JP2010003889A - Semiconductor device, semiconductor integrated circuit device for plasma display driving using the same, and plasma display device - Google Patents

Semiconductor device, semiconductor integrated circuit device for plasma display driving using the same, and plasma display device Download PDF

Info

Publication number
JP2010003889A
JP2010003889A JP2008161542A JP2008161542A JP2010003889A JP 2010003889 A JP2010003889 A JP 2010003889A JP 2008161542 A JP2008161542 A JP 2008161542A JP 2008161542 A JP2008161542 A JP 2008161542A JP 2010003889 A JP2010003889 A JP 2010003889A
Authority
JP
Japan
Prior art keywords
conductivity type
region
plasma display
emitter
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008161542A
Other languages
Japanese (ja)
Inventor
Shinji Shirakawa
真司 白川
Junichi Sakano
順一 坂野
Kenji Hara
賢志 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008161542A priority Critical patent/JP2010003889A/en
Priority to US12/487,299 priority patent/US20090315072A1/en
Publication of JP2010003889A publication Critical patent/JP2010003889A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7394Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET on an insulating layer or substrate, e.g. thin film device or device isolated from the bulk substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lateral IGBT (Insulated Gate Bipolar Transistor) which is formed on an SOI substrate and is large in current density. <P>SOLUTION: In a lateral IGBT structure which has an emitter terminal composed of two or more second conductivity type base layers for one collector terminal, a second conductivity type base layer in an emitter region is covered with a first conductivity type layer having higher density than a drift layer, a gate electrode between two adjacent emitters has a width L1 of ≤4 μm, and further an emitter-electrode lead-out opening between two adjacent gate electrodes has a width L2 of ≤3 μm. Consequently, while a breakdown voltage is maintained, a first conductivity type layer is made high in density to improve the current density. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、絶縁ゲートバイポーラトランジスタ(以下IGBTと記す)等の半導体装置、それを用いたプラズマディスプレイ駆動用半導体集積回路およびプラズマディスプレイ装置に関するものである。   The present invention relates to a semiconductor device such as an insulated gate bipolar transistor (hereinafter referred to as IGBT), a semiconductor integrated circuit for driving a plasma display using the semiconductor device, and a plasma display device.

近年、デバイス分離領域が小さく、寄生トランジスタフリーという特徴から、SOI基板を用いた高耐圧パワーICの開発が盛んに行われている。本発明を主に適用する高耐圧パワーICはプラズマディスプレイ駆動用半導体IC向けであり、その耐圧は200Vクラスである。この高耐圧パワーICの開発では、負荷を直接駆動する高耐圧出力デバイスの出力特性の向上が、性能向上やチップサイズ低減の観点から必須となる。しかしながら、SOI基板を用いたパワーICの出力デバイスとして主に使用される横型IGBTでは、エミッタ・ゲート領域とコレクタ領域が同一平面状に形成されるために、実質的に通電できる面積が減少し、素子面積あたりの電流容量が小さくなる。また、横型IGBTでは、素子の横方向の電流成分が大きいため、ラッチアップが発生しやすく、素子の安定動作領域が狭いという問題がある。この問題を考慮し、単位面積あたりの電流容量を増大させ、かつ安全動作領域の広い横型IGBTが開発されている。   In recent years, high-breakdown-voltage power ICs using SOI substrates have been actively developed because of their small device isolation region and parasitic transistor-free characteristics. The high breakdown voltage power IC to which the present invention is mainly applied is for a plasma display driving semiconductor IC, and the breakdown voltage is 200V class. In the development of this high withstand voltage power IC, improvement of output characteristics of a high withstand voltage output device that directly drives a load is indispensable from the viewpoint of performance improvement and chip size reduction. However, in a lateral IGBT mainly used as an output device of a power IC using an SOI substrate, an emitter / gate region and a collector region are formed in the same plane, so that an area that can be substantially energized is reduced. The current capacity per element area is reduced. In addition, since the lateral IGBT has a large current component in the lateral IGBT, there is a problem that latch-up is likely to occur and the stable operation region of the element is narrow. In consideration of this problem, a lateral IGBT has been developed that increases the current capacity per unit area and has a wide safe operation area.

この横型IGBTの出力向上の観点から、例えば、特許文献1には、隣接する2つのエミッタ間にあるゲート電極の幅L1を大きくすることで、隣接する2つのエミッタ間の抵抗を下げ、出力電流密度を向上することが提案されている。   From the viewpoint of improving the output of the lateral IGBT, for example, in Patent Document 1, the width L1 of the gate electrode between two adjacent emitters is increased to reduce the resistance between the two adjacent emitters, and the output current It has been proposed to increase the density.

一方、横型IGBTの出力向上に関して、本発明者等は、特願2007−108802号として出願中のものがある。この特許出願に係る横型IGBTは、図9に示すような構成を採ることによって、電流密度を向上させている。   On the other hand, regarding the improvement of the output of the lateral IGBT, the present inventors have filed an application as Japanese Patent Application No. 2007-108802. The lateral IGBT according to this patent application improves the current density by adopting a configuration as shown in FIG.

