JP2009538707A - Medical devices and related systems and methods - Google Patents

Medical devices and related systems and methods Download PDF

Info

Publication number
JP2009538707A
JP2009538707A JP2009513368A JP2009513368A JP2009538707A JP 2009538707 A JP2009538707 A JP 2009538707A JP 2009513368 A JP2009513368 A JP 2009513368A JP 2009513368 A JP2009513368 A JP 2009513368A JP 2009538707 A JP2009538707 A JP 2009538707A
Authority
JP
Japan
Prior art keywords
tubular member
proximal
distal
tubular
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009513368A
Other languages
Japanese (ja)
Other versions
JP5537934B2 (en
Inventor
エム. スペンサー、スティーブン
ワーナー、ロバート
エス. アーニー、マイケル
ブリクス、ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Limited
Original Assignee
Boston Scientific Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Limited filed Critical Boston Scientific Limited
Publication of JP2009538707A publication Critical patent/JP2009538707A/en
Application granted granted Critical
Publication of JP5537934B2 publication Critical patent/JP5537934B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14598Coating tubular articles
    • B29C45/14614Joining tubular articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0054Catheters; Hollow probes characterised by structural features with regions for increasing flexibility
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/40Applying molten plastics, e.g. hot melt
    • B29C65/42Applying molten plastics, e.g. hot melt between pre-assembled parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/70Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5324Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
    • B29C66/53241Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/63Internally supporting the article during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7315Mechanical properties
    • B29C66/73151Hardness
    • B29C66/73152Hardness of different hardness, i.e. the hardness of one of the parts to be joined being different from the hardness of the other part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2422Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical
    • B29C66/24223Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical being oval
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24243Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral
    • B29C66/24244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle
    • B29C66/24245Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle forming a square
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24249Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a specific polygon not provided for in B29C66/24241 - B29C66/24243
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/02Inflatable articles
    • B29L2022/022Balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/18Pleated or corrugated hoses
    • B29L2023/183Pleated or corrugated hoses partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/18Pleated or corrugated hoses
    • B29L2023/186Pleated or corrugated hoses having a smooth internal wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7546Surgical equipment
    • B29L2031/7548Cannulas

Abstract

Medical devices including a proximal tubular member, a distal tubular member, and an intermediate tubular member connecting the proximal tubular member to the distal tubular member, and related methods.

Description

本発明は、医療器具ならびに関連するシステムおよび方法に関する。   The present invention relates to medical devices and related systems and methods.

バルーンカテーテルなどの医療器具は、種々の医療手技に使用される。バルーンカテーテルは、たとえば、血管形成術において行うような、閉塞した体内管を拡張するために、あるいはステントまたはグラフトなどの体内補綴物を配置するために、あるいは通路を選択的に遮断するために使用することができる。バルーンカテーテルは、長くかつ細いカテーテル本体上に配置された膨張可能かつ収縮可能なバルーンを含むことができる。最初に、バルーンは、体内に容易に挿入するために、バルーンカテーテルの半径方向プロファイルが小さくなるようにカテーテル本体の周りに折り畳まれる。   Medical devices such as balloon catheters are used for various medical procedures. Balloon catheters are used to dilate occluded body vessels, for example, in angioplasty, to place endoprostheses such as stents or grafts, or to selectively block passageways can do. The balloon catheter can include an inflatable and deflated balloon disposed on a long and thin catheter body. Initially, the balloon is folded around the catheter body so that the radial profile of the balloon catheter is small for easy insertion into the body.

血管形成術中、折り畳まれたバルーンは、体内管内に配置されたガイドカテーテル内、かつ、ガイドワイヤ上にバルーンカテーテルを通すことによって、狭窄によって閉塞した体内管内のある位置に配置される。バルーンは、その後、たとえばバルーンの内部に流体を導入することによって膨張させられる。バルーンの膨張により、狭窄を半径方向に広げて、体内管を通る血流量を増加させることができる。使用後、バルーンは、収縮させられて、体内から抜去される。   During angioplasty, the folded balloon is placed in a guide catheter placed within the body vessel and at a location within the body vessel occluded by the stenosis by passing the balloon catheter over the guide wire. The balloon is then inflated, for example by introducing fluid into the balloon. The inflation of the balloon can widen the stenosis radially and increase the blood flow through the body vessel. After use, the balloon is deflated and removed from the body.

本発明は、医療器具ならびに関連するシステムおよび方法を提供することを目的とする。   The present invention seeks to provide medical devices and related systems and methods.

本発明の一態様では、医療器具を製造する方法は、型によって少なくとも部分的に画定されたキャビティ内に、軸方向に離間した配置で第1および第2管状部を配置することを含む。第1および第2管状部材はそれぞれ、その内部に延在する管腔を含む。溶融樹脂は、第1管状部材と第2管状部材との間の型の領域内に送出される。樹脂は、硬化すると、第1および第2管状部材のうち少なくとも一方の組成と異なる組成を有する中間管状部材を形成する。先端は、医療器具の先端領域に配設される。   In one aspect of the invention, a method of manufacturing a medical device includes disposing first and second tubular portions in an axially spaced arrangement within a cavity at least partially defined by a mold. Each of the first and second tubular members includes a lumen extending therein. Molten resin is delivered into the mold area between the first tubular member and the second tubular member. When cured, the resin forms an intermediate tubular member having a composition different from at least one of the first and second tubular members. The tip is disposed in the tip region of the medical device.

本発明の別の態様では、医療器具は、基端側管状部材と、先端側管状部材と、基端側管状部材の先端領域に接合され、かつ、先端側管状部材の基端領域に接合された中間管状部材とを含む。中間管状部材は、基端側および先端側管状部材の少なくとも1つの材料に対して熱的に適合性がない少なくとも1つの材料を含む。   In another aspect of the present invention, the medical instrument is joined to the proximal end tubular member, the distal tubular member, the distal end region of the proximal tubular member, and the proximal end region of the distal tubular member. Intermediate tubular member. The intermediate tubular member includes at least one material that is not thermally compatible with at least one material of the proximal and distal tubular members.

実施形態は、以下の特徴のうち1つ以上を含むことができる。
一部の実施形態では、先端チップが、第1および第2管状部材の少なくとも一方に固定される。
一部の実施形態では、前記方法はさらに、第1および第2管状部材の管腔の少なくとも一方にマンドレルを配置することを含む。
Embodiments can include one or more of the following features.
In some embodiments, the tip is secured to at least one of the first and second tubular members.
In some embodiments, the method further includes placing a mandrel in at least one of the lumens of the first and second tubular members.

一部の実施形態では、型は、キャビティから外側に延在し、かつ、該キャビティに連通する少なくとも1つの凹部領域を含む。
一部の実施形態では、少なくとも1つの凹部領域は、キャビティの周りで円周方向に延在する溝を含む。
In some embodiments, the mold includes at least one recessed region extending outwardly from and in communication with the cavity.
In some embodiments, the at least one recessed region includes a groove that extends circumferentially around the cavity.

一部の実施形態では、凹部領域は螺旋溝を含む。
一部の実施形態では、型は、型に沿って軸方向に離間した複数の凹部領域を含む。
一部の実施形態では、型は、第1および第2管状部材が型内に配置されると、第1および第2管状部材が、互いに対して軸方向に相対移動することを実質的に防止するように構成される。
In some embodiments, the recessed region includes a spiral groove.
In some embodiments, the mold includes a plurality of recessed areas spaced axially along the mold.
In some embodiments, the mold substantially prevents the first and second tubular members from axially moving relative to each other when the first and second tubular members are disposed within the mold. Configured to do.

一部の実施形態では、樹脂は、第1および第2管状部材の溶融温度より低い溶融温度を有する。
一部の実施形態では、樹脂は、第1および第2管状部材の溶融温度より高い溶融温度を有する。
In some embodiments, the resin has a melting temperature that is lower than the melting temperature of the first and second tubular members.
In some embodiments, the resin has a melting temperature that is higher than the melting temperature of the first and second tubular members.

一部の実施形態では、前記方法はさらに、第1および第2管状部材の溶融温度より低い温度に型を加熱することを含む。
一部の実施形態では、前記方法はさらに、第1および第2管状部材の溶融温度より低い温度に型を加熱すること、および、樹脂が冷却されて固化する前に、型のキャビティ内に樹脂を急速に注入することを含む。
In some embodiments, the method further includes heating the mold to a temperature below the melting temperature of the first and second tubular members.
In some embodiments, the method further includes heating the mold to a temperature below the melting temperature of the first and second tubular members, and the resin within the mold cavity before the resin is cooled and solidified. Including rapid infusion.

一部の実施形態では、樹脂と、第1および第2管状部材のうち少なくとも一方とは、熱的に適合性がない。
一部の実施形態では、前記方法はさらに、医療器具の所定の領域に中間管状部材を配設することを含む。医療器具の所定の領域は、医療器具の使用中においては体内管の所定の領域内に配置される。
In some embodiments, the resin and at least one of the first and second tubular members are not thermally compatible.
In some embodiments, the method further includes disposing an intermediate tubular member in a predetermined region of the medical device. The predetermined region of the medical device is disposed within the predetermined region of the body vessel during use of the medical device.

一部の実施形態では、体内管の所定の領域は、少なくとも約70°の角度で曲がった体内管の領域を含む。
一部の実施形態では、体内管の所定の領域は、大動脈と冠状動脈が接続される領域を含む。
In some embodiments, the predetermined region of the body tube includes a region of the body tube that is bent at an angle of at least about 70 degrees.
In some embodiments, the predetermined region of the body vessel includes a region where the aorta and the coronary artery are connected.

一部の実施形態では、中間管状部材は、第1および第2管状部材の少なくとも一方の硬度より低い硬度を有する。
一部の実施形態では、中間管状部材は、第1および第2管状部材の少なくとも一方の硬度より高い硬度を有する。
In some embodiments, the intermediate tubular member has a hardness that is less than the hardness of at least one of the first and second tubular members.
In some embodiments, the intermediate tubular member has a hardness that is higher than the hardness of at least one of the first and second tubular members.

一部の実施形態では、医療器具の所定の領域は、医療器具の先端領域からの軸方向距離を測定することによって決定される。
一部の実施形態では、前記方法はさらに、第1および第2管状部材のそれぞれの少なくとも1つの端領域から材料を除去することを含む。端領域はそれぞれ、材料を除去した後に、医療器具の長手方向軸線に対して鋭角をなして延在する表面を含む。
In some embodiments, the predetermined region of the medical device is determined by measuring an axial distance from the tip region of the medical device.
In some embodiments, the method further includes removing material from at least one end region of each of the first and second tubular members. Each of the end regions includes a surface that extends at an acute angle to the longitudinal axis of the medical device after the material is removed.

一部の実施形態では、前記方法はさらに、樹脂を、第1および第2管状部材の少なくとも一方に化学的に接合することを含む。
一部の実施形態では、医療器具は、医療器具の先端領域に固定された可撓性を有する先端チップを含む。
In some embodiments, the method further comprises chemically bonding the resin to at least one of the first and second tubular members.
In some embodiments, the medical device includes a flexible tip that is secured to the tip region of the medical device.

一部の実施形態では、可撓性を有する先端チップは、先端側管状部材に固定される。
一部の実施形態では、基端側および先端側管状部材の一方が金属を含み、他方がポリマー材料を含む。
一部の実施形態では、中間管状部材は、中間管状部材の外面から延在する少なくとも1つの隆起形状部を含む。
In some embodiments, the flexible tip is secured to the distal tubular member.
In some embodiments, one of the proximal and distal tubular members includes a metal and the other includes a polymeric material.
In some embodiments, the intermediate tubular member includes at least one raised feature that extends from an outer surface of the intermediate tubular member.

一部の実施形態では、少なくとも1つの隆起形状部は、中間管状部材の周りに円周方向に延在する。
一部の実施形態では、少なくとも1つの隆起形状部は、中間管状部材の周りに螺旋状に延在する。
In some embodiments, the at least one raised feature extends circumferentially around the intermediate tubular member.
In some embodiments, the at least one raised feature extends helically around the intermediate tubular member.

一部の実施形態では、中間管状部材は、中間管状部材に沿って軸方向に離間した複数の隆起形状部を含む。
一部の実施形態では、隆起形状部は、中間管状部材の基端側領域から中間管状部材の先端側領域に向かって間隔を次第に増大させることによって離間される。
In some embodiments, the intermediate tubular member includes a plurality of raised features that are axially spaced along the intermediate tubular member.
In some embodiments, the raised features are spaced apart by gradually increasing the spacing from the proximal region of the intermediate tubular member toward the distal region of the intermediate tubular member.

一部の実施形態では、少なくとも1つの隆起形状部と中間管状部材は一体成形される。
一部の実施形態では、中間管状部材は、中間管状部材の基端側領域から中間管状部材の先端側領域に向かって硬度が減少する。
In some embodiments, the at least one raised feature and the intermediate tubular member are integrally formed.
In some embodiments, the intermediate tubular member decreases in hardness from a proximal region of the intermediate tubular member toward a distal region of the intermediate tubular member.

一部の実施形態では、中間管状部材は、基端側管状部材の硬度より低く、かつ、先端側管状部材の硬度より高い硬度を有する。
一部の実施形態では、中間管状部材は、基端側管状部材および先端側管状部材の両方の硬度より低い硬度を有する。
In some embodiments, the intermediate tubular member has a hardness that is lower than the hardness of the proximal tubular member and higher than the hardness of the distal tubular member.
In some embodiments, the intermediate tubular member has a hardness that is less than the hardness of both the proximal and distal tubular members.

一部の実施形態では、中間管状部材は、1つまたは複数の治療薬を含む。
一部の実施形態では、中間管状部材は、基端側および先端側管状部材のうち少なくとも一方に化学的に接合される。
一部の実施形態では、中間管状部材は、医療器具の所定の領域に配置され、医療器具の所定の領域は、医療器具の使用中において体内管の所定の領域内に配置される。
In some embodiments, the intermediate tubular member includes one or more therapeutic agents.
In some embodiments, the intermediate tubular member is chemically bonded to at least one of the proximal and distal tubular members.
In some embodiments, the intermediate tubular member is disposed in a predetermined region of the medical device, and the predetermined region of the medical device is disposed within the predetermined region of the body vessel during use of the medical device.

