液が反応槽12に送液される。   An adjustment liquid tank 24 is connected to the reaction tank 12 via an adjustment liquid pipe 22. An adjustment liquid pump 26 is disposed in the adjustment liquid pipe 22, and the pH adjustment liquid in the adjustment liquid tank 24 is sent to the reaction tank 12 by driving the adjustment liquid pump 26.

反応槽12の内部にはエアポンプ管28が配設される。このエアポンプ管28が不図示の送気手段に接続されており、この送気手段によってエアポンプ管28にエアが送気される。エアポンプ管28にエアが送気されることによってエアポンプ管28の下端からエアが散気され、曝気攪拌が行われる。すなわち、エアポンプ管28の下端から散気された気泡が上昇することによって、担体14、14…が流動して攪拌が行われるとともに、担体14、14…にエアが供給されて生物処理が行われる。   An air pump pipe 28 is disposed inside the reaction tank 12. The air pump pipe 28 is connected to an air supply means (not shown), and air is supplied to the air pump pipe 28 by the air supply means. When air is supplied to the air pump pipe 28, air is diffused from the lower end of the air pump pipe 28, and aeration and agitation are performed. That is, when the air bubbles diffused from the lower end of the air pump pipe 28 rise, the carriers 14, 14... Flow and agitate, and air is supplied to the carriers 14, 14. .

また、反応槽12の内部には、pH電極30が配設されている。pH電極30は、pH調節器32に接続されており、反応槽12内のpHを測定できるようになっている。pH調節器32は調整液ポンプ26に接続されており、pH調節器32の測定値に基づいて調整液ポンプ26の駆動が制御される。すなわち、反応槽12内が所望のpHになるように、調整液ポンプ26が駆動され、反応槽12にpH調整液が供給される。これにより、反応槽12内を所望のpHに制御することができる。   A pH electrode 30 is disposed inside the reaction vessel 12. The pH electrode 30 is connected to a pH adjuster 32 so that the pH in the reaction vessel 12 can be measured. The pH adjuster 32 is connected to the adjustment liquid pump 26, and the drive of the adjustment liquid pump 26 is controlled based on the measured value of the pH adjuster 32. That is, the adjustment liquid pump 26 is driven so that the inside of the reaction tank 12 has a desired pH, and the pH adjustment liquid is supplied to the reaction tank 12. Thereby, the inside of the reaction vessel 12 can be controlled to a desired pH.

本実験では、担体14として、下水処理場の余剰汚泥をポリエチレングリコール系のプレポリマと混合し、重合開始剤として過硫化カリウムを添加して重合し、3mm角の立方体に整形したものを使用した。担体14の汚泥の含有量は2W/V%とし、プレポリマ含有量は10V/V%になるように包括固定化したものを使用した。また、原水タンク18内の合成排水は、図2の表に示すものを使用し、アンモニア性窒素濃度として40mg/Lになるように調製して使用した。さらに、調整液タンク24内のpH調整液としては1mol/L硫酸を使用した。また、反応槽12は反応容積が2Lのものを用い、この反応槽12に担体充填量が200mLとなるように担体14を充填した。   In this experiment, surplus sludge from a sewage treatment plant was mixed with a polyethylene glycol-based prepolymer, polymerized by adding potassium persulfide as a polymerization initiator, and shaped into a 3 mm square cube. The carrier 14 was sludge-encapsulated so that the sludge content was 2 W / V% and the prepolymer content was 10 V / V%. Moreover, the synthetic | combination waste water in the raw | natural water tank 18 used what was shown to the table | surface of FIG. 2, and prepared and used it so that it might become 40 mg / L as ammoniacal nitrogen concentration. Furthermore, 1 mol / L sulfuric acid was used as the pH adjusting solution in the adjusting solution tank 24. In addition, the reaction tank 12 having a reaction volume of 2 L was used, and the reaction tank 12 was filled with the carrier 14 so that the carrier filling amount was 200 mL.

上記の如く構成された実験装置10では、まず、担体14をpH12の酸液に1分間浸漬し、亜硝酸型硝化反応担体(以下、本発明担体と称す)を製造した。また、比較例として、pH7.5の溶液に10分間浸漬した包括固定化担体(以下、比較担体と称す)を製造した。   In the experimental apparatus 10 configured as described above, first, the support 14 was immersed in an acid solution having a pH of 12 for 1 minute to produce a nitrite type nitrification reaction support (hereinafter referred to as the present invention support). In addition, as a comparative example, a entrapping immobilization carrier (hereinafter referred to as a comparison carrier) immersed in a pH 7.5 solution for 10 minutes was produced.

担体の製造後は、反応槽12内のpHを調整して排水処理を行った。その際、pHが高いと亜硝酸型硝化反応になるので、反応槽12内のpHを7.0〜7.5に調整した。   After production of the carrier, wastewater treatment was performed by adjusting the pH in the reaction vessel 12. At that time, since the nitrite type nitrification reaction occurs when the pH is high, the pH in the reaction tank 12 was adjusted to 7.0 to 7.5.

図3(A)、図3(B)にその結果を示す。図3(A)は本発明担体を使用した場合であり、図3(B)は比較担体を使用した場合である。なお、各グラフにおいて、○は原水のアンモニア性窒素濃度を、●は処理水のアンモニア性窒素濃度を、▲は処理水の亜硝酸性窒素濃度を、■は処理水の硝酸性窒素濃度を示している。   The results are shown in FIGS. 3 (A) and 3 (B). FIG. 3A shows the case where the carrier of the present invention is used, and FIG. 3B shows the case where a comparative carrier is used. In each graph, ○ indicates the ammonia nitrogen concentration of the raw water, ● indicates the ammonia nitrogen concentration of the treated water, ▲ indicates the nitrite nitrogen concentration of the treated water, and ■ indicates the nitrate nitrogen concentration of the treated water. ing.

