JP2010001740A - Cooling structure and refrigerant supply structure of gas turbine stator blade - Google Patents

Cooling structure and refrigerant supply structure of gas turbine stator blade Download PDF

Info

Publication number
JP2010001740A
JP2010001740A JP2008158608A JP2008158608A JP2010001740A JP 2010001740 A JP2010001740 A JP 2010001740A JP 2008158608 A JP2008158608 A JP 2008158608A JP 2008158608 A JP2008158608 A JP 2008158608A JP 2010001740 A JP2010001740 A JP 2010001740A
Authority
JP
Japan
Prior art keywords
gas turbine
air
stationary blade
humidifier
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008158608A
Other languages
Japanese (ja)
Other versions
JP5210722B2 (en
Inventor
Yasuhiro Horiuchi
康広 堀内
Tetsuro Morisaki
哲郎 森崎
Hisato Tagawa
久人 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008158608A priority Critical patent/JP5210722B2/en
Publication of JP2010001740A publication Critical patent/JP2010001740A/en
Application granted granted Critical
Publication of JP5210722B2 publication Critical patent/JP5210722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas turbine stator having excellent cooling performance and high reliability. <P>SOLUTION: The gas turbine stator is used for a high humidity gas turbine system in which water is sprayed into the compressed air compressed by a compressor 2 by a humidifier 5 and the high humidity air to which the water is sprayed by the humidifier 5 is supplied to a combustor 7. The gas turbine stator comprises, therein, a plurality of inner spaces 30a, 30b, 30c serving as cooling flow passages. A part of the compressed air compressed by the compressor 2 is supplied to at least one of the inner spaces 30a, 30b, 30c, and a part of the high humidity air to which water is sprayed by the humidifier 5 is supplied to the other cooling passages. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガスタービン静翼及びその冷却方法に関する。   The present invention relates to a gas turbine stationary blade and a cooling method thereof.

非特許文献1には、圧縮空気の一部を抽気した空気を動翼の冷却媒体とし、増湿塔で発生する増湿空気の一部を静翼の冷却媒体とするハイブリッド冷却システム、および、動翼・静翼全ての冷却媒体を高湿分空気とする増湿空気冷却システムによって、少量の冷却媒体で効果的にガスタービン高温部を冷却する技術が開示されている。   Non-Patent Document 1 includes a hybrid cooling system in which a part of compressed air is extracted as a cooling medium for moving blades, and a part of the humidified air generated in the humidification tower is used as a cooling medium for stationary blades, and There has been disclosed a technique for effectively cooling a high-temperature part of a gas turbine with a small amount of cooling medium by a humidified air cooling system in which the cooling medium of all the moving blades and stationary blades is a high humidity air.

Proceedings of the Asian Congress on Gas Turbines ACGT2005-088Proceedings of the Asian Congress on Gas Turbines ACGT2005-088

このような冷却構造において、静翼の冷却媒体を全て高湿分空気としてしまうと、前縁部付近では翼外部の燃焼ガスと翼内部の冷却媒体との温度差が大きくなってしまい、大きな熱応力が発生してしまう。とくに、高温の燃焼ガスに曝される第1段静翼においては、過大な熱応力が発生する恐れがある。   In such a cooling structure, if all the cooling medium of the stationary blade is made into high-humidity air, the temperature difference between the combustion gas outside the blade and the cooling medium inside the blade becomes large in the vicinity of the leading edge, and a large amount of heat is generated. Stress is generated. In particular, an excessive thermal stress may occur in the first stage stationary blade exposed to high-temperature combustion gas.

本発明の目的は、冷却性能に優れ、信頼性の高いガスタービン静翼を提供することにある。   An object of the present invention is to provide a gas turbine stationary blade having excellent cooling performance and high reliability.

圧縮機で圧縮された圧縮空気に増湿器で水を噴霧し、前記増湿器で水を噴霧された高湿分空気を燃焼器に供給する高湿分ガスタービンシステムに用いられる、内部に複数の冷却流路を有するガスタービン静翼において、前記冷却流路の少なくとも一つに前記圧縮機で圧縮された圧縮空気の一部が供給され、これ以外の冷却流路に前記増湿器で水を噴霧された高湿分空気の一部が供給されるよう構成されたことを特徴とする。   Used in a high-humidity gas turbine system for supplying high-humidity air sprayed with a humidifier to the compressed air compressed by a compressor and supplying high-humidity air sprayed with water by the humidifier to a combustor. In a gas turbine stationary blade having a plurality of cooling channels, a part of the compressed air compressed by the compressor is supplied to at least one of the cooling channels, and the humidifier is connected to the other cooling channels. A part of the high-humidity air sprayed with water is supplied.

本発明によれば、冷却性能に優れ、信頼性の高いガスタービン静翼を提供することができる。   According to the present invention, it is possible to provide a gas turbine stationary blade having excellent cooling performance and high reliability.

従来一般に採用されているガスタービンシステムは、圧縮機で圧縮した作動流体に燃料を加えて燃焼し、高温高圧の作動流体を得てタービンを駆動するように構成されている。駆動されたタービンの回転エネルギーは、通常、タービンに結合されている発電機により電気エネルギーに変換される。   2. Description of the Related Art Conventionally, a gas turbine system generally employed is configured to drive a turbine by obtaining a high-temperature and high-pressure working fluid by adding fuel to the working fluid compressed by a compressor and burning it. The rotational energy of the driven turbine is typically converted to electrical energy by a generator coupled to the turbine.

近年、高湿分ガスタービン(HAT)発電プラントが注目されている。図4に高湿分ガスタービン発電プラントの機器構成を示す。高湿分ガスタービン発電プラントは、ガスタービン1,圧縮機2,発電機3が一軸に結合されている。大気空気は吸気噴霧器14で水分を付加された後に圧縮機2に供給され、定格負荷運転の状態において、温度は約300℃、圧力は約2000Paの高圧な圧縮空気を生成する。圧縮空気は空気冷却器4において約100℃に冷却された後に増湿器(増湿塔)5に供給され、水分が加えられ増湿・増量した約150℃の増湿空気となる。増湿器5を出た増湿空気は再生器6において550℃付近まで昇温され、燃料とともに燃焼器7において燃焼されて温度は1300℃以上、圧力は約1900Paの高温高圧の燃焼ガスとなる。この燃焼ガスはガスタービン1に供給され、発電機3を駆動する。ガスタービン1において膨張し低圧となった燃焼ガスは排ガスとして排出されるが、まだ十分に高温であるため、再生器6において増湿空気と熱交換を行い、更に給水加熱器8において水と熱交換を行って、熱エネルギーが回収される。給水加熱器8を出た排ガスは、排ガス再熱器9において冷却された後、水回収装置10に供給される。水回収装置10においては、低温の水を排ガスに対して噴霧することで排ガスの温度を下げ、排ガス中の水分を凝縮させ回収している。凝縮しなかった一部の水分を含んだ排ガスは再び排ガス再熱器9に導かれ、加熱されて煙突11より大気に放出される。   In recent years, high humidity gas turbine (HAT) power plants have attracted attention. FIG. 4 shows the equipment configuration of the high-humidity gas turbine power plant. In a high-humidity gas turbine power plant, a gas turbine 1, a compressor 2, and a generator 3 are coupled to one shaft. Atmospheric air is supplied to the compressor 2 after moisture is added by the intake sprayer 14, and generates high-pressure compressed air having a temperature of about 300 ° C. and a pressure of about 2000 Pa in a state of rated load operation. The compressed air is cooled to about 100 ° C. in the air cooler 4 and then supplied to the humidifier (humidification tower) 5, and becomes humidified air at about 150 ° C. with moisture added and increased in humidity. The humidified air exiting the humidifier 5 is heated to around 550 ° C. in the regenerator 6 and burned together with fuel in the combustor 7 to become a high-temperature and high-pressure combustion gas having a temperature of 1300 ° C. or higher and a pressure of about 1900 Pa. . This combustion gas is supplied to the gas turbine 1 to drive the generator 3. The combustion gas that has been expanded and reduced in pressure in the gas turbine 1 is discharged as exhaust gas. However, since it is still sufficiently hot, the regenerator 6 exchanges heat with humidified air, and the water heater 8 further heats water and heat. Exchange is performed and heat energy is recovered. The exhaust gas exiting the feed water heater 8 is cooled in the exhaust gas reheater 9 and then supplied to the water recovery device 10. In the water recovery apparatus 10, the temperature of the exhaust gas is lowered by spraying low temperature water on the exhaust gas, and moisture in the exhaust gas is condensed and recovered. The exhaust gas containing a part of the moisture that has not been condensed is guided again to the exhaust gas reheater 9, heated and discharged from the chimney 11 to the atmosphere.

高湿分ガスタービン発電プラントの一つの特徴は、増湿器5および吸気噴霧器14において水分を付加し増湿することで燃焼ガスの重量流量を増加させることである。また、水蒸気の比熱は空気よりも大きく、内部により多くのエネルギーを保有できるため、通常のガスタービンシステムよりも出力を増加させることができる。さらに、再生器6および給水加熱器8において熱エネルギーを回収し、水回収装置10において水分を回収することで発電効率を向上していることも大きな特徴である。   One feature of the high-humidity gas turbine power plant is to increase the weight flow rate of the combustion gas by adding moisture in the humidifier 5 and the intake sprayer 14 to increase the humidity. Moreover, since the specific heat of water vapor is larger than that of air and more energy can be held inside, the output can be increased as compared with a normal gas turbine system. Furthermore, it is also a great feature that power generation efficiency is improved by recovering thermal energy in the regenerator 6 and the feed water heater 8 and recovering moisture in the water recovery device 10.

このような高湿分ガスタービンシステムにおいては、燃焼ガスは湿分を多く含んでいる。そのため粘性係数やプラントル数等の物理量の違いから、空気よりも熱伝達率が大きく、更に比熱も大きい。このため、タービン翼などのガスタービン高温部における熱的負荷は通常のガスタービンに比べて増大するため、ガスタービン高温部の冷却を強化する必要がある。通常のガスタービンシステムでは圧縮空気の一部を抽気した空気によって空気冷却を行っている。しかし、高湿分ガスタービン方式では大量の空気が必要となるため、主流ガスの温度を下げ、結果としてガスタービンの熱効率を低下させてしまう。そこで高湿分ガスタービンにおいては、空気よりも冷却性能の高い冷却媒体を用いてガスタービン高温部を冷却する必要がある。この冷却媒体として増湿器5出口より抽気した増湿空気(高湿分空気)19を用いる方法が考えられている。高湿分空気は湿分を含んでいるため、空気よりも熱伝達率が高く、更に比熱も大きいため、冷却性能が高い。よって機器を増やすことなく、少量の冷却媒体で効果的にガスタービン高温部を冷却することが可能となる。   In such a high humidity gas turbine system, the combustion gas contains a lot of moisture. Therefore, due to the difference in physical quantities such as viscosity coefficient and Prandtl number, the heat transfer coefficient is larger than that of air, and the specific heat is also larger. For this reason, since the thermal load in the gas turbine high temperature part such as turbine blades increases as compared with a normal gas turbine, it is necessary to enhance the cooling of the gas turbine high temperature part. In an ordinary gas turbine system, air cooling is performed by air extracted from a part of compressed air. However, since the high humidity gas turbine system requires a large amount of air, the temperature of the mainstream gas is lowered, and as a result, the thermal efficiency of the gas turbine is lowered. Therefore, in a high-humidity gas turbine, it is necessary to cool the high-temperature part of the gas turbine using a cooling medium having a higher cooling performance than air. A method of using humidified air (high humidity air) 19 extracted from the outlet of the humidifier 5 as the cooling medium is considered. Since high-humidity air contains moisture, the heat transfer rate is higher than that of air, and the specific heat is also large, so that the cooling performance is high. Therefore, it is possible to effectively cool the high temperature portion of the gas turbine with a small amount of cooling medium without increasing the number of devices.

増湿塔出口の空気は高湿分かつ低温となっているため冷却ポテンシャルが高く、冷却空気を全て高湿分空気とすることが望ましいが、信頼性を低下してしまう可能性がある。   Since the air at the outlet of the humidification tower has a high humidity and a low temperature, the cooling potential is high, and it is desirable that all the cooling air is high-humidity air, but the reliability may be lowered.

従来の静翼内部の冷却構造を図5に示す。高温高圧の燃焼ガス40に曝される静翼20は、腹側面21,背側面22に囲まれた構造となっており、内部には複数の内部空洞30を有している。この内部空洞30には表面に複数の小孔を有したインサート31が挿入されており、内部空洞30に導かれた冷却媒体は、この小孔を高速で通過し、翼の内壁に衝突してインピンジメント冷却する。また、腹側面21,背側面22には内部空洞より燃焼ガスに連通する複数のフィルム孔32が設けられており、インピンジメント冷却後の冷却媒体をフィルム孔から翼外表面付近へと導いてフィルム冷却する方式が用いられる。   FIG. 5 shows a conventional cooling structure inside the stationary blade. The stationary blade 20 exposed to the high-temperature and high-pressure combustion gas 40 has a structure surrounded by a ventral side surface 21 and a back side surface 22 and has a plurality of internal cavities 30 inside. An insert 31 having a plurality of small holes on its surface is inserted into the internal cavity 30, and the cooling medium guided to the internal cavity 30 passes through the small holes at high speed and collides with the inner wall of the blade. Cool impingement. The ventral side surface 21 and the back side surface 22 are provided with a plurality of film holes 32 communicating with the combustion gas from the inner cavity, and the film after guiding the cooling medium after impingement cooling from the film holes to the vicinity of the blade outer surface. A cooling method is used.

このような冷却構造において、冷却媒体を全て高湿分空気としてしまうと、翼前縁23付近では翼外部の燃焼ガス40と翼内部の冷却媒体との温度差が大きくなってしまい、過大な熱応力が発生してしまう。とくに、高温の燃焼ガスに曝される第1段静翼においては、過大な熱応力が発生する恐れがある。   In such a cooling structure, if all of the cooling medium is high-humidity air, the temperature difference between the combustion gas 40 outside the blade and the cooling medium inside the blade becomes large in the vicinity of the blade leading edge 23, and excessive heat is generated. Stress is generated. In particular, an excessive thermal stress may occur in the first stage stationary blade exposed to high-temperature combustion gas.

このような問題に対応すべく、本発明のガスタービン静翼は、圧縮機で圧縮された圧縮空気に増湿器で水を噴霧し、増湿器で水を噴霧された高湿分空気を燃焼器に供給する高湿分ガスタービンシステムに用いられる、内部に複数の冷却流路を有するガスタービン静翼において、冷却流路の少なくとも一つに圧縮機で圧縮された圧縮空気の一部が供給され、これ以外の冷却流路に増湿器で水を噴霧された高湿分空気の一部が供給されるよう構成されたことを特徴としている。過大な熱応力が発生する恐れのある部分の冷却に圧縮機で圧縮された圧縮空気の一部を供給するよう構成することで、冷却性能に優れ、信頼性の高いガスタービン静翼を提供することができる。   In order to deal with such problems, the gas turbine stationary blade of the present invention sprays water with a humidifier onto compressed air compressed with a compressor, and generates high-humidity air sprayed with water with a humidifier. In a gas turbine stationary blade having a plurality of cooling passages used in a high-humidity gas turbine system supplied to a combustor, a part of compressed air compressed by a compressor is contained in at least one of the cooling passages. A part of the high-humidity air supplied and sprayed with water by a humidifier is supplied to other cooling channels. By providing a part of the compressed air compressed by the compressor for cooling a portion where excessive thermal stress may occur, a gas turbine stationary blade having excellent cooling performance and high reliability is provided. be able to.

以下、本発明の実施例を図1および図2により説明する。図1は本発明の実施例であるガスタービン静翼の横断面図を示す。図2は図1のA−A断面図、すなわち本発明の実施例であるガスタービン静翼の縦断面図である。   Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 shows a cross-sectional view of a gas turbine stationary blade according to an embodiment of the present invention. 2 is a cross-sectional view taken along line AA of FIG. 1, that is, a vertical cross-sectional view of a gas turbine stationary blade that is an embodiment of the present invention.

静翼20は腹側面21,背側面22と内径側エンドウォール25,外径側エンドウォール26とにより一体構造で構成され、静翼の内部空洞は隔壁27,28により内部空間30a,30b,30cに仕切られる。内部空間30aは内径側エンドウォール25側が開口しており、圧縮機抽気空気18が供給される。内部空間30b,30cは外径側エンドウォール26側が開口しており、増湿空気19が供給される。冷却流路である内部空間30a,30b,30cにはそれぞれ、複数の小孔を有する中空のインサート31a,31b,31cを設置する。腹側面21,背側面22にはフィルム孔32a,32b,32cが設けられており、内部空間30a,30b,30cはそれぞれ、フィルム孔32a,32b,32cにより燃焼ガス40と連通している。   The stationary blade 20 is constituted by an abdominal side surface 21, a back side surface 22, an inner diameter side end wall 25, and an outer diameter side end wall 26. Divided into The inner space 30a is open on the inner diameter side end wall 25 side, and is supplied with the compressor bleed air 18. The inner spaces 30b and 30c are opened on the outer diameter side end wall 26 side, and the humidified air 19 is supplied thereto. Hollow inserts 31a, 31b, 31c having a plurality of small holes are installed in the internal spaces 30a, 30b, 30c, which are cooling channels. Film holes 32a, 32b, and 32c are provided in the stomach side surface 21 and the back side surface 22, and the internal spaces 30a, 30b, and 30c communicate with the combustion gas 40 through the film holes 32a, 32b, and 32c, respectively.

隔壁27は背側で前縁側に傾けられており、かつ、フィルム孔32bは、背側の隔壁27付近に配置されている。ここで、隔壁27が背側で前縁側に傾けられているとは、燃焼ガスの流路上流側に位置する隔壁27と、燃焼ガスの流路下流側の隔壁28との距離が、腹側よりも背側の方が離れていることを意味する。または、翼前縁側の隔壁27が、翼腹側面に直交する面および翼背側面に直交する面よりも、翼腹側は翼後縁側、翼背側は翼前縁側に傾いていることを意味する。このように構成することで、静翼は前縁側の方が後縁側よりも高温になること、また、腹側の方が背側よりも高温になることに対応した適切な冷却を行うことができる。   The partition wall 27 is inclined to the front edge side on the back side, and the film hole 32b is disposed near the partition wall 27 on the back side. Here, the fact that the partition wall 27 is inclined to the front edge side on the back side means that the distance between the partition wall 27 located on the upstream side of the combustion gas flow path and the partition wall 28 on the downstream side of the combustion gas flow path is It means that the back side is far away. Alternatively, the blade 27 on the blade leading edge side is inclined to the blade trailing edge side and the blade back side to the blade leading edge side than the surface orthogonal to the blade belly side surface and the surface orthogonal to the blade back side surface. To do. By configuring in this way, the stationary blade can perform appropriate cooling corresponding to the front edge side becoming hotter than the rear edge side, and the ventral side becoming hotter than the back side. it can.

内部空間30cについては、翼後縁24に設けられたピンフィン冷却通路33とも通じており燃焼ガス40と連通している。本実施例の静翼は前縁部冷却空洞,後流側冷却流路を含めて翼全体を精密鋳造により製作し、フィルム孔32a,32b,32cを放電加工により加工し、別途製作のインサート31a,31b,31cを設置する方法により作られる。インサートのインピンジメント小孔の孔径,数,フィルム孔の孔径,数等は作動ガス条件と翼冷却条件および冷却目標により設計するものであり、その仕様が本発明を現すものではない。   The internal space 30 c communicates with the pin fin cooling passage 33 provided at the blade trailing edge 24 and communicates with the combustion gas 40. The stator blade of this embodiment is manufactured by precision casting of the entire blade including the leading edge cooling cavity and the downstream cooling channel, the film holes 32a, 32b, 32c are processed by electric discharge machining, and the insert 31a manufactured separately. , 31b, 31c. The hole diameter and number of impingement small holes in the insert, the hole diameter and number of film holes, etc. are designed according to the working gas conditions, blade cooling conditions and cooling targets, and the specifications do not represent the present invention.

続いて本実施例の静翼の冷却方法につき説明する。圧縮空気の抽気空気18をインサート31aの内部空間30aに供給し、インサート31aの小孔より翼冷却内壁に噴き出し、その衝突噴流により翼を内部から冷却する。さらにその空気はフィルム孔32aより翼表面に噴き出し、この噴出した空気により、燃焼ガス40に対して翼表面を保護するように覆う。翼後流側では、高湿分空気19がインサート31b,31cの内部空間30b,30cに供給され、インサート31b,31cの小孔より翼冷却内壁に噴き出し、その衝突噴流により翼を内部から冷却する。さらにその高湿分空気はフィルム孔32b,32cより翼表面に噴き出し、燃焼ガス40に対して翼表面を保護するように覆う。また、インサート31cの小孔よりでた高湿分空気はピンフィン冷却通路33を通過し、翼後縁24を内部冷却する。また、隔壁27を背側で前縁側に傾け、かつ、フィルム孔32bを隔壁28よりも隔壁27寄り、より好ましくは背側の隔壁27付近に配置することで、フィルム孔32cからの冷却領域の拡大が図られる。   Next, the cooling method for the stationary blade of this embodiment will be described. Compressed bleed air 18 is supplied to the inner space 30a of the insert 31a, and is ejected from the small hole of the insert 31a to the blade cooling inner wall, and the impeller jet cools the blade from the inside. Further, the air is blown out from the film hole 32 a to the blade surface, and the blown air covers the blade surface against the combustion gas 40. On the wake side of the blade, high-humidity air 19 is supplied to the inner spaces 30b and 30c of the inserts 31b and 31c, and is ejected from the small holes of the inserts 31b and 31c to the blade cooling inner wall, and the blade is cooled from the inside by the impinging jet. . Further, the high-humidity air is blown out from the film holes 32 b and 32 c to the blade surface and covers the blade surface against the combustion gas 40. Further, the high-humidity air from the small hole of the insert 31c passes through the pin fin cooling passage 33 and cools the blade trailing edge 24 internally. Further, the partition wall 27 is inclined to the front edge side on the back side, and the film hole 32b is disposed closer to the partition wall 27 than the partition wall 28, and more preferably in the vicinity of the partition wall 27 on the back side. Enlargement is planned.

図3は本実施例のガスタービン静翼20をガスタービンに組み込んだ時の、その周囲の構造の例を示す。トランジションピース50の内側には燃焼器からの燃焼ガス40が静翼20の外表面へと流れ込む。静翼20の内径側には内径側エンドウォール25,サポートリング51によって圧縮機吐出の空間と連通する内径側キャビティ52が形成され、一部の空気は圧縮機抽気空気18として静翼20に供給される。一方、静翼20の外径側には外径側エンドウォール26とタービンケーシング53によって外径側キャビティ54が形成され、タービンケーシング53に設けられたフランジ55に高湿分空気19の供給管を取り付けることによって、増湿空気19を静翼20に供給することが可能である。このように本発明の実施に必要なガスタービン構造は、複雑な構造を必要とせず、非常に簡単な構成によって実現できる。   FIG. 3 shows an example of the surrounding structure when the gas turbine stationary blade 20 of this embodiment is incorporated in a gas turbine. Inside the transition piece 50, the combustion gas 40 from the combustor flows into the outer surface of the stationary blade 20. On the inner diameter side of the stationary blade 20, an inner diameter side cavity 52 communicating with the compressor discharge space is formed by the inner diameter side end wall 25 and the support ring 51, and a part of the air is supplied to the stationary blade 20 as the compressor bleed air 18. Is done. On the other hand, an outer diameter side cavity 54 is formed on the outer diameter side of the stationary blade 20 by the outer diameter side end wall 26 and the turbine casing 53, and a supply pipe for the high-humidity air 19 is connected to a flange 55 provided in the turbine casing 53. By attaching, the humidified air 19 can be supplied to the stationary blade 20. As described above, the gas turbine structure necessary for implementing the present invention does not require a complicated structure and can be realized by a very simple configuration.

本実施例のガスタービン静翼は、空気を圧縮する圧縮機と、圧縮機で圧縮された空気に水を噴霧する増湿器と、増湿器で水を噴霧された湿分空気と燃料とを燃焼させる燃焼器と、燃焼器で生成された燃焼ガスにより駆動されるタービンと、タービンを駆動させた燃焼ガスと増湿器で水を噴霧された湿分空気とを熱交換させる再生機とを有するガスタービンシステムに用いられる、内部に冷却媒体を流通させる複数の空洞を有し、空洞から前記作動ガスが流れる主流へ連通する複数のフィルム孔を有し、複数の空洞内に複数の小孔を有したインサートが挿入されたガスタービン静翼において、複数の空洞の、少なくとも燃焼ガスの流路で最も上流側の空洞に、増湿器で水を噴霧された湿分空気を供給し、湿分空気を供給しない空洞に、圧縮機で圧縮された空気を供給するよう構成されている。   The gas turbine stationary blade of the present embodiment includes a compressor that compresses air, a humidifier that sprays water on the air compressed by the compressor, moisture air and fuel sprayed with water by the humidifier, A turbine driven by combustion gas generated by the combustor, and a regenerator for exchanging heat between the combustion gas driving the turbine and the moisture air sprayed with water by the humidifier Used in a gas turbine system having a plurality of cavities for circulating a cooling medium therein, a plurality of film holes communicating with the main flow through which the working gas flows, and a plurality of small holes in the plurality of cavities. In a gas turbine stationary blade into which an insert having a hole is inserted, moisture air sprayed with water by a humidifier is supplied to a plurality of cavities, at least the most upstream cavity in the flow path of the combustion gas, In a cavity that does not supply moisture air, It is configured to provide a reduced air.

本実施例の静翼の特徴としては、次のようなことがあげられる。   The features of the stationary blade of this embodiment are as follows.

翼前縁の冷却媒体として圧縮機の抽気空気を用いることで、翼前縁23におけるメタル内面と外面の温度差を小さく設定できるため、過大な熱応力の発生を抑制できる。すなわち翼前縁23を高湿分空気で冷却する静翼と比べ、発生する熱応力を低く抑えることができ、静翼の強度信頼性が向上する。   By using the bleed air of the compressor as the cooling medium for the blade leading edge, the temperature difference between the metal inner surface and the outer surface at the blade leading edge 23 can be set small, so that excessive thermal stress can be suppressed. That is, compared with a stationary blade that cools the blade leading edge 23 with high-humidity air, the generated thermal stress can be kept low, and the strength reliability of the stationary blade is improved.

翼後流側の冷却媒体として高湿分空気を供給することで、内部冷却およびフィルム冷却効果が強化される。そのため、圧縮機の抽気空気のみで静翼を冷却する場合と比べ、冷却空気量を削減することができる。ひいては、ガスタービンの性能を向上させることができる。   By supplying high-humidity air as a cooling medium on the wake side of the blade, the internal cooling and film cooling effects are enhanced. Therefore, the amount of cooling air can be reduced as compared with the case where the stationary blade is cooled only by the bleed air of the compressor. As a result, the performance of the gas turbine can be improved.

高湿分空気を供給する内部空洞を複数の内部空間に分けることで、各所に適した冷却を行うことが可能になる。翼背側面には、燃焼ガスの流れが急加速して静圧が低くなる部分が存在するが、湿分空気は冷却効果が非常に高いために、翼背側面にも、効果的にフィルム孔を配置させることができる。   By dividing the internal cavity for supplying high-humidity air into a plurality of internal spaces, it is possible to perform cooling suitable for various places. On the back side of the blade, there is a part where the flow of combustion gas accelerates rapidly and the static pressure becomes low.However, because moisture air has a very high cooling effect, the film hole is also effectively applied to the back side of the blade. Can be arranged.

以上挙げた特徴の相乗効果として、本実施例の静翼全体として削減可能な冷却空気について、図6を用いて説明する。図6は、本実施例のガスタービン静翼による冷却空気量削減効果を示す。図6から読み取れるように、圧縮機抽気空気のみによる冷却空気流量から、本実施例翼による冷却空気流量の削減量は−22%に相当する。   As a synergistic effect of the characteristics described above, cooling air that can be reduced as a whole of the stationary blade of this embodiment will be described with reference to FIG. FIG. 6 shows the cooling air amount reduction effect by the gas turbine stationary blade of the present embodiment. As can be seen from FIG. 6, the amount of reduction in the cooling air flow rate by the blades of this embodiment corresponds to −22% from the cooling air flow rate by the compressor bleed air alone.

さらに本実施例の静翼は、従来のタービン静翼製作手法で製作でき、安価な冷却翼を提供できる。すなわち本実施例の静翼は、冷却流路の形成を含め精密鋳造により容易にかつ精度良く製作が可能であり、従来のようにコスト高となる精鋳後の精密加工を行う必要がない。   Further, the stationary blade of this embodiment can be manufactured by a conventional turbine stationary blade manufacturing method, and an inexpensive cooling blade can be provided. That is, the stationary blade of this embodiment can be easily and accurately manufactured by precision casting including the formation of a cooling flow path, and there is no need to perform precision processing after precision casting, which is costly as in the prior art.

本発明の実施例であるガスタービン静翼の横断面図。The cross-sectional view of the gas turbine stationary blade which is an Example of this invention. 本発明の実施例であるガスタービン静翼の縦断面図。The longitudinal cross-sectional view of the gas turbine stationary blade which is an Example of this invention. 本発明の実施例であるガスタービン静翼周りの構成図。The block diagram around the gas turbine stationary blade which is an Example of this invention. 本発明の実施例である高湿分ガスタービン発電プラントの構成図。The block diagram of the high-humidity gas turbine power plant which is an Example of this invention. 従来のガスタービン静翼の横断面図。The cross-sectional view of the conventional gas turbine stationary blade. 本発明の実施例であるガスタービン静翼の効果を表す冷却効率曲線。The cooling efficiency curve showing the effect of the gas turbine stationary blade which is the Example of this invention.

符号の説明Explanation of symbols

1 ガスタービン
2 圧縮機
3 発電機
4 空気冷却器
5 増湿器
6 再生器
7 燃焼器
8 給水加熱器
9 排ガス再熱器
10 水回収装置
11 煙突
12,16 ポンプ
13 脱塩装置
14 吸気噴霧器
15 冷却水
17 冷却器
18 圧縮機抽気空気
19 増湿空気
20 静翼
21 腹側面
22 背側面
23 翼前縁
24 翼後縁
25 内径側エンドウォール
26 外径側エンドウォール
27,28 隔壁
30a,30b,30c 内部空間
31a,31b,31c インサート
32a,32b,32c フィルム孔
33 ピンフィン冷却通路
40 燃焼ガス
50 トランジションピース
51 サポートリング
52 内径側キャビティ
53 タービンケーシング
54 外径側キャビティ
55 フランジ
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Compressor 3 Generator 4 Air cooler 5 Humidifier 6 Regenerator 7 Combustor 8 Feed water heater 9 Exhaust gas reheater 10 Water recovery device 11 Chimney 12, 16 Pump 13 Desalination device 14 Intake sprayer 15 Cooling water 17 Cooler 18 Compressor bleed air 19 Humidified air 20 Stator blade 21 Ventral side surface 22 Back side surface 23 Blade leading edge 24 Blade trailing edge 25 Inner diameter side end wall 26 Outer diameter side end wall 27, 28 Bulkheads 30a, 30b, 30c Internal space 31a, 31b, 31c Insert 32a, 32b, 32c Film hole 33 Pin fin cooling passage 40 Combustion gas 50 Transition piece 51 Support ring 52 Inner diameter side cavity 53 Turbine casing 54 Outer diameter side cavity 55 Flange

Claims (8)

圧縮機で圧縮された圧縮空気に増湿器で水を噴霧し、前記増湿器で水を噴霧された高湿分空気を燃焼器に供給する高湿分ガスタービンシステムに用いられる、内部に複数の冷却流路を有するガスタービン静翼において、
前記冷却流路の少なくとも一つに前記圧縮機で圧縮された圧縮空気の一部が供給され、これ以外の冷却流路に前記増湿器で水を噴霧された高湿分空気の一部が供給されるよう構成されたことを特徴とするガスタービン静翼。
Used in a high-humidity gas turbine system for supplying high-humidity air sprayed with a humidifier to the compressed air compressed by a compressor and supplying high-humidity air sprayed with water by the humidifier to a combustor. In a gas turbine stationary blade having a plurality of cooling channels,
A part of the compressed air compressed by the compressor is supplied to at least one of the cooling channels, and a part of the high-humidity air sprayed with water by the humidifier is supplied to the other cooling channels. A gas turbine stationary blade configured to be supplied.
空気を圧縮する圧縮機と、前記圧縮機で圧縮された空気に水を噴霧する増湿器と、前記増湿器で水を噴霧された湿分空気と燃料とを燃焼させる燃焼器と、前記燃焼器で生成された燃焼ガスにより駆動されるタービンと、前記タービンを駆動させた燃焼ガスと前記増湿器で水を噴霧された湿分空気とを熱交換させる再生機とを有するガスタービンシステムに用いられる、内部に冷却媒体を流通させる複数の空洞を有し、前記空洞から前記作動ガスが流れる主流へ連通する複数のフィルム孔を有し、前記複数の空洞内に複数の小孔を有したインサートが挿入されたガスタービン静翼において、
前記複数の空洞の、少なくとも前記燃焼ガスの流路で最も上流側の空洞に、前記増湿器で水を噴霧された湿分空気を供給し、前記湿分空気を供給しない空洞に、前記圧縮機で圧縮された空気を供給するよう構成されたことを特徴とするガスタービン静翼。
A compressor that compresses air; a humidifier that sprays water onto the air compressed by the compressor; a combustor that burns moisture air and fuel sprayed with water by the humidifier; and A gas turbine system having a turbine driven by combustion gas generated by a combustor, and a regenerator for exchanging heat between the combustion gas driving the turbine and the moisture air sprayed with water by the humidifier A plurality of cavities for circulating a cooling medium therein, a plurality of film holes communicating with the main flow through which the working gas flows, and a plurality of small holes in the plurality of cavities. In the gas turbine stationary blade with the inserted insert,
Moisture air sprayed with water by the humidifier is supplied to at least the most upstream cavity in the combustion gas flow path of the plurality of cavities, and the compression is applied to a cavity not supplied with the moisture air. A gas turbine stationary blade configured to supply air compressed by a machine.
請求項2に記載のガスタービン静翼において、
二つの隔壁に区切られた三つの前記空洞を有し、前記燃焼ガスの流路上流側の隔壁と、前記燃焼ガスの流路下流側の隔壁との距離が、腹側よりも背側の方が離れていることを特徴とするガスタービン静翼。
The gas turbine stationary blade according to claim 2,
Three cavities partitioned into two partition walls, and the distance between the partition wall upstream of the combustion gas flow path and the partition wall downstream of the combustion gas flow path is on the back side rather than the ventral side A gas turbine stationary blade characterized in that is separated.
請求項2に記載のガスタービン静翼において、
二つの隔壁に区切られた三つの前記空洞を有し、翼前縁側の隔壁が、翼腹側面に直交する面および翼背側面に直交する面よりも、翼腹側は翼後縁側、翼背側は翼前縁側に傾いていることを特徴とするガスタービン静翼。
The gas turbine stationary blade according to claim 2,
The three cavities are divided into two bulkheads, and the bulkhead on the blade leading edge side is on the blade trailing edge side and blade back side than the surface perpendicular to the blade belly side surface and the surface perpendicular to the blade back side surface. A gas turbine stationary blade characterized in that the side is inclined toward the blade leading edge.
請求項3または請求項4に記載のガスタービン静翼において、
前記三つの空洞のうち中央に位置する空洞の翼背側面に設けられたフィルム孔が、前記燃焼ガスの流路上流側の隔壁寄りに設けられていることを特徴とするガスタービン静翼。
In the gas turbine stationary blade according to claim 3 or 4,
A gas turbine stationary blade, characterized in that a film hole provided on a blade back side surface of a cavity located in the center among the three cavities is provided near a partition wall on the upstream side of the flow path of the combustion gas.
請求項2に記載のガスタービン静翼において、
開口部を有する内径側エンドウォール及び外径側エンドウォールを有し、
前記圧縮空気は前記内径側エンドウォールの開口部より前記インサートの内部空間に供給され、前記湿分空気は前記外径側エンドウォールの開口部より前記インサートの内部空間に供給されるよう構成されたことを特徴とするガスタービン静翼。
The gas turbine stationary blade according to claim 2,
It has an inner diameter side end wall having an opening and an outer diameter side end wall,
The compressed air is supplied to the inner space of the insert from the opening of the inner diameter side end wall, and the moisture air is supplied to the inner space of the insert from the opening of the outer diameter side end wall. A gas turbine stationary blade characterized by that.
請求項2に記載のガスタービン静翼において、
前記圧縮空気は、内径側エンドウォールと前記内径側エンドウォールの内径側に位置するサポートリングによって構成される内径側キャビティを介して、前記内径側エンドウォールの開口部より供給され、
前記湿分空気が、外径側エンドウォールとタービンケーシングによって構成される外径側キャビティを介して、前記外径側エンドウォールの開口部より供給されるよう構成されたことを特徴とするガスタービン静翼。
The gas turbine stationary blade according to claim 2,
The compressed air is supplied from an opening of the inner diameter side end wall through an inner diameter side cavity formed by an inner diameter side end wall and a support ring located on the inner diameter side of the inner diameter side end wall.
A gas turbine configured to supply the moisture air from an opening of the outer diameter side end wall through an outer diameter side cavity constituted by an outer diameter side end wall and a turbine casing. Static wing.
圧縮機で圧縮された圧縮空気に増湿器で水を噴霧し、前記増湿器で水を噴霧された高湿分空気を燃焼器に供給する高湿分ガスタービンシステムに用いられる、内部に複数の冷却流路を有するガスタービン静翼の冷却方法において、
前記冷却流路の少なくとも一つに前記圧縮機で圧縮された圧縮空気の一部を供給し、これ以外の冷却流路に前記増湿器で水を噴霧された高湿分空気の一部を供給することを特徴とするガスタービン静翼の冷却方法。
Used in a high-humidity gas turbine system for supplying high-humidity air sprayed with a humidifier to the compressed air compressed by the compressor and supplying the humidified air sprayed with water by the humidifier to the combustor. In the method for cooling a gas turbine stationary blade having a plurality of cooling channels,
A part of the compressed air compressed by the compressor is supplied to at least one of the cooling channels, and a part of the high-humidity air sprayed with water by the humidifier is supplied to the other cooling channels. A cooling method for a gas turbine stationary blade, characterized by comprising:
JP2008158608A 2008-06-18 2008-06-18 Gas turbine stationary blade cooling structure and refrigerant supply structure Active JP5210722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008158608A JP5210722B2 (en) 2008-06-18 2008-06-18 Gas turbine stationary blade cooling structure and refrigerant supply structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008158608A JP5210722B2 (en) 2008-06-18 2008-06-18 Gas turbine stationary blade cooling structure and refrigerant supply structure

Publications (2)

Publication Number Publication Date
JP2010001740A true JP2010001740A (en) 2010-01-07
JP5210722B2 JP5210722B2 (en) 2013-06-12

Family

ID=41583664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158608A Active JP5210722B2 (en) 2008-06-18 2008-06-18 Gas turbine stationary blade cooling structure and refrigerant supply structure

Country Status (1)

Country Link
JP (1) JP5210722B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280004A (en) * 1996-04-17 1997-10-28 Hitachi Ltd Gas turbine stationary blade
JPH11257006A (en) * 1998-03-17 1999-09-21 Hitachi Ltd Power generation system
JP2000337102A (en) * 1999-05-10 2000-12-05 General Electric Co <Ge> Cooling circuit for steam air cooling turbine nozzle stage
JP2001164904A (en) * 1999-12-03 2001-06-19 United Technol Corp <Utc> Cooling type fluid reaction element for turbomachinery
JP2005133658A (en) * 2003-10-31 2005-05-26 Hitachi Ltd Gas turbine plant and its cooling method
JP2006097596A (en) * 2004-09-30 2006-04-13 Hitachi Ltd Gas turbine facility, control device thereof, method for controlling gas turbine facility and method for controlling turbine cooling part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280004A (en) * 1996-04-17 1997-10-28 Hitachi Ltd Gas turbine stationary blade
JPH11257006A (en) * 1998-03-17 1999-09-21 Hitachi Ltd Power generation system
JP2000337102A (en) * 1999-05-10 2000-12-05 General Electric Co <Ge> Cooling circuit for steam air cooling turbine nozzle stage
JP2001164904A (en) * 1999-12-03 2001-06-19 United Technol Corp <Utc> Cooling type fluid reaction element for turbomachinery
JP2005133658A (en) * 2003-10-31 2005-05-26 Hitachi Ltd Gas turbine plant and its cooling method
JP2006097596A (en) * 2004-09-30 2006-04-13 Hitachi Ltd Gas turbine facility, control device thereof, method for controlling gas turbine facility and method for controlling turbine cooling part

Also Published As

Publication number Publication date
JP5210722B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5947524B2 (en) Turbomachine vane and method for cooling turbomachine vane
CN101029581B (en) Methods and apparatus for cooling gas turbine rotor blades
US8858161B1 (en) Multiple staged compressor with last stage airfoil cooling
US7497655B1 (en) Turbine airfoil with near-wall impingement and vortex cooling
EP1956192B1 (en) Gas turbine engine component cooling scheme
US8475112B1 (en) Multiple staged compressor with last stage airfoil cooling
US11655718B2 (en) Blade with tip rail, cooling
EP2358978B1 (en) Apparatus and method for cooling a turbine airfoil arrangement in a gas turbine engine
WO2018044571A1 (en) Turbine stator vane with closed-loop sequential impingement cooling insert
US10753207B2 (en) Airfoil with tip rail cooling
JP2010203437A (en) Turbine blade cooling
JP6431690B2 (en) Turbine rotor blade for the turbine section of a gas turbine
JP3494879B2 (en) Gas turbine and gas turbine vane
US20120251295A1 (en) Gas turbine engine component
BR102016022589A2 (en) airfoil and blade for a gas turbine engine
JP2003083001A (en) Gas turbine and stationary blade thereof
JP2012072708A (en) Gas turbine and method for cooling gas turbine
US8721265B1 (en) Multiple staged compressor with last stage airfoil cooling
US8622701B1 (en) Turbine blade platform with impingement cooling
JP4867203B2 (en) gas turbine
JP5210722B2 (en) Gas turbine stationary blade cooling structure and refrigerant supply structure
JP3186576B2 (en) Gas turbine vane
US20180066525A1 (en) Air cooled turbine rotor blade for closed loop cooling
JP2012031727A (en) Gas turbine and method for cooling gas turbine
JP2008274818A (en) Gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5210722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250