一部の実施形態では、中間管状部材は、繊維複合材料、粘土複合材料、ポリマーブレンド、ポリマー合金、硬化性ポリマー、および/または、架橋性ポリマーを含む(たとえば、これら材料から形成される)。
In some embodiments, the intermediate tubular member includes (eg, formed from) a fiber composite material, a clay composite material, a polymer blend, a polymer alloy, a curable polymer, and / or a crosslinkable polymer.

一部の実施形態では、中間管状部材は、1つまたは複数の添加剤(たとえば粘土、繊維など)を含む。
実施形態は、以下の利点の1つまたは複数を含むことができる。
一部の実施形態では、医療器具は、適合性がない(たとえば、熱的に適合性がない)材料を含む基端側および先端側管状部材を含む。本明細書に記載される方法の実施形態は、こうした基端側および先端側管状部材が、たとえば、中間管状部材を介して互いに接続されることを可能にする。
In some embodiments, the intermediate tubular member includes one or more additives (eg, clay, fibers, etc.).
Embodiments can include one or more of the following advantages.
In some embodiments, the medical device includes proximal and distal tubular members that include materials that are not compatible (eg, thermally incompatible). The method embodiments described herein allow such proximal and distal tubular members to be connected to one another via, for example, an intermediate tubular member.

特定の実施形態では、中間管状部材は、医療器具に沿った所定の位置に配設される。たとえば、中間管状部材は、使用中に(たとえば、体内補綴物の展開中に)、体内管の曲がりくねった領域内に配置されるように構成された可撓性部材とすることができる。この設計は、体内補綴物の体内管内における展開精度を改善するために役立つ可能性がある。医療器具は、同様に、使用中に体内管の特定の領域内に配置される医療器具に沿った所定の位置に中間部材を配設することによって、種々の他の形状および寸法の体内管内でうまく機能するよう調整され得る。   In certain embodiments, the intermediate tubular member is disposed at a predetermined location along the medical device. For example, the intermediate tubular member can be a flexible member that is configured to be placed in a tortuous region of the body vessel during use (eg, during deployment of an endoprosthesis). This design may help to improve the deployment accuracy of the endoprosthesis within the body vessel. Medical devices are similarly used in body tubes of various other shapes and sizes by disposing intermediate members at predetermined locations along the medical device that are placed in particular areas of the body tube during use. Can be tuned to work well.

一部の実施形態では、中間管状部材は、中間管状部材の表面(たとえば外面)から延在する1つまたは複数の隆起形状部を含む。隆起形状部は、使用中における中間管状部材のキンクを防止するために、かつ/または、中間管状部材の半径方向強度を増大させるために、かつ/または、中間管状部材の長さに沿って可撓性を変化させるために役立つ可能性がある。本明細書に記載される方法を使用して、隆起形状部を有する管状部材を安価で製造することができる。   In some embodiments, the intermediate tubular member includes one or more raised features that extend from a surface (eg, an outer surface) of the intermediate tubular member. The raised features may be allowed to prevent kinking of the intermediate tubular member during use and / or to increase the radial strength of the intermediate tubular member and / or along the length of the intermediate tubular member. May help to change flexibility. Using the methods described herein, tubular members having raised features can be manufactured at low cost.

特定の実施形態では、中間管状部材は、基端側管状部材より可撓性が高く、かつ、先端側管状部材より可撓性が低い。そのため、中間管状部材は、たとえば基端側および先端側管状部材が(たとえば溶着によって)互いに直接取り付けられる設計と比較すると、基端側管状部材と先端側管状部材との間の可撓性の比較的スムーズな移行を提供することができる。一部の実施形態では、中間管状部材は、その長さに沿って可撓性が変化し、これにより、基端側管状部材と先端側管状部材との間の可撓性のスムーズな移行を生じるさせるためにさらに役立つ可能性がある。   In certain embodiments, the intermediate tubular member is more flexible than the proximal tubular member and less flexible than the distal tubular member. Thus, the intermediate tubular member is a flexible comparison between the proximal and distal tubular members, for example, compared to a design in which the proximal and distal tubular members are directly attached to each other (eg, by welding). Smooth transition can be provided. In some embodiments, the intermediate tubular member varies in flexibility along its length, thereby providing a smooth transition of flexibility between the proximal tubular member and the distal tubular member. It may help further to produce.

一部の実施形態では、中間管状部材の1つまたは複数の物理的特性(たとえば硬度、可撓性)は、樹脂に加えられるせん断の量を変更することによって変わる可能性がある。たとえば、樹脂に加えられるせん断の量が増大すると、樹脂(たとえばポリマー樹脂)は劣化し、硬度が低下する可能性がある。そのため、中間管状部材の硬度は、成形装置に送出される樹脂に加えられるせん断の量を変えることによって、中間管状部材の長さに沿って変えることができる。例として、単一樹脂組成を使用して、中間管状部材の長さに沿って勾配(たとえば、硬さ勾配)を生じさせることができる。   In some embodiments, one or more physical properties (eg, hardness, flexibility) of the intermediate tubular member can be altered by changing the amount of shear applied to the resin. For example, as the amount of shear applied to the resin increases, the resin (eg, polymer resin) may degrade and the hardness may decrease. Thus, the hardness of the intermediate tubular member can be varied along the length of the intermediate tubular member by changing the amount of shear applied to the resin delivered to the molding apparatus. As an example, a single resin composition can be used to create a gradient (eg, a hardness gradient) along the length of the intermediate tubular member.

特定の実施形態では、基端側および先端側管状部材(たとえば、基端側管状部材の先端領域および先端側管状部材の基端領域)は、前処理されて、中間管状部材と基端側管状部材および先端側管状部材との間のより良好な接着性が提供される。一部の実施形態では、基端側および先端側管状部材の前処理は、これらの管状部材の表面を官能化することを含む。   In certain embodiments, the proximal and distal tubular members (eg, the distal region of the proximal tubular member and the proximal region of the distal tubular member) are pretreated to provide an intermediate tubular member and a proximal tubular member. Better adhesion between the member and the distal tubular member is provided. In some embodiments, pretreatment of the proximal and distal tubular members includes functionalizing the surfaces of these tubular members.

本発明の他の態様、特徴、および利点は、説明および図面から、また、特許請求の範囲から明らかになるであろう。   Other aspects, features, and advantages of the invention will be apparent from the description and drawings, and from the claims.

一般に、医療器具は、基端側管状部材、先端側管状部材、および、基端側管状部材と先端側管状部材を接続する中間部材を含む。基端側および先端側管状部材は、熱的に適合性がない材料を含む(たとえば、そのような材料で形成する)ことができる。医療器具を製造する方法は、基端側および先端側管状部材の一部を軸方向において離間させて型内に配置すること、および、基端側管状部材と先端側管状部材との間において型内の空間内に溶融樹脂を注入することを含む。   In general, a medical device includes a proximal tubular member, a distal tubular member, and an intermediate member connecting the proximal tubular member and the distal tubular member. The proximal and distal tubular members can include materials that are not thermally compatible (eg, formed of such materials). A method of manufacturing a medical device includes: disposing a part of a proximal end side member and a distal end side tubular member in an axial direction apart from each other in a mold; and a mold between the proximal end side tubular member and the distal end side tubular member. Injecting molten resin into the interior space.

図1を参照すると、バルーンカテーテル100は、内側カテーテルシャフト105および外側カテーテルシャフト110を含む。内側カテーテルシャフト105は、基端側管状要素115、先端側管状要素120、および、基端側管状要素115を先端側管状要素120に接続する中間管状要素125を含む。バルーン127は、先端側管状要素120の先端領域130および外側カテーテルシャフト110の先端領域135に取り付けられる。可撓性先端チップ137も、バルーン127の先端近傍の内側カテーテルシャフト105の先端領域130に取り付けられる。図2に示すように、内側カテーテルシャフト105、および該内側カテーテルシャフト105の周りにこれと同軸上に延在する外側カテーテルシャフト110は、ほぼ円形の断面形状を有する。ガイドワイヤ管腔140は、内側カテーテルシャフト105内に延在し、環状膨張管腔145は、内側カテーテルシャフト105と外側カテーテルシャフト110との間においてカテーテル100に沿って延在する。図1に示すように、ステント150をバルーン127の外面上に巻縮することができる。   Referring to FIG. 1, the balloon catheter 100 includes an inner catheter shaft 105 and an outer catheter shaft 110. The inner catheter shaft 105 includes a proximal tubular element 115, a distal tubular element 120, and an intermediate tubular element 125 that connects the proximal tubular element 115 to the distal tubular element 120. Balloon 127 is attached to distal region 130 of distal tubular element 120 and distal region 135 of outer catheter shaft 110. A flexible tip 137 is also attached to the tip region 130 of the inner catheter shaft 105 near the tip of the balloon 127. As shown in FIG. 2, the inner catheter shaft 105 and the outer catheter shaft 110 that extends coaxially about and around the inner catheter shaft 105 have a generally circular cross-sectional shape. Guidewire lumen 140 extends into inner catheter shaft 105 and annular inflation lumen 145 extends along catheter 100 between inner catheter shaft 105 and outer catheter shaft 110. As shown in FIG. 1, the stent 150 can be wound on the outer surface of the balloon 127.

特定の実施形態では、基端側要素115(たとえば、基端側要素115の1つまたは複数の材料)は、先端側要素120(たとえば、先端側要素120の1つまたは複数の材料)と適合性がない(たとえば、熱的に適合性がない)。基端側および先端側要素115および120の一方は、他方の要素がその軟化点または溶融点に達する前に劣化してもよい。両要素は、(たとえば、両要素を溶着することによる)作製を実用的でなくするか、または、不可能にする程度に異なる溶融点を有していてもよい。たとえば、基端側要素115は、先端側要素120の溶融温度と少なくとも約15℃(たとえば、少なくとも約25℃、少なくとも約50℃、少なくとも約75℃、少なくとも約100℃、少なくとも約125℃、少なくとも約150℃)だけ異なる溶融温度を有することができる。特定の実施形態では、基端側要素115の溶融温度は、先端側要素120の溶融温度と約160℃以下(たとえば、約150℃以下、約125℃以下、約100℃以下、約75℃以下、約50℃以下、約25℃以下)だけ異なる。基端側および先端側要素115、120の溶融温度は、たとえば、約15℃〜約160℃(たとえば、約50℃〜約100℃)だけ異ならせることができる。   In certain embodiments, proximal element 115 (eg, one or more materials of proximal element 115) is compatible with distal element 120 (eg, one or more materials of distal element 120). Not compatible (for example, thermally incompatible). One of the proximal and distal elements 115 and 120 may degrade before the other element reaches its softening or melting point. Both elements may have melting points that differ to the extent that they make it impractical or impossible to make (eg, by welding both elements). For example, the proximal element 115 has a melting temperature of the distal element 120 of at least about 15 ° C. (eg, at least about 25 ° C., at least about 50 ° C., at least about 75 ° C., at least about 100 ° C., at least about 125 ° C., at least It can have a different melting temperature by about 150 ° C). In certain embodiments, the melting temperature of the proximal element 115 is about 160 ° C. or less (eg, about 150 ° C. or less, about 125 ° C. or less, about 100 ° C. or less, about 75 ° C. or less) with the melting temperature of the distal element 120. , About 50 ° C. or less, about 25 ° C. or less). The melting temperature of the proximal and distal elements 115, 120 can vary, for example, by about 15 ° C to about 160 ° C (eg, about 50 ° C to about 100 ° C).

熱的に適合性がないことに代えて、またはそれに加えて、基端側および先端側要素115および120の材料は、別の点で互いに適合性がなくてもよい。特定の実施形態では、たとえば、材料同士は化学的に適合性がない。例として、基端側および先端側要素115、120のうち一方を、ナイロン12などの親水性材料から形成することができ、他方を低密度ポリエチレン(LDPE)などの疎水性材料から形成することができる。たとえば、基端側および先端側要素115、120の一方は、熱接合技術によって通常は劣化するPVCおよび/またはCPVCなどの材料から形成することができ、他方は、熱接合技術に耐えることができる1つまたは複数の材料から形成することができる。一部の実施形態では、基端側要素115および/または先端側要素120は、特定の熱関連接合技術によって引き起こされる劣化を悪化させる傾向があるワイヤ網組(たとえば、ステンレス鋼ワイヤ網組)を含む。   Instead of or in addition to being thermally incompatible, the materials of the proximal and distal elements 115 and 120 may be otherwise incompatible with each other. In certain embodiments, for example, the materials are not chemically compatible. As an example, one of the proximal and distal elements 115, 120 can be formed from a hydrophilic material such as nylon 12 and the other can be formed from a hydrophobic material such as low density polyethylene (LDPE). it can. For example, one of the proximal and distal elements 115, 120 can be formed from a material such as PVC and / or CPVC that is typically degraded by thermal bonding techniques, and the other can withstand thermal bonding techniques. It can be formed from one or more materials. In some embodiments, the proximal element 115 and / or the distal element 120 is a wire mesh (eg, a stainless steel wire mesh) that tends to exacerbate degradation caused by certain heat-related joining techniques. Including.

基端側および先端側要素115および120の材料の不適合性のために、熱接合および/またはレーザ接合などの熱を利用する特定の取付技術を使用してこれらの要素を直接結合することは難しいことになる。しかし、一部の実施形態では、中間要素125は、基端側要素115と先端側要素120の両方の材料に適合性がある1つまたは複数の材料を含む。こうした実施形態では、中間要素125は、基端側および先端側要素115および120の互いに対する不適合性に関係なく、基端側および先端側要素115および120のそれぞれに連結することができ、それにより、基端側および先端側要素115および120が内側カテーテルシャフト105に沿って結合する。   Due to the material incompatibility of the proximal and distal elements 115 and 120, it is difficult to directly bond these elements using specific attachment techniques that utilize heat, such as thermal bonding and / or laser bonding. It will be. However, in some embodiments, the intermediate element 125 includes one or more materials that are compatible with the material of both the proximal element 115 and the distal element 120. In such embodiments, the intermediate element 125 can be coupled to the proximal and distal elements 115 and 120, respectively, regardless of the incompatibility of the proximal and distal elements 115 and 120 with respect to each other, thereby. The proximal and distal elements 115 and 120 are coupled along the inner catheter shaft 105.

