JP2011126096A - Device and method for manufacturing thermoplastic resin particle - Google Patents

Device and method for manufacturing thermoplastic resin particle Download PDF

Info

Publication number
JP2011126096A
JP2011126096A JP2009285566A JP2009285566A JP2011126096A JP 2011126096 A JP2011126096 A JP 2011126096A JP 2009285566 A JP2009285566 A JP 2009285566A JP 2009285566 A JP2009285566 A JP 2009285566A JP 2011126096 A JP2011126096 A JP 2011126096A
Authority
JP
Japan
Prior art keywords
nozzle
thermoplastic resin
cutting blade
die
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009285566A
Other languages
Japanese (ja)
Other versions
JP5552308B2 (en
Inventor
Naoya Morishima
直也 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2009285566A priority Critical patent/JP5552308B2/en
Priority to TW099143436A priority patent/TWI428223B/en
Publication of JP2011126096A publication Critical patent/JP2011126096A/en
Application granted granted Critical
Publication of JP5552308B2 publication Critical patent/JP5552308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/582Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for manufacturing a thermoplastic resin particle, which suppresses the generation of a wrong particle due to a wrong cut, and prolongs the life of a pelletizer by reducing the friction resistance between a cutting blade and the surface of a nozzle die. <P>SOLUTION: The device for manufacturing the thermoplastic resin particle includes: an extruder having the nozzle die 1 on whose surface a nozzle 15 is formed and extruding a molten thermoplastic resin from the nozzle; a cooling room 4 accommodating cooling water for cooling the resin extruded from the nozzle; the cutting blade 30 mounted in the cooling room 4 and cutting the cooled resin extruded from the nozzle into particles by being rotated while contacting the surface of the nozzle die; a rotation drive part rotating the cutting blade; and a cooling water circulation system circulating only the cooling water in the cooling room by supplying the cooling water in the cooling room and discharging the same together with the resin particles. The cutting blade satisfies the relation 0<t/d≤17 wherein t is the thickness of the blade part, and d is the diameter of the nozzle 15. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水中ホットカット法によって熱可塑性樹脂粒子を製造する製造装置および製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method for manufacturing thermoplastic resin particles by an underwater hot cut method.

熱可塑性樹脂粒子を製造する方法として、ダイスのノズルから樹脂を溶融状態で押し出して冷却水または冷却空気にて冷却して固化し、かつ切断刃を回転させて冷却された樹脂を粒子状に切断する、従来技術1および2のホットカット方式が提案されている(例えば、特許文献1および2参照)。   As a method for producing thermoplastic resin particles, the resin is extruded in a molten state from a die nozzle, cooled and solidified by cooling water or cooling air, and the cooled resin is cut into particles by rotating a cutting blade. The hot cut methods of the prior arts 1 and 2 have been proposed (see, for example, Patent Documents 1 and 2).

従来技術1では、ロックウェル硬さHRAが89以上であり、抗折力が180kgf/mm2以上の高硬度合金から形成された切断刃を有するペレタイザーを用いることにより、高硬度の無機充填材と合成樹脂とを含有する樹脂組成物であっても、耐摩耗性を損なうことなく安定してペレット化することができるとされている。 In the prior art 1, by using a pelletizer having a cutting blade made of a high hardness alloy having a Rockwell hardness HRA of 89 or more and a bending strength of 180 kgf / mm 2 or more, a high hardness inorganic filler and It is said that even a resin composition containing a synthetic resin can be stably pelletized without impairing the wear resistance.

従来技術2では、表面が断熱されたダイスを用い、押出機からダイス孔に送り込んだ溶融樹脂を水中に押し出して回転カッターにて切断することにより、粒径0.8〜2.0mmの小粒かつ真球度の高い球状粒子を製造することができると共に、回転カッターの刃をダイス表面に非接触とすることにより、刃およびダイスの損傷を防止できるとされている。
このような小径の樹脂粒子(所謂「マイクロペレット」)は、発泡剤を含浸されて発泡樹脂粒子を製造するのに使用される。
In the prior art 2, by using a die having a thermally insulated surface, the molten resin fed into the die hole from the extruder is extruded into water and cut with a rotary cutter, so that a small particle size of 0.8 to 2.0 mm and It is said that spherical particles with high sphericity can be produced, and damage to the blade and the die can be prevented by making the blade of the rotary cutter non-contact with the die surface.
Such small-sized resin particles (so-called “micropellets”) are impregnated with a foaming agent and used to produce foamed resin particles.

特開平11−77671号公報JP-A-11-77671 特開平5−301218号公報JP-A-5-301218

従来技術1の場合、高硬度合金からなる切断刃を使用しているため、容易にダイ表面が摩耗してダイの寿命が短くなる問題、および、ダイ表面に発生した傷によって切断刃とダイ表面との間に微細な隙間が形成されて切断精度が低下してしまい、その結果、紐状異物、樹脂粉末、図6に示すようなペレットpが2個以上繋がった連結粒子Cが生じる問題がある。   In the case of the prior art 1, since the cutting blade made of a high hardness alloy is used, there is a problem that the die surface is easily worn and the life of the die is shortened, and the cutting blade and the die surface are caused by scratches generated on the die surface. As a result, a fine gap is formed between them and the cutting accuracy is lowered, and as a result, there is a problem in which connected particles C in which two or more string-like foreign substances, resin powder, and pellets p as shown in FIG. is there.

従来技術2の場合、カット困難な樹脂(例えば、オレフィン系樹脂)をペレット化する場合、回転カッターの刃をダイス表面に非接触とすると、カット不良が発生する。
また、水中ホットカット方式である従来技術2は、回転カッターの刃をダイス表面に接触させた切断によって小径(特に、1.5mm以下)のマイクロペレットを得ようとすると、回転カッターの回転数が速く設定されるため、回転に必要な電流値も高くなる。このとき、刃とダイの接触面積が大きいとこれらの摩擦抵抗も大きくなるため、回転カッターを回転させるモーターの負荷がより高くなってしまい、ペレタイザーの寿命を縮めることになる。
In the case of the prior art 2, when pelletizing resin that is difficult to cut (for example, olefin resin), cutting failure occurs if the blade of the rotary cutter is not in contact with the die surface.
Further, in the prior art 2 which is an underwater hot-cut method, when a micropellet having a small diameter (especially 1.5 mm or less) is obtained by cutting the rotary cutter blade in contact with the die surface, the rotational speed of the rotary cutter is reduced. Since it is set quickly, the current value required for rotation also increases. At this time, if the contact area between the blade and the die is large, these frictional resistances are also increased, so that the load on the motor for rotating the rotary cutter becomes higher and the life of the pelletizer is shortened.

本発明は、前記の課題に鑑みてなされたものであり、カット不良による不良粒子の発生を抑制することができると共に、切断刃とノズルダイ表面との摩擦抵抗を低減してペレタイザーの寿命を延ばすことができる熱可塑性樹脂粒子の製造装置および製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and can suppress the generation of defective particles due to defective cutting, and reduce the frictional resistance between the cutting blade and the nozzle die surface to extend the life of the pelletizer. It is an object of the present invention to provide a production apparatus and production method for thermoplastic resin particles capable of producing a thermoplastic resin particle.

かくして、本発明によれば、表面にノズルが形成されたノズルダイを有しノズルから溶融した熱可塑性樹脂を押し出す押出機と、ノズルから押し出された樹脂を冷却する冷却水を収容するようノズルダイの表面側に設けられた冷却室部と、冷却室部内に設けられてノズルダイの表面に接触しながら回転することによりノズルから押し出されて冷却された樹脂を粒子状に切断する刃部を有する切断刃と、切断刃を回転させる回転駆動部と、冷却室部内に冷却水を供給しかつ樹脂粒子と共に排出して冷却水のみを冷却室部内に循環させる冷却水循環系とを備え、切断刃は、その刃部の厚みをtとし、ノズルの直径をdとすると、0<t/d≦17の関係を満たす熱可塑性樹脂粒子の製造装置が提供される。   Thus, according to the present invention, the surface of the nozzle die has a nozzle die having a nozzle formed on the surface thereof, the extruder for extruding the molten thermoplastic resin from the nozzle, and the cooling water for cooling the resin extruded from the nozzle. A cooling chamber portion provided on the side, and a cutting blade provided in the cooling chamber portion and having a blade portion for cutting the resin cooled by being extruded from the nozzle by rotating while contacting the surface of the nozzle die, A rotation drive unit that rotates the cutting blade, and a cooling water circulation system that supplies cooling water into the cooling chamber and discharges it together with the resin particles to circulate only the cooling water into the cooling chamber. When the thickness of the part is t and the diameter of the nozzle is d, an apparatus for producing thermoplastic resin particles satisfying the relationship of 0 <t / d ≦ 17 is provided.

また、本発明の別の観点によれば、前記の製造装置における押出機のノズルダイのノズルから溶融した熱可塑性樹脂を押し出して冷却室部内の冷却水にて冷却し、かつ切断刃を回転させて冷却された樹脂を粒子状に切断する熱可塑性樹脂粒子の製造方法、およびこの製造方法によって製造された熱可塑性樹脂粒子が提供される。   Further, according to another aspect of the present invention, the molten thermoplastic resin is extruded from the nozzle die of the extruder in the manufacturing apparatus, cooled with cooling water in the cooling chamber, and the cutting blade is rotated. A method for producing thermoplastic resin particles for cutting a cooled resin into particles, and thermoplastic resin particles produced by the production method are provided.

本発明によれば、カット不良による不良粒子の発生およびささくれを有するペレットの発生を抑制することができると共に、切断刃とノズルダイ表面との摩擦抵抗を低減してペレタイザーの寿命を延ばすことができる。   According to the present invention, it is possible to suppress the generation of defective particles due to defective cutting and the generation of pellets having a bite, and it is possible to extend the life of the pelletizer by reducing the frictional resistance between the cutting blade and the nozzle die surface.

図1は本発明に係る熱可塑性樹脂粒子の製造装置の一実施形態を示す構成図である。FIG. 1 is a block diagram showing an embodiment of an apparatus for producing thermoplastic resin particles according to the present invention. 図2は図1の製造装置におけるノズルダイの概略構成を示す側断面図である。2 is a side sectional view showing a schematic configuration of a nozzle die in the manufacturing apparatus of FIG. 図3は図1の製造装置におけるノズルダイを示す正面図である。FIG. 3 is a front view showing a nozzle die in the manufacturing apparatus of FIG. 図4(A)および(B)は実施形態の製造装置における切断刃とノズルダイ表面との接触部分を示す断面図である。4A and 4B are cross-sectional views showing a contact portion between the cutting blade and the nozzle die surface in the manufacturing apparatus of the embodiment. 図5(A)および(B)は図4(A)の切断刃にて樹脂を切断する状態を説明する断面図である。5A and 5B are cross-sectional views illustrating a state in which the resin is cut with the cutting blade of FIG. ペレットが2個以上繋がった連結粒子を示す概念図である。It is a conceptual diagram which shows the connection particle | grains which two or more pellets connected.

本発明に係る熱可塑性樹脂粒子の製造装置は、表面にノズルが形成されたノズルダイを有しノズルから溶融した熱可塑性樹脂を押し出す押出機と、ノズルから押し出された樹脂を冷却する冷却水を収容するようノズルダイの表面側に設けられた冷却室部と、冷却室部内に設けられてノズルダイの表面に接触しながら回転することによりノズルから押し出されて冷却された樹脂を粒子状に切断する刃部を有する切断刃と、切断刃を回転させる回転駆動部と、冷却室部内に冷却水を供給しかつ樹脂粒子と共に排出して冷却水のみを冷却室部内に循環させる冷却水循環系とを備える。
なお、本明細書において、単に「樹脂」というときは、特に断りのない限り「熱可塑性樹脂」を指している。
An apparatus for producing thermoplastic resin particles according to the present invention includes an extruder having a nozzle die having a nozzle formed on the surface thereof, and an extruder for extruding a molten thermoplastic resin from the nozzle, and cooling water for cooling the resin extruded from the nozzle. A cooling chamber portion provided on the surface side of the nozzle die, and a blade portion provided in the cooling chamber portion for cutting the resin cooled by being extruded from the nozzle by rotating while contacting the surface of the nozzle die. And a rotation drive unit that rotates the cutting blade, and a cooling water circulation system that supplies cooling water into the cooling chamber and discharges it together with the resin particles to circulate only the cooling water in the cooling chamber.
In the present specification, the term “resin” simply means “thermoplastic resin” unless otherwise specified.

この熱可塑性樹脂粒子の製造装置(以下、「樹脂粒子製造装置」という)は、水中ホットカット方式の樹脂粒子製造装置であり、ノズルから押し出された樹脂を粒子状にカットするための主要部である切断刃およびノズルダイに着目し、切断刃は、その刃部の厚みをtとし、ノズルの直径をdとすると、0<t/d≦17の関係を満たすようにすることにより、前記従来技術1および2が有していた問題を解消することができる。   This thermoplastic resin particle production apparatus (hereinafter referred to as “resin particle production apparatus”) is an underwater hot-cut resin particle production apparatus, which is a main part for cutting resin extruded from a nozzle into particles. Paying attention to a certain cutting blade and nozzle die, the cutting blade has the above-mentioned prior art by satisfying the relationship of 0 <t / d ≦ 17, where t is the thickness of the blade portion and d is the nozzle diameter. The problem that 1 and 2 had can be solved.

前記の比t/dが17より大きくなることは、切断刃の刃部とノズルダイ表面との接触面積が大きくなり過ぎるため、接触面積が小さい場合よりも切断刃を同一回転速度で回転させるのにかかる回転駆動部(特に、モーターのような動力源)への負荷が大きくなり、回転駆動部の寿命が短くなる。なお、切断刃の刃部にはノズルダイ表面と接触する先端部分に厚みが存在し、厚みが薄くてもノズルダイ表面との摩擦によって厚みが徐々に厚くなるため、前記の比t/dは0より大きくなるが、比t/dが17以下であればよい。   When the ratio t / d is larger than 17, the contact area between the blade portion of the cutting blade and the nozzle die surface becomes too large, and therefore the cutting blade is rotated at the same rotational speed as compared with the case where the contact area is small. The load on the rotation drive unit (especially a power source such as a motor) is increased, and the life of the rotation drive unit is shortened. Note that the blade portion of the cutting blade has a thickness at the tip portion in contact with the nozzle die surface, and the thickness t is gradually increased by friction with the nozzle die surface even if the thickness is small. Although the ratio is increased, the ratio t / d may be 17 or less.

この樹脂粒子製造装置は、さらに、次の(1)〜(3)のように構成されてもよく、これらを組み合わせてもよい。
(1)切断刃は、その刃部のノズルダイ表面との接触部の厚みtが0.2〜5.0mmであり、ノズルの直径dが0.3〜1.0mmである。
この構成によれば、粒径0.3〜1.5mmのマイクロペレットを、不良粒子および異物の発生率を低く抑えながら製造することができる。
なお、本発明において、ペレット(樹脂粒子)は、ノズルから出た柱状の樹脂をカットして形成されるものであるため真球状ではない。そのため、本明細書において、ペレットの「粒径」とは、サンプル数10個のペレットの断面について(長径L+短径D)/2の寸法の平均値を意味している。
This resin particle manufacturing apparatus may be further configured as in the following (1) to (3), or may be combined.
(1) In the cutting blade, the thickness t of the contact portion of the blade portion with the nozzle die surface is 0.2 to 5.0 mm, and the nozzle diameter d is 0.3 to 1.0 mm.
According to this configuration, a micropellet having a particle diameter of 0.3 to 1.5 mm can be manufactured while suppressing the generation rate of defective particles and foreign matters.
In the present invention, pellets (resin particles) are not spherical because they are formed by cutting columnar resin from the nozzle. Therefore, in the present specification, the “particle diameter” of the pellet means an average value of dimensions of (major axis L + minor axis D) / 2 with respect to the cross section of the pellet of ten samples.

(2)切断刃は、その刃部の材料はロックウェル硬さHRCが50〜70の硬さを有し、ノズルダイの表面の材料はロックウェル硬さHRCが55以上の硬さを有する。
この場合、切断刃およびノズルダイの表面の材料としては、例えば、WC‐Co系、TiN‐Ni系、TiC‐Ni系の合金等が挙げられる。
なお、ノズルダイの方が切断刃よりも高価であるため、ノズルダイ表面の硬さが切断刃の刃部の硬さよりも硬い方が好ましいが、それらの硬さが前記の範囲内であれば問題はない。
(2) As for the cutting blade, the material of the blade part has a hardness of Rockwell hardness HRC of 50 to 70, and the material of the surface of the nozzle die has a hardness of Rockwell hardness HRC of 55 or more.
In this case, examples of the material for the surfaces of the cutting blade and the nozzle die include WC-Co, TiN-Ni, and TiC-Ni alloys.
In addition, since the nozzle die is more expensive than the cutting blade, it is preferable that the hardness of the nozzle die surface is harder than the hardness of the blade portion of the cutting blade, but if the hardness is within the above range, the problem is Absent.

(3)回転駆動部は、モーターと、モーターにて回転する回転軸と、冷却室部内の回転軸の先端に設けられた切断刃ホルダとを有し、切断刃は、切断刃ホルダの回転軸心を中心として周方向に等間隔で複数枚設けられ、ノズルは、前記回転軸心を中心として周方向に複数個設けられている。
このようにすれば、大量生産に対応することができる。
(3) The rotation drive unit includes a motor, a rotation shaft that is rotated by the motor, and a cutting blade holder provided at a tip of the rotation shaft in the cooling chamber, and the cutting blade is a rotation shaft of the cutting blade holder. A plurality of nozzles are provided at equal intervals in the circumferential direction around the center, and a plurality of nozzles are provided in the circumferential direction around the rotational axis.
In this way, it is possible to deal with mass production.

本発明の熱可塑性樹脂粒子の製造方法は、前記の構成を有する樹脂粒子製造装置における押出機のノズルダイのノズルから溶融した熱可塑性樹脂を押し出して冷却室部内の冷却水にて冷却し、かつ切断刃を回転させて冷却された樹脂を粒子状に切断することにより実施できる。
この樹脂粒子製造方法は、熱可塑性樹脂の種類は限定されず、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリ塩化ビニル系樹脂、ABS樹脂、AS樹脂等、単独もしくは2種類以上でもよく、一旦使用された回収樹脂でもよい。特に、破断点速度が100〜3000m/minの伸びを有する切断しづらい熱可塑性樹脂、例えば、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン(PP)等の樹脂からなる粒径0.3〜1.5mmの樹脂粒子(マイクロペレット)を製造する場合に好適である。また、押出機内で熱可塑性樹脂に発泡剤を含有させ、発泡性樹脂粒子としてもよい。
また、この場合の切断刃の周速は4〜70m/sが適当である。なお、切断刃の周速が4m/sよりも遅いと切断不良が発生し易くなり、70m/sを超えると過負荷となるため好ましくない。
The method for producing thermoplastic resin particles of the present invention includes extruding molten thermoplastic resin from a nozzle die of an extruder in the resin particle production apparatus having the above-described configuration, cooling it with cooling water in a cooling chamber, and cutting. It can be carried out by rotating the blade and cutting the cooled resin into particles.
In this resin particle production method, the kind of thermoplastic resin is not limited, and polystyrene resin, polyethylene resin, polypropylene resin, polyester resin, polyvinyl chloride resin, ABS resin, AS resin, etc., alone or in two kinds The above may be sufficient and the collection | recovery resin once used may be sufficient. In particular, a particle size of 0.3 to 1 made of a thermoplastic resin that has an elongation of 100 to 3000 m / min and is difficult to cut, for example, a resin such as linear low density polyethylene (LLDPE) or polypropylene (PP). It is suitable for producing resin particles (micropellets) of 5 mm. Moreover, it is good also as a foaming resin particle by making a thermoplastic resin contain a foaming agent within an extruder.
In this case, the peripheral speed of the cutting blade is suitably 4 to 70 m / s. In addition, when the peripheral speed of a cutting blade is slower than 4 m / s, it will become easy to generate | occur | produce a cutting defect, and since it will become an overload when it exceeds 70 m / s, it is unpreferable.

ここで、破断点速度は、次の条件で測定した値である。
測定装置:ツインポアキャピラリーレオメーター(Rheologic 5000T(イタリア チアスト社製))
試験温度:210℃
キャピラリー形状:A バレル径15mm、ダイ径1mm、ダイ長さ10mm、
流入角度90度(コニカル)
押出速度:0.0773mm/s (Q=0.75g/min)
捲取速度:初速17.4mm/sから12mm/s2で加速
なお、本発明では、前記伸びを有する切断しづらい熱可塑性樹脂から、連結粒子のような不良粒子を低減したマイクロペレットを製造することができるため、この範囲の伸び率よりも低い切断しやすい樹脂であれば不良粒子をより一層低減したマイクロペレットを製造することができる。
Here, the breaking speed is a value measured under the following conditions.
Measuring device: Twin pore capillary rheometer (Rheologic 5000T (Chiast, Italy))
Test temperature: 210 ℃
Capillary shape: A Barrel diameter 15mm, Die diameter 1mm, Die length 10mm,
Inflow angle 90 degrees (conical)
Extrusion speed: 0.0773mm / s (Q = 0.75g / min)
Cutting speed: Accelerated at an initial speed of 17.4 mm / s to 12 mm / s 2 Note that in the present invention, micropellets with reduced defective particles such as connected particles are produced from the above-mentioned thermoplastic resin that is difficult to cut. Therefore, if the resin is easier to cut than the elongation rate in this range, it is possible to produce a micropellet with further reduced defective particles.

以下、図面を参照しながら本発明の具体的な実施形態を説明する。
図1は本発明に係る熱可塑性樹脂粒子の製造装置の一実施形態を示す構成図であり、図2は図1の製造装置におけるノズルダイの概略構成を示す側断面図であり、図3は図1の製造装置におけるノズルダイを示す正面図であり、図4(A)および(B)は実施形態の製造装置における切断刃とノズルダイ表面との接触部分を示す断面図であり、図5(A)および(B)は図4(A)の切断刃にて樹脂を切断する状態を説明する断面図である。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an embodiment of a thermoplastic resin particle manufacturing apparatus according to the present invention, FIG. 2 is a side sectional view showing a schematic configuration of a nozzle die in the manufacturing apparatus of FIG. 1, and FIG. It is a front view which shows the nozzle die in the manufacturing apparatus of 1, and FIG. 4 (A) and (B) are sectional drawings which show the contact part of the cutting blade and nozzle die surface in the manufacturing apparatus of embodiment, FIG. And (B) are cross-sectional views illustrating a state in which the resin is cut with the cutting blade of FIG.

図1および図2に示すように、この熱可塑性樹脂粒子の製造装置は、水中ホットカット方式によって造粒する造粒装置Tであり、先端側にノズルダイ1を有しかつ後端側にホッパ21を有する押出機2と、ノズルダイ1のノズル15から樹脂吐出面13に押し出された樹脂を冷却するチャンバー(冷却室部)4と、チャンバー4内に収容され樹脂吐出面13に押し出された樹脂を粒子状に切断する切断刃30を有するカッター3と、カッター3を回転駆動する図示しない回転駆動部と、チャンバー4内に冷却水を循環させるための管路5および送水ポンプ6を有する冷却水循環系とを備える。
なお、造粒装置Tおよびノズルダイ1(以下「造粒用ダイス1」という)において、樹脂が吐出される側を「先端」あるいは「先方」とし、その反対側を「後端」あるいは「後方」として説明している。
As shown in FIGS. 1 and 2, the thermoplastic resin particle production apparatus is a granulation apparatus T that performs granulation by an underwater hot cut method, and has a nozzle die 1 on the front end side and a hopper 21 on the rear end side. An extruder 2 having the above, a chamber (cooling chamber part) 4 for cooling the resin extruded from the nozzle 15 of the nozzle die 1 to the resin discharge surface 13, and a resin contained in the chamber 4 and extruded to the resin discharge surface 13 A cooling water circulation system having a cutter 3 having a cutting blade 30 for cutting into particles, a rotation driving unit (not shown) for rotating the cutter 3, a pipe 5 for circulating cooling water in the chamber 4, and a water supply pump 6. With.
In the granulating apparatus T and the nozzle die 1 (hereinafter referred to as “granulation die 1”), the side from which the resin is discharged is referred to as “front end” or “front side”, and the opposite side is referred to as “rear end” or “rear side”. As described.

チャンバー4には、冷却水(循環水)を流すための前記管路5が接続され、この管路5の一端(チャンバー4より上流側)が、送水ポンプ6を介して水槽7に接続されている。また、管路5の他端(チャンバー4より下流側)には、冷却水から熱可塑性樹脂粒子を分離し、脱水・乾燥するための脱水処理部8が設けられている。この脱水処理部8で分離され、脱水・乾燥した熱可塑性樹脂粒子は、容器9に送られるようになっている。   The chamber 4 is connected to the pipe 5 for flowing cooling water (circulated water), and one end (upstream side of the chamber 4) of the pipe 5 is connected to the water tank 7 through the water pump 6. Yes. The other end (downstream side of the chamber 4) of the pipe 5 is provided with a dehydration processing unit 8 for separating the thermoplastic resin particles from the cooling water and dehydrating and drying them. The thermoplastic resin particles separated, dehydrated and dried by the dehydration processing unit 8 are sent to the container 9.

図2と図3に示すように、造粒用ダイス1は、ダイス本体10と、押出機2の先端側に固定されたダイホルダ11とからなり、ダイス本体10がダイホルダ11の先端側に複数のボルト12によって固定されている。
ダイホルダ11は、押出機2のシリンダに連設して設けられ、後端側から先端側に向けて後端側流路11a、先端側流路11bがその順で形成されている。
ダイス本体10は、後端面中央部において、後方側に突出してなる円錐状凸部10aが形成されており、ダイス本体10とダイホルダ11とは相互に接続した状態で、ダイホルダ11の先端側流路11b内に所定間隙をもって円錐状凸部10aが挿入されている。
すなわち、ダイホルダ11の後端側流路11aを通過した樹脂は、先端側流路11bにおいて円錐状凸部10aの周面に沿って流れ、ダイス本体10の後端面に開口する複数の樹脂流路14(後述する)に連通する構成となっている。
As shown in FIGS. 2 and 3, the granulation die 1 includes a die body 10 and a die holder 11 fixed to the distal end side of the extruder 2, and the die body 10 includes a plurality of die bodies 11 on the distal end side of the die holder 11. It is fixed by bolts 12.
The die holder 11 is provided so as to be connected to the cylinder of the extruder 2, and a rear end side flow path 11a and a front end side flow path 11b are formed in that order from the rear end side toward the front end side.
The die main body 10 is formed with a conical convex portion 10a that protrudes rearward at the central portion of the rear end face, and the die main body 10 and the die holder 11 are connected to each other in the leading end side flow path of the die holder 11. A conical convex portion 10a is inserted into 11b with a predetermined gap.
That is, the resin that has passed through the rear end side flow passage 11a of the die holder 11 flows along the peripheral surface of the conical convex portion 10a in the front end side flow passage 11b, and a plurality of resin flow passages open to the rear end face of the die body 10. 14 (described later).

ダイス本体10は、その先端面で水流に接触する前記樹脂吐出面13と、押出機2から押し出された樹脂を樹脂吐出面13に向けて移送するための前記複数の樹脂流路14と、複数の樹脂流路14の先端に設けられると共に、樹脂吐出面13に開口する複数のノズル15と、樹脂吐出面13よりも押出機2側の位置で樹脂吐出面13や樹脂流路14やダイス本体10を温めるためのヒーター18とを備えて概略構成されている。
ヒーター18は、従来周知のカートリッジヒーターの中からダイス本体10の大きさや形状に応じて適宜選択して使用できる。つまり、ヒーター18としては、例えば、棒状のセラミックに巻き付けた発熱線(ニクロム線)をパイプ(耐熱ステンレス鋼)の中に挿入し、発熱線とパイプの隙間を高熱伝導性と高絶縁性に優れた材料(MgO)で封じ込めた、電力密度の高い棒状ヒーターを用いることができる。
The die body 10 includes a resin discharge surface 13 that is in contact with the water flow at the front end surface thereof, a plurality of resin flow paths 14 for transferring the resin extruded from the extruder 2 toward the resin discharge surface 13, and a plurality of resin flow paths 14. A plurality of nozzles 15 that are provided at the tip of the resin flow path 14 and open to the resin discharge surface 13, and the resin discharge surface 13, the resin flow path 14, and the die body at a position closer to the extruder 2 than the resin discharge surface 13. And a heater 18 for heating 10 is schematically configured.
The heater 18 can be appropriately selected and used from conventionally known cartridge heaters according to the size and shape of the die body 10. That is, as the heater 18, for example, a heating wire (nichrome wire) wound around a rod-shaped ceramic is inserted into a pipe (heat resistant stainless steel), and the gap between the heating wire and the pipe is excellent in high thermal conductivity and high insulation. It is possible to use a bar heater with a high power density, which is encapsulated with a new material (MgO).

樹脂流路14は、樹脂吐出面13に対して直交する方向に延在されると共に、ダイス本体10の中心軸線Pを中心とした円周(樹脂吐出面13上に描かれた円周)に沿って一定間隔をもって配置されている。
ノズル15は、樹脂吐出面13に描かれた円周に沿って所定間隔をもって配置されている。さらに詳しくは、ノズル15は、樹脂流路14の断面形状の範囲内に複数の単体ノズル15a、15b、15c、・・・が任意に配置されたノズルユニット(本発明では、これを称して「ノズル」と呼ぶ)をなしている。
各単体ノズル15a、15b、15c、・・・の配置方法は、例えば、複数の小円周上に多数を並べたものなどを採用することができるが、このような配置形態に限定されることはなく、孔の断面形状も円形に限定されず、楕円形や四角形等でもよい。
ノズル15の孔径dは、最終的に得ようとするマイクロペレットの大きさに応じて適宜設定することができ、例えば、0.3〜1.0mm程度とすることができる。
The resin flow path 14 extends in a direction orthogonal to the resin discharge surface 13 and has a circumference (circumference drawn on the resin discharge surface 13) around the central axis P of the die body 10. It is arranged at regular intervals along.
The nozzles 15 are arranged at a predetermined interval along the circumference drawn on the resin discharge surface 13. More specifically, the nozzle 15 is a nozzle unit in which a plurality of single nozzles 15a, 15b, 15c,... Are arbitrarily arranged within the range of the cross-sectional shape of the resin flow path 14 (in the present invention, this is referred to as “ Called a "nozzle").
As the arrangement method of each single nozzle 15a, 15b, 15c,..., For example, a method in which a large number of small nozzles are arranged on a plurality of small circles can be adopted. However, the arrangement method is limited to such an arrangement form. The cross-sectional shape of the hole is not limited to a circle, and may be an ellipse or a rectangle.
The hole diameter d of the nozzle 15 can be appropriately set according to the size of the micropellet to be finally obtained, and can be, for example, about 0.3 to 1.0 mm.

カッター3は、回転中心に回転軸を有するホルダと、このホルダに周方向に一定間隔で取り付けられた前記複数の切断刃30とを有している。
回転軸は、ダイス本体10の中心軸線Pと一致する軸線上に配置され、その一端がホルダと連結し、他端はチャンバー4に設けられた孔を液密状態で挿通して外部に突出している。
切断刃30の数は、特に限定されず、例えば、前記ノズルユニットと同じ数とすることができる。
切断刃30の刃部30aの形状は、特に限定されず、刃部30aの樹脂吐出面13との接触部分の厚みtと、ノズル15の直径dとの比t/dが0<t/d≦17の関係を満たせばよく、例えば、図4(A)に示すように、一定の厚みを有する形状や、図4(B)に示すように、接触部分に向って薄くなる形状とすることができる。
よって、刃部30aの厚みtは、dが0<t/d≦17の関係を満たせばよく、例えば、ノズル15の孔径dが0.3〜1.0mmの場合、刃部30aの厚みtを0.2〜5.0mm程度とすることができる。
The cutter 3 has a holder having a rotation axis at the center of rotation, and the plurality of cutting blades 30 attached to the holder at regular intervals in the circumferential direction.
The rotating shaft is disposed on an axis line that coincides with the central axis P of the die body 10, one end of which is connected to the holder, and the other end is inserted in a liquid-tight hole in the chamber 4 and protrudes to the outside. Yes.
The number of cutting blades 30 is not particularly limited, and can be the same as the number of nozzle units, for example.
The shape of the blade portion 30a of the cutting blade 30 is not particularly limited, and the ratio t / d between the thickness t of the contact portion of the blade portion 30a with the resin discharge surface 13 and the diameter d of the nozzle 15 is 0 <t / d. ≦ 17 may be satisfied, for example, a shape having a certain thickness as shown in FIG. 4 (A) or a shape that becomes thinner toward the contact portion as shown in FIG. 4 (B). Can do.
Therefore, the thickness t of the blade portion 30a only needs to satisfy the relationship of 0 <t / d ≦ 17. For example, when the hole diameter d of the nozzle 15 is 0.3 to 1.0 mm, the thickness t of the blade portion 30a. Can be about 0.2 to 5.0 mm.

図示しない回転駆動部は、チャンバー4の外側に設けられ、カッター3の回転軸と連結している。
また、チャンバー4の外側には図示しない支持機構が設けられており、この支持機構はカッター3および回転駆動部を回転軸の方向に移動可能に、かつ切断刃30をダイス本体10の樹脂吐出面13に所定の圧力で押し当てた状態で支持できるように構成されている。なお、切断刃30をダイス本体10の樹脂吐出面13に押し当てる際の圧力は、特に限定されるものではないが、例えば、0〜2bar程度が適当であり、通常0.5〜1.0barである。
A rotation drive unit (not shown) is provided outside the chamber 4 and is connected to the rotation shaft of the cutter 3.
Further, a support mechanism (not shown) is provided outside the chamber 4. The support mechanism is capable of moving the cutter 3 and the rotation drive unit in the direction of the rotation axis, and the cutting blade 30 is a resin discharge surface of the die body 10. It is comprised so that it can support in the state pressed against 13 by predetermined pressure. In addition, the pressure at the time of pressing the cutting blade 30 against the resin discharge surface 13 of the die body 10 is not particularly limited, but for example, about 0 to 2 bar is appropriate, and usually 0.5 to 1.0 bar. It is.

このように構成された樹脂粒子製造装置によれば、例えば、図5(A)に示すように、ノズル15から冷却水W中に出た樹脂Rに向かって切断刃30が移動することによって、図5(B)に示すように、刃部30aにて樹脂Rを切断して樹脂粒子rを製造することができる。
切断後もノズル15から出る樹脂Rは次に来る切断刃30によって切断され、この切断プロセスが繰り返されて大量の樹脂粒子rが製造される。
According to the resin particle manufacturing apparatus configured as described above, for example, as shown in FIG. 5 (A), the cutting blade 30 moves toward the resin R that has come out of the nozzle 15 into the cooling water W. As shown in FIG. 5B, the resin particle r can be produced by cutting the resin R with the blade portion 30a.
Even after cutting, the resin R coming out of the nozzle 15 is cut by the next cutting blade 30 and this cutting process is repeated to produce a large amount of resin particles r.

図1〜図5で説明した樹脂粒子製造装置を用い、表1に示した条件で、実施例1〜5および比較例1〜2の樹脂粒子をそれぞれ500kg製造した。
このとき、実施例1〜5および比較例1〜2において、切断刃の刃部のロックウェル硬さHRCは58であり、ノズルダイ表面のロックウェル硬さHRCは60であり、切断刃のノズルダイ表面への押しつけ圧力は0.5barであった。
また、各実施例および各比較例におけるペレタイザー電流値、それらの樹脂粒子の粒子径、連結粒子数とその合否、ペレット形状およびささくれを有するペレット数を調べ、それらの結果を表1に示した。
500 kg of the resin particles of Examples 1 to 5 and Comparative Examples 1 to 2 were produced under the conditions shown in Table 1 using the resin particle production apparatus described with reference to FIGS.
At this time, in Examples 1-5 and Comparative Examples 1-2, the Rockwell hardness HRC of the blade portion of the cutting blade is 58, the Rockwell hardness HRC of the nozzle die surface is 60, and the nozzle die surface of the cutting blade The pressing pressure on was 0.5 bar.
In addition, the pelletizer current values, the particle diameters of the resin particles, the number of connected particles and their pass / fail, the pellet shape, and the number of pellets having a puddle in each example and each comparative example were examined, and the results are shown in Table 1.

ペレターザー電流値は、回転駆動部のモーターを駆動させるために必要な電流値であり、好ましくは10A以下である。
連結粒子数(%)は、不良率を判断できる値であり、次の式により計算した。
連結粒子数(%)=[連結粒子の個数/(10g×100粒/ペレット100粒の重量)(g)]×100
ペレット形状は、粒子状であるものを「良」と表示した。
ペレットの合否判定は、連結粒子数が0.2%未満の場合を合格(優)として「◎」で表示し、0.2〜2%未満を合格(良)として「○」で表示し、2%以上を不合格として「×」で表示した。
ささくれを有するペレット数は、製造されたペレット100個を抽出したときの、ささくれを有するペレットの個数の割合(%)である。
なお、ここで「ささくれ」とは、ノズルから出る樹脂を切断刃によって切断するときの切り損じによって発生する、ペレット切断箇所の髭状物であって、ペレット径の10%以上の長さのものと定義する。
The pelletizer current value is a current value necessary for driving the motor of the rotational drive unit, and is preferably 10 A or less.
The number of connected particles (%) is a value by which the defect rate can be judged, and was calculated by the following formula.
Number of connected particles (%) = [number of connected particles / (10 g × 100 grains / weight of 100 pellets) (g)] × 100
The pellet shape was indicated as “good” in the form of particles.
The acceptance / rejection determination of the pellet is indicated by “◎” as a pass (excellent) when the number of connected particles is less than 0.2%, and indicated by “◯” as a pass (good) when less than 0.2 to 2%. 2% or more was shown as “x” as rejected.
The number of pellets having a beat is the ratio (%) of the number of pellets having a beat when 100 manufactured pellets are extracted.
Here, “sasare” means a rod-like material at the pellet cutting position, which is generated when the resin coming out of the nozzle is cut by a cutting blade, and has a length of 10% or more of the pellet diameter. It is defined as

Figure 2011126096
Figure 2011126096

切断刃の刃部接触部分の厚みtとノズルの直径dとの比t/dが0<t/d≦17の関係を満たす実施例1〜5では、連結粒子数2%未満で、かつささくれを有するペレットを20%未満に抑えて樹脂粒子を製造することができると共に、ペレタイザー電流値も10.0A以下に抑えることができた。
これに対し、切断刃とダイス本体の樹脂吐出面とが非接触の比較例1では、ノズルから吐出した樹脂が切断刃に巻きついてペレット形状に切断することができなかった。
また、比t/dが17を超える比較例2では、連結粒子数が2%以上で、かつささくれを有するペレットが35%まで増加したため、いずれも樹脂粒子の製造には不適切であった。
In Examples 1 to 5 in which the ratio t / d between the thickness t of the blade contact portion of the cutting blade and the diameter d of the nozzle satisfies the relationship of 0 <t / d ≦ 17, the number of connected particles is less than 2%, and fluffy. Resin particles can be produced with the pellets having a content of less than 20%, and the pelletizer current value can also be suppressed to 10.0 A or less.
On the other hand, in Comparative Example 1 in which the cutting blade and the resin discharge surface of the die body were not in contact, the resin discharged from the nozzle was wound around the cutting blade and could not be cut into a pellet shape.
Further, in Comparative Example 2 in which the ratio t / d exceeds 17, the number of connected particles was 2% or more and the number of pellets having a whirl increased to 35%, and thus all were inappropriate for the production of resin particles.

1 ノズルダイ(造粒用ダイス)
2 押出機
3 カッター
4 チャンバー(冷却室部)
5 管路
6 送水ポンプ
7 水槽
8 脱水処理部8
9 容器
10 ダイス本体
10a 円錐状凸部
11 ダイホルダ
11a 後端側流路
11b 先端側流路
13 樹脂吐出面
14 樹脂流路
15 ノズル
15a、15b、15c、・・・ 単体ノズル
30 切断刃
30a 刃部
d ノズルの直径
P 中心軸線
R 樹脂
r 樹脂粒子
T 造粒装置
t 刃部の樹脂吐出面との接触部分の厚み
W 冷却水
1 Nozzle die (granulation die)
2 Extruder 3 Cutter 4 Chamber (cooling chamber)
5 Pipe line 6 Water pump 7 Water tank 8 Dehydration section 8
DESCRIPTION OF SYMBOLS 9 Container 10 Die body 10a Conical convex part 11 Die holder 11a Rear end side flow path 11b Front end side flow path 13 Resin discharge surface 14 Resin flow path 15 Nozzle 15a, 15b, 15c,... Single nozzle 30 Cutting blade 30a Blade part d Nozzle diameter P Center axis R Resin r Resin particles T Granulator t Thickness of contact portion of blade portion with resin discharge surface W Cooling water

Claims (10)

表面にノズルが形成されたノズルダイを有しノズルから溶融した熱可塑性樹脂を押し出す押出機と、ノズルから押し出された樹脂を冷却する冷却水を収容するようノズルダイの表面側に設けられた冷却室部と、冷却室部内に設けられてノズルダイの表面に接触しながら回転することによりノズルから押し出されて冷却された樹脂を粒子状に切断する刃部を有する切断刃と、切断刃を回転させる回転駆動部と、冷却室部内に冷却水を供給しかつ樹脂粒子と共に排出して冷却水のみを冷却室部内に循環させる冷却水循環系とを備え、
切断刃は、その刃部の厚みをtとし、ノズルの直径をdとすると、0<t/d≦17の関係を満たすことを特徴とする熱可塑性樹脂粒子の製造装置。
An extruder having a nozzle die having a nozzle formed on the surface thereof and an extruder for extruding a molten thermoplastic resin from the nozzle, and a cooling chamber provided on the surface side of the nozzle die so as to accommodate cooling water for cooling the resin extruded from the nozzle A cutting blade having a blade portion that is provided in the cooling chamber portion and rotates while contacting the surface of the nozzle die to cut the resin cooled by being extruded from the nozzle, and a rotational drive that rotates the cutting blade A cooling water circulation system for supplying cooling water into the cooling chamber and discharging it together with the resin particles to circulate only the cooling water in the cooling chamber,
The cutting blade satisfies the relationship 0 <t / d ≦ 17, where t is the thickness of the blade and d is the diameter of the nozzle.
切断刃は、その刃部の厚みtが0.2〜5.0mmであり、ノズルの直径dが0.3〜1.0mmである請求項1に記載の熱可塑性樹脂粒子の製造装置。   The apparatus for producing thermoplastic resin particles according to claim 1, wherein the cutting blade has a thickness t of 0.2 to 5.0 mm and a nozzle diameter d of 0.3 to 1.0 mm. 切断刃は、その刃部の材料はロックウェル硬さHRCが50〜70の硬さを有し、ノズルダイの表面の材料はロックウェル硬さHRCが55以上の硬さを有する請求項1または2に記載の熱可塑性樹脂粒子の製造装置。   The cutting blade has a hardness of a Rockwell hardness HRC of 50 to 70 as a material of the blade portion, and a material of a surface of the nozzle die has a hardness of 55 or more as a Rockwell hardness HRC. An apparatus for producing the thermoplastic resin particles according to 1. 回転駆動部は、モーターと、モーターにて回転する回転軸と、冷却室部内の回転軸の先端に設けられた切断刃ホルダとを有し、
切断刃は、切断刃ホルダの回転軸心を中心として周方向に等間隔で複数枚設けられ、
ノズルは、前記回転軸心を中心として周方向に複数個設けられている請求項1〜3のいずれか1つに記載の熱可塑性樹脂粒子の製造装置。
The rotation drive unit has a motor, a rotation shaft that rotates by the motor, and a cutting blade holder provided at the tip of the rotation shaft in the cooling chamber,
A plurality of cutting blades are provided at equal intervals in the circumferential direction around the rotation axis of the cutting blade holder,
The apparatus for producing thermoplastic resin particles according to any one of claims 1 to 3, wherein a plurality of nozzles are provided in a circumferential direction around the rotation axis.
請求項1〜4のいずれか1つに記載の製造装置におけるノズルダイのノズルから溶融した熱可塑性樹脂を押し出して冷却室部内の冷却水にて冷却し、かつ切断刃を回転させて冷却された樹脂を粒子状に切断する熱可塑性樹脂粒子の製造方法。   Resin cooled by rotating the cutting blade by extruding the molten thermoplastic resin from the nozzle of the nozzle die in the manufacturing apparatus according to any one of claims 1 to 4 and cooling it with cooling water in the cooling chamber. A method for producing thermoplastic resin particles by cutting particles into particles. 熱可塑性樹脂粒子の粒径が0.3〜1.5mmである請求項5に記載の熱可塑性樹脂粒子の製造方法。   The method for producing thermoplastic resin particles according to claim 5, wherein the particle diameter of the thermoplastic resin particles is 0.3 to 1.5 mm. 切断刃の回転時の周速が4〜70m/sに設定される請求項5または6に記載の熱可塑性樹脂粒子の製造方法。   The method for producing thermoplastic resin particles according to claim 5 or 6, wherein the peripheral speed during rotation of the cutting blade is set to 4 to 70 m / s. 熱可塑性樹脂が、破断点速度100〜3000m/minの伸びを有する請求項5〜7のいずれか1つに記載の熱可塑性樹脂粒子の製造方法。   The method for producing thermoplastic resin particles according to any one of claims 5 to 7, wherein the thermoplastic resin has an elongation at a breaking point speed of 100 to 3000 m / min. 熱可塑性樹脂が、直鎖状低密度ポリエチレンまたはポリプロピレンである請求項5〜8のいずれか1つに記載の熱可塑性樹脂粒子の製造方法。   The method for producing thermoplastic resin particles according to any one of claims 5 to 8, wherein the thermoplastic resin is linear low-density polyethylene or polypropylene. 請求項5〜9のいずれか1つに記載の熱可塑性樹脂粒子の製造方法によって製造された熱可塑性樹脂粒子。   The thermoplastic resin particle manufactured by the manufacturing method of the thermoplastic resin particle as described in any one of Claims 5-9.
JP2009285566A 2009-12-16 2009-12-16 Production apparatus and production method for thermoplastic resin particles Active JP5552308B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009285566A JP5552308B2 (en) 2009-12-16 2009-12-16 Production apparatus and production method for thermoplastic resin particles
TW099143436A TWI428223B (en) 2009-12-16 2010-12-13 Apparatus for making thermoplastic resin pellets, and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285566A JP5552308B2 (en) 2009-12-16 2009-12-16 Production apparatus and production method for thermoplastic resin particles

Publications (2)

Publication Number Publication Date
JP2011126096A true JP2011126096A (en) 2011-06-30
JP5552308B2 JP5552308B2 (en) 2014-07-16

Family

ID=44289226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285566A Active JP5552308B2 (en) 2009-12-16 2009-12-16 Production apparatus and production method for thermoplastic resin particles

Country Status (2)

Country Link
JP (1) JP5552308B2 (en)
TW (1) TWI428223B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065868A (en) * 2012-09-27 2014-04-17 Sekisui Plastics Co Ltd Thermoplastic resin particles and method for manufacturing the same, expandable thermoplastic resin particles and method for manufacturing the same, prefoamed particles, and foam molding
CN105437406A (en) * 2015-12-30 2016-03-30 重庆精榜高分子材料有限公司 Plastic granule production unit
JP2019155764A (en) * 2018-03-14 2019-09-19 日本碍子株式会社 Cutting device of extrusion molded product
CN113370294A (en) * 2021-07-05 2021-09-10 福建亿奇新材料有限公司 Plastic granules make-up machine grain cutting device that possesses regulatory function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123615A (en) * 1982-12-29 1984-07-17 Mitsubishi Petrochem Co Ltd System for detecting abnormality of rotating cutter in early stage
JPH04292628A (en) * 1990-12-03 1992-10-16 Dow Chem Co:The Uniformly distributed polycarbonate pellet
JPH06134753A (en) * 1992-10-26 1994-05-17 Mitsubishi Materials Corp Manufacturing device for resin pellet
JPH10305425A (en) * 1997-03-04 1998-11-17 Kobe Steel Ltd Underwater cut granulating device, knife to be used for the device, and underwater cut granulating method using the knife
JP2001150430A (en) * 1999-11-22 2001-06-05 Japan Steel Works Ltd:The Method and apparatus for underwater granulating thermoplastic resin
JP2002532279A (en) * 1998-12-11 2002-10-02 ボレアリス テクノロジー オイ Method for producing pelletized polyolefin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123615A (en) * 1982-12-29 1984-07-17 Mitsubishi Petrochem Co Ltd System for detecting abnormality of rotating cutter in early stage
JPH04292628A (en) * 1990-12-03 1992-10-16 Dow Chem Co:The Uniformly distributed polycarbonate pellet
JPH06134753A (en) * 1992-10-26 1994-05-17 Mitsubishi Materials Corp Manufacturing device for resin pellet
JPH10305425A (en) * 1997-03-04 1998-11-17 Kobe Steel Ltd Underwater cut granulating device, knife to be used for the device, and underwater cut granulating method using the knife
JP2002532279A (en) * 1998-12-11 2002-10-02 ボレアリス テクノロジー オイ Method for producing pelletized polyolefin
JP2001150430A (en) * 1999-11-22 2001-06-05 Japan Steel Works Ltd:The Method and apparatus for underwater granulating thermoplastic resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065868A (en) * 2012-09-27 2014-04-17 Sekisui Plastics Co Ltd Thermoplastic resin particles and method for manufacturing the same, expandable thermoplastic resin particles and method for manufacturing the same, prefoamed particles, and foam molding
CN105437406A (en) * 2015-12-30 2016-03-30 重庆精榜高分子材料有限公司 Plastic granule production unit
JP2019155764A (en) * 2018-03-14 2019-09-19 日本碍子株式会社 Cutting device of extrusion molded product
JP7025251B2 (en) 2018-03-14 2022-02-24 日本碍子株式会社 Extruded product cutting equipment
CN113370294A (en) * 2021-07-05 2021-09-10 福建亿奇新材料有限公司 Plastic granules make-up machine grain cutting device that possesses regulatory function

Also Published As

Publication number Publication date
JP5552308B2 (en) 2014-07-16
TW201139098A (en) 2011-11-16
TWI428223B (en) 2014-03-01

Similar Documents

Publication Publication Date Title
JP6356067B2 (en) Plastic material processing equipment
JP6076356B2 (en) Plastic material processing equipment
US7226553B2 (en) Polymer underwater pelletizer apparatus and process incorporating same
JP5552308B2 (en) Production apparatus and production method for thermoplastic resin particles
TWI402151B (en) Pelletizing die, pelletizing apparatus and production method of expandable thermoplastic resin pellets
US20160193771A1 (en) Method for producing superficially crystalline spherical granules by means of air-cooled hot die face pelletizing and apparatus for carrying out the method
JP2017213899A (en) Plastic material processing apparatus
US8834760B2 (en) Method and device for extrusion of hollow pellets
US20160185012A1 (en) Hot viscous raw material leaving a cooler perforated body cooling a cutter
JP2014534092A (en) Plastic material processing equipment
KR101210768B1 (en) Granulation die, granulator, and method for producing foamable thermoplastic resin particle
JP5086900B2 (en) Method for producing foamable thermoplastic resin particles, method for producing thermoplastic resin foamed particles, and method for producing thermoplastic resin foam molded article
JP4968828B2 (en) Screw for resin extruder, resin extruder, and pellet manufacturing method
TW201242590A (en) Method for production of pharmaceutical products from a molten material
JP2008307711A (en) Pelletizer and pellet manufacturing method using the same
CN100434251C (en) Process and apparatus for pelletization of polymers
JP2012200933A (en) Method for producing thermoplastic resin foamed particle for in-mold expansion molding
US11000973B2 (en) Method and device for producing powdery substances from plastic
WO2011065561A1 (en) Foamable thermoplastic resin particles and method for producing same
CN214605301U (en) Granulator and feeding melting and cutting air cooling mechanism of granulator
JP6808947B2 (en) Molded product manufacturing method
JPH05301218A (en) Production of thermoplastic resin particle
JP6418857B2 (en) Extruder and method for producing thermoplastic resin composition strand using the same
JP2015519235A (en) Equipment for pelletizing molten material
JP2023102673A (en) Production apparatus of waste plastic molding, and production method of waste plastic molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5552308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150