JP2010001166A - Rotary roller device for conveying glass body and roller conveyer - Google Patents

Rotary roller device for conveying glass body and roller conveyer Download PDF

Info

Publication number
JP2010001166A
JP2010001166A JP2008159019A JP2008159019A JP2010001166A JP 2010001166 A JP2010001166 A JP 2010001166A JP 2008159019 A JP2008159019 A JP 2008159019A JP 2008159019 A JP2008159019 A JP 2008159019A JP 2010001166 A JP2010001166 A JP 2010001166A
Authority
JP
Japan
Prior art keywords
roller
shaft
bush
gas
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008159019A
Other languages
Japanese (ja)
Inventor
Isamu Chiyoda
尉寒 千代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008159019A priority Critical patent/JP2010001166A/en
Publication of JP2010001166A publication Critical patent/JP2010001166A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a rotary roller device for conveying a glass body which hardly damages the surface of the conveyed glass body and has wear resistance to prolong the life. <P>SOLUTION: The rotary roller device 21 is provided with a shaft 35 having a gas jetting hole 37 jetting a gas and formed on the side surface to form a gas bearing and a rotary roller 21a fitted to the shaft 35, having an annular groove 31 for guiding the glass body G1 and rotating around the shaft 35, wherein the rotary roller 21a comprises a roller body 30 having the annular groove 31 formed on the outer surface, having a shaft hole 32 in the rotary shaft side and formed from a heat resistant resin and a bush 33 of a metallic pipe body which is fitted so that the outer surface is brought into close contact with the inner surface of the shaft hole 32 of the roller body 30 and the inner surface forms an air layer between the inner surface and the side surface of the shaft 35 to form a bearing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は溶融ガラスからガラス管などを引出し形成するガラス管形成装置などに用いるガラス体搬送用回転ローラ装置およびローラコンベヤに関する。   The present invention relates to a rotating roller device for transporting a glass body and a roller conveyor used in a glass tube forming apparatus that draws and forms a glass tube from molten glass.

ガラス管形成装置では溶融したガラスを管状に引出して軟化状態で塑性変形する管を水平状態で搬送し固化するダンナー方式などの形成装置が用いられ、搬送コンベヤには空気軸受を用いた回転ローラ装置が使用される。ローラは材質として低摩擦係数の黒鉛が用いられ接触する加熱されたガラス管を変形したり、表面を傷付けるのを防いでいる(特許文献1、特許文献2参照)。
特公昭45−24464号公報 実開昭63−89937号公報
In the glass tube forming device, a forming device such as a dunner method is used in which a molten glass is drawn into a tube shape, and a plastically deformed tube is transported and solidified in a horizontal state, and a rotating roller device using an air bearing is used as a transport conveyor. Is used. The roller is made of graphite having a low friction coefficient as a material, and prevents the heated glass tube from being deformed or scratching the surface (see Patent Document 1 and Patent Document 2).
Japanese Examined Patent Publication No. 45-24464 Japanese Utility Model Publication No. 63-89937

回転摩擦の少ない気体軸受を用いても、金属ローラは搬送されるガラス管などの長尺ガラス体を傷つけやすく、黒鉛ローラは磨耗に耐性がなく寿命が短いという不都合があり、このような不都合のない回転ローラ装置が望まれていた。   Even when using a gas bearing with low rotational friction, the metal roller tends to damage long glass bodies such as the glass tube being conveyed, and the graphite roller has the disadvantage that it is not resistant to wear and has a short life. No rotating roller device was desired.

本発明は以上に鑑みてなされたもので、搬送するガラス体表面を傷つけし難く耐磨耗性で長寿命のガラス体回転ローラ装置を得るものである。   The present invention has been made in view of the above, and provides a wear-resistant and long-life glass body rotating roller device that hardly damages the surface of the glass body being conveyed.