特定の実施形態では、図4に示すように、基端側要素115の先端155および先端側要素120の基端160はテーパ状をなす。結果として、中間要素125と基端側要素115との間、および中間要素125と先端側要素120との間の接合領域156および161の表面積は、テーパ付きでないシャフト間の接合領域に比べて増加することができる。接合領域の表面積の増加は、接合強度の向上に寄与することができる。そのため、中間要素125と基端側要素115および先端側要素120との間の接合は、テーパ付きでない2つの管状部材間で生じる接合に比較して相対的に強くなり得る。   In a particular embodiment, as shown in FIG. 4, the distal end 155 of the proximal element 115 and the proximal end 160 of the distal element 120 are tapered. As a result, the surface area of the joining areas 156 and 161 between the intermediate element 125 and the proximal element 115 and between the intermediate element 125 and the distal element 120 is increased compared to the joining area between the non-tapered shafts. can do. An increase in the surface area of the bonding region can contribute to an improvement in bonding strength. As such, the bond between the intermediate element 125 and the proximal element 115 and the distal element 120 can be relatively stronger compared to the bond that occurs between two non-tapered tubular members.

一部の実施形態では、中間要素125は、基端側要素115より可撓性が高く、先端側要素120より可撓性が低い。そのため、中間要素125は、相対的に剛性の高い基端側要素115と相対的に可撓性の高い先端側要素120との間の可撓性のスムーズな移行に寄与することができ、このことが、使用中における内側シャフト105のキンクおよび/または座屈の防止に寄与し得る。一部の実施形態では、たとえば、中間要素125は、基端側要素115の硬度より低く、かつ先端側要素120の硬度より高い硬度を有する。中間要素125は、たとえば、基端側要素115の硬度より約20D〜約40Dだけ低く、先端側要素120の硬度より約40D〜約50Dだけ高い硬度を有することができる。これに代えて、またはこれに加えて、中間要素125の壁厚は、基端側要素115および/または先端側要素120の壁厚と異なっていてもよい。特定の実施形態では、たとえば、中間要素125の壁は、基端側要素115の壁より薄く、かつ/または、先端側要素120の壁より厚い。たとえば、中間要素125の壁は、基端側要素115の壁より約0.07ミリメートル〜約0.12ミリメートル薄く、かつ/または、先端側要素120の壁より約0.07ミリメートル〜約0.12ミリメートル厚い。   In some embodiments, the intermediate element 125 is more flexible than the proximal element 115 and less flexible than the distal element 120. Therefore, the intermediate element 125 can contribute to a smooth transition of flexibility between the relatively rigid proximal element 115 and the relatively flexible distal element 120, and this This may contribute to preventing kinking and / or buckling of the inner shaft 105 during use. In some embodiments, for example, the intermediate element 125 has a hardness that is lower than the hardness of the proximal element 115 and higher than the hardness of the distal element 120. The intermediate element 125 may have a hardness that is about 20D to about 40D lower than the hardness of the proximal element 115 and about 40D to about 50D higher than the hardness of the distal element 120, for example. Alternatively or in addition, the wall thickness of the intermediate element 125 may be different from the wall thickness of the proximal element 115 and / or the distal element 120. In certain embodiments, for example, the wall of the intermediate element 125 is thinner than the wall of the proximal element 115 and / or thicker than the wall of the distal element 120. For example, the wall of the intermediate element 125 is about 0.07 millimeters to about 0.12 millimeters thinner than the wall of the proximal element 115 and / or about 0.07 millimeters to about 0.00 mm from the wall of the distal element 120. 12mm thick.

特定の実施形態では、中間要素125は、基端側および先端側要素115および120の一方または両方に化学的に接合される。たとえば、中間要素125は、硬化させられると(たとえば、紫外線エネルギーに暴露されると)基端側および先端側要素115および120の一方または両方に化学的に接合可能な硬化性接着剤(たとえば、UV硬化性接着剤)を含むことができる。接着剤の例には、エポキシ、フェノール、ウレタン、嫌気性接着剤、アクリル、シアノアクリレート、シリコーン、ポリサルファイド、および弾性接着剤を含む。   In certain embodiments, the intermediate element 125 is chemically bonded to one or both of the proximal and distal elements 115 and 120. For example, the intermediate element 125 can be cured (eg, when exposed to ultraviolet energy) a curable adhesive that can be chemically bonded to one or both of the proximal and distal elements 115 and 120 (eg, UV curable adhesive). Examples of adhesives include epoxies, phenols, urethanes, anaerobic adhesives, acrylics, cyanoacrylates, silicones, polysulfides, and elastic adhesives.

中間要素125ならびに基端側および先端側要素115および120は、連続的な曲げ特性を維持し、使用中に圧壊せず、または、くびれて細くならず、潤滑性材料をコーティングすることができ、良好な引張強度を有し、かつ/または、殺菌されることができる材料を含むことができる。特定の実施形態では、中間要素125は、微小繊維の複合材料、合金、または混合材料を含む。中間要素125は、たとえば、ポリウレタン、ポリエーテルアミド、ポリブチレート、ポリビニルブチレート、ポリアクリロニトリル、アクリロニトリル−ブチレート−アセテート(ABS)トリポリマー、ポリアセテート、ポリビニルアセテート、PVC、CPVC、FEP、PTFE、ポリアセタール、ポリオレフィン、ポリアミド(たとえば、ナイロン12、ナイロン11、ナイロン6/12、ナイロン6、およびナイロン66)、ポリエステル、ポリエーテル、ポリユリア、ポリビニル、ポリアクリル、フルオロポリマー、ならびにこれらのコポリマーおよびブロックコポリマーなどの、1つまたは複数のポリマーを含むことができる。中間要素125は、たとえば、Pebax(登録商標)(たとえば、50などの比較的高いデュロメータ値を有するPebax(登録商標))などのポリエーテルとポリアミドのブロックコポリマーを含むことができる。一部の実施形態では、中間要素125は、粘土、シリカ、または金属ナノ複合材料を含む。   The intermediate element 125 and the proximal and distal elements 115 and 120 maintain continuous bending properties and do not collapse during use or narrow and can be coated with a lubricious material; It can include materials that have good tensile strength and / or can be sterilized. In certain embodiments, the intermediate element 125 comprises a microfiber composite, alloy, or mixed material. The intermediate element 125 is, for example, polyurethane, polyether amide, polybutyrate, polyvinyl butyrate, polyacrylonitrile, acrylonitrile-butyrate-acetate (ABS) tripolymer, polyacetate, polyvinyl acetate, PVC, CPVC, FEP, PTFE, polyacetal, polyolefin 1 such as polyamides (eg nylon 12, nylon 11, nylon 6/12, nylon 6, and nylon 66), polyesters, polyethers, polyureas, polyvinyls, polyacryls, fluoropolymers, and copolymers and block copolymers thereof. One or more polymers can be included. The intermediate element 125 may comprise a block copolymer of polyether and polyamide, such as, for example, Pebax® (eg, Pebax® having a relatively high durometer value such as 50). In some embodiments, the intermediate element 125 comprises clay, silica, or metal nanocomposite.

一部の実施形態では、中間要素125は、1つまたは複数の架橋剤を含む。架橋剤は、中間要素125の強度、可撓性、および/または伸展性を高めることができる。中間要素125は、基端側および/または先端側要素115、120と異なる材料組成を有することができる。   In some embodiments, the intermediate element 125 includes one or more crosslinkers. The cross-linking agent can increase the strength, flexibility, and / or extensibility of the intermediate element 125. The intermediate element 125 can have a different material composition than the proximal and / or distal elements 115, 120.

基端側要素115および/または先端側要素120は、1つまたは複数のポリマー材料を含むことができる。ポリマー材料の例には、熱可塑性材料および熱硬化性材料を含む。熱可塑性材料の例は、たとえば、ポリオレフィン、ポリアミド(ナイロン12、ナイロン11、ナイロン6/12、ナイロン6、およびナイロン66など)、ポリエステル、ポリエーテル、ポリウレタン、ポリユリア、ポリビニル、ポリアクリル、フルオロポリマー、これらのコポリマーおよびそのブロックコポリマー(ポリエーテルとポリアミドのブロックコポリマー、たとえば、Pebax(登録商標)(たとえば、50などの比較的高いデュロメータ値を有するPebax(登録商標))など)、混合材料を含むことができる。熱硬化性材料の例は、EPDM、エピクロロヒドリン、ニトリルブタジエンエラストマー、シリコーンなどのようなエラストマーを含む。エポキシ、イソシアネートなどのような従来の熱硬化性材料も使用することができる。生体適合性熱硬化性材料、たとえば、生分解性ポリカプロラクトン、ポリウレタンと尿素を含有するポリ(ジメチルシロキサン)、およびポリシロキサンも使用することができる。これらの材料の1つまたは複数は、任意の組合せで使用することができる。   Proximal element 115 and / or distal element 120 can include one or more polymeric materials. Examples of polymeric materials include thermoplastic materials and thermosetting materials. Examples of thermoplastic materials include, for example, polyolefins, polyamides (such as nylon 12, nylon 11, nylon 6/12, nylon 6, and nylon 66), polyesters, polyethers, polyurethanes, polyureas, polyvinyls, polyacryls, fluoropolymers, These copolymers and their block copolymers (polyether and polyamide block copolymers such as Pebax® (eg Pebax® having a relatively high durometer value such as 50)), mixed materials Can do. Examples of thermoset materials include elastomers such as EPDM, epichlorohydrin, nitrile butadiene elastomer, silicone and the like. Conventional thermosetting materials such as epoxies, isocyanates and the like can also be used. Biocompatible thermosetting materials such as biodegradable polycaprolactone, poly (dimethylsiloxane) containing polyurethane and urea, and polysiloxane can also be used. One or more of these materials can be used in any combination.

他のポリマー材料としては、たとえば、熱可塑性エラストマーなどのエラストマー、および、たとえばHYTREL(登録商標)として販売されるポリブチレンテレフタレート−ポリエチレングリコールブロックコポリマーなどのエンジニアリング熱可塑性エラストマーを含む。エラストマーについては、たとえば、参照によりその全体が本明細書に組み込まれるHamiltonの米国特許第5,797,877号明細書に説明されている。他のポリマーには、液晶ポリマー(LCP)を含む。LCPの例には、ポリエステル、ポリアミド、および/または、それらのコポリマー、たとえばVECTRA(登録商標)A(Ticona社製)、VECTRA(登録商標)B(Ticona社製)、およびVECTRA(登録商標)LKX(Ticona社製)(たとえば、VECTRA(登録商標)LKX1111(Ticona社製))を含む。これに代えて、またはこれに加えて、基端側要素115および/または先端側要素120は、鋼、アルミニウム、チタン、プラチナ、金、銅、亜鉛、鉄、ビスマス、バリウム、および/またはこれらの金属の1つまたは複数の塩などの1つまたは複数の金属を含むことができる。   Other polymeric materials include, for example, elastomers such as thermoplastic elastomers, and engineering thermoplastic elastomers such as polybutylene terephthalate-polyethylene glycol block copolymers sold as HYTREL®. Elastomers are described, for example, in Hamilton US Pat. No. 5,797,877, which is hereby incorporated by reference in its entirety. Other polymers include liquid crystal polymers (LCP). Examples of LCPs include polyesters, polyamides, and / or copolymers thereof, such as VECTRA® A (Ticona), VECTRA® B (Ticona), and VECTRA® LKX. (Made by Ticona) (for example, VECTRA (registered trademark) LKX1111 (made by Ticona)). Alternatively or additionally, the proximal element 115 and / or the distal element 120 may be steel, aluminum, titanium, platinum, gold, copper, zinc, iron, bismuth, barium, and / or One or more metals such as one or more salts of metals can be included.

一部の実施形態では、基端側要素115は、先端側要素120と同じタイプの材料または材料の組合せを含む(たとえば、該材料から形成される)。あるいは、基端側要素115は、先端側要素120とは異なるタイプの材料または材料の組合せを含むことができる(たとえば、該材料から形成することができる)。特定の実施形態では、たとえば、基端側要素115は、ナイロン12などの1つまたは複数のナイロンを含み、先端側要素120は、Pebaxなどの1つまたは複数のポリエーテルブロックアミドを含む。このような実施形態では、中間要素125は、ナイロンとポリエーテルブロックアミドの両方に接合可能な(たとえば、化学的に接合可能な)1つまたは複数のポリウレタンを含むことができる。   In some embodiments, the proximal element 115 includes (eg, formed from) the same type of material or combination of materials as the distal element 120. Alternatively, the proximal element 115 can include a different type of material or combination of materials than the distal element 120 (eg, can be formed from the material). In certain embodiments, for example, proximal element 115 includes one or more nylons, such as nylon 12, and distal element 120 includes one or more polyether block amides, such as Pebax. In such embodiments, the intermediate element 125 can include one or more polyurethanes that can be bonded (eg, chemically bonded) to both nylon and polyether block amide.

基端側要素115、先端側要素120、および中間要素125の寸法は、バルーンカテーテルの意図される用途に応じて変更することができる。たとえば、要素の長さを変更することができる。一部の実施形態では、中間要素125は、基端側要素115および/または先端側要素120より短い。特定の実施形態では、中間要素125は、基端側要素115および/または先端側要素120より長い。特定の実施形態では、中間要素は、約0.5センチメートル〜約20センチメートル(たとえば、約1センチメートル〜約5センチメートル、約5センチメートル〜約10センチメートル、約10センチメートル〜約20センチメートル)の長さを有する。   The dimensions of the proximal element 115, the distal element 120, and the intermediate element 125 can be varied depending on the intended use of the balloon catheter. For example, the length of the element can be changed. In some embodiments, the intermediate element 125 is shorter than the proximal element 115 and / or the distal element 120. In certain embodiments, the intermediate element 125 is longer than the proximal element 115 and / or the distal element 120. In certain embodiments, the intermediate element is about 0.5 centimeters to about 20 centimeters (eg, about 1 centimeter to about 5 centimeters, about 5 centimeters to about 10 centimeters, about 10 centimeters to about 10 centimeters). 20 centimeters).

図5A〜5Dは、バルーンカテーテル100の内側カテーテルシャフト105を製造する方法の一実施形態を示す。図5Aに示すように、該方法は、管状部材200で始まる。図5Bに示すように、基端側内側要素115を形成するために、管状部材200の円周方向端領域205から材料が除去される。管状部材200の端領域205から除去される材料は、センタレス研削、極低温研削、機械加工、スカイビング加工、レーザアブレーションなどのような1つまたは複数の材料除去技術を使用して除去することができる。管状部材200から材料を除去する間に、支持部材(たとえば、ポリテトラフルオロエチレンをコーティングされた鋼シャフト)を、管状部材200の管腔202内に配置することができる。支持部材は、材料除去プロセス中に、管状部材200を安定化させることに寄与することができる。特定の実施形態では、支持部材は、材料除去プロセス中に管状部材200を回転させて、管状部材200の周面で確実に材料が均等に除去されることに寄与することができる。管状部材200から材料を除去することに代えて、またはそれに加えて、管状部材200は、所望の形状(たとえば基端側内側要素115に所望される形状)に成形することができる。   5A-5D illustrate one embodiment of a method for manufacturing the inner catheter shaft 105 of the balloon catheter 100. FIG. As shown in FIG. 5A, the method begins with a tubular member 200. As shown in FIG. 5B, material is removed from the circumferential end region 205 of the tubular member 200 to form the proximal inner element 115. Material removed from the end region 205 of the tubular member 200 may be removed using one or more material removal techniques such as centerless grinding, cryogenic grinding, machining, skiving, laser ablation, and the like. it can. While removing material from the tubular member 200, a support member (eg, a steel shaft coated with polytetrafluoroethylene) can be placed in the lumen 202 of the tubular member 200. The support member can contribute to stabilizing the tubular member 200 during the material removal process. In certain embodiments, the support member can rotate the tubular member 200 during the material removal process to help ensure that the material is evenly removed at the circumferential surface of the tubular member 200. As an alternative or in addition to removing material from the tubular member 200, the tubular member 200 can be formed into a desired shape (eg, a desired shape for the proximal inner element 115).

基端側内側要素115は、図5Bに示すように、端部(たとえば、基端側内側要素115の先端)において、材料が管状部材200から除去されたテーパ117を含む。テーパ117は、表面積が増加した接合領域を提供する。テーパ117の代わりに、またはテーパ117に加えて、材料は、管状部材200の端から除去されて、別の管状部材を接合することができる増加した表面積をもたらす他の形状を形成することができる。たとえば、材料は、二重テーパを有する端領域(たとえば、外面から内方にテーパが付けられ、かつ、内面から外方にテーパが付けられる端領域)を提供するように除去することができる。別の例では、端は、隣接する要素の機械的噛み合いを容易にするために、ノッチ付き形状またはビード形状を有することができる。   Proximal inner element 115 includes a taper 117 with material removed from tubular member 200 at the end (eg, the distal end of proximal inner element 115), as shown in FIG. 5B. Taper 117 provides a bonded area with increased surface area. Instead of, or in addition to, taper 117, material can be removed from the end of tubular member 200 to form other shapes that provide increased surface area that can be joined to another tubular member. . For example, the material can be removed to provide an end region having a double taper (eg, an end region that tapers inwardly from the outer surface and tapers outwardly from the inner surface). In another example, the ends can have a notched shape or a bead shape to facilitate mechanical engagement of adjacent elements.

第2管状部材(図示せず)も同様に提供され、材料が第2管状部材の端領域から同様に除去されて、先端側内側要素120が形成される。材料は、先に示した材料除去技術の1つまたは複数を使用して第2管状部材の端領域から除去することができる。   A second tubular member (not shown) is also provided and material is similarly removed from the end region of the second tubular member to form the distal inner element 120. Material can be removed from the end region of the second tubular member using one or more of the material removal techniques previously described.

それぞれの管状部材から基端側および先端側要素115および120を形成した後、基端側および先端側要素115および120は、図5Cに示すように、マンドレル(たとえばポリテトラフルオロエチレンをコーティングされた鋼シャフト)207上に配置することができる。基端側および先端側要素115および120は、マンドレル207に沿って軸方向に離間した位置関係で配置することができる。マンドレル207は、成形プロセス中に基端側および先端側要素115および120を構造的に支持することができる。   After forming the proximal and distal elements 115 and 120 from the respective tubular members, the proximal and distal elements 115 and 120 are coated with a mandrel (eg, polytetrafluoroethylene, as shown in FIG. 5C). (Steel shaft) 207. Proximal and distal elements 115 and 120 can be disposed in an axially spaced relationship along the mandrel 207. The mandrel 207 can structurally support the proximal and distal elements 115 and 120 during the molding process.

図5Dは、カバー215およびベース220を含む成形装置210の断面図を示す。図5Dに示すようにカバー215が閉じられると、カバー215およびベース220は、両者の間に通路225を画定し、該通路225内には、マンドレル207ならびに基端側および先端側要素115および120の一部を挿入することができる。カバー215は入口通路245および出口通路250を備え、これらは共に通路225に連通する。成形装置210は、比較的高い溶融温度を有する1つまたは複数の材料を含むことができる(たとえば、そのような材料から形成され得る)。たとえば、成形装置210は、440Cステンレス鋼、銅、および/または真鍮などの1つまたは複数の金属を含むことができる。これに代えて、またはこれに加えて、成形装置は、1つまたは複数のセラミック、および/または、シリカガラス(たとえば、Pyrex(登録商標))もしくはサファイアガラスなどの1つもしくは複数のガラスを含むことができる。特定の実施形態では、成形装置210の内面(たとえば通路225を画定する表面)は、PTFEなどの低摩擦材料でライニングされるため、成形装置210内で成形されるカテーテルシャフトは、成形後に成形装置から容易に取り外すことができる。   FIG. 5D shows a cross-sectional view of the molding apparatus 210 including the cover 215 and the base 220. When cover 215 is closed as shown in FIG. 5D, cover 215 and base 220 define a passage 225 therebetween, in which mandrel 207 and proximal and distal elements 115 and 120 are defined. A part of can be inserted. Cover 215 includes an inlet passage 245 and an outlet passage 250 that both communicate with passage 225. The molding apparatus 210 can include one or more materials having a relatively high melting temperature (eg, can be formed from such materials). For example, the forming device 210 can include one or more metals such as 440C stainless steel, copper, and / or brass. Alternatively or in addition, the forming apparatus includes one or more ceramics and / or one or more glasses, such as silica glass (eg, Pyrex®) or sapphire glass. be able to. In certain embodiments, the inner surface of the molding device 210 (eg, the surface defining the passage 225) is lined with a low friction material such as PTFE, so that the catheter shaft molded in the molding device 210 is molded after molding. Can be easily removed.

一部の実施形態では、成形装置210は温度制御される。たとえば、成形装置210は、冷凍機または冷媒などの、高温冷却装置に接続される1つまたは複数の冷却管を含むことができる。これに代えて、またはこれに加えて、成形装置210は、適切な大きさに作られた強制対流器具(たとえばファンまたはブロワー)と共に、一連の冷却フィンを含むことができる。一部の実施形態では、成形装置210は、断熱高圧蒸気ジャケットおよび/またはホットオイルジャケットなどの温度制御ジャケットによって包囲される。特定の実施形態では、成形装置210は、RF誘導加熱によって加熱され、強制対流によって冷却される。成形装置210は、成形装置の温度を調節する助けとなるように、加熱および/または冷却され得る。   In some embodiments, the molding apparatus 210 is temperature controlled. For example, the molding device 210 can include one or more cooling tubes connected to a high temperature cooling device, such as a refrigerator or refrigerant. Alternatively or in addition, the molding apparatus 210 can include a series of cooling fins with an appropriately sized forced convection device (eg, a fan or blower). In some embodiments, the molding apparatus 210 is surrounded by a temperature control jacket, such as an insulated high pressure steam jacket and / or a hot oil jacket. In certain embodiments, the molding apparatus 210 is heated by RF induction heating and cooled by forced convection. The molding device 210 can be heated and / or cooled to help regulate the temperature of the molding device.

図5Eに示すように、基端側内側要素115は、成形装置210内の通路225の基端側領域内に配置され、先端側内側要素120は、成形装置210内の通路225の先端側領域内に配置される。基端側および先端側要素115および120は、基端側内側要素115の先端119が先端側内側要素120の基端122から軸方向において離間するように、成形装置210内に配置される。たとえば、基端側および先端側要素115および120は、成形装置210内において、中間要素125に所望される長さにほぼ等しい距離だけ互いから離間させることができる。基端側および先端側内側要素115および120が成形装置210内に所望に応じて配置された後、成形装置210のカバー215が閉じられて、基端側および先端側要素115および120がそれぞれの軸方向位置に固定される。たとえば、成形装置210のカバー215およびベース220は、カバー215が閉じられると、基端側および先端側要素115および120をカバー215およびベース220の間で圧迫して、基端側内側要素115および先端側内側要素120を互いに対して実質的に軸方向に固定した位置に保持することができる。これに代えて、またはこれに加えて、基端側および先端側要素115および120は、出口通路250に負圧を生成することによって軸方向に固定されてもよく、それにより、基端側および先端側要素115および120に対して正味の内方向推力が生じる。   As shown in FIG. 5E, the proximal inner element 115 is disposed in the proximal region of the passage 225 in the molding device 210, and the distal inner element 120 is in the distal region of the passage 225 in the molding device 210. Placed inside. The proximal and distal elements 115 and 120 are disposed in the molding apparatus 210 such that the distal end 119 of the proximal inner element 115 is axially spaced from the proximal end 122 of the distal inner element 120. For example, the proximal and distal elements 115 and 120 can be spaced from each other within the molding apparatus 210 by a distance approximately equal to the length desired for the intermediate element 125. After the proximal and distal inner elements 115 and 120 are placed in the molding apparatus 210 as desired, the cover 215 of the molding apparatus 210 is closed so that the proximal and distal elements 115 and 120 are respectively Fixed to the axial position. For example, the cover 215 and base 220 of the molding apparatus 210 compress the proximal and distal elements 115 and 120 between the cover 215 and the base 220 when the cover 215 is closed, thereby causing the proximal inner element 115 and The distal inner elements 120 can be held in a substantially axially fixed position relative to each other. Alternatively or in addition, the proximal and distal elements 115 and 120 may be secured axially by creating a negative pressure in the outlet passage 250 so that the proximal and A net inward thrust is generated for the tip elements 115 and 120.

通路225内には、管状空洞235が基端側要素115と先端側要素120との間で、かつ、マンドレル207の周りに形成される。以下で述べるように、中間管状部材125は、空洞235内で成形することができる。このため、基端側および先端側要素115および120は、中間要素125に所望される長さに応じて、マンドレル207に沿って、より近くに、または、より離れて配置することができる。同様に、成形装置210の形状(たとえば、空洞235を画定する部分の成形装置210の形状)は、中間要素125に所望される寸法および形状に基づいて選択され、かつ/または、変更することができる。一部の実施形態では、成形装置210内で成形された後に、中間要素125を空洞235から取り外しやすくするために、成形装置210の内面はPTFEなどの非粘着材料でライニングされる。   A tubular cavity 235 is formed in the passage 225 between the proximal element 115 and the distal element 120 and around the mandrel 207. As described below, the intermediate tubular member 125 can be molded within the cavity 235. Thus, the proximal and distal elements 115 and 120 can be positioned closer or further away along the mandrel 207 depending on the length desired for the intermediate element 125. Similarly, the shape of the forming device 210 (eg, the shape of the forming device 210 of the portion defining the cavity 235) may be selected and / or changed based on the size and shape desired for the intermediate element 125. it can. In some embodiments, the inner surface of the molding device 210 is lined with a non-stick material such as PTFE to facilitate removal of the intermediate element 125 from the cavity 235 after being molded in the molding device 210.

図5Fを参照すると、カバー215が閉じられ、基端側および先端側要素115および120が軸方向において固定された後に、溶融樹脂240が入口通路245を介して管状空洞235に注入される。樹脂240が入口通路245を介して空洞235に注入されるにつれて、空洞235内の空気が、出口通路250を介して逃げることが可能になる。これに代えて、またはこれに加えて、空気は、樹脂240の注入前に、(たとえば出口通路250に負圧を印加することによって)出口通路250を介して空洞235から排出されてもよい。特定の実施形態では、入口通路245および/または出口通路250は、窒素および/またはアルゴンなどの不活性ガスを空洞235に導入するために使用される。樹脂240は、空洞235が実質的に充填されるまで(たとえば、空洞235の容積の約98%以上が樹脂で充填されるまで)、空洞235に注入される。特定の実施形態では、空洞235は過剰充填される(たとえば容量を超えて充填される)。このような実施形態では、余剰樹脂が出口通路250に入ることができる。   Referring to FIG. 5F, after the cover 215 is closed and the proximal and distal elements 115 and 120 are axially secured, molten resin 240 is injected into the tubular cavity 235 via the inlet passage 245. As the resin 240 is injected into the cavity 235 through the inlet passage 245, air in the cavity 235 can escape through the outlet passage 250. Alternatively or in addition, air may be exhausted from cavity 235 via outlet passage 250 (eg, by applying a negative pressure to outlet passage 250) prior to injection of resin 240. In certain embodiments, the inlet passage 245 and / or the outlet passage 250 is used to introduce an inert gas such as nitrogen and / or argon into the cavity 235. Resin 240 is injected into cavity 235 until cavity 235 is substantially filled (eg, about 98% or more of the volume of cavity 235 is filled with resin). In certain embodiments, the cavity 235 is overfilled (eg, overfilled). In such an embodiment, excess resin can enter the outlet passage 250.

樹脂240の組成および基端側ならびに先端側要素115および120の組成に応じて、樹脂240は、種々の異なる温度、圧力、および流量で注入することができる。一部の実施形態では、樹脂240は、約80℃〜約500℃の温度、約300kPa〜約35000kPaの圧力、および/または、約1ml/分〜約1000ml/分の流量で管状空洞235に注入される。   Depending on the composition of the resin 240 and the proximal and distal elements 115 and 120, the resin 240 can be injected at a variety of different temperatures, pressures, and flow rates. In some embodiments, resin 240 is injected into tubular cavity 235 at a temperature of about 80 ° C. to about 500 ° C., a pressure of about 300 kPa to about 35000 kPa, and / or a flow rate of about 1 ml / min to about 1000 ml / min. Is done.

樹脂240は、空洞230に注入されると、約4500Pa・s以下(たとえば、約3500Pa・s以下、約2500Pa・s以下、約1500Pa・s以下、約1000Pa・s以下)の粘度を有することができる。特定の実施形態では、樹脂240は、約500Pa・s〜約4500Pa・s(たとえば、約1000Pa・s〜約3500Pa・s、約1500Pa・s〜約2500Pa・s)の粘度を有する。たとえば、樹脂240は、目標とする粘度に達するまで、空洞235に注入する前に加熱されてもよい。樹脂240は、中間要素125に関して本明細書で説明される材料の1つまたは複数を含むことができる。   When injected into the cavity 230, the resin 240 may have a viscosity of about 4500 Pa · s or less (eg, about 3500 Pa · s or less, about 2500 Pa · s or less, about 1500 Pa · s or less, about 1000 Pa · s or less). it can. In certain embodiments, the resin 240 has a viscosity of about 500 Pa · s to about 4500 Pa · s (eg, about 1000 Pa · s to about 3500 Pa · s, about 1500 Pa · s to about 2500 Pa · s). For example, the resin 240 may be heated before being injected into the cavity 235 until a target viscosity is reached. The resin 240 can include one or more of the materials described herein with respect to the intermediate element 125.

空洞235が樹脂240で充填された後、樹脂ならびに基端側および先端側要素115および120は、所定の滞留時間の間、型の温度に維持される。型の温度は、約130℃〜約230℃の範囲とすることができる。所定の滞留時間は、樹脂240と基端側要素115および先端側要素120との間の接合が完了するに十分な時間とすることができる。一部の実施形態では、所定の期間は、約1秒〜約30秒の範囲である。   After the cavity 235 is filled with resin 240, the resin and proximal and distal elements 115 and 120 are maintained at the mold temperature for a predetermined residence time. The mold temperature can range from about 130 ° C to about 230 ° C. The predetermined residence time may be a time sufficient to complete the bonding between the resin 240 and the proximal end element 115 and the distal end element 120. In some embodiments, the predetermined period ranges from about 1 second to about 30 seconds.

空洞235が樹脂240で充填され、所定の滞留時間の間高い温度に維持された後、樹脂は、冷却されて固化する。特定の実施形態では、先に説明したように、蒸気ジャケットなどの冷却器具を使用して、樹脂が冷える速度を制御する(たとえば速くする)ことができる。冷却時間は、約5秒〜約2分の範囲とすることができる。特定の実施形態では、冷却プロセスの中間ステップとして、成形装置210は、固化した樹脂240のアニーリングを容易にするために、所定の温度(たとえば約90℃〜約150℃)に維持される。空洞235内の樹脂240は、固化すると、内側シャフト105の中間要素125を形成する。内側シャフト105は、レーザ接合および/または接着などの1つまたは複数の接合技術を使用して、バルーンカテーテル100の外側シャフト110およびバルーン127に接続することができる。   After cavity 235 is filled with resin 240 and maintained at a high temperature for a predetermined residence time, the resin cools and solidifies. In certain embodiments, as described above, a cooling device such as a steam jacket can be used to control (eg, increase) the rate at which the resin cools. The cooling time can range from about 5 seconds to about 2 minutes. In certain embodiments, as an intermediate step in the cooling process, molding apparatus 210 is maintained at a predetermined temperature (eg, about 90 ° C. to about 150 ° C.) to facilitate annealing of solidified resin 240. The resin 240 in the cavity 235 forms the intermediate element 125 of the inner shaft 105 when solidified. Inner shaft 105 can be connected to outer shaft 110 and balloon 127 of balloon catheter 100 using one or more joining techniques, such as laser joining and / or gluing.

図3A〜3Eは、バルーンカテーテル100の使用方法を示す。図3Aを参照すると、該方法は、ガイドワイヤ165を体内管170(たとえば、血管)内に挿入すること、および、その後に、ガイドワイヤ165が内側カテーテルシャフト105のガイドワイヤ管腔140内に配置されるように、バルーンカテーテル100にガイドワイヤ165上を進ませることを含む。次いで、バルーンカテーテル100は、ガイドワイヤ165に沿って、かつ、体内管170内を進められ、ついには、図3Bに示すように、収縮したバルーン127とステント150が、体内管170の閉塞領域175内に配置される。体内管170の閉塞領域175内に配置された後、図3Cに示すように、体内管170内にステント150を展開するために、バルーン127が膨張させられる。バルーン127は、環状膨張管腔145を介して生理食塩水などの膨張流体を流すことによって拡張させることができる。たとえば、バルーン127に膨張流体を送るために、シリンジなどの膨張機構をバルーンカテーテル100の基端(図示せず)に接続してもよい。バルーン127の膨張およびステント150の展開は、閉塞部175の半径方向への拡張、および/または、体内管170のその領域における半径方向支持に寄与することができる。ステント150が展開されると、図3Dおよび3Eに示すように、バルーン127は収縮させられて、バルーンカテーテル100が体内管170から抜去される。   3A-3E show how the balloon catheter 100 is used. Referring to FIG. 3A, the method inserts a guide wire 165 into a body vessel 170 (eg, a blood vessel) and then places the guide wire 165 within the guide wire lumen 140 of the inner catheter shaft 105. As shown, the balloon catheter 100 is advanced over the guide wire 165. The balloon catheter 100 is then advanced along the guidewire 165 and into the body tube 170 until the deflated balloon 127 and the stent 150 are finally shown in the occluded region 175 of the body tube 170 as shown in FIG. 3B. Placed inside. After placement within the occlusion region 175 of the body tube 170, the balloon 127 is inflated to deploy the stent 150 within the body tube 170, as shown in FIG. 3C. Balloon 127 can be expanded by flowing an inflation fluid, such as saline, through annular inflation lumen 145. For example, an inflation mechanism such as a syringe may be connected to the proximal end (not shown) of the balloon catheter 100 to send inflation fluid to the balloon 127. Expansion of the balloon 127 and deployment of the stent 150 can contribute to radial expansion of the occlusion 175 and / or radial support in that region of the body tube 170. When the stent 150 is deployed, the balloon 127 is deflated and the balloon catheter 100 is withdrawn from the body tube 170, as shown in FIGS. 3D and 3E.

種々の実施形態について説明してきたが、他の実施形態も可能である。
例として、一部の実施形態では、中間要素125の可撓性がその長さに沿って変わる。たとえば、カテーテルの追従性を高めるために、中間要素125は、その基端から先端に向かって次第に可撓性を高くすることができる。中間要素125は、たとえば、入口通路145を介して送られる樹脂140の組成を変更することによって、中間要素125の長さに沿って次第に可撓性が高くなるように形成することができる。これに代えて、またはこれに加えて、中間要素125の壁を、中間要素の基端から先端に向かって次第に薄くすることができる。次第に薄くなる壁は、たとえば、空洞235および/またはマンドレル207の構成を変更することによって形成することができる。
Although various embodiments have been described, other embodiments are possible.
By way of example, in some embodiments, the flexibility of the intermediate element 125 varies along its length. For example, in order to increase the followability of the catheter, the intermediate element 125 can become increasingly flexible from its proximal end to the distal end. The intermediate element 125 can be formed to become increasingly flexible along the length of the intermediate element 125, for example, by changing the composition of the resin 140 delivered through the inlet passage 145. Alternatively or additionally, the wall of the intermediate element 125 can be progressively thinner from the proximal end to the distal end of the intermediate element. Increasingly thinner walls can be formed, for example, by changing the configuration of the cavity 235 and / or the mandrel 207.

別の例では、特定の実施形態において、中間要素125は、基端側および先端側要素115および120より可撓性が高い。中間要素125は、使用中に大きく撓むカテーテル領域に配置することができる。たとえば、中間要素125は、使用中に体内管の曲がりくねった領域内に(たとえば、大動脈と冠状動脈との結合部に)配置されるカテーテル領域に配置することができる。中間要素125の相対的に高い可撓性は、たとえば、体内管の曲がりくねった領域に配置される、かつ/または、そこを通過するカテーテルの能力の改善に寄与することができる。中間要素125は、基端側および先端側内側要素115および120の材料より高い可撓性を有する1つまたは複数の材料を含むことができる(たとえば、1つまたは複数の材料から形成することができる)。特定の実施形態では、中間要素125は、基端側および先端側内側要素115および120の材料より軟質の1つまたは複数の材料を含む。たとえば、中間要素125は、基端側および先端側内側要素115および120の硬度より約10D〜約40D低い硬度を有することができる。たとえば、中間要素125は、約30D〜約55Dの硬度を有することができる。これに代えて、またはこれに加えて、中間要素125は、基端側要素115および/または先端側要素120より薄い壁を有するように形成されてもよい。   In another example, in certain embodiments, intermediate element 125 is more flexible than proximal and distal elements 115 and 120. The intermediate element 125 can be placed in a catheter area that greatly deflects during use. For example, the intermediate element 125 can be placed in a catheter region that is placed in a tortuous region of the body vessel during use (eg, at the junction of the aorta and coronary artery). The relatively high flexibility of the intermediate element 125 can contribute, for example, to an improvement in the ability of the catheter to be placed and / or passed through tortuous regions of the body vessel. The intermediate element 125 can include one or more materials that are more flexible than the material of the proximal and distal inner elements 115 and 120 (eg, can be formed from one or more materials). it can). In certain embodiments, the intermediate element 125 includes one or more materials that are softer than the material of the proximal and distal inner elements 115 and 120. For example, the intermediate element 125 can have a hardness that is about 10D to about 40D less than the hardness of the proximal and distal inner elements 115 and 120. For example, the intermediate element 125 can have a hardness of about 30D to about 55D. Alternatively or in addition, the intermediate element 125 may be formed with a thinner wall than the proximal element 115 and / or the distal element 120.

さらなる例として、一部の実施形態では、1つまたは複数の治療薬が、中間要素125によって担持される(たとえば中間要素125内に担持される)。特定の治療薬は、たとえば、バルーン血管形成術中の痙攣反応を低減することができる。治療薬は、治療薬を中間要素125の樹脂と予め混合すること、および/または、中間要素125を治療薬でコーティングすることなど、1つまたは複数の技術を使用して中間要素125に担持させることができる。治療薬の例としては、パクリタクセル、オキシブチニン、ベラドンナアルカロイド、フェノバービタル、非ステロイド系抗炎症薬、およびヘパリンが挙げられる。   By way of further example, in some embodiments, one or more therapeutic agents are carried by the intermediate element 125 (eg, carried within the intermediate element 125). Certain therapeutic agents can, for example, reduce the convulsive response during balloon angioplasty. The therapeutic agent is carried on the intermediate element 125 using one or more techniques, such as premixing the therapeutic agent with the resin of the intermediate element 125 and / or coating the intermediate element 125 with the therapeutic agent. be able to. Examples of therapeutic agents include paclitaxel, oxybutynin, belladonna alkaloids, phenobarbital, non-steroidal anti-inflammatory drugs, and heparin.

さらなる例として、一部の実施形態では、材料は、成形プロセス中に中間要素125に埋め込まれる。たとえば、導電体(たとえば、編んだまたは巻いた導電性ワイヤ)を中間要素125内に埋め込むことができる。たとえば、導電体は、図5Eおよび5Fに示す成形プロセス中に、成形装置210に樹脂240が注入されると、導電体の少なくとも一部分が樹脂240内に捕捉されるように、管状空洞235に配置することができる。別の例として、ガラス繊維ストランド、金属繊維、および/またはセラミック繊維などの補強要素も同様に、管状空洞235に樹脂240を注入する前に管状空洞235に補強要素を配置することによって、中間要素125内に埋め込むことができる。導電体および補強要素は、中間要素125の強度の向上(たとえば半径方向強度の向上)に寄与することができる。   As a further example, in some embodiments, the material is embedded in the intermediate element 125 during the molding process. For example, a conductor (eg, knitted or rolled conductive wire) can be embedded in the intermediate element 125. For example, the conductor is placed in the tubular cavity 235 such that at least a portion of the conductor is captured within the resin 240 when the resin 240 is injected into the molding apparatus 210 during the molding process shown in FIGS. 5E and 5F. can do. As another example, reinforcing elements such as glass fiber strands, metal fibers, and / or ceramic fibers may also be used as intermediate elements by placing reinforcing elements in the tubular cavity 235 prior to injecting the resin 240 into the tubular cavity 235. 125 can be embedded. The conductor and the reinforcing element can contribute to the improvement of the strength of the intermediate element 125 (for example, the improvement of the radial strength).

別の例では、中間要素は、使用中に(たとえばステントの展開中に)血管の曲がりくねった領域内に配置されることが予め決められた、バルーンカテーテルに沿った位置に配置することができる。血管の曲がりくねった領域は、たとえば、少なくとも約70°(たとえば、少なくとも約90°、約70°〜約110°)の角度で屈曲する1つまたは複数の領域を有することができる。カテーテルに沿った中間要素のこの配置は、たとえば、中間要素が、基端側要素および/または先端側要素に比べて、体内管の曲がりくねった領域内でより容易に配置可能にする特性(たとえば可撓性レベル)を有する場合に、有利となる可能性がある。中間要素を位置付けるべきバルーンカテーテルに沿った位置を決定するために、まずバルーンカテーテルが使用される体内管の領域を、X線撮像、蛍光透視、または磁気共鳴撮像などの技術を使用して撮像することができる。体内管の画像に基づいて、治療されるべき体内管領域(たとえば閉塞領域)と、中間要素を配置すべき体内管領域(たとえば曲がりくねった領域)との間に所望される距離を決定することができる。バルーンカテーテルは、その後、治療されるべき体内管領域と体内管の曲がりくねった領域との間の距離にほぼ等しい距離だけ、中間要素がバルーンから離間するように形成することができる。   In another example, the intermediate element can be placed at a location along the balloon catheter that is predetermined to be placed in a tortuous region of the blood vessel during use (eg, during stent deployment). The tortuous region of the blood vessel can have one or more regions that bend, for example, at an angle of at least about 70 ° (eg, at least about 90 °, about 70 ° to about 110 °). This placement of the intermediate element along the catheter is, for example, a property that allows the intermediate element to be more easily placed within a tortuous region of the body vessel compared to the proximal and / or distal element (eg, possible). It may be advantageous if it has a flexibility level. To determine the position along the balloon catheter where the intermediate element should be located, first the area of the body vessel where the balloon catheter is used is imaged using techniques such as X-ray imaging, fluoroscopy, or magnetic resonance imaging be able to. Determining a desired distance between a body vessel region to be treated (eg, an occlusion region) and a body vessel region (eg, a tortuous region) where an intermediate element is to be placed based on an image of the body vessel it can. The balloon catheter can then be formed such that the intermediate element is spaced from the balloon by a distance approximately equal to the distance between the body vessel region to be treated and the tortuous region of the body vessel.

図6は、内側カテーテルシャフト305および外側カテーテルシャフト310を含むバルーンカテーテル300の使用を示す。内側カテーテルシャフト305は中間要素325を含み、中間要素325は、使用中に体内管170の曲がりくねった、または屈曲した領域180内に適合するように、バルーンカテーテルに沿った所定位置に配置される。たとえば、中間要素325は、使用中に患者の大動脈と冠状動脈との結合部に配置されるように構成することができる。中間要素325は、可撓性が劣る基端側要素315と先端側要素320との間で軸方向において接合される。バルーン327およびステント150が所望に応じて(たとえば体内管170の閉塞領域内に)配置されると、中間要素325は、体内管170の曲がりくねった、または屈曲した領域180(たとえば大動脈が冠状動脈に接続される領域)に隣接する。基端側および先端側要素315および320に比べて中間要素325の可撓性が高いため、中間要素325は、体内管の屈曲部の形状に相対的にうまく適合する。したがって、この構成は、曲がりくねった体内管内におけるカテーテルの可動性の改善に寄与することができる。一部の実施形態では、その構成は、改善された精度によるバルーン327およびステント150の配置に寄与することができる。たとえば、バルーン327およびステント150は、屈曲部180の有無にかかわらず、使用中に体内管170のほぼ中心位置に配置された状態を保つことができる。この配置は、体内管内におけるステント150の展開精度の向上に寄与することができる。   FIG. 6 illustrates the use of a balloon catheter 300 that includes an inner catheter shaft 305 and an outer catheter shaft 310. Inner catheter shaft 305 includes an intermediate element 325 that is positioned in place along the balloon catheter to fit within the tortuous or bent region 180 of body tube 170 during use. For example, the intermediate element 325 can be configured to be placed at the junction of the patient's aorta and coronary artery during use. The intermediate element 325 is joined in the axial direction between the proximal element 315 and the distal element 320 which are less flexible. When balloon 327 and stent 150 are placed as desired (eg, within the occluded region of body tube 170), intermediate element 325 provides a tortuous or bent region 180 (eg, aorta into coronary artery) of body tube 170. Adjacent to the area to be connected. Because the intermediate element 325 is more flexible than the proximal and distal elements 315 and 320, the intermediate element 325 is relatively well adapted to the shape of the bend of the body vessel. Therefore, this configuration can contribute to improving the mobility of the catheter within the torsional body vessel. In some embodiments, the configuration can contribute to the placement of balloon 327 and stent 150 with improved accuracy. For example, the balloon 327 and the stent 150 can be maintained at a substantially central position of the body tube 170 during use regardless of the presence or absence of the bent portion 180. This arrangement can contribute to the improvement of the deployment accuracy of the stent 150 in the body vessel.

さらなる例として、上述の実施形態の中間要素は、その長さに沿ってほぼ均一な外面を含むが、特定の実施形態では、中間要素は、その表面から延在する隆起形状部を含むことができる。図7に示すように、たとえば、中間要素425はコルゲート形状とすることができる。この実施形態では、中間要素425は、内面435から内側に、また、外面440から外側に延在する隆起形状部430を含む。中間要素425のコルゲート形状は、中間要素425が使用中にキンクすることを防止するために役立ち得る。   As a further example, the intermediate element of the above-described embodiment includes a substantially uniform outer surface along its length, but in certain embodiments, the intermediate element may include a raised feature extending from the surface. it can. As shown in FIG. 7, for example, the intermediate element 425 can be corrugated. In this embodiment, the intermediate element 425 includes a raised feature 430 that extends inwardly from the inner surface 435 and outwardly from the outer surface 440. The corrugated shape of the intermediate element 425 can help to prevent the intermediate element 425 from kinking during use.

コルゲート中間要素425は、上述した方法と同様の方法を使用して成形することができる。成形装置は、中間要素425に所望されるの波形表面に対応する波形内面を含むことができる。成形装置は、たとえば、中央通路、および、中央通路から外側に延在し、かつ、中央通路に連通する複数の凹部領域を含むことができる。中間要素425の管状本体は、型の通路内で形成することができ、隆起形状部は、該通路から外側に延在する凹部領域内で形成することができる。   The corrugated intermediate element 425 can be molded using a method similar to that described above. The forming apparatus can include a corrugated inner surface corresponding to the desired corrugated surface for the intermediate element 425. The molding apparatus can include, for example, a central passage and a plurality of recessed areas extending outward from the central passage and communicating with the central passage. The tubular body of the intermediate element 425 can be formed in a mold passage and the raised features can be formed in a recessed region extending outwardly from the passage.

図8を参照すると、別の例として、中間要素525は、中間要素525の外面540の周りで円周方向に延在する環状リング530を含む。特定の実施形態では、図8に示すように、環状リング530は、中間要素525に沿ってほぼ等間隔で離間され、中間要素525の強度向上に寄与することができる。特定の実施形態では、環状リング530は、中間要素525に沿って間隔を変化させて離間させることができる。たとえば、環状リング530は、中間要素525の基端545から中間要素525の先端550に向かって次第に間隔を増大させてもよい。この結果、中間要素525は、基端545から先端550に向かって剛性を減少させることができる。環状リングの代わりに、または環状リングに加えて、中間要素は、該要素の外面に沿って延在する隆起した螺旋部材を含むことができる。   Referring to FIG. 8, as another example, the intermediate element 525 includes an annular ring 530 that extends circumferentially around the outer surface 540 of the intermediate element 525. In certain embodiments, as shown in FIG. 8, the annular ring 530 can be spaced at approximately equal intervals along the intermediate element 525, contributing to increased strength of the intermediate element 525. In certain embodiments, the annular ring 530 can be spaced apart with varying spacing along the intermediate element 525. For example, the annular ring 530 may gradually increase in spacing from the proximal end 545 of the intermediate element 525 toward the distal end 550 of the intermediate element 525. As a result, the intermediate element 525 can decrease in rigidity from the proximal end 545 toward the distal end 550. Instead of, or in addition to, the annular ring, the intermediate element can include a raised helical member that extends along the outer surface of the element.

中間要素525は、上述したような成形装置内で成形することができる。成形装置は、たとえば、中央通路、および、中央通路から外側に延在し、かつ、中央通路に連通する複数の凹部領域を含むことができる。中間要素525の管状本体は、型の通路内で形成することができ、隆起形状部は、該通路から外側に延在する凹部領域内で形成することができる。   The intermediate element 525 can be molded in a molding apparatus as described above. The molding apparatus can include, for example, a central passage and a plurality of recessed areas extending outward from the central passage and communicating with the central passage. The tubular body of the intermediate element 525 can be formed in a mold passage, and the raised features can be formed in a recessed region extending outwardly from the passage.

さらなる例として、上述の実施形態では、ほぼ円形の断面形状を有する中間要素について説明したが、中間要素は、この断面形状に代えて、またはこの断面形状に加えて、他の断面形状を有することができる。図9に示すように、たとえば、中間要素625は、ほぼ楕円形の断面形状を有する。図10を参照すると、中間要素725は、八角形の断面形状を有する。中間要素825は、図11に示すように、正方形の断面形状を有する。中間要素925は、図12に示すように、ほぼ星形の断面形状を有する。非円形断面形状を有する中間要素は、非円形の成形通路もしくは空洞を含む成形装置および/または非円形断面形状を有するマンドレルを使用することによって成形することができる。一部の実施形態では、非円形断面形状を有する中間要素は、カテーテルの内側管状部材に対して摺動するカテーテルの外側管状部材によって引き起こされる摩擦量の低減に寄与できる。   As a further example, the above-described embodiments have described an intermediate element having a substantially circular cross-sectional shape, but the intermediate element may have other cross-sectional shapes instead of or in addition to this cross-sectional shape. Can do. As shown in FIG. 9, for example, the intermediate element 625 has a substantially elliptical cross-sectional shape. Referring to FIG. 10, the intermediate element 725 has an octagonal cross-sectional shape. The intermediate element 825 has a square cross-sectional shape as shown in FIG. The intermediate element 925 has a substantially star-shaped cross section as shown in FIG. An intermediate element having a non-circular cross-sectional shape can be formed by using a forming device that includes a non-circular forming passage or cavity and / or a mandrel having a non-circular cross-sectional shape. In some embodiments, an intermediate element having a non-circular cross-sectional shape can contribute to a reduction in the amount of friction caused by the outer tubular member of the catheter sliding relative to the inner tubular member of the catheter.

別の例として、上述の実施形態では、基端側要素115、先端側要素120、および中間要素125の形成材料とすることができる特定の材料について述べたが、これらの要素は、本明細書で説明する任意の材料を種々の異なる組合せで使用して形成することができる。たとえば、基端側および先端側要素115、120に関して本明細書で述べる材料の1つまたは複数を使用して、中間要素125を形成することができ、またその逆もしかりである。   As another example, while the above-described embodiments have described specific materials that can be the forming material of the proximal element 115, the distal element 120, and the intermediate element 125, these elements are described herein. Any of the materials described in can be formed using a variety of different combinations. For example, one or more of the materials described herein with respect to the proximal and distal elements 115, 120 can be used to form the intermediate element 125, and vice versa.

さらなる例として、上述の実施形態は、基端側要素と先端側要素との間に単一の中間要素を含む器具について説明したが、一部の実施形態では、器具は、基端側要素と先端側要素との間に配設された複数(たとえば、2つ以上、3つ以上、4つ以上、5つ以上)の中間要素を含む。図13を参照すると、たとえば、カテーテルシャフトは、基端側要素115と先端側要素120との間に配置された第1および第2中間要素125、1025を含む。特定の実施形態では、中間要素125および1025は、互いに異なる材料組成を有する。一部の実施形態では、中間要素125は、中間要素1025に比べて基端側要素115との適合性が高く(たとえば、熱的に、かつ/または、化学的に適合性が高く)、中間要素1025は、中間要素125に比べて先端側要素120との適合性が高い。そのため、1つの中間要素だけでなく、両方の中間要素を使用することによって、カテーテルシャフトの種々の要素間の接合程度が高められ得る。カテーテルシャフトは、バルーンカテーテル100に関して上述した技術と同様の1つまたは複数の技術を使用して形成することができる。中間要素125および1025は、たとえば、2つの異なる樹脂の流れを成形装置内に注入することによって形成することができる。   As a further example, while the above-described embodiments have been described for an instrument that includes a single intermediate element between a proximal element and a distal element, in some embodiments, the instrument is a proximal element. A plurality of (for example, two or more, three or more, four or more, five or more) intermediate elements disposed between the front end side elements are included. Referring to FIG. 13, for example, the catheter shaft includes first and second intermediate elements 125, 1025 disposed between the proximal element 115 and the distal element 120. In certain embodiments, intermediate elements 125 and 1025 have different material compositions. In some embodiments, intermediate element 125 is more compatible with proximal element 115 than intermediate element 1025 (eg, thermally and / or chemically more compatible) The element 1025 is more compatible with the distal element 120 than the intermediate element 125. Thus, by using both intermediate elements, not just one intermediate element, the degree of bonding between the various elements of the catheter shaft can be increased. The catheter shaft can be formed using one or more techniques similar to those described above with respect to the balloon catheter 100. Intermediate elements 125 and 1025 can be formed, for example, by injecting two different resin streams into the molding apparatus.

さらなる例として、上述した実施形態は、バルーンカテーテルの内側カテーテルシャフトに関連するが、バルーンカテーテルの他の要素は、これに代えて、またはこれに加えて、内側シャフトに関して上述したものと同様に、一体成形された基端側要素、先端側要素、および中間要素を含むことができる。一部の実施形態では、たとえば、外側シャフトは、一体成形された基端側要素、先端側要素、および中間要素を含む。特定の実施形態では、内側シャフトと外側シャフトは共に、このような構成を含む。一部の実施形態では、外側シャフトの中間要素は、内側シャフトの中間要素とほぼ同じ領域でバルーンカテーテルに沿って軸方向に配置される。特定の実施形態では、外側シャフトの中間要素は、使用中に体内管の曲がりくねった領域に隣接して配置するように予め決められた外側シャフトの領域に沿って配置される。これに代えて、またはこれに加えて、外側シャフトの中間要素は、外側シャフトに沿った他の位置に配置することができる。   As a further example, the above-described embodiments relate to the inner catheter shaft of a balloon catheter, but other elements of the balloon catheter can alternatively or in addition be similar to those described above for the inner shaft. The integrally formed proximal element, distal element, and intermediate element can be included. In some embodiments, for example, the outer shaft includes an integrally formed proximal element, distal element, and intermediate element. In certain embodiments, both the inner and outer shafts include such a configuration. In some embodiments, the intermediate element of the outer shaft is axially disposed along the balloon catheter in approximately the same region as the intermediate element of the inner shaft. In certain embodiments, the intermediate element of the outer shaft is positioned along a region of the outer shaft that is predetermined to be positioned adjacent to the tortuous region of the body vessel during use. Alternatively or in addition, the intermediate element of the outer shaft can be arranged at other positions along the outer shaft.

さらなる例として、上述した実施形態はバルーンカテーテルに関連するが、他のタイプの医療器具も同様に、本明細書で述べたような1つまたは複数の管状部材またはシャフトを含むことができる。他のタイプの医療器具の例は、自己拡張型ステント送出システム(たとえば、自己拡張型ステント送出システムの内側部材、自己拡張型ステント送出システムの外側シース)、ガイドカテーテル、内視鏡、心調律管理(CRM)導電ワイヤ、尿ドレナージ器具、術後創傷ドレナージ器具、および胃栄養補給管(stomach feeding tube)を含む。   By way of further example, the embodiments described above relate to balloon catheters, but other types of medical devices can similarly include one or more tubular members or shafts as described herein. Examples of other types of medical devices are self-expanding stent delivery systems (eg, inner members of self-expanding stent delivery systems, outer sheaths of self-expanding stent delivery systems), guide catheters, endoscopes, cardiac rhythm management (CRM) Conductive wire, urine drainage device, postoperative wound drainage device, and stomach feeding tube.

以下の例は、カテーテルシャフトを製造するプロセスを示す。
(例1)
カテーテルシャフトを形成するために、ナイロン12から形成される基端側管状セグメントおよびPebax7033から形成される先端側管状セグメントが提供される。基端側管状セグメントは、約0.045インチ(約1.14ミリメートル)の外径および約0.038インチ(約0.965ミリメートル)の内径を有する。先端側管状セグメントは、約0.028インチ(約0.711ミリメートル)の外径および約0.024インチ(約0.610ミリメートル)の内径を有する。
The following example illustrates a process for manufacturing a catheter shaft.
(Example 1)
To form the catheter shaft, a proximal tubular segment formed from nylon 12 and a distal tubular segment formed from Pebax 7033 are provided. The proximal tubular segment has an outer diameter of about 0.045 inches (about 1.14 millimeters) and an inner diameter of about 0.038 inches (about 0.965 millimeters). The distal tubular segment has an outer diameter of about 0.028 inches (about 0.711 millimeters) and an inner diameter of about 0.024 inches (about 0.610 millimeters).

公知のスカイビング加工を使用して、先端側管状セグメントの基端領域上および基端側管状セグメントの先端領域上にテーパが形成される。各セグメントについて、シャフトの約1センチメートルの部分がスカイビング加工される。スカイビング加工後に、管状セグメントの端領域はトリミングされ、1センチメートルの長さを有するテーパ領域が得られる。   Using a known skiving process, a taper is formed on the proximal region of the distal tubular segment and on the distal region of the proximal tubular segment. For each segment, an approximately 1 centimeter portion of the shaft is skived. After skiving, the end region of the tubular segment is trimmed to obtain a tapered region having a length of 1 centimeter.

基端側および先端側管状セグメント上にテーパ領域を形成した後、PTFEがコーティングされた鋼マンドレルが、基端側および先端側管状セグメントの中心管腔内に挿入される。コーティングされたマンドレルはテーパを付けられており、先端側セグメントの小さな内径と基端側セグメントの大きな内径とを許容する。マンドレルは、技術者がセグメントのそれぞれをマンドレル上に正確に配置しやすくするために、染料で付けられたしるしを含む。PTFEがコーティングされた鋼マンドレルは、基端側および先端側セグメントがマンドレル上に適切に配置されると、先端側セグメントを越えて先端側に延在するように構成される。この構成は、以下に説明する成形手順の終了後に、マンドレルの取り出しを容易にすることに寄与する。   After forming tapered regions on the proximal and distal tubular segments, a steel mandrel coated with PTFE is inserted into the central lumen of the proximal and distal tubular segments. The coated mandrel is tapered to allow a small inner diameter of the distal segment and a larger inner diameter of the proximal segment. The mandrel includes indicia that are dyed to help the technician accurately place each of the segments on the mandrel. A steel mandrel coated with PTFE is configured to extend distally beyond the distal segment when the proximal and distal segments are properly positioned on the mandrel. This configuration contributes to facilitating removal of the mandrel after completion of the molding procedure described below.

基端側および先端側管状セグメントをマンドレル上に配置した後、基端側セグメント、先端側セグメント、およびマンドレルからなる組立体が、開放された型の下型上に設置される。型は、閉じられるとキャビティを形成する。型の上部には1つの注入器ゲートが存在し、型の底部には2つの出口ゲートが存在する。出口ゲートの一方は型の先端にあり、他方は型の基端にある。型の内部部分は、PTFEなどの非粘着性表面でコーティングされる。型の形成材料は、紫外線透過性である。   After placing the proximal and distal tubular segments on the mandrel, an assembly consisting of the proximal segment, the distal segment, and the mandrel is placed on the lower mold of the open mold. The mold forms a cavity when closed. There is one injector gate at the top of the mold and two outlet gates at the bottom of the mold. One of the exit gates is at the tip of the mold and the other is at the base end of the mold. The inner part of the mold is coated with a non-stick surface such as PTFE. The mold forming material is UV transmissive.

先端側セグメント、基端側セグメント、およびマンドレルからなる組立体が、開放された型の下型上に配置されると、型が閉じられ、約500ポンド(約227キログラム)の締め付け力が型に均等に加えられる。キャビティを画定する閉じた型の内径は、基端側および先端側管状セグメントの外径より約0.0015インチ(約0.038ミリメートル)小さい。そのため、基端側および先端側管状セグメントは、閉じた型によって固定される。次いで、型が110℃に加熱され、約50水銀柱ミリメートルの負圧が出口ゲートに印加され、閉じた型によって形成されるキャビティから空気が全て排出される。その後、UV硬化性エポキシ(たとえば、Masterbond UV15−7SP4DC)が、110℃の温度で、型のキャビティ内に注入される。注入時間は約3秒である。UV硬化性エポキシを型内に注入した後、硬化プロセスを開始するために、型に紫外光が1分間照射される。その後、型の温度は、エポキシが硬化できるように、5分間で120℃まで上昇させられ、それにより、カテーテルシャフトの中間セグメントが形成される。その後、組立体が型から取り出され、中間セグメントの制御された硬化のためにチャンバ内に配置される。   When the assembly consisting of the distal segment, the proximal segment, and the mandrel is placed on the lower mold of the opened mold, the mold is closed and a clamping force of about 500 pounds (about 227 kilograms) is applied to the mold. Added evenly. The inner diameter of the closed mold defining the cavity is about 0.0015 inches (about 0.038 millimeters) less than the outer diameter of the proximal and distal tubular segments. Thus, the proximal and distal tubular segments are secured by a closed mold. The mold is then heated to 110 ° C., a negative pressure of about 50 millimeters of mercury is applied to the exit gate, and all air is exhausted from the cavity formed by the closed mold. A UV curable epoxy (eg, Masterbond UV15-7SP4DC) is then injected into the mold cavity at a temperature of 110 ° C. The injection time is about 3 seconds. After injecting the UV curable epoxy into the mold, the mold is irradiated with ultraviolet light for 1 minute to start the curing process. The mold temperature is then raised to 120 ° C. in 5 minutes so that the epoxy can cure, thereby forming the middle segment of the catheter shaft. The assembly is then removed from the mold and placed in the chamber for controlled curing of the intermediate segment.

中間セグメントの外面は浅い波形を含む。中間セグメントの内径は、0.038インチ(0.965ミリメートル)から0.024インチ(0.610ミリメートル)まで直線的にテーパを付けられる。中間セグメントの長さは、約8センチメートル長である。   The outer surface of the middle segment contains a shallow corrugation. The inner diameter of the intermediate segment is linearly tapered from 0.038 inch (0.965 millimeter) to 0.024 inch (0.610 millimeter). The length of the middle segment is about 8 centimeters long.

他の実施形態も、添付の特許請求の範囲に包含される。   Other embodiments are within the scope of the appended claims.

バルーンカテーテルの一実施形態の断面図。1 is a cross-sectional view of one embodiment of a balloon catheter. 図1の2−2線における断面図。Sectional drawing in the 2-2 line of FIG. 図1のバルーンカテーテルの使用方法の一実施形態を示す図。The figure which shows one Embodiment of the usage method of the balloon catheter of FIG. 図1のバルーンカテーテルの使用方法の一実施形態を示す図。The figure which shows one Embodiment of the usage method of the balloon catheter of FIG. 図1のバルーンカテーテルの使用方法の一実施形態を示す図。The figure which shows one Embodiment of the usage method of the balloon catheter of FIG. 図1のバルーンカテーテルの使用方法の一実施形態を示す図。The figure which shows one Embodiment of the usage method of the balloon catheter of FIG. 図1のバルーンカテーテルの使用方法の一実施形態を示す図。The figure which shows one Embodiment of the usage method of the balloon catheter of FIG. 図1の領域4の拡大図。The enlarged view of the area | region 4 of FIG. 図1のバルーンカテーテルのカテーテルシャフトの製造方法の一実施形態を示す図。The figure which shows one Embodiment of the manufacturing method of the catheter shaft of the balloon catheter of FIG. 図1のバルーンカテーテルのカテーテルシャフトの製造方法の一実施形態を示す図。The figure which shows one Embodiment of the manufacturing method of the catheter shaft of the balloon catheter of FIG. 図1のバルーンカテーテルのカテーテルシャフトの製造方法の一実施形態を示す図。The figure which shows one Embodiment of the manufacturing method of the catheter shaft of the balloon catheter of FIG. 図1のバルーンカテーテルのカテーテルシャフトの製造方法の一実施形態を示す図。The figure which shows one Embodiment of the manufacturing method of the catheter shaft of the balloon catheter of FIG. 図1のバルーンカテーテルのカテーテルシャフトの製造方法の一実施形態を示す図。The figure which shows one Embodiment of the manufacturing method of the catheter shaft of the balloon catheter of FIG. 図1のバルーンカテーテルのカテーテルシャフトの製造方法の一実施形態を示す図。The figure which shows one Embodiment of the manufacturing method of the catheter shaft of the balloon catheter of FIG. 使用中のバルーンカテーテルの一実施形態を示す図。1 is a diagram illustrating one embodiment of a balloon catheter in use. 隆起形状部を含む管状部材の一実施形態の断面図。Sectional drawing of one Embodiment of the tubular member containing a protruding shape part. 異なる隆起形状部を含む管状部材の一実施形態の断面図。FIG. 3 is a cross-sectional view of one embodiment of a tubular member that includes different raised features. 種々の異なる断面形状を有する管状部材の一実施形態を示す図。The figure which shows one Embodiment of the tubular member which has various different cross-sectional shapes. 種々の異なる断面形状を有する管状部材の一実施形態を示す図。The figure which shows one Embodiment of the tubular member which has various different cross-sectional shapes. 種々の異なる断面形状を有する管状部材の一実施形態を示す図。The figure which shows one Embodiment of the tubular member which has various different cross-sectional shapes. 種々の異なる断面形状を有する管状部材の一実施形態を示す図。The figure which shows one Embodiment of the tubular member which has various different cross-sectional shapes. 2つの中間要素を含むカテーテルシャフトの断面図。FIG. 3 is a cross-sectional view of a catheter shaft including two intermediate elements.

Claims (18)

医療器具の製造方法であって、
型によって少なくとも部分的に画定されたキャビティ内に、それぞれ内部に延在する管腔を画定する第1および第2管状部を軸方向に離間させて配置する工程と、
前記第1管状部材と前記第2管状部材との間の前記型の領域内に溶融樹脂を送出する工程と、前記樹脂は、硬化すると、前記第1および第2管状部材の少なくとも一方の組成と異なる組成を有する中間管状部材を形成することと、
前記医療器具の先端領域に先端チップを配設する工程と
を含む方法。
A method of manufacturing a medical device,
Disposing axially spaced first and second tubular portions, each defining a lumen extending therein, in a cavity at least partially defined by the mold;
Delivering a molten resin into a region of the mold between the first tubular member and the second tubular member; and when the resin is cured, the composition of at least one of the first and second tubular members; Forming an intermediate tubular member having a different composition;
Disposing a tip in the tip region of the medical device.
前記先端チップは、前記第1および第2管状部材の少なくとも一方に固定される、請求項1に記載の方法。   The method of claim 1, wherein the tip is secured to at least one of the first and second tubular members. 前記第1および第2管状部材の管腔のうち少なくとも一方にマンドレルを配置する工程をさらに含む、請求項1に記載の方法。   The method of claim 1, further comprising placing a mandrel in at least one of the lumens of the first and second tubular members. 前記型は、前記キャビティから外側に延在し、かつ、前記キャビティに連通する少なくとも1つの凹部領域を画定する、請求項1に記載の方法。   The method of claim 1, wherein the mold defines at least one recessed region extending outwardly from the cavity and in communication with the cavity. 前記少なくとも1つの凹部領域は、前記キャビティの周りで円周方向に延在する溝を備える、請求項4に記載の方法。   The method of claim 4, wherein the at least one recessed area comprises a groove extending circumferentially around the cavity. 前記凹部領域は螺旋溝を備える、請求項4に記載の方法。   The method of claim 4, wherein the recessed area comprises a spiral groove. 前記型は、該型に沿って軸方向に離間した複数の凹部領域を画定する、請求項4に記載の方法。   The method of claim 4, wherein the mold defines a plurality of recessed areas spaced axially along the mold. 前記型は、前記第1および第2管状部材が前記型内に配置されると、該第1および第2管状部材が互いに対して軸方向に相対移動することを実質的に防止するように構成される、請求項1に記載の方法。   The mold is configured to substantially prevent axial movement of the first and second tubular members relative to each other when the first and second tubular members are disposed within the mold. The method of claim 1, wherein: 前記樹脂は、前記第1および第2管状部材の溶融温度より低い溶融温度を有する、請求項1に記載の方法。   The method of claim 1, wherein the resin has a melting temperature that is lower than a melting temperature of the first and second tubular members. 前記第1および第2管状部材の溶融温度より低い温度に前記型を加熱することをさらに含む、請求項1に記載の方法。   The method of claim 1, further comprising heating the mold to a temperature below the melting temperature of the first and second tubular members. 前記樹脂と、前記第1および第2管状部材のうち少なくとも一方とは、熱的に適合性がない、請求項1に記載の方法。   The method of claim 1, wherein the resin and at least one of the first and second tubular members are not thermally compatible. 前記中間管状部材は、前記第1および第2管状部材のうち少なくとも一方の硬度より低い硬度を有する、請求項1に記載の方法。   The method of claim 1, wherein the intermediate tubular member has a hardness that is lower than a hardness of at least one of the first and second tubular members. 前記第1および第2管状部材のそれぞれの少なくとも1つの端領域から材料を除去する工程をさらに含み、前記端領域はそれぞれ、材料除去後に、前記医療器具の長手方向軸線に対して鋭角をなして延在する表面を備える、請求項1に記載の方法。   Further comprising removing material from at least one end region of each of the first and second tubular members, each of the end regions forming an acute angle with respect to the longitudinal axis of the medical device after material removal. The method of claim 1, comprising an extending surface. 前記樹脂を、前記第1および第2管状部材のうち少なくとも一方に化学的に接合する工程をさらに含む、請求項1に記載の方法。   The method of claim 1, further comprising chemically bonding the resin to at least one of the first and second tubular members. 前記第1および第2管状部材は熱的に適合性がない、請求項1に記載の方法。   The method of claim 1, wherein the first and second tubular members are not thermally compatible. 基端側管状部材と、
先端側管状部材と、
前記基端側管状部材の先端領域に接合され、かつ、前記先端側管状部材の基端領域に接合される中間管状部材と、該中間管状部材は、前記基端側および先端側管状部材の少なくとも1つの材料に関して熱的に適合性がない少なくとも1つの材料を含むことと
を備える医療器具。
A proximal tubular member;
A distal tubular member;
An intermediate tubular member joined to a distal end region of the proximal end side tubular member and joined to a proximal end region of the distal end side tubular member; and the intermediate tubular member includes at least one of the proximal end side and the distal end side tubular member A medical device comprising: at least one material that is not thermally compatible with one material.
医療器具の先端領域に固定された可撓性先端チップをさらに備える、請求項16に記載の医療器具。   The medical device of claim 16, further comprising a flexible tip tip secured to the tip region of the medical device. 前記中間管状部材は、前記中間管状部材の外面から延在する少なくとも1つの隆起形状部を備える、請求項16に記載の医療器具。   The medical device of claim 16, wherein the intermediate tubular member comprises at least one raised feature extending from an outer surface of the intermediate tubular member.
JP2009513368A 2006-05-30 2007-05-15 Medical devices and related systems and methods Expired - Fee Related JP5537934B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/442,756 US7718106B2 (en) 2006-05-30 2006-05-30 Medical devices and related systems and methods
US11/442,756 2006-05-30
PCT/US2007/068926 WO2007143345A1 (en) 2006-05-30 2007-05-15 Medical devices and related systems and methods

Publications (2)

Publication Number Publication Date
JP2009538707A true JP2009538707A (en) 2009-11-12
JP5537934B2 JP5537934B2 (en) 2014-07-02

Family

ID=38608722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009513368A Expired - Fee Related JP5537934B2 (en) 2006-05-30 2007-05-15 Medical devices and related systems and methods

Country Status (6)

Country Link
US (1) US7718106B2 (en)
EP (1) EP2032344B1 (en)
JP (1) JP5537934B2 (en)
AT (1) ATE513677T1 (en)
CA (1) CA2654434A1 (en)
WO (1) WO2007143345A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2945981B1 (en) * 2009-05-27 2012-06-22 Mann & Hummel Gmbh METHOD FOR ASSEMBLING A POLYPROPYLENE ELEMENT AND A POLYAMIDE ELEMENT
US10058443B2 (en) * 2011-11-02 2018-08-28 Boston Scientific Scimed, Inc. Stent delivery systems and methods for use
US20150126852A1 (en) * 2013-11-01 2015-05-07 Covidien Lp Positioning catheter
US9364360B2 (en) 2014-02-06 2016-06-14 Covidien Lp Catheter systems and methods for manufacture
JP6602292B2 (en) * 2014-05-09 2019-11-06 東レ株式会社 Endovascular treatment aid
US20160114125A1 (en) * 2014-10-27 2016-04-28 Qxmedical, Llc Variable Stiffness Balloon Catheter and Related Systems and Methods
JP2017140115A (en) * 2016-02-08 2017-08-17 テルモ株式会社 Spine treatment method, and catheter for spine treatment
US20230191671A1 (en) * 2021-12-21 2023-06-22 Repligen Corporation Tubing coupler moldings and systems, and associated methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317988A (en) * 1995-05-24 1996-12-03 Asahi Intec Kk Catheter
JPH10263088A (en) * 1997-02-13 1998-10-06 Scimed Life Syst Inc Guide catheter including plural segment with selected modulus of bending elasticity
JP2001269411A (en) * 2000-03-27 2001-10-02 Jiima Kk Tube for catheter
JP2002018961A (en) * 2000-07-03 2002-01-22 Toyota Motor Corp Method for bonding resin molded articles
JP2002523150A (en) * 1998-08-21 2002-07-30 メドラッド インコーポレーテッド Syringe connectors and tubing
WO2005032801A1 (en) * 2003-10-02 2005-04-14 Ube Industries, Ltd. Material for laser welding and method for laser welding
JP2005177097A (en) * 2003-12-19 2005-07-07 Asahi Intecc Co Ltd Intracorporeal catheter
US6974557B1 (en) * 2001-12-18 2005-12-13 Advanced Cardiovasculer Systems, Inc. Methods for forming an optical window for an intracorporeal device and for joining parts

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782834A (en) * 1987-01-06 1988-11-08 Advanced Cardiovascular Systems, Inc. Dual lumen dilatation catheter and method of manufacturing the same
US5250069A (en) * 1987-02-27 1993-10-05 Terumo Kabushiki Kaisha Catheter equipped with expansible member and production method thereof
US4917667A (en) * 1988-02-11 1990-04-17 Retroperfusion Systems, Inc. Retroperfusion balloon catheter and method
US5188593A (en) * 1988-04-21 1993-02-23 Vas-Cath Incorporated Dual lumen catheter
US4976690A (en) * 1989-08-10 1990-12-11 Scimed Life Systems, Inc. Variable stiffness angioplasty catheter
US5279596A (en) * 1990-07-27 1994-01-18 Cordis Corporation Intravascular catheter with kink resistant tip
US5254107A (en) * 1991-03-06 1993-10-19 Cordis Corporation Catheter having extended braid reinforced transitional tip
US5649909A (en) * 1992-04-06 1997-07-22 Scimed Life Systems, Inc. Variable stiffness multi-lumen catheter
US5437288A (en) * 1992-09-04 1995-08-01 Mayo Foundation For Medical Education And Research Flexible catheter guidewire
US5358493A (en) * 1993-02-18 1994-10-25 Scimed Life Systems, Inc. Vascular access catheter and methods for manufacture thereof
US5336205A (en) * 1993-02-25 1994-08-09 Target Therapeutics, Inc. Flow directed catheter
US5437632A (en) * 1993-06-02 1995-08-01 Target Therapeutics, Inc. Variable stiffness balloon catheter
JP3383009B2 (en) * 1993-06-29 2003-03-04 テルモ株式会社 Vascular catheter
NL9301642A (en) * 1993-09-22 1995-04-18 Cordis Europ Microcatheter.
JPH09507399A (en) * 1993-11-12 1997-07-29 マイクロ インターベンショナル システムズ Catheter with small diameter and high torque
US5445624A (en) * 1994-01-21 1995-08-29 Exonix Research Corporation Catheter with progressively compliant tip
US6858024B1 (en) * 1994-02-14 2005-02-22 Scimed Life Systems, Inc. Guide catheter having selected flexural modulus segments
US5569218A (en) * 1994-02-14 1996-10-29 Scimed Life Systems, Inc. Elastic guide catheter transition element
US5470322A (en) * 1994-04-15 1995-11-28 Danforth Biomedical Inc. Reinforced multilumen catheter for axially varying stiffness
US5533985A (en) * 1994-04-20 1996-07-09 Wang; James C. Tubing
US5509910A (en) * 1994-05-02 1996-04-23 Medtronic, Inc. Method of soft tip attachment for thin walled catheters
CA2205666A1 (en) * 1994-11-23 1996-05-30 Micro Interventional Systems, Inc. High torque balloon catheter
US5658263A (en) * 1995-05-18 1997-08-19 Cordis Corporation Multisegmented guiding catheter for use in medical catheter systems
WO1996040342A1 (en) * 1995-06-07 1996-12-19 Cardima, Inc. Guiding catheter for coronary sinus
US5746701A (en) 1995-09-14 1998-05-05 Medtronic, Inc. Guidewire with non-tapered tip
EP0862477A1 (en) 1995-10-17 1998-09-09 Medtronic, Inc. Guide catheter with soft distal segment
US5700252A (en) * 1995-11-01 1997-12-23 Klingenstein; Ralph James Lumen-seeking nasogastric tube and method
US6103037A (en) * 1995-12-12 2000-08-15 Medi-Dyne Inc. Method for making a catheter having overlapping welds
US5951929A (en) * 1995-12-12 1999-09-14 Medi-Dyne Inc. Method for forming a catheter having overlapping welds
US5772641A (en) * 1995-12-12 1998-06-30 Medi-Dyne Inc. Overlapping welds for catheter constructions
US5836925A (en) * 1996-04-03 1998-11-17 Soltesz; Peter P. Catheter with variable flexibility properties and method of manufacture
US6042578A (en) * 1996-05-13 2000-03-28 Schneider (Usa) Inc. Catheter reinforcing braids
US5762637A (en) * 1996-08-27 1998-06-09 Scimed Life Systems, Inc. Insert molded catheter tip
US6093177A (en) * 1997-03-07 2000-07-25 Cardiogenesis Corporation Catheter with flexible intermediate section
US6030369A (en) * 1997-07-03 2000-02-29 Target Therapeutics Inc. Micro catheter shaft
US6139525A (en) * 1997-07-08 2000-10-31 Advanced Cardiovascular Systems, Inc. Fusion bonding of catheter components
US6010521A (en) * 1997-11-25 2000-01-04 Advanced Cardiovasular Systems, Inc. Catheter member with bondable layer
US6106510A (en) * 1998-05-28 2000-08-22 Medtronic, Inc. Extruded guide catheter shaft with bump extrusion soft distal segment
US6045547A (en) * 1998-06-15 2000-04-04 Scimed Life Systems, Inc. Semi-continuous co-extruded catheter shaft
US6059769A (en) * 1998-10-02 2000-05-09 Medtronic, Inc. Medical catheter with grooved soft distal segment
US6793634B2 (en) * 1998-10-23 2004-09-21 Scimed Life Systems, Inc. System and method for intraluminal imaging
US6197015B1 (en) * 1998-12-09 2001-03-06 Medi-Dyne Inc. Angiography catheter with sections having different mechanical properties
US6355027B1 (en) * 1999-06-09 2002-03-12 Possis Medical, Inc. Flexible microcatheter
US6702802B1 (en) * 1999-11-10 2004-03-09 Endovascular Technologies, Inc. Catheters with improved transition
US6663614B1 (en) * 2000-11-06 2003-12-16 Advanced Cardiovascular Systems, Inc. Catheter shaft having variable thickness layers and method of making
US20040065979A1 (en) * 2001-02-26 2004-04-08 Wang James C. Injector tip-and-die assembly construction and method
US6648024B2 (en) * 2001-02-26 2003-11-18 James C. Wang Tubular product
US20020156459A1 (en) * 2001-04-20 2002-10-24 Scimed Life Systems, Inc Microcatheter with improved distal tip and transitions
US20020156460A1 (en) * 2001-04-20 2002-10-24 Scimed Life Systems, Inc Microcatheter with improved distal tip and transitions
JP4575361B2 (en) * 2003-02-26 2010-11-04 ボストン サイエンティフィック リミテッド Balloon catheter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317988A (en) * 1995-05-24 1996-12-03 Asahi Intec Kk Catheter
JPH10263088A (en) * 1997-02-13 1998-10-06 Scimed Life Syst Inc Guide catheter including plural segment with selected modulus of bending elasticity
JP2002523150A (en) * 1998-08-21 2002-07-30 メドラッド インコーポレーテッド Syringe connectors and tubing
JP2001269411A (en) * 2000-03-27 2001-10-02 Jiima Kk Tube for catheter
JP2002018961A (en) * 2000-07-03 2002-01-22 Toyota Motor Corp Method for bonding resin molded articles
US6974557B1 (en) * 2001-12-18 2005-12-13 Advanced Cardiovasculer Systems, Inc. Methods for forming an optical window for an intracorporeal device and for joining parts
WO2005032801A1 (en) * 2003-10-02 2005-04-14 Ube Industries, Ltd. Material for laser welding and method for laser welding
JP2005177097A (en) * 2003-12-19 2005-07-07 Asahi Intecc Co Ltd Intracorporeal catheter

Also Published As

Publication number Publication date
EP2032344B1 (en) 2011-06-22
US7718106B2 (en) 2010-05-18
JP5537934B2 (en) 2014-07-02
CA2654434A1 (en) 2007-12-13
WO2007143345A1 (en) 2007-12-13
EP2032344A1 (en) 2009-03-11
US20080097396A1 (en) 2008-04-24
ATE513677T1 (en) 2011-07-15

Similar Documents

Publication Publication Date Title
JP5537934B2 (en) Medical devices and related systems and methods
US11786709B2 (en) Expandable medical devices
EP1340516A1 (en) Medical balloon catheter
EP2895226B1 (en) Method of manufacturing a soft tip balloon catheter
WO1997040877A1 (en) Focalized intraluminal balloons
JP2006502799A (en) Catheter balloon with advantageous cone design
EP3395395A1 (en) Balloon catheter and medical elongated body
WO2014144467A1 (en) Reduced material tip for catheter and method of forming same
US6878329B2 (en) Method of making a catheter balloon using a polyimide covered mandrel
US8353867B2 (en) Medical devices
WO2015146259A1 (en) Balloon catheter and method for manufacturing balloon
JP6078371B2 (en) Method for manufacturing balloon for balloon catheter
WO2016158584A1 (en) Dilation catheter and method for manufacturing dilation catheter
JP7432360B2 (en) Balloon catheter manufacturing method and mold
CN116916997B (en) Balloon catheter
JP6134154B2 (en) Balloon for balloon catheter
WO2023157534A1 (en) Balloon catheter
JP2008264119A (en) Catheter with pressing property
JP6453131B2 (en) Balloon catheter and balloon catheter manufacturing method
AU2015255298B2 (en) Expandable medical devices
CN116916997A (en) balloon catheter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120511

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120518

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120614

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5537934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees