JP2010002016A - Heat insulating structure and its repair method - Google Patents

Heat insulating structure and its repair method Download PDF

Info

Publication number
JP2010002016A
JP2010002016A JP2008162611A JP2008162611A JP2010002016A JP 2010002016 A JP2010002016 A JP 2010002016A JP 2008162611 A JP2008162611 A JP 2008162611A JP 2008162611 A JP2008162611 A JP 2008162611A JP 2010002016 A JP2010002016 A JP 2010002016A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
heat
water
airgel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008162611A
Other languages
Japanese (ja)
Other versions
JP4997187B2 (en
Inventor
Konosuke Kato
孝之介 加藤
Tomohiko Hara
智彦 原
Toru Tsukamoto
徹 塚本
Mamoru Yagi
衛 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2008162611A priority Critical patent/JP4997187B2/en
Publication of JP2010002016A publication Critical patent/JP2010002016A/en
Application granted granted Critical
Publication of JP4997187B2 publication Critical patent/JP4997187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulating structure for effectively maintaining the heat insulating property. <P>SOLUTION: The heat insulating structure includes: a material 10 to be thermally insulated; a first heat-insulating member 20, which covers the material 10; and a second heat-insulating member 30, which covers the first heat-insulating member 20 having both steam permeability and water impermeability. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、保温構造に関し、特に、保温構造における断熱性の維持に関する。   The present invention relates to a heat retaining structure, and more particularly to maintaining heat insulation in a heat retaining structure.

従来、例えば、特許文献1には、配管の外周を保温材で覆い、さらに当該保温材の外周を金属板からなる保護カバーで覆うことが記載されている。
特開平8−19830号公報
Conventionally, for example, Patent Document 1 describes that an outer periphery of a pipe is covered with a heat insulating material, and further, an outer periphery of the heat insulating material is covered with a protective cover made of a metal plate.
JP-A-8-19830

しかしながら、上記従来技術においては、例えば、雨によって保護カバーの継ぎ目から水が浸入した場合には、保温材が水を含み、その結果、当該保温材の断熱性が低下することがあった。そして、この場合、水を含んだ保温材を、乾燥した新たな保温材と交換する必要があった。   However, in the above prior art, for example, when water enters from the joint of the protective cover due to rain, the heat insulating material contains water, and as a result, the heat insulating property of the heat insulating material may be lowered. In this case, it is necessary to replace the heat insulating material containing water with a new dry heat insulating material.

本発明は、上記課題に鑑みて為されたものであって、断熱性を効果的に維持できる保温構造を提供することをその目的の一つとする。   This invention is made | formed in view of the said subject, Comprising: It aims at providing the heat retention structure which can maintain heat insulation effectively.

上記課題を解決するための本発明の一実施形態に係る保温構造は、被保温体と、前記被保温体を覆う第一の保温材と、前記第一の保温材を覆う、水蒸気透過性と非透水性とを兼ね備えた第二の保温材と、を有することを特徴とする。本発明によれば、断熱性を効果的に維持できる保温構造を提供することができる。   In order to solve the above problems, a heat retaining structure according to an embodiment of the present invention includes a heat retaining body, a first heat retaining material that covers the heat retaining body, and a water vapor permeability that covers the first heat retaining material. And a second heat insulating material having non-water permeability. ADVANTAGE OF THE INVENTION According to this invention, the heat retention structure which can maintain heat insulation effectively can be provided.

また、前記被保温体は、内部に流体が流通する配管であり、前記第一の保温材は、前記配管の外周を覆い、前記第二の保温材は、前記第一の保温材の外周を覆うこととしてもよい。こうすれば、断熱性を効果的に維持できる配管構造を提供することができる。また、前記第二の保温材は、エアロゲルが充填された繊維体であることとしてもよい。こうすれば、保温構造の断熱性をより効果的に維持することができる。   Further, the heat retaining body is a pipe through which a fluid flows, the first heat insulating material covers an outer periphery of the pipe, and the second heat insulating material covers an outer periphery of the first heat insulating material. It may be covered. If it carries out like this, the piping structure which can maintain heat insulation effectively can be provided. The second heat insulating material may be a fibrous body filled with aerogel. If it carries out like this, the heat insulation of a heat retention structure can be maintained more effectively.

以下に、本発明の一実施形態に係る保温構造(以下、「本構造」という。)について説明する。本実施形態においては、本構造が、保温の対象となる構造体である被保温体として配管を有する配管構造である例について主に説明する。   Hereinafter, a heat retaining structure (hereinafter referred to as “the present structure”) according to an embodiment of the present invention will be described. In the present embodiment, an example in which the present structure is a pipe structure having a pipe as a heat retaining body, which is a structure to be kept warm, will be mainly described.

図1は、本構造1の一例についての斜視図であり、図2は、当該本構造1の断面図である。図1及び図2に示すように、本構造1は、内部に流体が流通する配管10と、当該配管10の外周を覆う第一の保温材20と、当該第一の保温材20の外周を覆う第二の保温材30と、を有している。なお、図1においては、説明の便宜のために、配管10の外周を覆う第一の保温材20及び第二の保温材30の一部を省略して、当該配管10、第一の保温材20及び第二の保温材30をそれぞれ露出させて図示している。   FIG. 1 is a perspective view of an example of the structure 1, and FIG. 2 is a cross-sectional view of the structure 1. As shown in FIGS. 1 and 2, the structure 1 includes a pipe 10 through which a fluid flows, a first heat insulating material 20 that covers the outer periphery of the pipe 10, and an outer periphery of the first heat insulating material 20. And a second heat insulating material 30 to be covered. In FIG. 1, for convenience of explanation, a part of the first heat insulating material 20 and the second heat insulating material 30 covering the outer periphery of the pipe 10 is omitted, and the pipe 10 and the first heat insulating material are omitted. 20 and the second heat insulating material 30 are respectively exposed.