図9において、n型半導体基板1の表面層に選択的にpベース領域2が形成され、そのpベース領域2の表面層の一部に二つのnエミッタ領域4が形成され、その二つのnエミッタ領域4の間に一部nエミッタ領域4と重複するようにpコンタクト領域3が形成されている。pベース領域2の形成されていないn型基板1の表面露出部に選択的にnバッファ領域9が形成され、そのnバッファ領域9の表面層にpコレクタ領域10が形成されている。そして、pベース領域2の表面層のチャネル領域14の表面上にゲート酸化膜5を介してG端子に接続されるゲート電極6が設けられている。また、nエミッタ領域4とpコンタクト領域3の表面に共通に接触するエミッタ電極7が設けられ、pコレクタ領域10の表面上にはコレクタ電極11が設けられ、これらはそれぞれE端子、C端子に接続される。n型基板1とSOI基板の支持基板17の間には、酸化膜16が埋め込まれている。図では、左端a−a’を中心部とする横型IGBTの右半分を示している。   In FIG. 9, a p base region 2 is selectively formed in the surface layer of an n-type semiconductor substrate 1, two n emitter regions 4 are formed in a part of the surface layer of the p base region 2, and the two n A p contact region 3 is formed between the emitter regions 4 so as to partially overlap the n emitter region 4. An n buffer region 9 is selectively formed on the surface exposed portion of the n-type substrate 1 where the p base region 2 is not formed, and a p collector region 10 is formed on the surface layer of the n buffer region 9. A gate electrode 6 connected to the G terminal via the gate oxide film 5 is provided on the surface of the channel region 14 in the surface layer of the p base region 2. Also, an emitter electrode 7 is provided in common contact with the surfaces of the n emitter region 4 and the p contact region 3, and a collector electrode 11 is provided on the surface of the p collector region 10, which are respectively connected to the E terminal and the C terminal. Connected. An oxide film 16 is buried between the n-type substrate 1 and the support substrate 17 of the SOI substrate. In the figure, the right half of the lateral IGBT centering on the left end a-a ′ is shown.

本構造は、素子中央部のpベース領域を覆うように新たにn型半導体基板1より高濃度のn層18を形成することを特徴としている。このIGBTでは、新たに追加したエミッタ領域を覆う高濃度の第一導電型層18と、埋め込み酸化膜16との間のシリコン層が低抵抗化される。これにより、コレクタ領域より離れたエミッタ・ゲート領域にも電圧降下が増大することなく電流が流れることが可能となり、従来構造と比較し、電流密度が向上する。   This structure is characterized in that an n layer 18 having a higher concentration than that of the n-type semiconductor substrate 1 is newly formed so as to cover the p base region in the central portion of the element. In this IGBT, the resistance of the silicon layer between the high-concentration first conductivity type layer 18 covering the newly added emitter region and the buried oxide film 16 is reduced. As a result, a current can flow in the emitter / gate region far from the collector region without increasing the voltage drop, and the current density is improved as compared with the conventional structure.

特許第3,522,983号公報Japanese Patent No. 3,522,983

しかし、図9に示す構造のIGBTでは、n型半導体基板1より高濃度のn層18のn型不純物の濃度が一定濃度を超えると耐圧が急低下するため、2倍以上の高濃度化による電流密度の向上には限界がある。   However, in the IGBT having the structure shown in FIG. 9, when the concentration of the n-type impurity in the n-layer 18 having a higher concentration than that of the n-type semiconductor substrate 1 exceeds a certain concentration, the breakdown voltage sharply decreases. There is a limit to improving the current density.

本発明の目的は、横型IGBTのような半導体装置において、出力電流密度をさらに向上させることである。   An object of the present invention is to further improve the output current density in a semiconductor device such as a lateral IGBT.

本発明はその一面において、第一導電型の半導体基板の一方の主表面の表面層に、選択的に形成された内部に第一導電型エミッタ領域を含む第二導電型ベース領域、前記第二導電型ベース領域上に絶縁膜を介して形成されたゲート電極、および第二導電型コレクタ領域を備え、隣接する2つの前記第二導電型コレクタ領域の間に2つ以上の前記第二導電型ベース領域が挟まれた半導体装置において、2つ以上の前記第二導電型ベース領域間およびこれらの第二導電型ベース領域の下部に前記第一導電型半導体基板よりも高濃度の第一導電型領域を形成するとともに、隣接する2つの前記第二導電型ベース領域間を前記絶縁膜を介して連絡するように形成されたゲート電極の幅を4μm以下としたことを特徴とする。   In one aspect of the present invention, the second conductivity type base region including the first conductivity type emitter region selectively formed in the surface layer of one main surface of the first conductivity type semiconductor substrate, A gate electrode formed on the conductive type base region via an insulating film, and a second conductive type collector region, and two or more second conductive types between two adjacent second conductive type collector regions In a semiconductor device in which a base region is sandwiched, a first conductivity type that is higher in concentration than the first conductivity type semiconductor substrate between two or more second conductivity type base regions and below these second conductivity type base regions. In addition to forming the region, the width of the gate electrode formed so as to communicate between the two adjacent second conductivity type base regions via the insulating film is 4 μm or less.

本発明の望ましい実施態様においては、耐圧200Vクラスの横型IGBTにおいて、高濃度n層18のn型不純物濃度が一定濃度を超えた場合に耐圧の降伏点となる隣接する2つのエミッタ間にあるゲート電極直下のシリコン領域の電界を緩和するため、隣接する2つのエミッタ間にあるゲート電極の幅を狭くする。   In a preferred embodiment of the present invention, in a lateral IGBT having a withstand voltage of 200 V class, a gate located between two adjacent emitters that becomes a breakdown voltage breakdown point when the n-type impurity concentration of the high-concentration n layer 18 exceeds a certain concentration. In order to alleviate the electric field in the silicon region immediately below the electrode, the width of the gate electrode between two adjacent emitters is reduced.