図3(B)から分かるように、比較担体で廃水処理を行った場合、略一週間後から処理水中のアンモニア性窒素が減り、代わりに処理水中の亜硝酸性窒素が増える。しかし、二週間後からは、処理水中の亜硝酸窒素が減り、代わりに硝酸が増えている。したがって、比較担体を使用した場合は、比較担体の内部に亜硝酸酸化細菌が増加するため、亜硝酸型硝化反応を安定して行うことができないことが分かる。   As can be seen from FIG. 3B, when wastewater treatment is performed with the comparative carrier, ammonia nitrogen in the treated water decreases after about one week, and nitrite nitrogen in the treated water increases instead. However, after two weeks, the amount of nitrogen nitrite in the treated water has decreased and the amount of nitric acid has increased instead. Therefore, it can be seen that when a comparative carrier is used, nitrite-oxidizing bacteria increase inside the comparative carrier, so that the nitrite type nitrification reaction cannot be performed stably.

これに対して、本発明担体の場合は、図3(A)に示すように、略一週間後から処理水中のアンモニア性窒素が減り、代わりに亜硝酸性窒素が増えた後、長期間(少なくとも七週間以上)、処理水中に亜硝酸性窒素が得られた。したがって、本発明担体を使用した場合は、担体内にアンモニア酸化細菌が安定して生成しており、亜硝酸型硝化反応を安定して行うことができることが分かる。   On the other hand, in the case of the carrier of the present invention, as shown in FIG. 3 (A), after about one week, ammonia nitrogen in the treated water decreases, and instead nitrite nitrogen increases. Nitrite nitrogen was obtained in the treated water for at least 7 weeks. Therefore, it can be seen that when the carrier of the present invention is used, ammonia-oxidizing bacteria are stably produced in the carrier and the nitrite type nitrification reaction can be carried out stably.

このように、アルカリ水によって洗浄した本発明担体は、亜硝酸型硝化反応を確実に行えること、そして、その亜硝酸硝化反応を長期間安定して行えることが分かる。   Thus, it turns out that the support | carrier of this invention wash | cleaned with alkaline water can perform a nitrite type nitrification reaction reliably, and can perform the nitrite nitrification reaction stably for a long period of time.

次に、第2の試験として、本発明担体を製造する際のアルカリ水pHとアルカリ水洗浄時間との関係を求めた。   Next, as a second test, the relationship between the alkaline water pH and the alkaline water washing time when the carrier of the present invention was produced was determined.

この試験で供試される(アルカリ洗浄前の)担体14としては、第1の試験と同じ担体を使用し、この担体をpH8、9、10、11、12、13、13.5、14でアルカリ水洗浄した。また、アルカリ水洗浄時間をそれぞれ0、1、3、5、10、20、40、60分として担体を製造した。担体製造後、中和するために、アルカリ水洗浄後の担体14を一度、アルカリ水から取り出し、水道水で流洗した。   As the carrier 14 (before alkali washing) used in this test, the same carrier as that used in the first test was used, and this carrier was adjusted to pH 8, 9, 10, 11, 12, 13, 13.5, 14. Washed with alkaline water. Moreover, the carrier was produced with alkaline water washing times of 0, 1, 3, 5, 10, 20, 40 and 60 minutes, respectively. In order to neutralize after the production of the carrier, the carrier 14 after washing with alkaline water was once taken out from the alkaline water and washed with tap water.

また、供試される廃水として、亜硝酸性窒素を40mg/Lを含有した合成廃水を使用した。廃水処理試験は、この合成廃水450mLに担体50mLを投入し、連続曝気にて廃水処理を行った。廃水を1日ごとに交換し、交換した処理水中の亜硝酸濃度と硝酸濃度を測定した。その結果を図4(A)図4(B)に示す。図4(A)は実験開始1ケ月後の処理水中の亜硝酸濃度を示しており、図4(B)は実験開始1カ月後の処理水中の硝酸濃度を示している。   Moreover, synthetic wastewater containing 40 mg / L of nitrite nitrogen was used as the wastewater to be tested. In the wastewater treatment test, 50 mL of carrier was added to 450 mL of this synthetic wastewater, and wastewater treatment was performed by continuous aeration. The wastewater was changed every day, and the nitrous acid concentration and the nitric acid concentration in the changed treated water were measured. The results are shown in FIGS. 4 (A) and 4 (B). FIG. 4A shows the nitrous acid concentration in the treated water one month after the start of the experiment, and FIG. 4B shows the nitric acid concentration in the treated water one month after the start of the experiment.

これらの図から分かるように、アルカリ水のpHが12以上14未満の範囲では、洗浄時間が1分以上のときに硝酸の生成が抑制され、且つ、亜硝酸の生成が促進された。同様に、アルカリ水のpHが10以上12未満の範囲では、洗浄時間が5分以上のときに硝酸の生成が抑制され、且つ、亜硝酸の生成が促進された。さらに、アルカリ水のpHが9以上10未満の範囲では、洗浄時間が20分以上のときに硝酸の生成が抑制され、且つ、亜硝酸の生成が促進された。したがって、上記の如くアルカリ水のpHと洗浄時間を制御することによって、亜硝酸型硝化反応を効率よく行うことができる。   As can be seen from these figures, when the pH of the alkaline water was in the range of 12 to 14, the production of nitric acid was suppressed and the production of nitrous acid was promoted when the washing time was 1 minute or longer. Similarly, when the pH of the alkaline water is in the range of 10 or more and less than 12, the production of nitric acid was suppressed and the production of nitrous acid was promoted when the washing time was 5 minutes or more. Furthermore, when the pH of the alkaline water was 9 or more and less than 10, the production of nitric acid was suppressed and the production of nitrous acid was promoted when the washing time was 20 minutes or more. Therefore, the nitrite type nitrification reaction can be efficiently performed by controlling the pH of alkaline water and the washing time as described above.

なお、上記の試験では、亜硝酸濃度と硝酸濃度を測定したが、これらの濃度はアンモニア酸化細菌と亜硝酸酸化細菌の菌数に比例することが知られている。すなわち、菌数は、MPN法と呼ばれる方法で測定するが、この方法は、担体を破砕した溶液をアンモニア培地または亜硝酸培地で段階的に希釈し、亜硝酸の生成または硝酸の生成から菌体濃度を推定して算出する。したがって、試験における亜硝酸濃度と硝酸濃度の増減は、担体内のアンモニア酸化細菌と亜硝酸酸化細菌の増減に相当し、担体の亜硝酸型硝化反応の性能の指標となる。   In the above test, nitrous acid concentration and nitric acid concentration were measured, and it is known that these concentrations are proportional to the number of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. That is, the number of bacteria is measured by a method called MPN method. In this method, a solution in which a carrier is crushed is diluted stepwise with an ammonia medium or a nitrite medium, and microbial cells are produced from the production of nitrous acid or nitric acid. The concentration is estimated and calculated. Therefore, the increase / decrease in nitrite concentration and nitrate concentration in the test corresponds to the increase / decrease in ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in the carrier, and is an index of the performance of the nitrite-type nitrification reaction of the carrier.

次に上述した理論的根拠に基づいて成される排水処理装置の実施形態について説明する。   Next, an embodiment of a wastewater treatment apparatus made based on the above-described theoretical basis will be described.

図5は本実施の形態の排水処理装置50の構成を模式的に示しており、本発明の特徴部分である亜硝酸生成槽54のみを詳細に示している。   FIG. 5 schematically shows the configuration of the waste water treatment apparatus 50 of the present embodiment, and shows only the nitrous acid production tank 54 that is a characteristic part of the present invention in detail.

同図に示すように、排水処理装置50は主として、原水槽52、亜硝酸生成槽54、嫌気性アンモニア酸化槽56で構成されている。原水槽52には原水配管58が接続され、この原水配管58を介して排水が原水槽52に供給され、貯留される。原水槽52に貯留された排水は、配管59を介して分配器60に送液される。分配器60には二つの配管62、64が接続されており、一方の配管62は亜硝酸生成槽54を介して混合器66に接続され、もう一方の配管64は混合器66に直接接続される。   As shown in the figure, the waste water treatment apparatus 50 is mainly composed of a raw water tank 52, a nitrous acid production tank 54, and an anaerobic ammonia oxidation tank 56. A raw water pipe 58 is connected to the raw water tank 52, and wastewater is supplied to the raw water tank 52 through the raw water pipe 58 and stored. The wastewater stored in the raw water tank 52 is sent to the distributor 60 via the pipe 59. Two pipes 62 and 64 are connected to the distributor 60, one pipe 62 is connected to the mixer 66 through the nitrous acid production tank 54, and the other pipe 64 is directly connected to the mixer 66. The

亜硝酸生成槽54には、多数の亜硝酸型硝化反応担体68、68…が投入されている。この亜硝酸型硝化反応担体68は、上述した試験で使用した本発明担体と同様のものであり、アンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を担体材料に付着させて形成される付着固定化担体、複合微生物系の汚泥を担体材料に包括させて形成される包括固定化担体、又は、複合微生物系の汚泥の自己造粒力により形成される硝化グラニュール担体を、アルカリ水で洗浄したものである。洗浄時、アルカリ水のpHは9以上14未満であり、洗浄時間は、アルカリ水のpHが12以上14未満の範囲で1分以上、アルカリ水のpHが10以上12未満の範囲で5分以上、アルカリ水のpHが9以上10未満の範囲で20分以上とした。   A large number of nitrite-type nitrification reaction carriers 68, 68,... This nitrite type nitrification reaction carrier 68 is the same as the carrier of the present invention used in the above-described test, and adheres sludge of a complex microorganism system having nitrification performance including ammonia oxidizing bacteria and nitrite oxidizing bacteria to the carrier material. Adhesion-immobilized support formed by mixing, composite microbial sludge encapsulated in a carrier material, or nitrified granule support formed by self-granulating force of composite microbial sludge Was washed with alkaline water. At the time of washing, the pH of the alkaline water is 9 or more and less than 14, and the washing time is 1 minute or more when the pH of the alkaline water is 12 or more and less than 14, and 5 minutes or more when the pH of the alkaline water is 10 or more and less than 12. The pH of the alkaline water was 20 minutes or more in the range of 9 or more and less than 10.

この亜硝酸型硝化反応担体68によって、亜硝酸生成槽54内の排水に含まれるアンモニア性窒素が亜硝酸まで酸化される。亜硝酸生成槽54で処理された排水は、配管62を介して混合器66に送液され、分配器60から直接送液された排水と混合される。前述の分配器60は、混合器66において排水中のアンモニアと亜硝酸のモル比が略1:1.32になるように分流を行う。なお、本実施の形態では、原水槽52の排水を二つに分流させ、一方の排水を亜硝酸型硝化反応させた後、他方の排水と混合させるようにしたが、これに限定するものではなく、分流せずに所定濃度の亜硝酸が生成されるように亜硝酸型硝化反応を行うようにしてもよい。   By this nitrite type nitrification reaction carrier 68, ammoniacal nitrogen contained in the waste water in the nitrous acid production tank 54 is oxidized to nitrous acid. The wastewater treated in the nitrous acid production tank 54 is sent to the mixer 66 via the pipe 62 and mixed with the wastewater sent directly from the distributor 60. The above-described distributor 60 performs a diversion in the mixer 66 so that the molar ratio of ammonia to nitrous acid in the waste water is approximately 1: 1.32. In the present embodiment, the waste water in the raw water tank 52 is divided into two, and after one of the waste water is subjected to nitrite type nitrification reaction, it is mixed with the other waste water. However, the present invention is not limited to this. Alternatively, the nitrite type nitrification reaction may be performed so that a predetermined concentration of nitrous acid is generated without diversion.

混合器66で混合された排水は、嫌気性アンモニア酸化槽56に送液される。嫌気性アンモニア酸化槽56には、嫌気性アンモニア酸化細菌が固定化された担体が投入されている。嫌気性アンモニア酸化細菌は、Planctonmyceteを代表とする菌群であるといわれるものであり、その培養方法としては、不織布(生田創、井坂和一、角野立夫(2004)、連続培養系による嫌気性アンモニア酸化細菌の馴養、第38回水環境学会講演論文集、p372参照)やろ床などに付着させて培養し、その生物膜を剥がして利用する方法が好ましい。また、嫌気性アンモニア酸化細菌の固定方法としては、ゲル等の固定化材料内に包括固定する方法、プラスチックや不織布などの付着担体に付着固定する方法、プラスチック担体に生物膜を形成させて固定する方法、グラニュールとして使用する方法等を用いることができ、担体の固定化材料としては、ポリビニルアルコール、アルギン酸、ポリエチレングリコール系のゲル等を使用することができる。担体の形状については、球形、円筒形、立方形等に成形されたものを好ましく、担体のサイズとしては、1mm〜5mmサイズの球形、円筒形、立方形等であることが好ましい。   The waste water mixed by the mixer 66 is sent to the anaerobic ammonia oxidation tank 56. The anaerobic ammonia oxidation tank 56 is loaded with a carrier on which anaerobic ammonia oxidizing bacteria are immobilized. Anaerobic ammonia-oxidizing bacteria are said to be a group of bacteria represented by Planctonmycete, and the culture method includes nonwoven fabrics (Hajime Ikuta, Kazuichi Isaka, Tatsuo Tsunono (2004), anaerobic ammonia by a continuous culture system. A method of acclimatizing oxidized bacteria, see 38th Annual Meeting of Water Environment Society, p372), culturing by attaching to a filter bed, etc., peeling off the biofilm is preferable. In addition, anaerobic ammonia-oxidizing bacteria can be fixed in a fixed manner in an immobilizing material such as a gel, a method of attaching and fixing to an adherent carrier such as plastic or nonwoven fabric, and a biofilm is formed on the plastic carrier and fixed. Methods, methods used as granules, and the like can be used, and as a carrier immobilization material, polyvinyl alcohol, alginic acid, polyethylene glycol-based gel, and the like can be used. The shape of the carrier is preferably a spherical shape, a cylindrical shape, a cubic shape or the like, and the size of the carrier is preferably a 1 mm to 5 mm size spherical shape, a cylindrical shape, a cubic shape, or the like.

上記の嫌気性アンモニア酸化細菌によって、嫌気性アンモニア酸化槽56内の排水に含まれるアンモニアと亜硝酸が同時に脱窒される。脱窒された処理水は、嫌気性アンモニア酸化槽56から排出される。   By the above-mentioned anaerobic ammonia oxidizing bacteria, ammonia and nitrous acid contained in the waste water in the anaerobic ammonia oxidizing tank 56 are simultaneously denitrified. The denitrified treated water is discharged from the anaerobic ammonia oxidation tank 56.

ところで、亜硝酸生成槽54には、亜硝酸型硝化反応担体68の洗浄装置として、pH調整液タンク70、洗浄槽72が設けられている。洗浄槽72は、担体移送装置73を介して亜硝酸生成槽54に接続されており、この担体移送装置73によって、亜硝酸生成槽54内の洗浄前の亜硝酸型硝化反応担体68が洗浄槽72に移送される。   By the way, the nitrous acid production tank 54 is provided with a pH adjusting liquid tank 70 and a cleaning tank 72 as a cleaning device for the nitrite type nitrification reaction carrier 68. The washing tank 72 is connected to the nitrous acid production tank 54 via the carrier transfer device 73, and the carrier transfer apparatus 73 allows the nitrite type nitrification reaction carrier 68 before washing in the nitrous acid production tank 54 to be washed. 72.