本発明は、気体を噴射する通気孔を側面に形成して気体軸受を構成するシャフトと、このシャフトに挿着され、ガラス体を案内する環状溝を有し前記シャフトの回りを回転する回転ローラを具備する回転ローラ装置であって、前記回転ローラは、外表面に前記環状溝を形成し回転軸側を軸孔とした耐熱性樹脂で形成されたローラ本体と、外表面を前記ローラ本体の軸孔内面に密着され内表面を前記シャフトの側面との間に空気層を形成して軸受が構成されるように挿着される金属管体のブッシュとからなることを特徴とするガラス体搬送用回転ローラ装置を得るものである。   The present invention relates to a shaft which forms a gas bearing by forming a vent hole for injecting a gas on a side surface, and a rotating roller which is inserted into the shaft and has an annular groove for guiding a glass body and rotates around the shaft. A rotating roller device comprising: a roller body formed of a heat-resistant resin having an annular groove formed on an outer surface thereof and a shaft hole on a rotating shaft side; and an outer surface of the roller body. A glass body conveyance comprising a bush of a metal tube which is closely attached to the inner surface of the shaft hole and is inserted so that an inner surface forms an air layer between the side surface of the shaft and a bearing is formed. The rotary roller device for use is obtained.

本発明のガラス体搬送用回転ローラ装置は走行するガラス体(ガラス管、中実ガラス体)に接触する環状溝を有するローラ本体を耐熱性樹脂で形成し、気体軸受の回転部を金属管体で形成するものであるから、熱いガラス体の接触部で受けたローラ本体の熱は接触部近傍に滞留せず、近接した熱伝導性にすぐれた金属管体のブッシュに伝導され、ブッシュ全体を冷却フィンとしてシャフトの通気孔から噴射される気体軸受の例えば空気媒体により速やかに冷却される。このためローラ本体が部分的に過熱されることがなく、耐摩耗性が維持され長寿命になる。   The rotating roller device for conveying a glass body according to the present invention has a roller body having an annular groove that is in contact with a traveling glass body (glass tube, solid glass body) made of heat-resistant resin, and the rotating portion of the gas bearing is a metal tube body. Therefore, the heat of the roller body received at the contact portion of the hot glass body does not stay in the vicinity of the contact portion, but is conducted to the bush of the metal tube body with excellent thermal conductivity. Cooling fins are quickly cooled by, for example, an air medium of a gas bearing that is injected from the vent hole of the shaft. For this reason, the roller main body is not partially overheated, wear resistance is maintained, and the life is extended.

また、金属管体の加工精度が樹脂よりも高いので、金属ローラと同様の気体軸受性能を得ることができ、かつローラ全体の比重が小さく重量が軽いので、気体軸受に消費されるガス量のランニングコストを低減したコンベヤを得ることができる。   In addition, since the processing accuracy of the metal tube is higher than that of the resin, the gas bearing performance similar to that of the metal roller can be obtained, and the specific gravity of the entire roller is small and the weight is light. A conveyor with reduced running costs can be obtained.

本発明は耐熱性樹脂を回転ローラ装置のローラ本体に使用する。ここで耐熱性樹脂とは、フッ素樹脂(PTFE,PFA,FEP,PVDFなど)、液晶ポリマー(2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重縮合体[タイプIII]など)、耐熱性ポリアミドイミド樹脂などの260℃以上の耐熱性を有する樹脂を呼称する。さらにフィラーを添加して硬度を高めることができ、フィラーとしてカーボン粉末、シリコン粉末、カーボンファイバーその他の材料を選ぶことができる。   The present invention uses a heat resistant resin for the roller body of the rotary roller device. Here, the heat-resistant resin is a fluororesin (PTFE, PFA, FEP, PVDF, etc.), a liquid crystal polymer (polycondensate of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid [type III], etc.), heat resistance A resin having a heat resistance of 260 ° C. or higher such as a polyamide-imide resin is called. Further, a filler can be added to increase the hardness, and carbon powder, silicon powder, carbon fiber and other materials can be selected as the filler.

長尺ガラス体例えばガラス管の形成において、溶融ガラスを管状にして流下させ自然落下させつつ水平方向に案内してガラス管に固化させるときにローラコンベヤが用いられる。ガラス管が管状の軟化状態から固化し一定長のガラス管に切断される間に500℃から100℃以下に冷却され、その間を間隔をおいて配置された回転ローラ装置上をガラス管が案内され搬送される。   In the formation of a long glass body, for example, a glass tube, a roller conveyor is used when molten glass is made to flow in a tubular shape and is naturally dropped and guided horizontally to be solidified into a glass tube. The glass tube is cooled from 500 ° C. to 100 ° C. or less while the glass tube is solidified from the tubular softened state and cut into a fixed length glass tube, and the glass tube is guided on a rotating roller device arranged with an interval therebetween. Be transported.