配管10は、本構造1が配置される環境の外気温度より高い温度の液体又は気体を輸送するために設置されている。この配管10は、例えば、炭素鋼やステンレス等の金属製である。配管10の内部に形成された中空部10aには、輸送すべき液体又は気体が流通する。   The pipe 10 is installed to transport a liquid or gas having a temperature higher than the outside air temperature of the environment where the present structure 1 is arranged. The pipe 10 is made of a metal such as carbon steel or stainless steel, for example. In the hollow portion 10a formed inside the pipe 10, a liquid or gas to be transported flows.

第一の保温材20は、配管10の外気による冷却を抑制するために設けられた断熱材である。第一の保温材20として用いることのできる断熱材は、目的に応じた適切な断熱性を有する部材であれば特に限られないが、例えば、けい酸カルシウム(ゾノライト系けい酸カルシウム等)、パーライト等の断熱性無機多孔質成形体や、グラスウール、ロックウール等の断熱性無機繊維体を好ましく用いることができる。また、第一の保温材20としては、例えば、配管10への施工に先立って、円周方向において複数に分割可能な円筒成形体として形成されたものを用いることもできる。   The first heat insulating material 20 is a heat insulating material provided to suppress cooling of the pipe 10 by the outside air. The heat insulating material that can be used as the first heat insulating material 20 is not particularly limited as long as it is a member having an appropriate heat insulating property according to the purpose. For example, calcium silicate (zonolite calcium silicate, etc.), perlite, and the like. It is possible to preferably use a heat insulating inorganic porous body such as glass wool, rock wool or the like. Moreover, as the 1st heat insulating material 20, what was formed as a cylindrical molded object which can be divided | segmented into plurality in the circumferential direction prior to construction to the piping 10, for example can also be used.

また、第一の保温材20としては、その撥水性を高める処理が施された断熱性無機多孔質成形体又は無機繊維体を用いることができる。ただし、このような撥水化処理によって第一の保温材20に非透水性を付与することはできず、当該第一の保温材20は透水性を有するものとなる。   Moreover, as the 1st heat insulating material 20, the heat insulating inorganic porous molded object or the inorganic fiber body in which the process which raises the water repellency was given can be used. However, such a water repellent treatment cannot impart water permeability to the first heat insulating material 20, and the first heat insulating material 20 has water permeability.

第二の保温材30は、断熱性、水蒸気透過性及び非透水性を備えている。すなわち、第二の保温材30は、第一の保温材20の内部の温度を上昇させることのできる断熱性を有している。   The 2nd heat insulating material 30 is equipped with heat insulation, water vapor permeability, and water impermeability. That is, the second heat insulating material 30 has a heat insulating property capable of increasing the temperature inside the first heat insulating material 20.

具体的に、第一の保温材20においては、配管10側の表面(図2に示す、配管10の径方向内側の内面21)の温度に比べて、反対側の表面(図2に示す、配管10の径方向外側の外面22)の温度は低くなる。この点、第一の保温材20の外周(すなわち外面22)を第二の保温材30で覆うことにより、当該第二の保温材30で覆わない場合に比べて、当該第一の保温材20の外面22の温度を上昇させることができる。この結果、第一の保温材20において、外面22付近の温度と内面21付近の温度との差が低減されて、当該第一の保温材20の内部の全域において温度を上昇させることができる。   Specifically, in the first heat insulating material 20, the surface on the opposite side (shown in FIG. 2) is compared with the temperature of the surface on the pipe 10 side (inner surface 21 on the radially inner side of the pipe 10 shown in FIG. 2). The temperature of the outer surface 22) on the radially outer side of the pipe 10 is lowered. In this regard, by covering the outer periphery (that is, the outer surface 22) of the first heat insulating material 20 with the second heat insulating material 30, the first heat insulating material 20 is compared with the case where the second heat insulating material 30 is not covered. The temperature of the outer surface 22 can be increased. As a result, in the first heat insulating material 20, the difference between the temperature in the vicinity of the outer surface 22 and the temperature in the vicinity of the inner surface 21 is reduced, and the temperature can be increased in the entire area inside the first heat insulating material 20.

また、第二の保温材30は、第一の保温材20で発生した水蒸気(すなわち、気体状態の水)が透過することのできる水蒸気透過性も有している。さらに、第二の保温材30は、強い雨や風に晒された場合であっても液体状の水が透過することのできない非透水性をも有している。   The second heat insulating material 30 also has water vapor permeability that allows water vapor (that is, gaseous water) generated in the first heat insulating material 20 to pass therethrough. Furthermore, the second heat insulating material 30 also has a water-impermeable property through which liquid water cannot permeate even when exposed to strong rain or wind.

第二の保温材30としては、水蒸気透過性と非透水性とを兼ね備えた断熱材を用いることができ、例えば、エアロゲルが充填された繊維体(以下、「エアロゲル繊維体」という。)を好ましく用いることができる。   As the second heat insulating material 30, a heat insulating material having both water vapor permeability and non-water permeability can be used. For example, a fiber body filled with aerogel (hereinafter referred to as “aerogel fiber body”) is preferable. Can be used.

このエアロゲル繊維体は、繊維基材にエアロゲルを充填することにより製造することのできる断熱性の構造体である。具体的に、エアロゲル繊維体は、例えば、繊維基材の繊維管にエアロゲルの原料を含浸し、次いで、当該エアロゲルの原料が含浸された繊維基材を超臨界乾燥することにより製造することができる。   This airgel fiber body is a heat insulating structure that can be manufactured by filling a fiber substrate with airgel. Specifically, the airgel fiber body can be produced, for example, by impregnating a fiber tube of a fiber base material with an airgel raw material and then supercritically drying the fiber base material impregnated with the airgel raw material. .

エアロゲル繊維体を構成する繊維基材としては、無機繊維又は有機繊維の織布又は不織布を用いることができる。繊維基材として、繊維が不規則に絡み合った不織布を用いることにより、繊維間にエアロゲルをより効果的に保持することができる。   As a fiber base material which comprises an airgel fiber body, the woven fabric or nonwoven fabric of an inorganic fiber or an organic fiber can be used. By using a nonwoven fabric in which fibers are entangled irregularly as a fiber base material, the airgel can be more effectively held between the fibers.

また、繊維基材を構成する繊維としては、例えば、ポリエチレンテレフタレート(PET)繊維等の樹脂繊維、炭素繊維、ガラス繊維、アルミナ繊維等のセラミックス繊維を用いることができる。   Moreover, as a fiber which comprises a fiber base material, ceramic fibers, such as resin fibers, such as a polyethylene terephthalate (PET) fiber, carbon fiber, glass fiber, an alumina fiber, can be used, for example.

繊維基材に充填されるエアロゲルとしては、無機材料からなるエアロゲル(無機エアロゲル)又は有機材料からなるエアロゲル(有機エアロゲル)を用いることができる。無機エアロゲルを用いることにより、エアロゲル繊維体の耐熱性を効果的に高めることができる。   As an airgel with which a fiber base material is filled, an airgel (inorganic airgel) made of an inorganic material or an airgel (organic airgel) made of an organic material can be used. By using the inorganic airgel, the heat resistance of the airgel fiber can be effectively increased.

無機エアロゲルとしては、例えば、シリカエアロゲルやアルミナエアロゲルを用いることができる。中でも、シリカエアロゲルを用いることにより、エアロゲル繊維体の断熱性を効果的に高めることができる。   As the inorganic airgel, for example, silica airgel or alumina airgel can be used. Especially, the heat insulation of an airgel fiber body can be effectively improved by using a silica airgel.

また、第二の保温材30としては、第一の保温材20よりも断熱性が高いものを好ましく用いることができる。すなわち、例えば、その熱伝導率が、第一の保温材20の熱伝導率よりも低い第二の保温材30を好ましく用いることができる。   Moreover, as the second heat insulating material 30, a material having higher heat insulation than the first heat insulating material 20 can be preferably used. That is, for example, the second heat insulating material 30 whose heat conductivity is lower than the heat conductivity of the first heat insulating material 20 can be preferably used.

具体的に、ASTM C177に準拠した方法で測定される第二の保温材30の25℃における熱伝導率は、例えば、0.05W/(m・K)以下であることが好ましく、0.02W/(m・K)以下であることがより好ましい。   Specifically, the thermal conductivity at 25 ° C. of the second heat insulating material 30 measured by a method according to ASTM C177 is preferably 0.05 W / (m · K) or less, for example, 0.02 W. / (M · K) or less is more preferable.

すなわち、例えば、その熱伝導率が上記の範囲であるエアロゲル繊維体を第二の保温材30として好ましく用いることができる。なお、エアロゲル繊維体の繊維間の空隙を埋めるエアロゲルは、当該エアロゲル内の微細孔により、当該エアロゲル繊維体の内部における空気の対流を効果的に防止することができる。このため、エアロゲル繊維体は、優れた断熱性を有することができる。   That is, for example, an airgel fiber body whose thermal conductivity is in the above range can be preferably used as the second heat insulating material 30. In addition, the airgel which fills the space | gap between the fibers of an airgel fiber body can prevent effectively the convection of the air in the inside of the said airgel fiber body by the micropore in the said airgel. For this reason, an airgel fiber body can have the outstanding heat insulation.

また、ASTM E96(Procedure B)に準拠した方法で測定される第二の保温材30の水蒸気透過性は、例えば、600ng/(Pa・S・m)以上であることが好ましく、1500ng/(Pa・S・m)以上であることがより好ましい。 In addition, the water vapor permeability of the second heat insulating material 30 measured by a method based on ASTM E96 (Procedure B) is preferably, for example, 600 ng / (Pa · S · m 2 ) or more, preferably 1500 ng / ( Pa · S · m 2 ) or more is more preferable.

また、ASTM C1104に準拠した方法で測定される第二の保温材30の水中浸漬後の吸水率は、例えば、10重量%以下であることが好ましく、4重量%以下であることがより好ましい。また、ASTM C1511に準拠した方法で測定される第二の保温材30の撥水性は、例えば、5g重量減以下であることが好ましく、3g重量減以下であることがより好ましい。   Moreover, the water absorption rate after immersion in water of the second heat insulating material 30 measured by a method based on ASTM C1104 is, for example, preferably 10% by weight or less, and more preferably 4% by weight or less. Further, the water repellency of the second heat insulating material 30 measured by a method based on ASTM C1511 is, for example, preferably 5 g weight loss or less, and more preferably 3 g weight loss or less.

すなわち、第二の保温材30としては、例えば、上記の範囲の水蒸気透過性に加えて、上記の範囲の吸水率又は撥水性の両方または一方をさらに備えたエアロゲル繊維体を好ましく用いることができる。なお、エアロゲル繊維体は、上述したようなエアロゲル内の微細孔により、優れた断熱性に加えて、上記のような水蒸気透過性と非透水性とを兼ね備えることができる。   That is, as the second heat insulating material 30, for example, an airgel fiber body further provided with both or one of water absorption and water repellency in the above range in addition to the water vapor permeability in the above range can be preferably used. . In addition, the airgel fiber body can have the above water vapor permeability and water impermeability in addition to the excellent heat insulating property due to the fine pores in the airgel as described above.

また、第二の保温材30としてエアロゲル繊維体を用いる場合、当該エアロゲル繊維体の嵩密度は、例えば、100〜300kg/mの範囲とすることが好ましく、150〜200kg/mの範囲とすることがより好ましい。嵩密度が上記の範囲であるエアロゲル繊維体を用いることで、本構造1の軽量化を図ることができる。 Moreover, when using an airgel fiber body as the 2nd heat insulating material 30, it is preferable that the bulk density of the said airgel fiber body shall be the range of 100-300 kg / m < 3 >, for example, and the range of 150-200 kg / m < 3 > More preferably. By using an airgel fiber body having a bulk density in the above range, the structure 1 can be reduced in weight.

また、第二の保温材30は、適度な可撓性を有することが好ましい。すなわち、第二の保温材30としては、第一の保温材20の外周に沿って巻き付けることのできる柔軟性を備えたシート状体を用いることができる。   Moreover, it is preferable that the 2nd heat insulating material 30 has moderate flexibility. That is, as the second heat insulating material 30, a sheet-like body having flexibility that can be wound around the outer periphery of the first heat insulating material 20 can be used.

具体的に、例えば、不織布である繊維基材にエアロゲルが充填されてなるエアロゲル繊維体のシートを好ましく用いることができる。この場合、エアロゲル繊維体の厚さは、例えば、2〜20mmの範囲であることが好ましく、3〜10mmの範囲であることがより好ましい。   Specifically, for example, an airgel fiber sheet obtained by filling a fiber base material, which is a nonwoven fabric, with airgel can be preferably used. In this case, the thickness of the airgel fiber body is, for example, preferably in the range of 2 to 20 mm, and more preferably in the range of 3 to 10 mm.

本構造1においては、その断熱性を効果的に維持することができる。すなわち、例えば、第一の保温材20が上述したような断熱性無機多孔質成形体や無機繊維体である場合、本構造1の外部から当該第一の保温材20に水が浸入すると、当該第一の保温材20が水を保持してしまい、その結果、当該第一の保温材20の断熱性が低下することとなる。   In the present structure 1, the heat insulating property can be effectively maintained. That is, for example, when the first heat insulating material 20 is a heat insulating inorganic porous molded body or an inorganic fiber body as described above, when water enters the first heat insulating material 20 from the outside of the structure 1, The 1st heat insulating material 20 hold | maintains water, As a result, the heat insulation of the said 1st heat insulating material 20 will fall.

これに対し、本構造1においては、最外層を構成する第二の保温材30が非透水性を有しているため、例えば、本構造1が雨や雪に晒された場合においても、本構造1の内部に水が浸入して第一の保温材20に水が含まれることを効果的に防止することができる。   On the other hand, in the present structure 1, the second heat insulating material 30 constituting the outermost layer has water-impermeable properties. For example, even when the present structure 1 is exposed to rain or snow, It is possible to effectively prevent water from entering the structure 1 and including water in the first heat insulating material 20.

したがって、第二の保温材30で第一の保温材20を被覆することによって、当該第一の保温材20の断熱性を効果的に維持することができる。もちろん、第二の保温材20は、それ自身が非透水性であるため、その断熱性を効果的に維持することができる。   Therefore, by covering the first heat insulating material 20 with the second heat insulating material 30, the heat insulating property of the first heat insulating material 20 can be effectively maintained. Of course, since the 2nd heat insulating material 20 itself is water-impermeable, it can maintain the heat insulation effectively.

また、本構造1においては、第一の保温材20の断熱性が低下した場合であっても、その断熱性を効果的に回復させることができる。すなわち、例えば、第一の保温材20の外周に、シート状の第二の保温材30を巻き付けることにより本構造1を製造した場合には、当該第二の保温材30の一部に継ぎ目(不図示)が形成されることとなる。   Moreover, in this structure 1, even if it is a case where the heat insulation of the 1st heat insulating material 20 falls, the heat insulation can be recovered effectively. That is, for example, when the structure 1 is manufactured by winding the sheet-like second heat insulating material 30 around the outer periphery of the first heat insulating material 20, a seam ( (Not shown) will be formed.

この場合、本構造1に対して雨や雪が強く吹き付けられることにより、第二の保温材30の継ぎ目の隙間から、当該第二の保温材30と第一の保温材20との間に水が浸入し、当該第一の保温材20が水を含むこととなる場合がある。   In this case, when rain or snow is strongly blown against the structure 1, water flows between the second heat insulating material 30 and the first heat insulating material 20 from the gap between the seams of the second heat insulating material 30. It may enter and the first heat insulating material 20 may contain water.

しかしながら、本構造1においては、第一の保温材20から水を効果的に排出させることができる。すなわち、上述のとおり、本構造1においては、第一の保温材20は第二の保温材30によって覆われているため、当該第一の保温材20の内部の温度は、内面21から外面22までの全範囲において、配管10の温度に近い範囲で維持することができる。したがって、第一の保温材20に水が浸入した場合には、この水を当該第一の保温材20の内部で効果的に蒸発させることができる。   However, in this structure 1, water can be effectively discharged from the first heat insulating material 20. That is, as described above, in the present structure 1, since the first heat insulating material 20 is covered by the second heat insulating material 30, the temperature inside the first heat insulating material 20 is changed from the inner surface 21 to the outer surface 22. The entire range up to can be maintained in a range close to the temperature of the pipe 10. Accordingly, when water enters the first heat insulating material 20, the water can be effectively evaporated inside the first heat insulating material 20.

そして、第一の保温材20を覆う第二の保温材30は、気化した水が透過できる水蒸気透過性を有しているため、第一の保温材20に含まれていた水の蒸発により発生した水蒸気は、当該第二の保温材30を透過して、本構造1の外部に効果的に排出される。すなわち、第一の保温材20の内部で発生した水蒸気は、第二の保温材30の当該第一の保温材20側の表面(図2に示す内面31)から、当該第二の保温材30の外気中に露出した表面(図2に示す外面32)まで、当該第二の保温材30の内部を通過して、当該外気中に排出される。   And since the 2nd heat insulating material 30 which covers the 1st heat insulating material 20 has the water vapor permeability which the vaporized water can permeate | transmit, it generate | occur | produces by evaporation of the water contained in the 1st heat insulating material 20 The water vapor that has passed through the second heat insulating material 30 is effectively discharged outside the structure 1. That is, the water vapor generated inside the first heat insulating material 20 is supplied from the surface of the second heat insulating material 30 on the first heat insulating material 20 side (the inner surface 31 shown in FIG. 2) to the second heat insulating material 30. The surface exposed to the outside air (outer surface 32 shown in FIG. 2) passes through the inside of the second heat insulating material 30 and is discharged into the outside air.

このように、本構造1においては、断熱性、水蒸気透過性及び非透水性を備えた第二の保温材30により第一の保温材20が覆われているため、当該第一の保温材20に浸入した水を蒸発させるとともに、当該第二の保温材30を介して排出し、当該第一の保温材20を再び乾燥させることができる。すなわち、本構造1は、断熱性の自己回復能力を備えている。   Thus, in this structure 1, since the 1st heat insulating material 20 is covered with the 2nd heat insulating material 30 provided with heat insulation, water vapor permeability, and water permeability, the said 1st heat insulating material 20 is concerned. It is possible to evaporate the water that has entered the air and to discharge the water through the second heat insulating material 30 to dry the first heat insulating material 20 again. That is, the structure 1 has a heat-insulating self-healing ability.

また、本構造1においては、第二の保温材30の外周をさらに金属製の外装材で覆うこととしてもよい。図3は、この場合の本構造1の一例についての斜視図であり、図4は、当該本構造1の断面図である。   Moreover, in this structure 1, it is good also as covering the outer periphery of the 2nd heat insulating material 30 with a metal exterior material further. FIG. 3 is a perspective view of an example of the main structure 1 in this case, and FIG. 4 is a cross-sectional view of the main structure 1.

図3及び図4に示す例において、本構造1は、配管10、第一の保温材20、及び第二の保温材30に加えて、さらに当該第二の保温材30の外周を覆う金属製の外装材40を有している。   In the example shown in FIGS. 3 and 4, the structure 1 is made of metal that covers the outer periphery of the second heat insulating material 30 in addition to the pipe 10, the first heat insulating material 20, and the second heat insulating material 30. The exterior material 40 is included.

したがって、この本構造1においては、第二の保温材30と外装材40とによって第一の保温材20を被覆するため、外部から当該第一の保温材20に水が浸入することをより効果的に防止することができる。   Therefore, in this structure 1, since the first heat insulating material 20 is covered with the second heat insulating material 30 and the exterior material 40, it is more effective that water enters the first heat insulating material 20 from the outside. Can be prevented.

また、本構造1は、最外層として金属製の外装材40を有することによって、その力学的強度を向上させることができる。このため、例えば、作業者が本構造1の上(すなわち、外装材40の上)に乗って所定の作業を行うこともできる。   Moreover, this structure 1 can improve the mechanical strength by having the metal exterior member 40 as the outermost layer. For this reason, for example, an operator can get on the structure 1 (that is, on the exterior material 40) and perform a predetermined work.

次に、具体的な実施例について説明する。   Next, specific examples will be described.

[実施例]
この実施例においては、図3及び図4に示す本構造1における断熱性の自己回復能力を確認した。すなわち、被保温体として、温水を輸送するための配管10を準備した。この配管10は、外径が約200mmである炭素鋼製の円筒状構造体であり、略水平に延びるよう屋外に設置されていた。
[Example]
In this example, the heat-insulating self-healing ability in the structure 1 shown in FIGS. 3 and 4 was confirmed. That is, the piping 10 for transporting warm water was prepared as a body to be insulated. The pipe 10 is a carbon steel cylindrical structure having an outer diameter of about 200 mm, and is installed outdoors so as to extend substantially horizontally.

また、第一の保温材20として、けい酸カルシウムを主成分とする円筒状の断熱性無機多孔質成形体を準備した。この新設保温材は、厚さが40mmであり、円周方向において4つに分割可能であった。   Moreover, the cylindrical heat-insulating inorganic porous molded object which has calcium silicate as a main component as the 1st heat insulating material 20 was prepared. This new heat insulating material had a thickness of 40 mm and could be divided into four in the circumferential direction.

また、第二の保温材30として、炭素繊維とガラス繊維とを含む混合繊維の不織布である繊維基材に、シリカ系エアロゲルを充填したエアロゲル繊維体(Pyrogel 6350、Aspen Aerogels Inc.)を用いた。このエアロゲル繊維体は、厚さが6mmであって適度な可撓性を有するシート状成形体であった。また、外装材40として、厚さが0.4mmである着色亜鉛メッキ鋼板製の円筒状カバー材を準備した。   Further, as the second heat insulating material 30, an airgel fiber body (Pyrogel 6350, Aspen Aerogels Inc.) in which a fiber base material that is a nonwoven fabric of mixed fibers containing carbon fibers and glass fibers is filled with silica-based airgel is used. . This airgel fiber body was a sheet-like molded body having a thickness of 6 mm and having appropriate flexibility. Moreover, as the exterior material 40, a cylindrical cover material made of a colored galvanized steel sheet having a thickness of 0.4 mm was prepared.

第一の条件においては、まず、樹脂製の袋内において、4つに分割された第一の保温材20の各部分を水中に一昼夜浸漬した。次いで、浸漬により水を含んだ第一の保温材20を容器から取り出し、当該第一の保温材20を配管10の外周を覆うように取り付けた。   In the first condition, first, each part of the first heat insulating material 20 divided into four parts was immersed in water all day and night in a resin bag. Subsequently, the 1st heat insulating material 20 containing water was taken out from the container by immersion, and the said 1st heat insulating material 20 was attached so that the outer periphery of the piping 10 might be covered.

そして、この水を含んだ第一の保温材20の外周を覆うように第二の保温材30を取り付け、図1及び図2に示すような本構造1を製造した。さらに、第二の保温材30の外周を覆うように、外装材40を取り付けて、図3及び図4に示すような本構造1を製造した。   And the 2nd heat insulating material 30 was attached so that the outer periphery of the 1st heat insulating material 20 containing this water might be covered, and this structure 1 as shown in FIG.1 and FIG.2 was manufactured. Furthermore, the exterior material 40 was attached so that the outer periphery of the 2nd heat insulating material 30 might be covered, and this structure 1 as shown in FIG.3 and FIG.4 was manufactured.

こうして、配管10と、浸漬処理によって水を含ませた第一の保温材20と、エアロゲル繊維体からなる第二の保温材30と、金属製の外装材40と、を有する配管構造(構造1)を製造した。   Thus, a piping structure (structure 1) having the piping 10, the first heat insulating material 20 containing water by the dipping process, the second heat insulating material 30 made of the airgel fiber body, and the metal exterior material 40. ) Was manufactured.