洗浄槽72は、配管80を介してpH調整液タンク70に接続されている。pH調整液タンク70にはアルカリ水が貯留されており、配管80に配設されたポンプ81を駆動することによって、pH調整液タンク70内のアルカリ水が洗浄槽72に供給される。また、洗浄槽72にはpHセンサ74が設けられ、このpHセンサ74によって槽内のpHが測定される。前述のポンプ81は、pHセンサ74の測定値に基づいて制御され、洗浄槽72内が所望のpH(9以上14未満)に制御される。これにより、洗浄槽72内の亜硝酸型硝化反応担体68をアルカリ水で洗浄することができる。洗浄の際、所定時間(すなわちpHが12以上14未満では1分以上、pHが10以上12未満では5分以上、pHが9以上10未満では20分以上の時間)が経過した後に担体移動装置73が駆動され、亜硝酸型硝化反応担体68が亜硝酸生成槽54に移送される。これにより、所定時間のアルカリ洗浄が行われた亜硝酸型硝化反応担体68が亜硝酸生成槽54に戻されるので、亜硝酸型硝化反応担体68による亜硝酸型の硝化能力を回復させることができる。なお、亜硝酸型硝化反応担体68の洗浄は定期的に行うことが好ましい。すなわち、亜硝酸生成槽54内の亜硝酸型硝化反応担体68の一部を定期的に引き抜いて洗浄槽72に移送し、アルカリ水で洗浄した後、亜硝酸生成槽54に戻すことが好ましい。   The cleaning tank 72 is connected to the pH adjusting liquid tank 70 through a pipe 80. Alkaline water is stored in the pH adjusting liquid tank 70, and the alkaline water in the pH adjusting liquid tank 70 is supplied to the cleaning tank 72 by driving a pump 81 provided in the pipe 80. The cleaning tank 72 is provided with a pH sensor 74, and the pH in the tank is measured by the pH sensor 74. The above-described pump 81 is controlled based on the measured value of the pH sensor 74, and the inside of the cleaning tank 72 is controlled to a desired pH (9 or more and less than 14). Thereby, the nitrite type nitrification reaction carrier 68 in the washing tank 72 can be washed with alkaline water. The carrier transfer device after a predetermined time has passed after washing (that is, 1 minute or more when the pH is 12 or more and less than 14, 5 minutes or more when the pH is 10 or more and less than 12, or 20 minutes or more when the pH is 9 or more and less than 10). 73 is driven, and the nitrite type nitrification reaction carrier 68 is transferred to the nitrite production tank 54. As a result, the nitrite type nitrification reaction carrier 68 that has been subjected to alkali cleaning for a predetermined time is returned to the nitrous acid production tank 54, so that the nitrite type nitrification ability of the nitrite type nitrification reaction carrier 68 can be recovered. . The nitrite type nitrification reaction carrier 68 is preferably cleaned periodically. That is, it is preferable that a part of the nitrite-type nitrification reaction carrier 68 in the nitrous acid production tank 54 is periodically pulled out, transferred to the washing tank 72, washed with alkaline water, and then returned to the nitrous acid production tank 54.

亜硝酸生成槽54には、硝酸濃度センサ85が設けられ、この硝酸濃度センサ85によって槽内の硝酸濃度が測定される。硝酸濃度センサ85は制御装置86に接続されており、制御装置86は硝酸濃度センサ85の測定値に基づいて担体移送装置73を駆動制御する。具体的には、槽内の硝酸濃度が上昇した際に、「亜硝酸型硝化反応担体68が亜硝酸型硝化反応から硝酸型硝化反応に移行した」と判断し、亜硝酸型硝化反応担体68の洗浄槽72への移送量を増加させる。これにより、亜硝酸生成槽54内の亜硝酸型硝化反応担体68は常に高い亜硝酸型の硝化能力が維持される。   The nitrous acid generation tank 54 is provided with a nitric acid concentration sensor 85, and the nitric acid concentration sensor 85 measures the nitric acid concentration in the tank. The nitric acid concentration sensor 85 is connected to the control device 86, and the control device 86 drives and controls the carrier transfer device 73 based on the measurement value of the nitric acid concentration sensor 85. Specifically, when the concentration of nitric acid in the tank increases, it is determined that “the nitrite-type nitrification reaction carrier 68 has shifted from the nitrite-type nitrification reaction to the nitrate-type nitrification reaction”, and the nitrite-type nitrification reaction carrier 68 The amount of transfer to the cleaning tank 72 is increased. Thereby, the nitrite type nitrification reaction carrier 68 in the nitrite production tank 54 always maintains a high nitrite type nitrification capacity.

このように排水処理装置50によれば、亜硝酸型硝化反応担体68をアルカリ水で洗浄できるようにしたので、亜硝酸型硝化反応を常に効率よく行うことができる。   Thus, according to the waste water treatment apparatus 50, since the nitrite type nitrification reaction carrier 68 can be washed with alkaline water, the nitrite type nitrification reaction can always be performed efficiently.

なお、図5の排水処理装置50は、pH調整液タンク70が配管82を介して亜硝酸生成槽54に接続され、配管82に配設されたポンプ83を駆動することによってpH調整液タンク70内のアルカリ水が亜硝酸生成槽54に供給される。また、亜硝酸生成槽54にはpHセンサ84が設けられ、このpHセンサ84の測定値に基づいてポンプ83が制御される。したがって、亜硝酸生成槽54を所望のpHに制御することができ、亜硝酸型硝化反応担体68を亜硝酸生成槽54内でアルカリ洗浄することも可能である。   In the waste water treatment apparatus 50 of FIG. 5, the pH adjusting liquid tank 70 is connected to the nitrous acid generation tank 54 via a pipe 82, and the pH adjusting liquid tank 70 is driven by driving a pump 83 disposed in the pipe 82. The alkaline water therein is supplied to the nitrous acid production tank 54. The nitrous acid production tank 54 is provided with a pH sensor 84, and the pump 83 is controlled based on the measured value of the pH sensor 84. Therefore, the nitrous acid production tank 54 can be controlled to a desired pH, and the nitrite type nitrification reaction carrier 68 can be washed with alkali in the nitrous acid production tank 54.

また、上述した実施形態では、予めアルカリ水で洗浄した亜硝酸型硝化反応担体68を亜硝酸生成槽54に投入するようにしたが、これに限定するものではなく、洗浄前の担体を洗浄槽72に投入し、アルカリ洗浄するようにしてもよい。   In the above-described embodiment, the nitrite-type nitrification reaction carrier 68 previously washed with alkaline water is introduced into the nitrous acid production tank 54. However, the present invention is not limited to this, and the carrier before washing is washed. 72 may be used for alkali cleaning.

さらに上述した実施形態では、「亜硝酸型硝化反応担体68が亜硝酸型硝化反応から硝酸型硝化反応に移行した」ことを判別するために、硝酸濃度センサ78を設けたが、代わりに亜硝酸濃度センサを設けて亜硝酸濃度を測定するようにしてもよい。この場合には、亜硝酸濃度が減少したことによって、反応の変化を判別することができる。   Further, in the above-described embodiment, the nitric acid concentration sensor 78 is provided in order to determine that “the nitrite type nitrification reaction carrier 68 has shifted from the nitrite type nitrification reaction to the nitric acid type nitrification reaction”. A concentration sensor may be provided to measure the nitrous acid concentration. In this case, the change in the reaction can be determined by the decrease in the concentration of nitrous acid.

次に本発明が適用される亜硝酸型硝化反応担体の製造装置90について説明する。図6に示すように、製造装置90は、担体成形装置92と、洗浄装置94とによって構成される。   Next, an apparatus 90 for producing a nitrite-type nitrification reaction carrier to which the present invention is applied will be described. As shown in FIG. 6, the manufacturing apparatus 90 includes a carrier molding device 92 and a cleaning device 94.

担体成形装置92は、担体原料(固定化剤、水、活性汚泥、重合開始剤等)から担体を成形する装置であり、たとえば、アンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を担体材料に付着させて形成される付着固定化担体、複合微生物系の汚泥を担体材料に包括させて形成される包括固定化担体、又は、複合微生物系の汚泥の自己造粒力により形成される硝化グラニュール担体を成形する。担体の形成方法は特に限定されるものではないが、たとえば、微生物と高分子材料の混合物をシート状にし、これを細かく切断することによって角形の担体を製造するシート成形法が用いられる。なお、微生物と高分子材料の混合物を数ミリ径のビニルチューブ内に注入して重合させながら押し出し、これを一定長さに切断して円柱形の担体を製造するチューブ成形法や、微生物と高分子材料の混合物を別の液体内に滴下し、球形の担体を製造する滴下造粒法を用いてもよい。   The carrier molding device 92 is a device for molding a carrier from a carrier raw material (fixing agent, water, activated sludge, polymerization initiator, etc.), for example, a complex microorganism having nitrification performance including ammonia oxidizing bacteria and nitrite oxidizing bacteria. Self-granulating power of the adhesion-immobilized support formed by adhering the sludge of the system to the carrier material, the entrapping immobilization support formed by including the sludge of the complex microbial system in the support material, or the sludge of the complex microbial system The nitrified granule carrier formed by the above is molded. The method for forming the carrier is not particularly limited. For example, a sheet molding method is used in which a mixture of microorganisms and a polymer material is formed into a sheet shape, and the rectangular carrier is produced by finely cutting the mixture. In addition, a mixture of microorganisms and polymer material is injected into a vinyl tube of several millimeters in diameter and extruded while polymerizing, and this is cut into a certain length to produce a cylindrical carrier, or a microorganism and A dropping granulation method in which a mixture of molecular materials is dropped into another liquid to produce a spherical carrier may be used.

担体成形装置92で成形された担体は、洗浄装置94に送られる。洗浄装置94は、担体をアルカリ水に浸漬することによって、又は、アルカリ水のシャワーを担体に浴びせることによって、担体を洗浄する。その際、アルカリ水は上述した試験で説明したように、pH9以上14未満が好ましい。また、洗浄時間は、pHが12以上14未満では1分以上、pHが10以上12未満では5分以上、pHが9以上10未満では20分以上となるように設定する。   The carrier formed by the carrier forming device 92 is sent to the cleaning device 94. The cleaning device 94 cleans the carrier by immersing the carrier in alkaline water or by showering the carrier with alkaline water. At that time, the alkaline water preferably has a pH of 9 or more and less than 14 as described in the above-described test. The washing time is set to be 1 minute or more when the pH is 12 or more and less than 14, 5 minutes or more when the pH is 10 or more and less than 12, and 20 minutes or more when the pH is 9 or more and less than 10.

上記の如く構成された製造装置90によれば、成形された担体をアルカリ水で洗浄するようにしたので、亜硝酸型硝化反応の性能が良く、且つ、その亜硝酸型硝化反応を継続可能な亜硝酸型硝化反応担体を製造することができる。この亜硝酸型硝化反応担体が、上述した排水処理装置50の亜硝酸生成槽54に投入される。   According to the manufacturing apparatus 90 configured as described above, since the molded carrier is washed with alkaline water, the performance of the nitrite type nitrification reaction is good and the nitrite type nitrification reaction can be continued. A nitrite type nitrification reaction carrier can be produced. This nitrite type nitrification reaction carrier is put into the nitrous acid production tank 54 of the waste water treatment apparatus 50 described above.

なお、上述した実施形態では、担体成形装置92と、洗浄装置94とを連続して設けたが、これに限定するものではなく、洗浄装置94を担体成形装置92から切り離して独立して設けてもよい。また、担体成形装置92で担体を成形する過程で担体(又は担体となる前のシート等)をアルカリ水によって洗浄してもよい。   In the above-described embodiment, the carrier molding device 92 and the cleaning device 94 are continuously provided. However, the present invention is not limited to this, and the cleaning device 94 is provided separately from the carrier molding device 92. Also good. Further, in the process of forming the carrier by the carrier molding device 92, the carrier (or a sheet before becoming a carrier) may be washed with alkaline water.