本発明の望ましい実施態様においては、上記に加え、エミッタ電極引き出し用の、隣接する2つのゲート電極間の開口幅を狭くすることで、pベース領域を囲む高濃度の第一導電型層の体積を減少させる。   In a preferred embodiment of the present invention, in addition to the above, the volume of the high-concentration first conductivity type layer surrounding the p base region is reduced by narrowing the opening width between two adjacent gate electrodes for extracting the emitter electrode. Decrease.

具体的実施形態においては、隣接する2つのエミッタ間にあるゲート電極の幅を4μm以下に、或いはそれに加えて、隣接する2つのゲート電極間のエミッタ引き出し用の開口幅を3μm以下にしたことを特徴とする。   In a specific embodiment, the width of the gate electrode between two adjacent emitters is set to 4 μm or less, or in addition to that, the opening width for emitter extraction between two adjacent gate electrodes is set to 3 μm or less. Features.

本発明の望ましい実施態様によれば、横型IGBT等の半導体装置は、耐圧を保持した高濃度第一導電型層の不純物濃度を高くすることができ、それにより出力電流密度をさらに向上させることができる。   According to a preferred embodiment of the present invention, a semiconductor device such as a lateral IGBT can increase the impurity concentration of the high-concentration first conductivity type layer that maintains the breakdown voltage, thereby further improving the output current density. it can.

本発明の望ましい実施形態によれば、pベース領域を囲む高濃度n領域のn不純物を少なくすることが出来、空乏化によるpベース領域およびそれを囲むn領域の電位分布の固定化がより低い電圧で起こり、ゲート電極直下のシリコン領域の電界を低減できる。   According to a preferred embodiment of the present invention, n impurities in a high-concentration n region surrounding a p base region can be reduced, and fixation of a potential distribution in the p base region and the n region surrounding the p base region due to depletion is lower. It is possible to reduce the electric field in the silicon region directly under the gate electrode, which occurs due to voltage.

加えて、隣接する2つのゲート電極間のエミッタ引き出し用の開口幅を狭くすることで、コレクタまでの電流経路が短くなり、エミッタ領域が小型化されるため、複数のチャネル領域のうち、コレクタから遠いチャネル領域にも電界が印加され易くなる。このため、高濃度n層の高濃度化の効果に加えて、出力電流密度を向上させることができる。   In addition, by narrowing the emitter extraction opening width between two adjacent gate electrodes, the current path to the collector is shortened and the emitter region is downsized. An electric field is easily applied to a far channel region. For this reason, in addition to the effect of increasing the concentration of the high concentration n layer, the output current density can be improved.

横型IGBTの電流密度が向上することにより、高耐圧・大電流を必要とするプラズマディスプレイ駆動用の半導体集積回路を、より小さなチップサイズで実現することが可能である。   By improving the current density of the lateral IGBT, a semiconductor integrated circuit for driving a plasma display that requires a high breakdown voltage and a large current can be realized with a smaller chip size.

また、熱拡散を抑制するなどしてチャネル領域を小さくすることで、出力電流密度を向上させる場合でも、pベース領域を囲むn領域の体積が増加するため、上記の本発明が解決しようとする課題が発生する。その場合の解決策としても本発明は有効である。   Further, even when the output current density is improved by reducing the channel region by suppressing thermal diffusion, the volume of the n region surrounding the p base region is increased. Challenges arise. The present invention is also effective as a solution in that case.

本発明のその他の目的と特徴は、以下に述べる実施形態の中で明らかにする。   Other objects and features of the present invention will be clarified in the embodiments described below.

以下、横型IGBTの性能向上と、それに伴う高耐圧パワーICの出力特性改善およびチップサイズ低減を図る本発明の実施の形態を添付の図面に基づいて詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention for improving the performance of a lateral IGBT, improving the output characteristics of a high breakdown voltage power IC, and reducing the chip size will be described below in detail with reference to the accompanying drawings.

図1は、本発明の一実施例によるIGBTを示す部分断面構造図である。このIGBTは、図の左端の破線a−a’を中心部とする構造であり、右半分のみを図示している。   FIG. 1 is a partial cross-sectional structure diagram showing an IGBT according to an embodiment of the present invention. This IGBT has a structure centered on a broken line a-a 'at the left end of the figure, and only the right half is shown.

図1において、n型半導体基板1の表面層に選択的にpベース領域2が形成される。そのpベース領域2の表面層の一部に、それぞれ2つづつのnエミッタ領域4が形成され、その2つのnエミッタ領域4の間に一部nエミッタ領域4と重複するようにpコンタクト領域3が形成されている。pベース領域2の形成されていないn型基板1の表面露出部に選択的にnバッファ領域9が形成され、そのnバッファ領域9の表面層にpコレクタ領域10が形成されている。そして、pベース領域2の表面層のチャネル領域14の表面上にゲート酸化膜5を介してゲート(G)端子に接続されるゲート電極6が設けられている。また、nエミッタ領域4とpコンタクト領域3の表面に共通に接触するエミッタ電極7が設けられ、pコレクタ領域10の表面上にはコレクタ電極11が設けられ、これらはそれぞれエミッタ(E)端子、コレクタ(C)端子に接続される。n型基板1とSOI基板の支持基板17の間には、酸化膜16が埋め込まれている。また、素子中央部のpベース領域を覆うように新たにn型半導体基板1より高濃度のn層18を形成している。pベース領域2は、図1に示すように複数あり、ゲート電極6下のn型シリコン領域によって分離されている。   In FIG. 1, a p base region 2 is selectively formed on the surface layer of an n-type semiconductor substrate 1. Two n emitter regions 4 are formed in part of the surface layer of the p base region 2, and the p contact region 3 is partially overlapped with the n emitter region 4 between the two n emitter regions 4. Is formed. An n buffer region 9 is selectively formed on the surface exposed portion of the n-type substrate 1 where the p base region 2 is not formed, and a p collector region 10 is formed on the surface layer of the n buffer region 9. A gate electrode 6 connected to the gate (G) terminal via the gate oxide film 5 is provided on the surface of the channel region 14 in the surface layer of the p base region 2. Further, an emitter electrode 7 is provided in common contact with the surfaces of the n emitter region 4 and the p contact region 3, and a collector electrode 11 is provided on the surface of the p collector region 10, which are respectively an emitter (E) terminal, Connected to the collector (C) terminal. An oxide film 16 is buried between the n-type substrate 1 and the support substrate 17 of the SOI substrate. In addition, an n layer 18 having a higher concentration than that of the n-type semiconductor substrate 1 is newly formed so as to cover the p base region in the central portion of the element. As shown in FIG. 1, there are a plurality of p base regions 2, which are separated by an n-type silicon region under the gate electrode 6.

本実施例は、耐圧200VクラスのIGBTの隣接する2つのエミッタ間にあるゲート電極の幅L1を4μm以下に、或いはそれに加えて、隣接する2つのゲート電極間のエミッタ電極引き出し用の開口部の幅L2を3μm以下にしたものである。   In this embodiment, the width L1 of the gate electrode between two adjacent emitters of a 200V class IGBT is set to 4 μm or less, or in addition to that, an opening for extracting an emitter electrode between two adjacent gate electrodes is provided. The width L2 is 3 μm or less.

前述した図9の耐圧200Vクラスの横型IGBTにおいて、高濃度n層18のn型不純物濃度が一定濃度を超えた場合に耐圧が急低下する現象について述べた。この横型IGBTにおいては、その降伏点が隣接する2つのエミッタ間のゲート電極直下のシリコン領域にあることが、デバイスシミュレーションの結果から判った。   In the above-described lateral IGBT having a withstand voltage of 200 V in FIG. 9, the phenomenon that the withstand voltage rapidly decreases when the n-type impurity concentration of the high-concentration n layer 18 exceeds a certain concentration has been described. In this lateral IGBT, it was found from the results of device simulation that the breakdown point is in the silicon region immediately below the gate electrode between two adjacent emitters.

図2は、図9の半導体装置のオフ状態での電位分布図であり、高濃度n層18のn型不純物濃度によって耐圧の低下が起こっていない場合の降伏点を示した図である。ここでは、エミッタ及びゲートは0V、コレクタには250V印加した時の降伏点を示しており、降伏点はコレクタ下の等電位線が密になる箇所(図中の破線丸印)がそれに当る。   FIG. 2 is a potential distribution diagram in the off state of the semiconductor device of FIG. 9 and shows a breakdown point when the breakdown voltage does not decrease due to the n-type impurity concentration of the high concentration n layer 18. Here, the breakdown point is shown when 0 V is applied to the emitter and gate and 250 V is applied to the collector, and the breakdown point corresponds to a portion where the equipotential lines under the collector are dense (dotted circles in the figure).

図3は、図9の半導体装置において、高濃度n層18のn型不純物濃度を耐圧低下が起きるまで増加させた場合のオフ状態での電位分布図であり、その場合の降伏点を示している。図3では、エミッタ及びゲートは0V、コレクタには100V印加している場合であり、隣接する2つのエミッタ間にあるゲート直下のシリコン領域(図中の破線楕円印)の電界が最も強くなるため、この箇所が降伏点となる。前記の隣接する2つのエミッタ間にあるゲート電極直下にシリコン領域の電界を緩和する方法として、pベース領域2の間隔を狭めて、より凹形状にする。即ち、隣接する2つのエミッタ電極間にあるゲート電極6の幅を狭くすることで、隣接する2つのpベース領域2に挟まれた領域の電位変動を緩やかにすることができる。また、コレクタにゼロから正電圧を印加したとき、電圧が上がる過程でpベース領域2を囲むn領域が空乏化し、pベース領域2およびそれを囲むn領域の電位分布がほぼ固定化される。それ以降のコレクタ電圧上昇分はpベース領域2とコレクタ側のp領域10の間のシリコン領域にその大部分が印加されることになる。前記のpベース領域2およびそれを囲むn領域18の電位分布の固定化がより低い電圧で起きることで前記の隣接する2つのエミッタ間にあるゲート電極直下のシリコン領域の電界を低減することが可能である。   FIG. 3 is a potential distribution diagram in an off state when the n-type impurity concentration of the high-concentration n layer 18 is increased until the breakdown voltage is lowered in the semiconductor device of FIG. 9, and shows the breakdown point in that case. Yes. In FIG. 3, 0 V is applied to the emitter and the gate, and 100 V is applied to the collector, and the electric field in the silicon region immediately below the gate between the two adjacent emitters (broken line in the figure) is the strongest. This is the yield point. As a method of relaxing the electric field in the silicon region directly under the gate electrode between the two adjacent emitters, the interval between the p base regions 2 is narrowed to make it more concave. That is, by narrowing the width of the gate electrode 6 between two adjacent emitter electrodes, the potential fluctuation in the region sandwiched between the two adjacent p base regions 2 can be moderated. Further, when a positive voltage is applied from zero to the collector, the n region surrounding the p base region 2 is depleted in the process of increasing the voltage, and the potential distribution of the p base region 2 and the n region surrounding it is substantially fixed. Most of the collector voltage rise thereafter is applied to the silicon region between the p base region 2 and the p region 10 on the collector side. By fixing the potential distribution of the p base region 2 and the n region 18 surrounding the p base region 2 at a lower voltage, the electric field of the silicon region immediately below the gate electrode between the two adjacent emitters can be reduced. Is possible.

以上の実施例を要約すると、第一導電型の半導体基板1の一方の主表面の表面層に、選択的に形成された内部に第一導電型エミッタ領域4を含む第二導電型ベース領域2、前記第二導電型ベース領域2上に絶縁膜5を介して形成されたゲート電極6、および第二導電型コレクタ領域10とを有しており、隣接する2つの前記第二導電型コレクタ領域10の間に2つ以上の前記第二導電型ベース領域2が挟まれた半導体装置において、2つ以上の前記第二導電型ベース領域2間およびこれらの第二導電型ベース領域2の下部に前記第一導電型半導体基板1よりも高濃度の第一導電型領域18を形成するとともに、隣接する2つの前記第二導電型ベース領域2間を前記絶縁膜5を介して連絡するように形成されたゲート電極6の長さを4μm以下としたことを特徴とする。   To summarize the above embodiment, the second conductivity type base region 2 including the first conductivity type emitter region 4 inside selectively formed in the surface layer of one main surface of the first conductivity type semiconductor substrate 1. A gate electrode 6 formed on the second conductivity type base region 2 with an insulating film 5 interposed therebetween, and a second conductivity type collector region 10, and two adjacent second conductivity type collector regions. In the semiconductor device in which two or more second conductivity type base regions 2 are sandwiched between 10, between two or more of the second conductivity type base regions 2 and below these second conductivity type base regions 2. A first conductivity type region 18 having a higher concentration than the first conductivity type semiconductor substrate 1 is formed, and two adjacent second conductivity type base regions 2 are formed to communicate with each other through the insulating film 5. The length of the formed gate electrode 6 is 4 μm or less Characterized in that it was.

また、本実施例では、隣接する2つのエミッタ電極間にあるゲート電極の幅L1を狭くするほか、隣接する2つのゲート電極6間のエミッタ電極7引き出し用の開口部の幅L2を狭くしている。これにより、pベース領域2を囲むn領域の体積を減らし、pベース領域2を囲むn領域のn型不純物量を少なくし、より低いコレクタ電圧で空乏化させる。この結果、耐圧を保持したまま、高濃度n層18のn型不純物濃度を高くすることができ、出力電流密度を向上させることができる。   In this embodiment, the width L1 of the gate electrode between two adjacent emitter electrodes is narrowed, and the width L2 of the opening for leading the emitter electrode 7 between the two adjacent gate electrodes 6 is narrowed. Yes. As a result, the volume of the n region surrounding the p base region 2 is reduced, the amount of n-type impurities in the n region surrounding the p base region 2 is reduced, and depletion is performed at a lower collector voltage. As a result, the n-type impurity concentration of the high-concentration n layer 18 can be increased while maintaining the breakdown voltage, and the output current density can be improved.

図4は、図9による半導体装置と本発明の一実施例による半導体装置の特性比較図である。図9の横型IGBTのL1=6μm、L2=4μmにした構造0と、図1の横型IGBTのL1=4μm、L2=4μmにした構造1についてデバイスシミュレーションした結果を示す。図4は、上記の構造0と構造1について、高濃度n層18を形成するために注入するn形不純物濃度を変数(横軸)にして、耐圧と出力電流密度を比較したグラフである。構造0の耐圧を保持するn形不純物濃度の限界は破線A、構造1の耐圧を保持するn形不純物濃度の限界は破線Bである。破線AおよびBが対応する出力電流密度線との交差点に白丸と黒丸を表示した。   FIG. 4 is a characteristic comparison diagram of the semiconductor device according to FIG. 9 and the semiconductor device according to one embodiment of the present invention. 9 shows the results of device simulation of the structure 0 of the lateral IGBT of FIG. 9 with L1 = 6 μm and L2 = 4 μm and the structure 1 of the lateral IGBT of FIG. 1 with L1 = 4 μm and L2 = 4 μm. FIG. 4 is a graph comparing the breakdown voltage and the output current density for the structures 0 and 1 with the n-type impurity concentration implanted to form the high-concentration n layer 18 as a variable (horizontal axis). The limit of the n-type impurity concentration holding the breakdown voltage of the structure 0 is a broken line A, and the limit of the n-type impurity concentration holding the breakdown voltage of the structure 1 is a broken line B. White circles and black circles are displayed at the intersections with the output current density lines corresponding to the broken lines A and B.

図4から明らかなように、横型IGBTの構造を構造0から構造1に変えることで耐圧を保持可能なn形不純物濃度が増加し、それに伴い出力電流密度を白丸の値から黒丸の値に向上させることができる。   As is clear from FIG. 4, by changing the structure of the lateral IGBT from structure 0 to structure 1, the n-type impurity concentration capable of maintaining the withstand voltage increases, and accordingly, the output current density is improved from the white circle value to the black circle value. Can be made.

なお、特許文献1に開示されたように、隣接する2つのエミッタ間にあるゲート幅L1を大きくすることで、隣接する2つのエミッタ間の抵抗を下げ、出力電流密度を向上するという考えがある。しかし、高濃度n層18を有するIGBTにおいては、耐圧と出力電流性能のトレードオフ点を向上させる観点から、本発明の実施例においては、隣接する2つのエミッタ電極間にあるゲート電極の幅L1や、隣接する2つのゲート電極間のエミッタ電極引き出し用の開口部の幅L2を縮小する。   As disclosed in Patent Document 1, there is an idea that by increasing the gate width L1 between two adjacent emitters, the resistance between the two adjacent emitters is lowered and the output current density is improved. . However, in the IGBT having the high-concentration n layer 18, from the viewpoint of improving the trade-off point between the withstand voltage and the output current performance, in the embodiment of the present invention, the width L1 of the gate electrode between the two adjacent emitter electrodes. Alternatively, the width L2 of the opening for extracting the emitter electrode between two adjacent gate electrodes is reduced.

図5は、本発明の2つの実施例による半導体装置の特性比較図である。ここでは、pベース領域2を囲むn領域の体積を減らすことで、pベース領域2を囲むn領域のn型不純物量を少なくした。この手法により、ゲート電極の幅L1を狭くしたことに加えて、隣接する2つのゲート電極間のエミッタ電極用の開口幅L2をも狭くした構造2(L1=4μm、L2=3μm)について、デバイスシミュレーションした結果を構造1の結果と比較して示している。   FIG. 5 is a characteristic comparison diagram of semiconductor devices according to two embodiments of the present invention. Here, by reducing the volume of the n region surrounding the p base region 2, the amount of n-type impurities in the n region surrounding the p base region 2 is reduced. With this method, in addition to the gate electrode width L1 being narrowed, the structure 2 (L1 = 4 μm, L2 = 3 μm) in which the emitter electrode opening width L2 between two adjacent gate electrodes is also narrowed is described. The simulated results are shown in comparison with the structure 1 results.

両寸法L1とL2を狭めた図4の説明と同様に、構造2にすることで、耐圧を保持するn形不純物濃度の限界は破線Bから破線Cまで増加し、出力電流密度を黒丸の値から白丸の値に向上させることができる。   Similar to the description of FIG. 4 in which both dimensions L1 and L2 are narrowed, by using structure 2, the limit of the n-type impurity concentration for maintaining the withstand voltage increases from the broken line B to the broken line C, and the output current density is a black circle value. Can be improved to a white circle value.

図4と図5から、構造0と構造1を比較すると、出力電流密度は約40%増加しており、また、構造0と構造2を比較すると、出力電流密度が約60%増加している。また、領域nに追加のn型不純物を注入しない場合と比較して、出力電流密度が2倍以上に向上している。   From FIG. 4 and FIG. 5, comparing structure 0 and structure 1, the output current density increases by about 40%, and comparing structure 0 and structure 2 increases the output current density by about 60%. . In addition, the output current density is improved more than twice as compared with the case where no additional n-type impurity is implanted into the region n.

このように、横型IGBTの電流密度を向上することにより、高耐圧・大電流を必要とするプラズマディスプレイ駆動用の半導体集積回路を、より小さなチップサイズで実現することが可能である。   Thus, by improving the current density of the lateral IGBT, a semiconductor integrated circuit for driving a plasma display that requires a high breakdown voltage and a large current can be realized with a smaller chip size.

図6は、本発明の一実施例による横型IGBTを適用したプラズマディスプレイ駆動用半導体集積回路装置の出力段回路の構成例を示したものである。出力段回路22は、電源VHと接地GNDの間に本発明の一実施例によるIGBT19、20をトーテムポール接続した構成で、IGBT19と20の接続点を出力端子HVOとしている。IGBT19、20は、出力段制御回路21によりオン、オフ制御され、出力端子HVOをVH、GNDの電圧レベル、またはハイインピーダンス状態とする。   FIG. 6 shows a configuration example of an output stage circuit of a plasma display driving semiconductor integrated circuit device to which a lateral IGBT according to an embodiment of the present invention is applied. The output stage circuit 22 has a configuration in which IGBTs 19 and 20 according to an embodiment of the present invention are connected to each other between a power source VH and a ground GND, and a connection point between the IGBTs 19 and 20 is an output terminal HVO. The IGBTs 19 and 20 are ON / OFF controlled by the output stage control circuit 21 to set the output terminal HVO to the voltage levels of VH and GND or a high impedance state.

図7は、本発明の一実施例による横型IGBTを適用したプラズマディスプレイ駆動用半導体集積回路装置の構成例を示したものである。プラズマディスプレイ駆動用半導体集積回路装置27は、シフトレジスタ回路23、ラッチ回路24、セレクタ25、出力段回路26から構成される。シフトレジスタ回路では、端子DATAより入力された制御信号を端子CLKに入力されたクロック信号に同期させてシフトする。また、セレクタに接続される端子OC1、OC2の組み合わせにより、全出力端子をVHレベル、GND電圧レベル、ハイインピーダンス状態、ラッチからのデータ出力状態とする。   FIG. 7 shows a configuration example of a semiconductor integrated circuit device for driving a plasma display to which a lateral IGBT according to an embodiment of the present invention is applied. The plasma display driving semiconductor integrated circuit device 27 includes a shift register circuit 23, a latch circuit 24, a selector 25, and an output stage circuit 26. In the shift register circuit, the control signal input from the terminal DATA is shifted in synchronization with the clock signal input to the terminal CLK. Further, by combining the terminals OC1 and OC2 connected to the selector, all the output terminals are set to the VH level, the GND voltage level, the high impedance state, and the data output state from the latch.

図8は、本発明の一実施例による半導体装置を用いたプラズマディスプレイ駆動用半導体集積回路装置を用いたプラズマディスプレイ装置の構成例である。図8に示すように回路構成することによって、プラズマディスプレイ装置の発光部を制御できる。本発明の一実施例による半導体集積回路装置によってプラズマディスプレイ装置のコスト削減が可能になる。   FIG. 8 is a configuration example of a plasma display device using a semiconductor integrated circuit device for driving a plasma display using a semiconductor device according to an embodiment of the present invention. By configuring the circuit as shown in FIG. 8, the light emitting unit of the plasma display device can be controlled. The semiconductor integrated circuit device according to the embodiment of the present invention can reduce the cost of the plasma display device.

本発明による半導体装置の第1の実施形態を示す断面構造図である。1 is a cross-sectional structure diagram showing a first embodiment of a semiconductor device according to the present invention. 先願技術による半導体装置のオフ状態での電位分布図である。It is an electric potential distribution figure in the OFF state of a semiconductor device by prior application technology. 先願技術による半導体装置において高濃度n層のn型不純物濃度を耐圧低下が起きるまで増加させた場合のオフ状態での電位分布図である。FIG. 6 is a potential distribution diagram in an off state when the n-type impurity concentration of the high-concentration n layer is increased until breakdown voltage reduction occurs in the semiconductor device according to the prior application technique. 本発明の一実施例ならびに先願技術による半導体装置の特性比較図である。FIG. 6 is a characteristic comparison diagram of a semiconductor device according to an embodiment of the present invention and a prior application technique. 本発明の2つの実施例による半導体装置の特性比較図である。It is a characteristic comparison figure of the semiconductor device by two Examples of this invention. 本発明の一実施例による半導体装置を用いたプラズマディスプレイ駆動用半導体集積回路装置の出力段回路の構成例である。It is a structural example of the output stage circuit of the semiconductor integrated circuit device for a plasma display drive using the semiconductor device by one Example of this invention. 本発明の一実施例による半導体装置を用いたプラズマディスプレイ駆動用半導体集積回路装置の構成例である。It is a structural example of the semiconductor integrated circuit device for a plasma display drive using the semiconductor device by one Example of this invention. 本発明の一実施例による半導体装置を用いたプラズマディスプレイ駆動用半導体集積回路装置を用いたプラズマディスプレイ装置の構成例である。1 is a configuration example of a plasma display device using a semiconductor integrated circuit device for driving a plasma display using a semiconductor device according to an embodiment of the present invention. 先願技術による半導体装置を示す断面構造図である。It is sectional structure drawing which shows the semiconductor device by a prior application technique.

符号の説明Explanation of symbols

1…n型半導体基板、2…pベース領域、3…pコンタクト領域、4…nエミッタ領域、5…ゲート酸化膜、6…ゲート電極、7…エミッタ電極、8…エミッタ・ゲート領域、9…nバッファ領域、10…pコレクタ領域、11…コレクタ電極、12…コレクタ領域、13…ドリフト領域、14…チャネル領域、15…隣接するエミッタ・ゲート領域間の領域、16…SOI基板の酸化膜、17…SOI基板の支持基板、18…n層、19…出力段素子、20…出力段素子、21…出力段制御回路、22…出力段回路、23…シフトレジスタ回路、24…ラッチ回路、25…セレクタ回路、26…プラズマディスプレイ駆動用半導体集積回路。   DESCRIPTION OF SYMBOLS 1 ... n-type semiconductor substrate, 2 ... p base region, 3 ... p contact region, 4 ... n emitter region, 5 ... Gate oxide film, 6 ... Gate electrode, 7 ... Emitter electrode, 8 ... Emitter gate region, 9 ... n buffer region, 10 ... p collector region, 11 ... collector electrode, 12 ... collector region, 13 ... drift region, 14 ... channel region, 15 ... region between adjacent emitter and gate regions, 16 ... oxide film of SOI substrate, DESCRIPTION OF SYMBOLS 17 ... Support substrate of SOI substrate, 18 ... N layer, 19 ... Output stage element, 20 ... Output stage element, 21 ... Output stage control circuit, 22 ... Output stage circuit, 23 ... Shift register circuit, 24 ... Latch circuit, 25 ... Selector circuit, 26 ... Semiconductor integrated circuit for driving plasma display.

Claims (4)

第一導電型の半導体基板の一方の主表面の表面層に、
選択的に形成された内部に第一導電型エミッタ領域を含む第二導電型ベース領域、
前記第二導電型ベース領域上に絶縁膜を介して形成されたゲート電極、および
第二導電型コレクタ領域
を備え、隣接する2つの前記第二導電型コレクタ領域の間に2つ以上の前記第二導電型ベース領域が挟まれた半導体装置において、
2つ以上の前記第二導電型ベース領域間およびこれらの第二導電型ベース領域の下部に前記第一導電型半導体基板よりも高濃度の第一導電型領域を形成するとともに、
隣接する2つの前記第二導電型ベース領域間を前記絶縁膜を介して連絡するように形成されたゲート電極の幅を4μm以下としたことを特徴とする半導体装置。
In the surface layer of one main surface of the semiconductor substrate of the first conductivity type,
A second conductivity type base region including a first conductivity type emitter region in the selectively formed interior;
A gate electrode formed on the second conductivity type base region via an insulating film; and a second conductivity type collector region, and two or more second conductivity type collector regions between two adjacent second conductivity type collector regions. In a semiconductor device in which a two-conductivity type base region is sandwiched,
Forming a first conductivity type region having a concentration higher than that of the first conductivity type semiconductor substrate between two or more of the second conductivity type base regions and below the second conductivity type base regions;
A semiconductor device, wherein a width of a gate electrode formed so as to communicate between two adjacent second conductivity type base regions through the insulating film is 4 μm or less.
請求項1において、る、隣接する2つの前記ゲート電極間の間隙からエミッタ電極が引き出され、隣接する2つの前記ゲート電極間の前記間隙を3μm以下としたことを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein an emitter electrode is drawn from a gap between the two adjacent gate electrodes, and the gap between the two adjacent gate electrodes is 3 μm or less. 請求項1または2に記載の半導体装置を備えたことを特徴とするプラズマディスプレイ駆動用半導体集積回路装置。   A semiconductor integrated circuit device for driving a plasma display, comprising the semiconductor device according to claim 1. 請求項3に記載のプラズマディスプレイ駆動用半導体集積回路装置を備えたことを特徴とするプラズマディスプレイ装置。   A plasma display apparatus comprising the semiconductor integrated circuit device for driving a plasma display according to claim 3.
JP2008161542A 2008-06-20 2008-06-20 Semiconductor device, semiconductor integrated circuit device for plasma display driving using the same, and plasma display device Pending JP2010003889A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008161542A JP2010003889A (en) 2008-06-20 2008-06-20 Semiconductor device, semiconductor integrated circuit device for plasma display driving using the same, and plasma display device
US12/487,299 US20090315072A1 (en) 2008-06-20 2009-06-18 Semiconductor Device, Semiconductor Integrated Circuit Equipment Using the Same for Driving Plasma Display, and Plasma Display Unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161542A JP2010003889A (en) 2008-06-20 2008-06-20 Semiconductor device, semiconductor integrated circuit device for plasma display driving using the same, and plasma display device

Publications (1)

Publication Number Publication Date
JP2010003889A true JP2010003889A (en) 2010-01-07

Family

ID=41430303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161542A Pending JP2010003889A (en) 2008-06-20 2008-06-20 Semiconductor device, semiconductor integrated circuit device for plasma display driving using the same, and plasma display device

Country Status (2)

Country Link
US (1) US20090315072A1 (en)
JP (1) JP2010003889A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124533B2 (en) * 2009-06-30 2013-01-23 株式会社日立製作所 Semiconductor device, plasma display driving semiconductor integrated circuit device using the same, and plasma display device
CN110010678A (en) * 2018-01-04 2019-07-12 中兴通讯股份有限公司 Lateral insulated gate bipolar transistor and preparation method thereof
KR20190140220A (en) 2018-06-11 2019-12-19 에스케이하이닉스 주식회사 Semiconductor Integrated Circuit Device Having Electrostatic Discharge Protecting Circuit and Method of Manufacturing The same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424368B2 (en) * 2007-04-18 2010-03-03 株式会社日立製作所 Semiconductor device and semiconductor integrated circuit device for driving plasma display using the same

Also Published As

Publication number Publication date
US20090315072A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
CN104282733B (en) Semiconductor devices
US8269305B2 (en) High-voltage semiconductor device
JP4424368B2 (en) Semiconductor device and semiconductor integrated circuit device for driving plasma display using the same
WO2013039135A1 (en) High-voltage semiconductor device
US10008561B2 (en) Semiconductor device
JP4864344B2 (en) Semiconductor device
JP2005235892A (en) Semiconductor device
JP5124533B2 (en) Semiconductor device, plasma display driving semiconductor integrated circuit device using the same, and plasma display device
JP4166010B2 (en) Horizontal high voltage MOSFET and semiconductor device having the same
US20170317208A1 (en) High-voltage semiconductor device and method for manufacturing the same
JP2010003889A (en) Semiconductor device, semiconductor integrated circuit device for plasma display driving using the same, and plasma display device
KR101505313B1 (en) Semiconductor device and semiconductor integrated circuit device using the same
US8698194B2 (en) Semiconductor integrated circuit with high withstand voltage element forming trench isolation on substrate
JP6844273B2 (en) Semiconductor device
US10497698B2 (en) Semiconductor circuit and semiconductor device
JP5092202B2 (en) Semiconductor device
JP2004006555A (en) Semiconductor device
JP2017073410A (en) Semiconductor device and semiconductor device manufacturing method
JP2006310770A (en) High breakdown voltage semiconductor device and its manufacturing method
JP6414861B2 (en) Semiconductor device
JP6327747B2 (en) Semiconductor device
EP3261126A1 (en) High-voltage semiconductor device and method for manufacturing the same
JP5401845B2 (en) Semiconductor device and manufacturing method thereof
JP2011035323A (en) Semiconductor device
JP2005150617A (en) Semiconductor device