第二の条件においては、上述の第一の条件と同様に、第一の保温材20を水中に浸漬し、水を含んだ当該第一の保温材20を配管10に取り付けた。そして、第二の保温材30を取り付けることなく、第一の保温材20の外周を外装材40で覆った。こうして、配管10と、浸漬処理によって水を含ませた第一の保温材20と、金属製の外装材40と、を有する配管構造(構造2)を製造した。   In the second condition, similar to the first condition described above, the first heat insulating material 20 was immersed in water, and the first heat insulating material 20 containing water was attached to the pipe 10. The outer periphery of the first heat insulating material 20 was covered with the exterior material 40 without attaching the second heat insulating material 30. Thus, a piping structure (Structure 2) having the piping 10, the first heat insulating material 20 containing water by the dipping treatment, and the metal exterior material 40 was manufactured.

第三の条件においては、水中に浸漬していない乾燥した第一の保温材20を配管10の外周を覆うように取り付けた。そして、この第一の保温材20の外周を覆うように外装材40を取り付けた。こうして、配管10と、乾燥した第一の保温材20と、金属製の外装材40と、を有する配管構造(構造3)を製造した。   Under the third condition, the dried first heat insulating material 20 not immersed in water was attached so as to cover the outer periphery of the pipe 10. And the exterior material 40 was attached so that the outer periphery of this 1st heat insulating material 20 might be covered. Thus, a piping structure (structure 3) having the piping 10, the dried first heat insulating material 20, and the metal exterior material 40 was manufactured.

このようにして3種類の構造1〜3を屋外において製造した。そして、各構造1〜3の配管10内に温度が61.5℃〜65.8℃の範囲である水を流通させた。さらに、温水の輸送に使用されている各構造1〜3について、最外層である外装材40の外表面の温度と、当該外装材40に覆われた第一の保温材20に含まれる水分の量と、の経時的な変化を測定した。   In this way, three types of structures 1 to 3 were manufactured outdoors. And the water whose temperature is the range of 61.5 degreeC-65.8 degreeC was distribute | circulated in the piping 10 of each structure 1-3. Furthermore, for each of the structures 1 to 3 used for transporting hot water, the temperature of the outer surface of the outer packaging material 40 that is the outermost layer and the moisture contained in the first heat insulating material 20 covered by the outer packaging material 40 The change with time was measured.

すなわち、構造1〜3を構築してから12日が経過した時点、及び45日が経過した時点のそれぞれのタイミングで表面温度及び水分量を測定した。また、表面温度及び水分量は、水平方向に延びる構造1〜3のうち、鉛直方向における外装材40の上方側表面及び下方側表面のそれぞれに計測器を接触させて測定した。なお、水分の量は、中性子水分計(MCM−2型、CPN社製)により測定した。   That is, the surface temperature and the amount of water were measured at the timing when 12 days had elapsed since the construction of structures 1 to 3 and when 45 days had elapsed. Moreover, the surface temperature and the amount of moisture were measured by bringing a measuring instrument into contact with each of the upper surface and the lower surface of the exterior member 40 in the vertical direction among the structures 1 to 3 extending in the horizontal direction. The amount of moisture was measured with a neutron moisture meter (MCM-2 type, manufactured by CPN).

図5には、12日目において測定した結果を示し、図6には、45日目において測定した結果を示す。図5及び図6には、構造1〜3のそれぞれについて、第一の保温材20に水を含ませる浸漬処理を施したか否か、当該第一の保温材20を第二の保温材30で覆ったか否かという条件と、外装材40の上方側部分及び下方側部分のそれぞれで測定された表面温度(℃)、及び外装材40の上方側部分及び下方側部分のそれぞれで測定された水分量(測定値)を示している。   FIG. 5 shows the results measured on the 12th day, and FIG. 6 shows the results measured on the 45th day. In FIG.5 and FIG.6, about each of the structures 1-3, whether the 1st heat insulating material 20 was subjected to the immersion process which contains water, the said 1st heat insulating material 20 with the 2nd heat insulating material 30 is shown. The condition of whether or not it was covered, the surface temperature (° C.) measured at each of the upper part and the lower part of the exterior material 40, and the moisture measured at each of the upper part and the lower part of the exterior material 40 The quantity (measured value) is shown.

なお、図5及び図6に示す水分量は、中性子水分計で測定された数値である。第一の保温材20に含まれている水分の量が増加するほど、中性子水分計による測定値も増加する。また、12日目の測定時における気温は13℃、湿度は42%であり、45日目の測定時における気温は10℃、湿度は66%であった。   In addition, the moisture content shown in FIG.5 and FIG.6 is the numerical value measured with the neutron moisture meter. As the amount of moisture contained in the first heat insulating material 20 increases, the measured value by the neutron moisture meter also increases. Further, the temperature at the time of measurement on the 12th day was 13 ° C. and the humidity was 42%, and the temperature at the time of measurement on the 45th day was 10 ° C. and the humidity was 66%.

図5に示すように、12日目の時点では、構造1〜3のいずれにおいても、上方側の表面温度が下方側部分より高く、また、上方側の水分量も下方側より高かった。これは、構造1〜3のいずれにおいても、保温材に含まれる水分が重力の作用によって下方側に溜まっているためと考えられた。   As shown in FIG. 5, at the time of the twelfth day, in any of the structures 1 to 3, the upper surface temperature was higher than the lower portion, and the upper moisture content was higher than the lower portion. This is considered to be because water contained in the heat insulating material is accumulated on the lower side due to the action of gravity in any of the structures 1 to 3.

また、浸漬処理により水を含んだ第一の保温材20を第二の保温材30で被覆することにより製造した構造1の表面温度は、水を含んだ第一の保温材20を第二の保温材30で被覆することなく構築した構造2のそれに比べて低く、また、浸漬処理が施されていない第一の保温材20を有する構造3のそれと同程度であった。   Further, the surface temperature of the structure 1 manufactured by coating the first heat insulating material 20 containing water by the immersion treatment with the second heat insulating material 30 is the same as that of the first heat insulating material 20 containing water. It was lower than that of the structure 2 constructed without covering with the heat insulating material 30 and was similar to that of the structure 3 having the first heat insulating material 20 not subjected to the immersion treatment.

このように、第一の保温材20が第二の保温材30で覆われている構造1の断熱性は、第一の保温材20が第二の保温材30で覆われていない構造2のそれに比べて高くなっていることが確認された。   As described above, the heat insulating property of the structure 1 in which the first heat insulating material 20 is covered with the second heat insulating material 30 is that of the structure 2 in which the first heat insulating material 20 is not covered with the second heat insulating material 30. It was confirmed that it was higher than that.

また、構造1の水分量は、構造2に比べて顕著に低かった。すなわち、第一の保温材20が第二の保温材30で覆われている構造1においては、第一の保温材20が第二の保温材30で覆われていない構造2に比べて、水分の排出(すなわち乾燥)がより進行していることが確認された。   In addition, the water content of Structure 1 was significantly lower than that of Structure 2. That is, in the structure 1 in which the first heat insulating material 20 is covered with the second heat insulating material 30, the first heat insulating material 20 has a moisture content as compared with the structure 2 in which the first heat insulating material 20 is not covered with the second heat insulating material 30. It was confirmed that the discharge (i.e., drying) was more advanced.

さらに、図6に示すように、45日目において、第二の保温材30を有する構造1の表面温度は、第一の保温材20に浸漬処理を施していない構造3のそれと同程度となっていた。また、構造1においては、上面側の表面温度と下面側の表面温度とがほぼ一致していた。さらに、構造1の水分量は、構造3のそれにほぼ一致した。   Furthermore, as shown in FIG. 6, on the 45th day, the surface temperature of the structure 1 having the second heat insulating material 30 is approximately the same as that of the structure 3 in which the first heat insulating material 20 is not subjected to the immersion treatment. It was. Further, in the structure 1, the surface temperature on the upper surface side and the surface temperature on the lower surface side almost coincided. Furthermore, the moisture content of structure 1 was almost identical to that of structure 3.

これに対し、第二の保温材30を有しない構造2の表面温度は、第一の保温材20に浸漬処理を施していない構造3のそれより高かった。また、構造2においては、上面側の表面温度より下面側の表面温度が高かった。さらに、構造2の水分量は、構造3のそれより高かった。   On the other hand, the surface temperature of the structure 2 without the second heat insulating material 30 was higher than that of the structure 3 in which the first heat insulating material 20 was not subjected to the immersion treatment. In structure 2, the surface temperature on the lower surface side was higher than the surface temperature on the upper surface side. Furthermore, the moisture content of structure 2 was higher than that of structure 3.

このように、第一の保温材20を第二の保温材30で被覆することにより製造された構造1においては、当該第一の保温材20から水分を略完全に排出することができ、その結果、当該第一の保温材20の断熱性を略完全に回復させることができた。   Thus, in the structure 1 manufactured by covering the first heat insulating material 20 with the second heat insulating material 30, moisture can be substantially completely discharged from the first heat insulating material 20. As a result, the heat insulating property of the first heat insulating material 20 could be recovered almost completely.

なお、本発明は、本実施形態に限られるものではない。すなわち、本発明に係る保温構造は、上述したような配管構造に限られない。例えば、保温材で覆われた、横型又は縦型の既設の機器の胴体部や鏡部もまた、本方法による補修の対象となり得る。   Note that the present invention is not limited to this embodiment. That is, the heat retaining structure according to the present invention is not limited to the piping structure as described above. For example, a body part and a mirror part of existing horizontal or vertical equipment covered with a heat insulating material can also be repaired by this method.

本発明の一実施形態に係る保温構造の一例についての斜視図である。It is a perspective view about an example of the heat retention structure concerning one embodiment of the present invention. 図2に示す保温構造の断面図である。It is sectional drawing of the heat retention structure shown in FIG. 本発明の一実施形態に係る保温構造の他の例についての斜視図である。It is a perspective view about the other example of the heat retention structure which concerns on one Embodiment of this invention. 図3に示す保温構造の断面図である。It is sectional drawing of the heat retention structure shown in FIG. 本発明の一実施形態において、保温構造の表面温度及び水分量を測定した結果の一例を示す説明図である。In one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having measured the surface temperature and moisture content of the heat retention structure. 本発明の一実施形態において、保温構造の表面温度及び水分量を測定した結果の他の例を示す説明図である。In one Embodiment of this invention, it is explanatory drawing which shows the other example of the result of having measured the surface temperature and moisture content of the heat retention structure.

符号の説明Explanation of symbols

1 保温構造、10 配管、10a 中空部、20 第一の保温材、21 第一の保温材の内面、22 第一の保温材の外面、30 第二の保温材、31 第二の保温材の内面、32 第二の保温材の外面、40 外装材。   DESCRIPTION OF SYMBOLS 1 Thermal insulation structure, 10 piping, 10a hollow part, 20 1st thermal insulation material, 21 inner surface of 1st thermal insulation material, 22 outer surface of 1st thermal insulation material, 30 2nd thermal insulation material, 31 2nd thermal insulation material Inner surface, 32 Outer surface of second heat insulating material, 40 exterior material.

Claims (3)

被保温体と、
前記被保温体を覆う第一の保温材と、
前記第一の保温材を覆う、水蒸気透過性と非透水性とを兼ね備えた第二の保温材と、
を有する
ことを特徴とする保温構造。
A body to be insulated,
A first heat insulating material covering the heat insulating body;
A second heat insulating material that covers the first heat insulating material and has both water vapor permeability and non-water permeability;
A heat insulating structure characterized by having.
前記被保温体は、内部に流体が流通する配管であり、
前記第一の保温材は、前記配管の外周を覆い、
前記第二の保温材は、前記第一の保温材の外周を覆う
ことを特徴とする請求項1に記載された保温構造。
The insulated body is a pipe through which a fluid flows,
The first heat insulating material covers the outer periphery of the pipe,
The heat insulating structure according to claim 1, wherein the second heat insulating material covers an outer periphery of the first heat insulating material.
前記第二の保温材は、エアロゲルが充填された繊維体である
ことを特徴とする請求項1又は2に記載された保温構造。
The heat insulating structure according to claim 1 or 2, wherein the second heat insulating material is a fibrous body filled with airgel.
JP2008162611A 2008-06-20 2008-06-20 Thermal insulation structure Active JP4997187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162611A JP4997187B2 (en) 2008-06-20 2008-06-20 Thermal insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162611A JP4997187B2 (en) 2008-06-20 2008-06-20 Thermal insulation structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012047101A Division JP4997353B2 (en) 2012-03-02 2012-03-02 Thermal insulation structure

Publications (2)

Publication Number Publication Date
JP2010002016A true JP2010002016A (en) 2010-01-07
JP4997187B2 JP4997187B2 (en) 2012-08-08

Family

ID=41583891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162611A Active JP4997187B2 (en) 2008-06-20 2008-06-20 Thermal insulation structure

Country Status (1)

Country Link
JP (1) JP4997187B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063007A (en) * 2010-08-18 2012-03-29 Imae Kogyo Kk Cylindrical heat insulating material and thermal device using the same
JP2012127495A (en) * 2010-11-25 2012-07-05 Nichias Corp Heat insulating structure
CN105020496A (en) * 2015-07-07 2015-11-04 陕西延长石油压裂材料有限公司 Hot coal gas pipeline inner heat preservation method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237295A (en) * 1984-05-09 1985-11-26 株式会社 美庵 Heat-insulating execution method of piping member
JPS61233293A (en) * 1985-04-03 1986-10-17 牧瀬 慎一 Seamless heat-insulating execution method of piping and sheathing material used for said method
JPS62188692U (en) * 1986-05-20 1987-12-01
JP2001336692A (en) * 2000-05-29 2001-12-07 Cd Technos Kk Heat insulating structure
JP2002181280A (en) * 2000-12-19 2002-06-26 Meisei Ind Co Ltd Moisture removing method for heat insulating material
JP2002321910A (en) * 2001-04-24 2002-11-08 Matsushita Electric Works Ltd Method for forming aerogel membrane
JP2004340420A (en) * 2003-05-13 2004-12-02 Toshiba Corp Refrigerator
JP2007508511A (en) * 2003-10-17 2007-04-05 サン−ゴバン・イソベール Thermal insulation system for industrial equipment
JP2007510794A (en) * 2003-11-10 2007-04-26 ゴア エンタープライズ ホールディングス,インコーポレイティド Airgel / PTFE composite insulation material
JP2008505261A (en) * 2004-06-29 2008-02-21 アスペン エアロジェルス,インク. Energy-efficient building insulation with insulating properties

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237295A (en) * 1984-05-09 1985-11-26 株式会社 美庵 Heat-insulating execution method of piping member
JPS61233293A (en) * 1985-04-03 1986-10-17 牧瀬 慎一 Seamless heat-insulating execution method of piping and sheathing material used for said method
JPS62188692U (en) * 1986-05-20 1987-12-01
JP2001336692A (en) * 2000-05-29 2001-12-07 Cd Technos Kk Heat insulating structure
JP2002181280A (en) * 2000-12-19 2002-06-26 Meisei Ind Co Ltd Moisture removing method for heat insulating material
JP2002321910A (en) * 2001-04-24 2002-11-08 Matsushita Electric Works Ltd Method for forming aerogel membrane
JP2004340420A (en) * 2003-05-13 2004-12-02 Toshiba Corp Refrigerator
JP2007508511A (en) * 2003-10-17 2007-04-05 サン−ゴバン・イソベール Thermal insulation system for industrial equipment
JP2007510794A (en) * 2003-11-10 2007-04-26 ゴア エンタープライズ ホールディングス,インコーポレイティド Airgel / PTFE composite insulation material
JP2008505261A (en) * 2004-06-29 2008-02-21 アスペン エアロジェルス,インク. Energy-efficient building insulation with insulating properties

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063007A (en) * 2010-08-18 2012-03-29 Imae Kogyo Kk Cylindrical heat insulating material and thermal device using the same
JP2012127495A (en) * 2010-11-25 2012-07-05 Nichias Corp Heat insulating structure
CN105020496A (en) * 2015-07-07 2015-11-04 陕西延长石油压裂材料有限公司 Hot coal gas pipeline inner heat preservation method
CN105020496B (en) * 2015-07-07 2017-11-17 陕西延长石油压裂材料有限公司 A kind of method of heating gas pipeline inside holding

Also Published As

Publication number Publication date
JP4997187B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4897858B2 (en) Thermal insulation repair method and thermal insulation structure
JP2009243518A5 (en) Flexible tube for cryogenic fluid transport
CN202914905U (en) Steam conveying pipeline with three-layer heat preservation structure adopted
JP4997187B2 (en) Thermal insulation structure
JP5905861B2 (en) Endothermic material using inorganic porous material
JP4997186B2 (en) Thermal insulation structure and repair method
CN106195464B (en) A kind of bamboo winding composite pressure pipe
JP4997353B2 (en) Thermal insulation structure
PL181809B1 (en) Insulation and method of placing it onto a pipe or container
JP6618879B2 (en) Thermal insulation structure and method for attaching the thermal insulation structure to piping
JP2011127624A (en) Low-temperature tank and method of manufacturing the same
KR101949228B1 (en) Heat insulating materials for ducts
US11680672B2 (en) Insulation blanket having a deposited passivator for industrial insulation applications
CN205955362U (en) Constant temperature tent
CN206299946U (en) Superhigh temperature prefabricated direct-buried thermal insulation pipe
JP5613490B2 (en) Refractory double-layer pipe and method for producing the same
RU185206U1 (en) Tank container
JP5972556B2 (en) Thermal insulation structure
CN103291019A (en) Heat preserving, damp proofing and vapor permeating method for metal roof
BR112018069418B1 (en) DEVICE OPERATING AT HIGH TEMPERATURE COMPRISING AN INSULATING PRODUCT, INSULATING PRODUCT ADAPTED TO SUCH A DEVICE, USE AND PROCESS FOR OBTAINING SUCH INSULATING PRODUCT
Ananthan et al. Silica aerogels for energy conservation and saving
CN202324231U (en) External heat-preserving structure of wall body
Bhatia Overview of Insulation Materials
CN217711191U (en) Aerogel heat insulation board
CN104879612B (en) A kind of compound insulating material and heat preserving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110908

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4997187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250