耐熱性樹脂に260℃〜400℃程度に耐えるものがあり、フッ素樹脂や液晶ポリマーなどは300℃近辺まで使用でき、本発明者はローラコンベヤの大半をこの耐熱性樹脂のローラで置き換え得ることを見出した。例えばフッ素樹脂自体が低摩擦係数を有していてガラス管コンベヤとして必要な200℃〜300℃では摩擦係数がさらに低減するが、一方で圧縮応力も低減するためにフィラー例えばグラファイト粉末を混入して同温度下の硬度を高めることができる。   Some heat resistant resins can withstand about 260 ° C. to 400 ° C., and fluororesins and liquid crystal polymers can be used up to around 300 ° C., and the present inventor can replace most of the roller conveyor with rollers of this heat resistant resin. I found it. For example, the fluororesin itself has a low friction coefficient, and the friction coefficient is further reduced at 200 ° C. to 300 ° C., which is necessary for a glass tube conveyor. Hardness at the same temperature can be increased.

しかし樹脂性ローラには熱いガラス体の搬送に対して、いくつかの課題がある。一つは熱伝導性が低いのでガラス体の接触部付近に熱が滞留しやすいこと、他は加工性が低いので気体軸受のような10μm単位の加工精度の差で軸受に導入する気体量を変動させるものに対して過量の気体を供給消費しなくてはならない。   However, the resin roller has several problems for conveying a hot glass body. One is that heat conductivity is low because heat conductivity is low, and the other is that workability is low, so the amount of gas introduced into the bearing is different due to the difference in processing accuracy in units of 10 μm, such as a gas bearing. Excess gas must be supplied and consumed for the variable.

これらの課題はローラの軸受部に金属管体を適用することにより改善される。   These problems are improved by applying a metal tube to the roller bearing.

金属管体は樹脂本体の軸孔部に密着して熱を速やかに拡散することができ、気体軸受の気体層を形成する導入気体によって強制空冷される。さらに金属管体の内表面を高精度に仕上げることができるので、回転ローラ装置を支持するシャフトとの間の気体層の間隔を一定に保つことができ気体軸受用の気体送込み量を最小限に止めてランニングコストを高めることができる。   The metal tube body can be in close contact with the shaft hole portion of the resin main body to quickly diffuse the heat, and is forcedly air-cooled by the introduced gas that forms the gas layer of the gas bearing. Furthermore, since the inner surface of the metal tube can be finished with high accuracy, the gap of the gas layer between the shaft supporting the rotating roller device can be kept constant, and the gas feed amount for the gas bearing is minimized. The running cost can be increased.

以下図面を参照して実施形態を説明する。   Embodiments will be described below with reference to the drawings.

(実施形態1)
図1および図2は本実施形態を説明するもので、図1はダンナー方式のガラス管形成装置の概略図、図2はそのローラコンベヤに使用する回転ローラ装置の断面略図を示している。
(Embodiment 1)
FIG. 1 and FIG. 2 illustrate this embodiment. FIG. 1 is a schematic view of a danna-type glass tube forming apparatus, and FIG. 2 is a schematic cross-sectional view of a rotating roller apparatus used for the roller conveyor.

ガラス管形成装置10は、ガラス溶融炉から引き出された溶融ガラスGを所定温度に保持し貯溜するガラス溶融容器12をマッフル炉11上部に配している。このガラス溶融容器12の底部に形成されマッフル炉11内に開口しているオリフィス13の下方に、マッフル炉11内に配設されて駆動機構14により所定回転速度で一定方向に回転するスリーブ15を備えている。スリーブ15は先端が下方となるよう所定の傾斜角度で傾斜し、さらにスリーブ15の軸心に沿いガス圧送路16が貫通して設けられていて、このガス圧送路16を通じ、圧ガス供給源17から供給されたブローエアが先端開口から噴出するようになっている。   In the glass tube forming apparatus 10, a glass melting container 12 that holds and stores the molten glass G drawn from the glass melting furnace at a predetermined temperature is disposed above the muffle furnace 11. Below the orifice 13 formed at the bottom of the glass melting vessel 12 and opening into the muffle furnace 11, a sleeve 15 disposed in the muffle furnace 11 and rotated in a predetermined direction at a predetermined rotational speed by a drive mechanism 14 is provided. I have. The sleeve 15 is inclined at a predetermined inclination angle so that the front end is downward, and a gas pressure feed path 16 is provided through the sleeve 15 along the axial center of the sleeve 15, and a pressure gas supply source 17 is provided through the gas pressure feed path 16. The blow air supplied from is ejected from the tip opening.

ガラス溶融容器12のオリフィス13から適正に粘性が調整された溶融ガラスG0がリボン状に流下し、スリーブ15の上方の基部側表面に巻き付く。その後、巻き付いた溶融ガラスG0は、重力により基部側から下方の先端側に移動し、先端開口から噴出する所定圧力のブローエアによって管状のガラスG1に成形され、ローラコンベヤ20上を搬送されるように管引き機18によって矢印g方向に管引きされる。管引き機18を経たガラス管G2は切断機19により必要な寸法に切断される。   The molten glass G0 having an appropriately adjusted viscosity flows down from the orifice 13 of the glass melting container 12 in a ribbon shape and winds around the base side surface above the sleeve 15. Thereafter, the wound molten glass G0 moves from the base side to the lower tip side by gravity, is formed into a tubular glass G1 by blow air of a predetermined pressure ejected from the tip opening, and is conveyed on the roller conveyor 20. The tube is drawn in the direction of arrow g by the tube drawing machine 18. The glass tube G2 that has passed through the tube drawing machine 18 is cut to a required size by a cutting machine 19.

ローラコンベヤ20はガラス管G1,G2を搬送する方向gに沿って並べた複数個の回転ローラ装置21のコンベヤラインでなる。回転ローラ装置は気体軸受構成であり、各回転ローラ装置に気体導入管23が接続され、各気体導入管23は高圧気体供給源24に接続されている。   The roller conveyor 20 is a conveyor line of a plurality of rotating roller devices 21 arranged along the direction g in which the glass tubes G1 and G2 are conveyed. The rotary roller device has a gas bearing configuration, and a gas introduction tube 23 is connected to each rotary roller device, and each gas introduction tube 23 is connected to a high-pressure gas supply source 24.

長尺ガラス体として上記ガラス管を搬送する回転ローラ装置21は、回転ローラ21aを備えており、V字溝の環状溝31を外表面に有する例えば鼓形状の耐熱樹脂のローラ本体30を備えており、回転軸中心に貫通する軸孔32を形成している。軸孔32に円筒の金属管体のブッシュ33が嵌着される。ブッシュ外表面はローラ本体30の軸孔32内面にローラ本体の弾性を利用して密着している。ローラ本体30とブッシュの両端面は面一に形成される。   The rotating roller device 21 that conveys the glass tube as a long glass body includes a rotating roller 21a, and includes, for example, a drum-shaped heat-resistant resin roller body 30 having an annular groove 31 on the outer surface. A shaft hole 32 penetrating through the center of the rotation shaft is formed. A cylindrical metal tube bush 33 is fitted into the shaft hole 32. The outer surface of the bush is in close contact with the inner surface of the shaft hole 32 of the roller body 30 using the elasticity of the roller body. Both end surfaces of the roller body 30 and the bush are formed flush with each other.

このブッシュ33が金属のシャフト35に回転自在に挿着される。シャフト35は内部に気体流路36を軸に沿って穿設しており、気体流路36からシャフト側面に半径方向に複数の気体噴射孔37が伸び表面で開口している。シャフト35は基部をブラケット38により片持ち支持され、キャップ抑え39およびナット40により固定される。回転ローラ21aの両端面はディスク状のキャップ41,42で挟まれ、シャフト上の軸方向移動を規制される。シャフト基部側のキャップ42はシャフト35とキャップ抑え39により固定され、シャフト先端側のキャップ41はボルトで固定される。キャップ41とローラ本体30間に軸受用に供給された気体が逃げる間隙が形成され、キャップ41,42と回転ローラ21aを非接触にさせる。   The bush 33 is rotatably attached to the metal shaft 35. The shaft 35 has a gas flow path 36 formed in the shaft along the axis, and a plurality of gas injection holes 37 extend radially from the gas flow path 36 to the side surface of the shaft. The base of the shaft 35 is cantilevered by a bracket 38 and is fixed by a cap retainer 39 and a nut 40. Both end surfaces of the rotating roller 21a are sandwiched between disc-shaped caps 41 and 42, and axial movement on the shaft is restricted. The shaft base side cap 42 is fixed by a shaft 35 and a cap retainer 39, and the shaft tip end cap 41 is fixed by a bolt. A gap through which the gas supplied for the bearing escapes is formed between the cap 41 and the roller main body 30, and the caps 41 and 42 and the rotating roller 21a are brought into contact with each other.

シャフト35の外径は回転ローラ21aのブッシュ33の内径よりやや小さく形成され間隙をつくり、これによりシャフト外表面とブッシュ内表面の間に気体層が円筒状に形成されて、軸受が構成される。例えば間隙は0.05mm〜0.10mmである。   The outer diameter of the shaft 35 is slightly smaller than the inner diameter of the bush 33 of the rotating roller 21a to create a gap, thereby forming a gas layer in a cylindrical shape between the outer surface of the shaft and the inner surface of the bush to constitute a bearing. . For example, the gap is 0.05 mm to 0.10 mm.

シャフト35の基部に気体導入管23が連結され、高圧気体供給源24からの例えば圧搾空気がシャフトの気体流路36を経て気体噴射孔37から間隙に噴射されて気体軸受として機能する。   The gas introduction pipe 23 is connected to the base of the shaft 35, and, for example, compressed air from the high-pressure gas supply source 24 is injected into the gap from the gas injection hole 37 through the gas flow path 36 of the shaft and functions as a gas bearing.

ブラケット38は基台45に固定され、複数の回転ローラ装置として並列されてローラコンベヤ20を構成する。   The bracket 38 is fixed to the base 45, and forms a roller conveyor 20 in parallel as a plurality of rotating roller devices.

ローラ本体30は耐熱性樹脂としてフッ素樹脂であるポリテトラフルオロエチレン(PTFE)で形成しており、10〜20体積%のグラファイト粉末をフィラーとして混入して成形されている。ブッシュ33はステンレス鋼例えばSUS304で形成し、ローラ本体30が弾性を有するので、その軸孔壁に弾性的に密着するように嵌着される。樹脂の融点が327℃であるので、300℃程度の加熱に耐えることができる。この樹脂は低摩擦係数をもち、充填したグラファイト粉末とともに搬送により接触するガラス管の表面への機械的な損傷を与えることが少ない。V字の環状溝の開き角度は搬送するガラス管の管径により選択されるが例えば90〜135度とされる。   The roller body 30 is made of polytetrafluoroethylene (PTFE), which is a fluororesin, as a heat-resistant resin, and is molded by mixing 10 to 20% by volume of graphite powder as a filler. The bush 33 is formed of stainless steel, for example, SUS304, and the roller main body 30 has elasticity, so that the bush 33 is fitted so as to elastically adhere to the shaft hole wall. Since the melting point of the resin is 327 ° C., it can withstand heating at about 300 ° C. This resin has a low coefficient of friction and is less likely to cause mechanical damage to the surface of the glass tube that comes into contact with the filled graphite powder by conveyance. The opening angle of the V-shaped annular groove is selected depending on the diameter of the glass tube to be conveyed, but is, for example, 90 to 135 degrees.

また、熱いガラス管G1から受けた熱は溝底部に位置するブッシュ33が冷却フィンになり、速やかに放散され軸受全体で冷却することができて、ブッシュを設けない場合にガラス管の接触部分付近に熱滞留が生じて過熱するのを防ぐことができる。シャフトも同様のステンレス鋼で作製する。   Further, the heat received from the hot glass tube G1 becomes a cooling fin in the bush 33 located at the bottom of the groove, and can be quickly dissipated and cooled by the entire bearing. When the bush is not provided, the vicinity of the contact portion of the glass tube It is possible to prevent overheating due to heat retention. The shaft is made of similar stainless steel.

図1において、マッフル炉11から引出されたガラス管G0は粘度をもち塑性変形する状態にあり、下方に垂れるにともない外気によって冷却されつつ管引され、所定径のガラス管G1に固化していく。マッフル炉付近で500℃程度に加熱されているガラス管はコンベヤの水平位置までくると300℃程度になる。300℃から500℃のガラス管に対してはグラファイトの回転ローラ装置を用い、300℃程度以下の温度のガラス管に対して本実施形態の回転ローラ装置を使用する。   In FIG. 1, the glass tube G0 drawn from the muffle furnace 11 has a viscosity and is in a state of plastic deformation, and as it hangs down, it is drawn while being cooled by the outside air and solidifies into a glass tube G1 having a predetermined diameter. . The glass tube heated to about 500 ° C. near the muffle furnace reaches about 300 ° C. when it reaches the horizontal position of the conveyor. A graphite rotating roller device is used for a glass tube of 300 ° C. to 500 ° C., and the rotating roller device of this embodiment is used for a glass tube having a temperature of about 300 ° C. or less.

一例として4mmφのガラス管を形成する場合、管引き速度は1.3〜2.6m/sであり、このときに適用する回転ローラ21aの長さ50mm、ローラ本体の最大径50mmφ、V字の環状溝31の底部の外径は32.5mmφ、ブッシュ33の内径14.9mmφ、シャフト35の外径15.0mmφで、高圧気体供給源24から2気圧の空気を送入した。   As an example, when a 4 mmφ glass tube is formed, the tube drawing speed is 1.3 to 2.6 m / s. The length of the rotating roller 21a applied at this time is 50 mm, the maximum diameter of the roller body is 50 mmφ, The outer diameter of the bottom of the annular groove 31 was 32.5 mmφ, the inner diameter of the bush 33 was 14.9 mmφ, the outer diameter of the shaft 35 was 15.0 mmφ, and air of 2 atm was supplied from the high-pressure gas supply source 24.

この回転ローラ21aのガラス管との接触磨耗による寿命は、使用時間で平均8500時間となり、比較例として示すと、ブッシュのない耐熱性樹脂だけの回転ローラ装置の4倍であった。   The service life of the rotating roller 21a due to contact wear with the glass tube is an average of 8500 hours in use time, which is four times that of a rotating roller device having only a heat-resistant resin without a bush.

(実施形態2)
本実施形態は、図3(a)に示すように、ブッシュ33の表面に螺旋凸部50が形成され、一方、ローラ本体の軸孔32内壁に螺旋溝51が形成されており、ブッシュが螺着されている。なお実施形態1と同一符号の部分は同様部品を示す。螺旋凸部50の形成により、両者30,33の接触面積が大きくなり、ローラ本体の熱を捕獲しやすくなり熱放散を高めることができる。
(Embodiment 2)
In this embodiment, as shown in FIG. 3 (a), a spiral protrusion 50 is formed on the surface of the bush 33, while a spiral groove 51 is formed on the inner wall of the shaft hole 32 of the roller body. It is worn. In addition, the part of the same code | symbol as Embodiment 1 shows a component similarly. By forming the spiral convex portion 50, the contact area between both the members 30 and 33 is increased, and the heat of the roller body can be easily captured, so that heat dissipation can be increased.

さらに、樹脂製のローラ本体30は熱膨張が金属よりも大きいので、動作中の加熱により接触が緩む傾向になるが、熱膨張差が大きい場合でも凸部51によりこの傾向を低減することができる。   Furthermore, since the thermal expansion of the resin roller body 30 is larger than that of the metal, the contact tends to loosen due to heating during operation, but this tendency can be reduced by the convex portion 51 even when the thermal expansion difference is large. .

(実施形態3)
本実施形態はローラ本体30とブッシュ33の間に、熱膨張係数がローラ本体よりも小さく、ブッシュよりも大きい中間熱膨張係数を持つ中間金属管体52を介在させる。一例としてブッシュ33をステンレス鋼で形成した場合に、中間金属管体52を金属のアルミニウムで構成する。耐熱性ポリアミドイミド樹脂で31.0×10 ℃、アルミニウムは23×10/℃、ステンレス鋼SUS304で17.3×10/℃であり、ローラ本体とブッシュの膨張係数の差を緩和する。中間金属管体52は熱良導性金属であるアルミニウムであるので、ローラ本体の熱放散をさらに有利にする。
(Embodiment 3)
In the present embodiment, an intermediate metal tube 52 having an intermediate coefficient of thermal expansion smaller than that of the roller body and larger than that of the bush is interposed between the roller body 30 and the bush 33. As an example, when the bush 33 is made of stainless steel, the intermediate metal tube 52 is made of metallic aluminum. Heat-resistant polyamide-imide resin 31.0 × 10 6 / ° C., the aluminum is 23 × 10 6 / ℃, a 17.3 × 10 6 / ℃ stainless steel SUS304, to relax the difference in the expansion coefficients of the roller body and the bushing. Since the intermediate metal tube 52 is aluminum which is a heat conductive metal, heat dissipation of the roller body is further advantageous.

以上本発明を実施形態により説明したが、ローラ本体の環状溝はV字断面に限らず、W字断面など複数の溝を形成したものにも適用することができる。   Although the present invention has been described above with reference to the embodiments, the annular groove of the roller main body is not limited to the V-shaped cross section, but can be applied to a roller formed with a plurality of grooves such as a W-shaped cross section.

また、ガラス管形成装置もダンナー方式に限られず、ベロー方式など他の方式で形成されるものにも適用できるものである。   Further, the glass tube forming apparatus is not limited to the dunner method, and can be applied to devices formed by other methods such as a bellows method.

本発明の一実施形態を説明する概略図。Schematic explaining one Embodiment of this invention. 本発明の一実施形態の回転ローラ装置の断面図。Sectional drawing of the rotating roller apparatus of one Embodiment of this invention. (a)(b)は本発明の他の実施形態を説明する断面略図。(A) and (b) are the cross-sectional schematic diagrams explaining other embodiment of this invention.

符号の説明Explanation of symbols

11:マッフル炉
20:ローラコンベヤ
21:回転ローラ装置
21a:回転ローラ
23:気体導入管
24:高圧気体供給源
30:ローラ本体
31:環状溝
32:軸孔
33:ブッシュ
35:シャフト
36:気体流路
37:気体噴射孔
38:ブラケット
41,42:キャップ
11: Muffle furnace 20: Roller conveyor 21: Rotating roller device 21a: Rotating roller 23: Gas introduction pipe 24: High pressure gas supply source 30: Roller body 31: Annular groove 32: Shaft hole 33: Bush 35: Shaft 36: Gas flow Path 37: Gas injection hole 38: Bracket 41, 42: Cap

Claims (4)

気体を噴射する通気孔を側面に形成して気体軸受を構成するシャフトと、このシャフトに挿着され、ガラス体を案内する環状溝を有し前記シャフトの回りを回転する回転ローラを具備する回転ローラ装置であって、
前記回転ローラは、外表面に前記環状溝を形成し回転軸側を軸孔とした耐熱性樹脂で形成されたローラ本体と、
外表面を前記ローラ本体の軸孔内面に密着され内表面を前記シャフトの側面との間に空気層を形成して軸受が構成されるように挿着される金属管体のブッシュとからなることを特徴とするガラス体搬送用回転ローラ装置。
A rotation comprising a shaft that forms a gas bearing by forming a vent hole for injecting gas on the side surface, and a rotating roller that is inserted into the shaft and has an annular groove that guides the glass body and rotates around the shaft. A roller device,
The rotating roller has a roller body formed of a heat-resistant resin with the annular groove formed on the outer surface and the rotating shaft side as an axial hole;
It comprises a bush of a metal tube that is inserted so that the outer surface is in close contact with the inner surface of the shaft hole of the roller body and an air layer is formed between the inner surface and the side surface of the shaft to constitute a bearing. A rotating roller device for conveying a glass body.
前記ローラ本体と前記ブッシュとが螺着されてなる請求項1に記載のガラス体搬送用回転ローラ装置。   The rotation roller device for conveying a glass body according to claim 1, wherein the roller body and the bush are screwed together. 熱膨張係数が前記ローラ本体よりも小さく、前記ブッシュよりも大きい中間熱膨張係数を持つ中間金属管体を前記ローラ本体と前記ブッシュ間に介在させてなる請求項1に記載のガラス体搬送用回転ローラ装置。   The rotation for conveying a glass body according to claim 1, wherein an intermediate metal tube having an intermediate coefficient of thermal expansion smaller than that of the roller body and larger than that of the bush is interposed between the roller body and the bush. Roller device. 前記請求項1に記載の回転ローラ装置を複数個、ライン状に並列してなるローラコンベヤ。   A roller conveyor comprising a plurality of the rotating roller devices according to claim 1 arranged in a line.
JP2008159019A 2008-06-18 2008-06-18 Rotary roller device for conveying glass body and roller conveyer Pending JP2010001166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159019A JP2010001166A (en) 2008-06-18 2008-06-18 Rotary roller device for conveying glass body and roller conveyer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159019A JP2010001166A (en) 2008-06-18 2008-06-18 Rotary roller device for conveying glass body and roller conveyer

Publications (1)

Publication Number Publication Date
JP2010001166A true JP2010001166A (en) 2010-01-07

Family

ID=41583198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159019A Pending JP2010001166A (en) 2008-06-18 2008-06-18 Rotary roller device for conveying glass body and roller conveyer

Country Status (1)

Country Link
JP (1) JP2010001166A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176787A (en) * 2017-06-29 2017-09-19 东旭科技集团有限公司 The roller of Float Glass Annealing process, the conveyer of float glass and transfer approach
KR20200104363A (en) * 2017-12-29 2020-09-03 파이브스 스탕 Devices for radiative cooling of glass ribbons in metal baths
EP3889119A1 (en) * 2020-04-03 2021-10-06 Schott AG Glass tube element with improved quality
EP3889118A1 (en) * 2020-04-03 2021-10-06 Schott AG Glass tube element with improved quality

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176787A (en) * 2017-06-29 2017-09-19 东旭科技集团有限公司 The roller of Float Glass Annealing process, the conveyer of float glass and transfer approach
CN107176787B (en) * 2017-06-29 2023-05-12 东旭光电科技股份有限公司 Roller for float glass annealing process, float glass conveying device and conveying method
KR20200104363A (en) * 2017-12-29 2020-09-03 파이브스 스탕 Devices for radiative cooling of glass ribbons in metal baths
KR102645924B1 (en) 2017-12-29 2024-03-12 파이브스 스탕 Apparatus for radiative cooling of glass ribbons in a metal bath
EP3889119A1 (en) * 2020-04-03 2021-10-06 Schott AG Glass tube element with improved quality
EP3889118A1 (en) * 2020-04-03 2021-10-06 Schott AG Glass tube element with improved quality
US11613489B2 (en) 2020-04-03 2023-03-28 Schott Ag Glass tube element with improved quality
US11614181B2 (en) 2020-04-03 2023-03-28 Schott Ag Glass tube element with improved quality

Similar Documents

Publication Publication Date Title
JP2010001166A (en) Rotary roller device for conveying glass body and roller conveyer
US9643872B2 (en) Methods and apparatus for forming a glass ribbon
US20080121497A1 (en) Heated/cool screw conveyor
US10870149B2 (en) Material melting device
CN102105297B (en) Sleeve roll
JP2007152205A (en) Coating device, method for manufacturing tube
JP2016026916A (en) Apparatus for manufacturing fixing member
KR100781441B1 (en) A coating device
US20160257056A1 (en) Inner cooling body for a blown film extrusion line, blown film extrusion line comprising such an inner cooling body and method for operating said blown film extrusion line
KR102155009B1 (en) Coating device, coating method, and method for producing resin film having coating film
JP6027383B2 (en) Tow roller used in glass manufacturing process and glass manufacturing process incorporating the same
JP2015093448A (en) High pressure tank production device
JP2011126096A (en) Device and method for manufacturing thermoplastic resin particle
JP6365177B2 (en) Extrusion mold, extrusion molding apparatus, and extrusion molding method
JP2010247383A (en) Biaxial different direction rotary type extruder
ES2672574T3 (en) A cooling system for a dry wire drawing coil
KR20080014520A (en) Cone type belt conveyer driving roller
JP2012189184A (en) Sliding member for liquid lubrication sliding bearing device
JP2012058715A (en) Aluminum alloy round tube as base material of fixing roller and method for manufacturing the same
JP2008230158A (en) Roller and production process of plastic film using the same
FR3076343A1 (en) DEVICE FOR COOLING BY RADIATION OF A GLASS TAPE IN A METALLIC BATH.
JP7335179B2 (en) sliding member
KR101988746B1 (en) Plating apparatus
CN115195111B (en) Reducing wire extrusion structure for desktop level printer
US11359672B2 (en) Bearing assembly for rotary electric machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110509