本発明の理論的根拠となる試験で使用された実験装置を示す図The figure which shows the experimental apparatus used in the test used as the rationale of this invention 試験で用いた合成排水の組成を示す表図Table showing the composition of the synthetic wastewater used in the test 試験の結果を示す図Diagram showing test results 試験の結果を示す図Diagram showing test results 本発明が適用された排水処理装置を模式的に示す構成図Configuration diagram schematically showing a wastewater treatment apparatus to which the present invention is applied 本発明が適用された製造装置を示すブロック図The block diagram which shows the manufacturing apparatus with which this invention was applied

符号の説明Explanation of symbols

10…実験装置、12…反応槽、14…担体、16…原水配管、18…原水タンク、20…原水ポンプ、22…調整液配管、24…調整液タンク、26…調整液ポンプ、28…エアポンプ、30…pH電極、32…pH調節器、50…排水処理装置、52…原水槽、54…亜硝酸生成槽、56…嫌気性アンモニア酸化槽、58…原水配管、60…分配器、62…配管、64…配管、66…混合器、68…亜硝酸型硝化反応担体、70…pH調整液タンク、72…pH調整液タンク、74…pHセンサ、76…制御装置、78…硝酸濃度センサ、90…製造装置、92…担体成形装置、94…洗浄装置   DESCRIPTION OF SYMBOLS 10 ... Experimental apparatus, 12 ... Reaction tank, 14 ... Carrier, 16 ... Raw water piping, 18 ... Raw water tank, 20 ... Raw water pump, 22 ... Adjustment liquid piping, 24 ... Adjustment liquid tank, 26 ... Adjustment liquid pump, 28 ... Air pump , 30 ... pH electrode, 32 ... pH controller, 50 ... Waste water treatment device, 52 ... Raw water tank, 54 ... Nitrous acid production tank, 56 ... Anaerobic ammonia oxidation tank, 58 ... Raw water piping, 60 ... Distributor, 62 ... Piping, 64 ... Piping, 66 ... Mixer, 68 ... Nitrite type nitrification reaction carrier, 70 ... pH adjusting liquid tank, 72 ... pH adjusting liquid tank, 74 ... pH sensor, 76 ... Control device, 78 ... Nitric acid concentration sensor, 90 ... Manufacturing device, 92 ... Carrier molding device, 94 ... Cleaning device

Claims (7)

アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体を製造する製造方法において、
少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を担体材料に付着させて形成される付着固定化担体、前記複合微生物系の汚泥を担体材料に包括させて形成される包括固定化担体、又は、前記複合微生物系の汚泥の自己造粒力により形成される硝化グラニュール担体を、アルカリ水によって洗浄するアルカリ洗浄工程を備えたことを特徴とする亜硝酸型硝化反応担体の製造方法。
In a production method for producing a nitrite-type nitrification support in which ammonia-oxidizing bacteria that oxidize ammonia nitrogen to nitrite are preferentially accumulated,
An adhering immobilization support formed by adhering a sludge of a complex microbial system having nitrification performance containing at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria to a carrier material, and formed by including the complex microbial sludge in a carrier material. A nitrite-type nitrification reaction comprising an alkaline washing step of washing the entrapped immobilization carrier or the nitrification granule carrier formed by the self-granulating force of the complex microorganism sludge with alkaline water A method for producing a carrier.
前記アルカリ洗浄工程は、前記アルカリ水のpHを9.0以上に制御することを特徴とする請求項1に記載の亜硝酸型硝化反応担体の製造方法。   2. The method for producing a nitrite-type nitrification reaction carrier according to claim 1, wherein in the alkali cleaning step, the pH of the alkaline water is controlled to 9.0 or more. 前記アルカリ洗浄工程は、前記アルカリ水のpHが12以上14未満の範囲では1分以上行い、前記pHが10以上12未満の範囲では5分以上行い、前記pHが9・0以上10未満の範囲では20分以上行うことを特徴とする請求項1又は2に記載の亜硝酸型硝化反応担体の製造方法。   The alkali cleaning step is performed for 1 minute or more when the pH of the alkaline water is 12 or more and less than 14, and is performed for 5 minutes or more when the pH is 10 or more and less than 12, and the pH is in the range of 9.0 or more and less than 10. Then, the method for producing a nitrite-type nitrification reaction carrier according to claim 1, wherein the method is performed for 20 minutes or longer. アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体を製造する製造装置において、
少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を担体材料に付着させて形成される付着固定化担体、前記複合微生物系の汚泥を担体材料に包括させて形成される包括固定化担体、又は、前記複合微生物系の汚泥の自己造粒力により形成される硝化グラニュール担体を、アルカリ水によって洗浄するアルカリ洗浄装置を備えたことを特徴とする亜硝酸型硝化反応担体の製造装置。
In a production apparatus for producing a nitrite-type nitrification reaction carrier in which ammonia-oxidizing bacteria that oxidize ammonia nitrogen to nitrite are preferentially accumulated,
An adhering immobilization support formed by adhering a sludge of a complex microbial system having nitrification performance containing at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria to a carrier material, and formed by including the complex microbial sludge in a carrier material. A nitrite type nitrification reaction comprising an alkaline cleaning device for cleaning a entrapped immobilization carrier or a nitrification granule carrier formed by the self-granulating force of the complex microbial sludge with alkaline water Carrier production equipment.
アンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体によって排水中のアンモニア性窒素を亜硝酸に酸化する亜硝酸生成工程と、
前記亜硝酸生成工程で得られた処理水中のアンモニアと亜硝酸を、嫌気性アンモニア酸化細菌によって同時脱窒する嫌気性アンモニア酸化工程と、を備えた排水処理方法において、
前記亜硝酸生成工程は、少なくともアンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を担体材料に付着させて形成される付着固定化担体、前記複合微生物系の汚泥を担体材料に包括させて形成される包括固定化担体、又は、前記複合微生物系の汚泥の自己造粒力により形成される硝化グラニュール担体をアルカリ水で洗浄することによって得られた亜硝酸型硝化反応担体を用いることを特徴とする排水処理方法。
A nitrite production process in which ammonia nitrogen is oxidized to nitrite by a nitrite-type nitrification reaction carrier in which ammonia-oxidizing bacteria are preferentially accumulated;
In the wastewater treatment method comprising: an anaerobic ammonia oxidation step in which ammonia and nitrous acid in the treated water obtained in the nitrous acid production step are simultaneously denitrified by anaerobic ammonia oxidizing bacteria,
The nitrite production step includes an adhering immobilization support formed by adhering a composite microbial sludge having nitrification performance containing at least ammonia-oxidizing bacteria and nitrite-oxidizing bacteria to a support material, and the composite microbial sludge as a support. Nitrite-type nitrification reaction obtained by washing with alkaline water a entrapping immobilization carrier formed by inclusion in the material or a nitrification granule carrier formed by the self-granulating force of the sludge of the above complex microorganism system A wastewater treatment method using a carrier.
前記亜硝酸生成工程では、前記亜硝酸型硝化反応担体が亜硝酸型硝化反応から硝酸型硝化反応に移行した際に、該亜硝酸型硝化反応担体をアルカリ水で洗浄することを特徴とする排水処理方法。   In the nitrous acid production step, when the nitrite-type nitrification reaction carrier shifts from a nitrite-type nitrification reaction to a nitrate-type nitrification reaction, the nitrite-type nitrification reaction carrier is washed with alkaline water. Processing method. アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体が投入された亜硝酸生成槽と、前記亜硝酸生成槽の後段に配設され、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌によって同時脱窒する嫌気性アンモニア酸化槽と、を備えた排水処理装置において、
前記亜硝酸生成槽内の前記亜硝酸型硝化担体をアルカリ水で洗浄するアルカリ洗浄装置を備えたことを特徴とする排水処理装置。
A nitrite production tank into which a nitrite-type nitrification reaction carrier in which ammonia-oxidizing bacteria that oxidize ammonia nitrogen to nitrous acid are preferentially accumulated, and a rear stage of the nitrite production tank are disposed, In an anaerobic ammonia oxidation tank that simultaneously denitrifies nitrous acid with anaerobic ammonia oxidizing bacteria,
A wastewater treatment apparatus comprising an alkali cleaning device for cleaning the nitrite type nitrification carrier in the nitrous acid production tank with alkaline water.
JP2008166444A 2008-06-25 2008-06-25 Method of using nitrite-type nitrification reaction carrier, and waste water treatment method and apparatus Expired - Fee Related JP4883493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166444A JP4883493B2 (en) 2008-06-25 2008-06-25 Method of using nitrite-type nitrification reaction carrier, and waste water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166444A JP4883493B2 (en) 2008-06-25 2008-06-25 Method of using nitrite-type nitrification reaction carrier, and waste water treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2010005517A true JP2010005517A (en) 2010-01-14
JP4883493B2 JP4883493B2 (en) 2012-02-22

Family

ID=41586597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166444A Expired - Fee Related JP4883493B2 (en) 2008-06-25 2008-06-25 Method of using nitrite-type nitrification reaction carrier, and waste water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4883493B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198389A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen processing method
WO2019225113A1 (en) * 2018-05-21 2019-11-28 株式会社日立製作所 Nitrogen treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198389A1 (en) * 2018-04-11 2019-10-17 株式会社日立製作所 Nitrogen processing method
JP2019181377A (en) * 2018-04-11 2019-10-24 株式会社日立製作所 Nitrogen treatment method
WO2019225113A1 (en) * 2018-05-21 2019-11-28 株式会社日立製作所 Nitrogen treatment method
JP2019202244A (en) * 2018-05-21 2019-11-28 株式会社日立製作所 Nitrogen treatment method
JP7133359B2 (en) 2018-05-21 2022-09-08 株式会社日立製作所 Nitrogen treatment method

Also Published As

Publication number Publication date
JP4883493B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
Zhang et al. Optimization denitrifying phosphorus removal at different hydraulic retention times in a novel anaerobic anoxic oxic-biological contact oxidation process
JP6448382B2 (en) Nitrogen-containing wastewater denitrification method and denitrification apparatus
Cheng et al. Nitrification/denitrification in intermittent aeration process for swine wastewater treatment
KR20120089495A (en) Wastewater Treatment Apparatus Using Biofilm and Aerobic Granule Sludge and Method for Treating Wastewater Using the Same
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
JP5098183B2 (en) Waste water treatment method and apparatus
We et al. A review of the treatment of low–medium strength domestic wastewater using aerobic granulation technology
Hosseini et al. Continuous nitrifying granular sludge bioreactor: influence of aeration and ammonium loading rate
TW201002629A (en) Denitrifying method and denitrifying device
JP4678577B2 (en) Wastewater treatment system
WO2019198388A1 (en) Nitrogen treatment method
JP4788645B2 (en) Method of using nitrite type nitrification carrier, wastewater treatment method and wastewater treatment apparatus
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
JP4817057B2 (en) Batch treatment of nitrogen-containing water
JP4883493B2 (en) Method of using nitrite-type nitrification reaction carrier, and waste water treatment method and apparatus
Celmer‐Repin et al. Autotrophic nitrogen‐removing biofilms on porous and non‐porous membranes
JP2013169529A (en) Wastewater treatment method and wastewater treatment apparatus
Le et al. Performance of nitrogen removal in attached growth reactors with different carriers
CN105984991B (en) A kind of sewerage advanced treatment process
JP2006346536A (en) Method and apparatus for treating waste water
JP2006122865A (en) Water treatment and carrier acclimatization method and its device
JP2005319360A (en) Method and apparatus for anaerobic ammonia oxidation
JP5240465B2 (en) Storage system and storage method for anaerobic microorganism-immobilized carrier
JP2006061879A (en) Waste water treatment method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111127

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees