JP2009527095A - Carbon nanotube lithium metal powder battery - Google Patents

Carbon nanotube lithium metal powder battery Download PDF

Info

Publication number
JP2009527095A
JP2009527095A JP2008555267A JP2008555267A JP2009527095A JP 2009527095 A JP2009527095 A JP 2009527095A JP 2008555267 A JP2008555267 A JP 2008555267A JP 2008555267 A JP2008555267 A JP 2008555267A JP 2009527095 A JP2009527095 A JP 2009527095A
Authority
JP
Japan
Prior art keywords
anode
cathode
lithium metal
lithium
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008555267A
Other languages
Japanese (ja)
Inventor
モリス,ロバート・スコット
Original Assignee
エフエムシー・コーポレイション‐リチウム・ディヴィジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エフエムシー・コーポレイション‐リチウム・ディヴィジョン filed Critical エフエムシー・コーポレイション‐リチウム・ディヴィジョン
Publication of JP2009527095A publication Critical patent/JP2009527095A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

高エネルギーリチウム電池系を開示する。この系は、アノード及びカソードの双方がカーボンナノチューブ及び/又は他のナノチューブ材料を含む。アノードは、リチウム金属粉末を用いてリチオ化される。  A high energy lithium battery system is disclosed. This system includes carbon nanotubes and / or other nanotube materials, both anode and cathode. The anode is lithiated using lithium metal powder.

Description

連邦政府による資金提供を受けた研究開発の記載
本発明は、一部、契約番号N0014−03−M0092の下、海軍研究事務所(Office of Naval Research)から米国政府の援助により為された。米国政府は、本発明に一定の権利を有し得る。
DESCRIPTION OF FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT This invention was made in part with United States government support from the Office of Naval Research under contract number N0014-03-M0092. The United States government may have certain rights in the invention.

本発明は、エネルギー貯蔵デバイスに関する。詳細には、本発明は、カーボンナノチューブ(CNT)材料から構成された2個の活性電極を有する、アノードのCNT材料中にリチウム金属粉末が分散されているリチウムイオン電池に関する。   The present invention relates to an energy storage device. In particular, the present invention relates to a lithium ion battery having two active electrodes composed of carbon nanotube (CNT) material, wherein lithium metal powder is dispersed in the anode CNT material.

消費者及び軍事用途用の未来の携帯電源は、リチウム電池技術から、より大きい比エネルギー及び電力を要求すると思われる。未来の電力要求を満たすために、リチウム電池は400Wh/kgを超える持続的な比エネルギーを示し、かつ100Wh/kgにて2kW/kgを超えるパルス電力能力を有する必要があることが予想される。加えて、これらの系は、広い温度範囲(−20〜90℃)で有効に作動し、また迅速な再充電が可能である必要があると思われる。これらの要求は、従来の電池により、あるいは従来の系の能力を外挿して満たすことが不可能である。周知のように、従来のLiイオン電極材料は、リチウム貯蔵能力を制限する物理的化学的制約を受けている。   Future portable power sources for consumer and military applications are likely to require greater specific energy and power from lithium battery technology. In order to meet future power requirements, lithium batteries are expected to have a sustained specific energy of over 400 Wh / kg and have a pulse power capability of over 2 kW / kg at 100 Wh / kg. In addition, these systems may need to operate effectively over a wide temperature range (-20 to 90 ° C) and be capable of rapid recharging. These requirements cannot be met by conventional batteries or by extrapolating the capabilities of conventional systems. As is well known, conventional Li ion electrode materials are subject to physical and chemical constraints that limit lithium storage capacity.

従来の商業的なリチウムイオン電池技術は、正極(カソード)にリチオ化(lithiated)金属酸化物、負極(アノード)として(様々な形態の)炭素に依存している。Liイオンセルは、カソード中の全リチウムにより寿命が開始し、充電によってある割合のこのリチウムがアノードに移動して、炭素アノード中に挿入される。充電プロセスが完了すると、セルは約4.2Vの開放回路電圧を有する。このセル電圧の約1.15Vは、金属酸化物電極の陽電位によるものである。これら2種の材料の多様な化学的性質により、高い開放回路電位が保証される。しかしながら、同様の化学的性質を有する材料を用いて同様の結果をもたらすことは想像し得る。1980年に、Lazzari及びScrosatiにより「揺りいすの概念(rocking chair concept)」、即ち、金属酸化物又は金属硫化物を基礎とする2種の挿入化合物を使用することが提案された(非特許文献1、その教示全体は引用により組み込まれて本明細書の一部となる)。平均電圧1.8Vで働くLiWO/LiTiSセルが記載された。この系は、金属リチウムアノードの問題を解決できたが、現存する再充電式系の実行可能な代替物に要求される実用的なエネルギー密度を提供することが不可能であった。この予備報告後、研究者らは、ある種類の炭素がリチウムを可逆的にインターカレートし得ることを見出し、2種の金属酸化物電極の使用から撤退した。最も黒鉛化の進んだ炭素はLiC(375mAh/g)の化学量論を与える一方、無秩序炭素は、一般にLi(x>1)(400mAh/g)を与える。リチオ化炭素と比較して、リチウム金属アノードは、>3000mAh/gの理論容量、及び965mAh/gの実際容量を有する(非特許文献2、その教示全体は引用により組み込まれて本明細書の一部となる)。 Conventional commercial lithium ion battery technology relies on lithiated metal oxides for the positive electrode (cathode) and carbon (in various forms) as the negative electrode (anode). The Li-ion cell begins its life with all the lithium in the cathode, and a percentage of this lithium is transferred to the anode by charging and inserted into the carbon anode. When the charging process is complete, the cell has an open circuit voltage of about 4.2V. This cell voltage of about 1.15 V is due to the positive potential of the metal oxide electrode. The high chemistry of these two materials ensures a high open circuit potential. However, it can be imagined that materials with similar chemistry will produce similar results. In 1980, it was proposed by Lazzari and Scrosati to use a “rocking chair concept”, ie two intercalation compounds based on metal oxides or metal sulfides (non-patent literature). 1, the entire teachings of which are incorporated herein by reference. A Li x WO 2 / Li y TiS 2 cell working at an average voltage of 1.8 V has been described. While this system has solved the problem of metallic lithium anodes, it has not been possible to provide the practical energy density required for a viable alternative to existing rechargeable systems. After this preliminary report, researchers found that certain types of carbon could reversibly intercalate lithium and withdrew from the use of two metal oxide electrodes. The most graphitized carbon gives a stoichiometry of LiC 6 (375 mAh / g), while disordered carbon generally gives Li x C 6 (x> 1) (400 mAh / g). Compared to lithiated carbon, lithium metal anodes have a theoretical capacity of> 3000 mAh / g and an actual capacity of 965 mAh / g (Non-Patent Document 2, the entire teachings of which are incorporated herein by reference. Part).

カーボンナノチューブは、潜在的な電極材料として注目を集めている。カーボンナノチューブは、多くの場合、閉じた同心円状の多層シェル又は多層(multi-walled)ナノチューブ(MWNT)として存在する。ナノチューブは、単層(single-walled)ナノチューブ(SWNT)としても形成され得る。SWNTは束を形成し、これらの束は、密に充填された2−D三角格子構造を有する。MWNTとSWNTの両方が製造されており、これら材料の比容量は、気相反応により評価されている。例えば、その教示全体が引用により組み込まれて本明細書の一部となる非特許文献3、非特許文献4、非特許文献5及び非特許文献6を参照されたい。これらナノチューブ材料に関する最大アルカリ金属飽和度値は、MC(M=K、Rb、Cs)と報告された。これらの値は、現存する商業的に多く使用されている材料、例えばグラファイトを有意に超える利点を示していない。最近の実験結果により、単層カーボンナノチューブをLi及びそれ以上に負荷し得ることが証明されている。粗材料の容量は、実験により600mAh/gを超えることが測定されている。これらの容量は、純粋なリチウムの容量に接近し始めたが、リチウムの安全性に対する懸念を回避している。加えて、メソフェーズカーボンマイクロビーズ(MCMB)のように、リチウムは可逆的にインターカレートされるため、カーボンナノチューブは、アノード材料としてMCMBを超える劇的な改善を得ている。カーボンナノチューブは、高エネルギー電池に関する新たな可能性を提供し、また従来の電極材料では獲得し得なかった完全に新しい電池の設計に関する新たな機会を提供し得ることは明らかである。 Carbon nanotubes are attracting attention as potential electrode materials. Carbon nanotubes often exist as closed concentric multi-layer shells or multi-walled nanotubes (MWNTs). Nanotubes can also be formed as single-walled nanotubes (SWNT). SWNTs form bundles, which have a tightly packed 2-D triangular lattice structure. Both MWNTs and SWNTs have been manufactured, and the specific capacity of these materials has been evaluated by gas phase reactions. For example, see Non-Patent Document 3, Non-Patent Document 4, Non-Patent Document 5, and Non-Patent Document 6, the entire teachings of which are incorporated herein by reference. The maximum alkali metal saturation value for these nanotube materials was reported as MC 8 (M = K, Rb, Cs). These values do not represent a significant advantage over existing commercially used materials such as graphite. Recent experimental results have demonstrated that single-walled carbon nanotubes can be loaded on Li 1 C 3 and above. The capacity of the crude material has been experimentally determined to exceed 600 mAh / g. These capacities have begun to approach the capacities of pure lithium, but avoid lithium safety concerns. In addition, as mesophase carbon microbeads (MCMB), since lithium is reversibly intercalated, carbon nanotubes have gained dramatic improvements over MCMB as anode materials. It is clear that carbon nanotubes offer new possibilities for high energy batteries and may offer new opportunities for completely new battery designs that could not be obtained with conventional electrode materials.

リチオ化カーボンナノチューブ(CNT)は、リチウム電池のための高エネルギーの非金属アノードを提供する手段として、科学文献及び特許文献に報告されている。詳細には、その教示全体が引用により組み込まれて本明細書の一部をなす特許文献1、特許文献2及び特許文献3は、レーザー生成カーボンナノチューブの製造方法、及びそれらのリチオ化を詳細に記載している。しかしながら、先行技術は、リチウム金属粉末/CNTアノードとCNTカソードを使用して高エネルギー電池を形成する概念を含んでいない。
米国特許第6,280,697号 米国特許第6,422,450号 米国特許第6,514,395号 M. Lazzari and B. Scrosati, J. Electrochem. Soc, Brief Communication, March 1980 Linden, D. and Reddy, T.B., Handbook of Batteries, 3rd ed. p34.8, McGraw-Hill, NY, 2001 O. Zhou et al., Defects in Carbon Nanotubes, Science: 263, pgs. 1744-47, 1994 R. S. Lee et al., Conductivity Enhancement in Single- Walled Nanotube Bundles Doped with K and Br, Nature: 388, pgs. 257-59, 1997 A. M. Rao et al., Raman Scattering Study of Charge Transfer in Doped Carbon Nanotube Bundles, Nature: 388, 257-59, 1997 C. Bower et al., Synthesis and Structure of Pristine and Cesium Intercalated Single- Walled Carbon Nanotubes, Applied Physics: A67, pgs.47-52, spring 1998
Lithiated carbon nanotubes (CNTs) have been reported in the scientific and patent literature as a means of providing high energy non-metallic anodes for lithium batteries. Specifically, Patent Document 1, Patent Document 2 and Patent Document 3, the entire teachings of which are incorporated by reference and made a part of this specification, describe in detail how to produce laser-generated carbon nanotubes and their lithiation. It is described. However, the prior art does not include the concept of using a lithium metal powder / CNT anode and a CNT cathode to form a high energy battery.
US Pat. No. 6,280,697 US Pat. No. 6,422,450 US Pat. No. 6,514,395 M. Lazzari and B. Scrosati, J. Electrochem. Soc, Brief Communication, March 1980 Linden, D. and Reddy, TB, Handbook of Batteries, 3rd ed.p34.8, McGraw-Hill, NY, 2001 O. Zhou et al., Defects in Carbon Nanotubes, Science: 263, pgs. 1744-47, 1994 RS Lee et al., Conductivity Enhancement in Single- Walled Nanotube Bundles Doped with K and Br, Nature: 388, pgs. 257-59, 1997 AM Rao et al., Raman Scattering Study of Charge Transfer in Doped Carbon Nanotube Bundles, Nature: 388, 257-59, 1997 C. Bower et al., Synthesis and Structure of Pristine and Cesium Intercalated Single- Walled Carbon Nanotubes, Applied Physics: A67, pgs. 47-52, spring 1998

本発明は、高エネルギーリチウム電池系に関する。本発明のいくつかの実施態様によれば、カソードと電気的に連絡するアノードと、アノードをカソードから分離するセパレータと、アノードとカソード間を電気的に連絡するための手段とを備え、カソード及びアノードがCNTを含み、アノード、及び場合によりカソードはリチウム金属粉末でリチオ化されている電池を提供する。   The present invention relates to a high energy lithium battery system. According to some embodiments of the present invention, an anode in electrical communication with the cathode, a separator separating the anode from the cathode, and means for electrical communication between the anode and the cathode, the cathode and A battery is provided wherein the anode comprises CNTs and the anode, and optionally the cathode, is lithiated with lithium metal powder.

いくつかの実施態様において、CNT電極は、単層、多層、ナノホーン(nanohorn)、ナノベル(nanobell)、ピーポッド(peapod)、バッキーボール(buckyball)及び同様物、又はナノ構造炭素材料に関する他の口語名称、又はそれらの任意の組み合わせであり得る。   In some embodiments, the CNT electrode is a single layer, multilayer, nanohorn, nanobell, peapod, buckyball and the like, or other colloquial name for nanostructured carbon materials. Or any combination thereof.

本発明のこれら及び他の特徴は、本発明の好ましい及び代替的な実施態様の両方を記載する以下の詳細な説明及び添付図面を考慮することで、当業者により容易に明らかとなろう。   These and other features of the present invention will be readily apparent to those of ordinary skill in the art in view of the following detailed description and accompanying drawings that describe both preferred and alternative embodiments of the invention.

本発明は、以下の本発明の記載を添付図面と併せて読むと、より容易に確認することができる。   The present invention can be more easily confirmed by reading the following description of the present invention in conjunction with the accompanying drawings.

本発明によれば、カソード(cathode)と電気的に連絡するアノード(anode)と、アノードをカソードから分離するセパレータと、アノードとカソード間を電気的に連絡するための手段とを備え、カソード及びアノードがCNTを含み、アノード、及び場合によりカソードはリチウム金属粉末でリチオ化(lithiated)されている電池を提供する。   In accordance with the present invention, an anode in electrical communication with a cathode, a separator that separates the anode from the cathode, and means for electrical communication between the anode and the cathode, the cathode and A battery is provided wherein the anode comprises CNTs, and the anode, and optionally the cathode, is lithiated with lithium metal powder.

本発明の目的において、用語「電池」は、単一の電気化学セル、若しくは単電池(unicell)、及び/又は当業者周知の直列及び/若しくは並列に接続された一つ若しくはそれ以上の電気化学セルを意味し及び含み得ることが理解される。更に、用語「電池」は、充電式電池及び/又は二次電池及び/又は電気化学セルを含むが、これらに限定されるものではない。   For the purposes of the present invention, the term “battery” refers to a single electrochemical cell, or unicell, and / or one or more electrochemically connected in series and / or in parallel known to those skilled in the art. It is understood that a cell can be meant and included. Further, the term “battery” includes, but is not limited to, rechargeable batteries and / or secondary batteries and / or electrochemical cells.

本発明の実施態様による電池は、正極(カソード)及び負極(アノード)と、カソードとアノードを分離するセパレータと、カソード及びアノードと連絡している電解質とを備えてもよい。ここで双方の電極は、電気化学系内でリチウムを吸収及び脱離可能なカーボンナノチューブ(CNT)材料を含み、アノード、及び場合によりカソードのCNT中にリチウム金属粉末が分散されている。   A battery according to an embodiment of the present invention may include a positive electrode (cathode) and a negative electrode (anode), a separator separating the cathode and the anode, and an electrolyte in communication with the cathode and the anode. Here, both electrodes include a carbon nanotube (CNT) material capable of absorbing and desorbing lithium in an electrochemical system, and lithium metal powder is dispersed in the anode, and possibly the cathode CNT.

図1に、本発明の実施態様を示す。図示する電池系1は、アノード3、カソード5、セパレータ7、及びアノード3とカソード5間の電気的連絡を促進する手段8を備えている。本実施態様の一局面において、アノード3とカソード5は、様々な構造のCNT材料から構成されている。CNT材料は、多層、単層、ナノホーン、ナノベル、ピーポッド、バッキーボール又は他の公知の任意のナノ構造炭素材料であり得る。セパレータ7は、液体又はポリマー性の陽イオン導電性電解質を有する絶縁材料(一種又は複数種)を含む。アノード3とカソード5間を電気的に連絡する手段8は、アノードとカソード間の電気的連絡を促進する、公知の任意の手段を含む。かような手段には、適切な低抵抗ワイヤがあるが、これに限定されるものではない。   FIG. 1 shows an embodiment of the present invention. The illustrated battery system 1 comprises an anode 3, a cathode 5, a separator 7, and means 8 for promoting electrical communication between the anode 3 and the cathode 5. In one aspect of this embodiment, the anode 3 and the cathode 5 are composed of CNT materials having various structures. The CNT material can be multi-layer, single-layer, nanohorn, nanobell, peapod, buckyball or any other known nanostructured carbon material. The separator 7 includes an insulating material (one or a plurality of types) having a liquid or polymer cation conductive electrolyte. Means 8 for electrical communication between anode 3 and cathode 5 include any known means for facilitating electrical communication between anode and cathode. Such means include, but are not limited to, suitable low resistance wires.

以下に詳細に説明するように、カソードとアノードはCNTを含み、ここでアノード、及び場合によりカソードは、内部に分散されたリチウム金属粉末を含む。本明細書全体において、一般的な用語CNTは、当業者周知の一連のカーボンナノチューブ材料全部を指すことを理解するべきである。いくつかの実施態様において、CNT電極は、単層、多層、ナノホーン、ナノベル、ピーポッド、バッキーボール及び同様物、又はナノ構造炭素材料に関する他の口語名称、又はそれらの任意の組み合わせを含む。アノードとカソードは、同一種類のCNTから形成されても、又は異なる種類のCNTから形成されてもよい。例えば、一実施態様において、カソードは単層ナノチューブ(SWNT)であり得る一方、カソードは多層ナノチューブ(MWNT)である。更に、CNTは、多様な方法により形成及び加工され得る。例えば、CNTは、レーザー、アーク、又は当技術分野にて周知の他の方法により生成され得る。またCNTは、二酸化炭素、亜酸化窒素、及び同様物を用いた処理;フッ素化及び塩素化を含むハロゲン化;並びに有機導電性材料を用いた処理を含む、当業者周知の多様な方法により処理されてもよい。またCNTは、カーボンブラックに代わって、Liイオン電池内で活性材料として現在使用されている金属酸化物材料と組み合わされてもよい。これらの処理プロセスを以下に更に説明する。本発明に有用なCNTに関する付加的な情報は、その開示全体が引用により組み込まれて本明細書の一部となる米国特許出願公開第2004/234844A1号に見出すことができる。アノード、及び場合によりカソード中のリチウム金属粉末(LMP)の使用に関する詳細を以下に説明するが、その開示全体が引用により組み込まれて本明細書の一部となる、Gaoらに付与された米国特許出願公開第2005/0131143号に、更なる情報が開示されている。   As described in detail below, the cathode and anode include CNTs, where the anode, and optionally the cathode, includes lithium metal powder dispersed therein. Throughout this specification, it should be understood that the general term CNT refers to the entire set of carbon nanotube materials well known to those skilled in the art. In some embodiments, the CNT electrode comprises a single layer, multilayer, nanohorn, nanobell, peapod, buckyball and the like, or other colloquial names for nanostructured carbon materials, or any combination thereof. The anode and cathode may be formed from the same type of CNTs or from different types of CNTs. For example, in one embodiment, the cathode can be a single-walled nanotube (SWNT), while the cathode is a multi-walled nanotube (MWNT). Furthermore, CNTs can be formed and processed by various methods. For example, CNTs can be generated by laser, arc, or other methods well known in the art. CNTs can also be treated by a variety of methods well known to those skilled in the art, including treatment with carbon dioxide, nitrous oxide, and the like; halogenation, including fluorination and chlorination; and treatment with organic conductive materials. May be. CNTs may also be combined with metal oxide materials currently used as active materials in Li-ion batteries, instead of carbon black. These processing processes are further described below. Additional information regarding CNTs useful in the present invention can be found in US Patent Application Publication No. 2004/234844 A1, the entire disclosure of which is incorporated by reference. Details regarding the use of lithium metal powder (LMP) in the anode and, optionally, the cathode are described below, the entire disclosure of which is incorporated by reference and incorporated herein by reference to Gao et al. Further information is disclosed in Patent Application Publication No. 2005/0131143.

本発明のカソードは、CNTを含むが、多様な構造を有し得る。カソードは、リチオ化されていても、又はされていなくてもよく、またリチオ化は、LMPの使用を含む当業者周知の任意の方法により実施し得る。例えば、一実施態様において、カソードは、純粋なリチウムカウンター電極、適切な電解質及びセパレータを用いて電気化学的にリチオ化されたSWNTから形成される。一実施態様において、材料は、低速(<100マイクロA/cm)で長時間(材料0.5mgにつき〜20時間)リチオ化される。この構成により、セル電圧は、充電前〜3.0V、及び完全充電セルに関して〜3.2Vとなる。 The cathode of the present invention includes CNTs, but can have a variety of structures. The cathode may or may not be lithiated, and lithiation may be performed by any method known to those skilled in the art including the use of LMP. For example, in one embodiment, the cathode is formed from SWNT that has been electrochemically lithiated using a pure lithium counter electrode, a suitable electrolyte, and a separator. In one embodiment, the material is lithiated at low speed (<100 microA / cm 2 ) for an extended period of time (˜20 hours per 0.5 mg of material). With this configuration, the cell voltage is ~ 3.0V before charging and ~ 3.2V for fully charged cells.

別の実施態様において、カソードは、フッ素化、又は例えば塩素化等、他の酸化プロセスにより化学的に修飾されたCNTを含む。   In another embodiment, the cathode comprises CNTs that have been chemically modified by fluorination or other oxidation processes such as chlorination.

別の実施態様において、カソードは、有機導電性材料、例えばポリ(3−オクチルチオフェン)等の導電性ポリマーを用いて処理されたCNTを含む。本目的に使用し得る他の導電性ポリマーは、置換ポリチオフェン、置換ポリピロール、置換ポリフェニレンビニレン、及び置換ポリアニリンを含む。これら材料のイオンドーピング、又はアルキル鎖末端にスルホン酸基を含めることによる自己ドーピングは、導電性ポリマーをp型にし得る。   In another embodiment, the cathode comprises CNTs treated with an organic conductive material, such as a conductive polymer such as poly (3-octylthiophene). Other conductive polymers that can be used for this purpose include substituted polythiophenes, substituted polypyrroles, substituted polyphenylene vinylenes, and substituted polyanilines. Ion doping of these materials, or self-doping by including a sulfonic acid group at the end of the alkyl chain, can make the conductive polymer p-type.

別の実施態様において、カソードは、カーボンブラックに代わって、リチオ化CNTを、Liイオン電池内で活性カソード材料として現在使用されている金属酸化物材料と組み合わせる。これは2倍の利点、1)ナノチューブが、得られた複合電極に、より高い電子伝導性を提供して、カソード性能を向上させ得ること、2)リチオ化ナノチューブは、カソード容量を改善し得ること、を提供し得る。高いセル電圧は、カソード中のリチウム金属酸化物の存在により保存され得る。   In another embodiment, the cathode, instead of carbon black, combines lithiated CNTs with metal oxide materials currently used as active cathode materials in Li-ion batteries. This is a double advantage 1) that the nanotubes can provide higher electron conductivity to the resulting composite electrode to improve cathode performance, and 2) lithiated nanotubes can improve cathode capacity That can be provided. A high cell voltage can be preserved by the presence of lithium metal oxide in the cathode.

別の実施態様において、カソードは、LMPでリチオ化されたCNTであり、CNTアノード材料に関して後述する方法を含む任意の方法でリチオ化され得る。いくつかの実施態様において、カソードとアノードは、同一のCNT/LMP材料を含む。   In another embodiment, the cathode is CNTs lithiated with LMP and can be lithiated in any manner, including the methods described below for CNT anode materials. In some embodiments, the cathode and anode comprise the same CNT / LMP material.

アノードに関して、アノードは、電気化学系内でリチウムを吸収及び脱離可能なCNTから形成されてもよく、ここでCNT中にLMPが分散されている。リチウム金属は、好ましくは微粉化されたリチウム粉末としてアノード中に提供される。更に頻繁には、リチウム金属は、約60ミクロン未満、更に頻繁には、約30ミクロン未満の平均粒径を有するが、より大きい粒径を使用してもよい。リチウム金属は、いわゆる「安定化リチウム金属粉末」として提供されてもよく、即ちリチウム金属は、リチウム金属粉末をCOで処理することによる低パイロホロシティ(low pyrophorosity)粉末を有し、また十分安定なため取り扱いが容易である。 With respect to the anode, the anode may be formed from CNTs capable of absorbing and desorbing lithium in an electrochemical system, wherein LMP is dispersed in the CNTs. The lithium metal is preferably provided in the anode as finely divided lithium powder. More often, lithium metal has an average particle size of less than about 60 microns, more frequently less than about 30 microns, although larger particle sizes may be used. The lithium metal may be provided as a so-called “stabilized lithium metal powder”, ie, the lithium metal has a low pyrophorosity powder by treating the lithium metal powder with CO 2 and is well It is stable and easy to handle.

CNTアノードは、リチウム金属に対する電気化学ポテンシャルが、0.0Vを超え、1.5V又はそれ未満で可逆的にリチオ化及び脱リチオ化し得る。電気化学ポテンシャルが対リチウムで0.0V又はそれ未満の場合、リチウム金属は、充電中、アノードに再入しないであろう。代替的に、電気化学ポテンシャルが対リチウムで1.5Vを超えると、電池の電圧は不適切に低いであろう。アノード中に存在するリチウム金属の量は、電池が再充電された際、アノード中のカーボンナノチューブ材料にインターカレートされ、又は該材料と合金化し、又は該材料に吸収されるに十分な最大量以下であることが好ましい。   The CNT anode can be reversibly lithiated and delithiated with an electrochemical potential for lithium metal greater than 0.0 V and 1.5 V or less. If the electrochemical potential is 0.0 V versus lithium or less, lithium metal will not re-enter the anode during charging. Alternatively, if the electrochemical potential exceeds 1.5 V versus lithium, the battery voltage will be inappropriately low. The amount of lithium metal present in the anode is the maximum amount sufficient to be intercalated or alloyed with or absorbed by the carbon nanotube material in the anode when the battery is recharged. The following is preferable.

本発明のいくつかの実施態様によれば、アノードは、電気化学系内でリチウムを吸収及び脱離可能なCNTを提供する工程と、CNT中にLMPを分散させる工程と、CNT及びその内部に分散されたリチウム金属を、アノードに形成する工程とにより製造し得る。LMPとCNTは、非水性液体及びバインダーと共に混合されて、スラリーに形成されることが好ましい。   According to some embodiments of the present invention, the anode includes providing a CNT capable of absorbing and desorbing lithium in the electrochemical system, dispersing the LMP in the CNT, and the CNT and the interior thereof. The dispersed lithium metal can be produced by forming on the anode. LMP and CNT are preferably mixed with a non-aqueous liquid and a binder to form a slurry.

本発明の実施態様によるアノード、又は他の種類の電極、例えばカソードの形成は、LMP、CNT、場合によりバインダーポリマー、及び溶媒を組み合わせてスラリーを形成することにより達成し得る。いくつかの実施態様において、アノードは、スラリーを銅ホイル又はメッシュ等の電流コレクタ上に塗布し、乾燥させて形成される。共に電極を形成する電流コレクタ上の乾燥したスラリーを加圧して、アノードの形成が完了する。乾燥後の電極の加圧は、電極を緻密化させるため、活性材料はアノードの容積中に適合し得る。   Formation of anodes, or other types of electrodes, such as cathodes, according to embodiments of the present invention can be accomplished by combining LMP, CNT, optionally a binder polymer, and solvent to form a slurry. In some embodiments, the anode is formed by applying a slurry onto a current collector such as a copper foil or mesh and drying. Pressurization of the dried slurry on the current collector together forming the electrode completes anode formation. Pressurization of the electrode after drying densifies the electrode so that the active material can fit into the volume of the anode.

本発明のいくつかの実施態様において、CNT材料をプレリチオ化することが望ましいと思われる。本発明の目的において、用語「プレリチオ化する」及び/又は「プレリチオ化している」は、CNTに関して使用される場合、CNTを電解質と接触させる前に該CNTをリチオ化することを指す。CNTのプレリチオ化は、CNTのリチオ化と平行する、電極中のリチウム金属粉末粒子の電解質との不可逆的な反応により生じる、電池内の不可逆的な容量損失を低減し得る。   In some embodiments of the present invention, it may be desirable to prelithiate the CNT material. For the purposes of the present invention, the terms “prelithiated” and / or “prelithiated”, when used in reference to CNTs, refer to lithiating the CNTs before contacting them with the electrolyte. Prelithiation of CNTs can reduce irreversible capacity loss in the battery caused by irreversible reaction with the electrolyte of lithium metal powder particles in the electrode in parallel with lithiation of CNTs.

本発明のいくつかの実施態様によるCNTのプレリチオ化は、CNTをLMPと接触させることにより起こることが好ましい。例えば、CNTを、乾燥LMP又は流体若しくは溶液中に懸濁させたLMPと接触させ得る。LMPとCNTとの接触によりCNTがリチオ化され、それにより該CNTをプレリチオ化し得る。   Prelithiation of CNTs according to some embodiments of the present invention preferably occurs by contacting the CNTs with LMP. For example, CNTs can be contacted with dry LMP or LMP suspended in a fluid or solution. CNT can be lithiated by the contact of LMP and CNT, thereby prelithiating the CNT.

いくつかの実施態様において、CNTと乾燥リチウム金属粉末とを、CNTの少なくとも一部がリチウム金属粉末の少なくとも一部と接触するように混合する。激しい撹拌又は他のかき混ぜを用いて、CNTとリチウム金属粉末との接触を促進し得る。リチウム金属粉末とCNTとの接触は、ホスト材料の部分リチオ化をもたらし、プレリチオ化CNTが形成される。   In some embodiments, the CNT and dry lithium metal powder are mixed such that at least a portion of the CNT contacts at least a portion of the lithium metal powder. Vigorous stirring or other agitation can be used to facilitate contact between the CNTs and the lithium metal powder. Contact between the lithium metal powder and the CNTs results in partial lithiation of the host material and prelithiated CNTs are formed.

CNTのプレリチオ化は、室温で実施し得る。しかしながら、本発明の様々な実施態様において、CNTのプレリチオ化は、約40℃を超える温度で実施される。室温を超えるか又は約40℃を超える温度で実施するプレリチオ化は、LMPとCNT間の相互作用及び/又は分散を増大させ、所定時間内でリチオ化し得るCNT量を増加させる。   Prelithiation of CNTs can be performed at room temperature. However, in various embodiments of the present invention, pre-lithiation of CNTs is performed at a temperature above about 40 ° C. Prelithiation performed at a temperature above room temperature or above about 40 ° C. increases the interaction and / or dispersion between LMP and CNT and increases the amount of CNT that can be lithiated within a given time.

リチウム金属粉末は、室温を超える温度に暴露されると、より軟性及び/又はより展性(malleable)となる。より軟性なリチウム金属粉末は、他の物質と混合される際、リチウム金属粉末と混合される物質との接触を増大させる。例えば、かき混ぜられているチウム金属粉末とCNTの混合物間の相互作用及び/又は分散は、混合物の温度が室温を超えて上昇される場合と比較して、室温でより少ない。リチウム金属粉末と例えばCNT等の反応性種との間の接触を増大させることにより、反応性種のリチオ化量が増大する。従って、リチウム金属粉末とCNTの混合物の温度を上昇させることにより、2種の物質間の相互作用及び/又は分散が増大し、このことはホスト材料のリチオ化も増大させる。   Lithium metal powder becomes softer and / or more malleable when exposed to temperatures above room temperature. The softer lithium metal powder increases contact with the material mixed with the lithium metal powder when mixed with other materials. For example, the interaction and / or dispersion between the stirred metal metal powder and CNT mixture is less at room temperature compared to when the temperature of the mixture is raised above room temperature. By increasing the contact between the lithium metal powder and a reactive species such as CNT, the amount of lithiation of the reactive species is increased. Thus, increasing the temperature of the mixture of lithium metal powder and CNT increases the interaction and / or dispersion between the two materials, which also increases the lithiation of the host material.

混合物の温度は、リチウムの融点又はそれ未満に維持されることが好ましい。例えば、リチウム金属粉末とCNTの混合物の温度を約180℃又はそれ未満に上昇させて、CNTのリチオ化を促進し得る。より好ましくは、リチウム金属粉末とCNTの混合物の温度を約40℃〜約150℃間に上昇させて、CNTのリチオ化を促進し得る。   The temperature of the mixture is preferably maintained at or below the melting point of lithium. For example, the temperature of the mixture of lithium metal powder and CNT can be increased to about 180 ° C. or less to promote CNT lithiation. More preferably, the temperature of the lithium metal powder and CNT mixture can be increased between about 40 ° C. and about 150 ° C. to promote lithiation of the CNTs.

別の実施態様において、リチウム金属粉末を含有する溶液中に、CNTを導入する。溶液は、例えば鉱油、及び/又は好ましくは不活性な、若しくは溶液中でリチウム金属粉末と反応しない、他の溶媒若しくは液体を含み得る。溶液と混合する際、CNTとリチウム金属粉末間の接触を促進するように溶液をかき混ぜることが好ましい。CNTとリチウム金属粉末間の接触によりCNTのリチオ化が促進されて、アノードの形成に使用し得るプレリチオ化CNTが生成する。   In another embodiment, CNTs are introduced into a solution containing lithium metal powder. The solution can include, for example, mineral oil and / or other solvents or liquids that are preferably inert or do not react with the lithium metal powder in the solution. When mixing with the solution, it is preferable to stir the solution so as to promote contact between the CNT and the lithium metal powder. Contact between the CNT and the lithium metal powder promotes lithiation of the CNT to produce prelithiated CNT that can be used to form the anode.

本発明の様々な実施態様で使用するリチウム金属は、安定化リチウム粉末(SLMP)として提供されてもよい。リチウム粉末は、輸送中、安定化のために処理され又はさもなければコンディションニングされ得る。例えば、SLMPは、従来より公知のように、二酸化炭素の存在下で形成され得る。乾燥リチウム粉末は、本発明の様々な実施態様にて使用し得る。代替的に、SLMPは、縣濁液中、例えば鉱油溶液又は他の溶媒の縣濁液中で形成され得る。溶媒縣濁液中でのリチウム粉末の形成は、より小さいリチウム金属粒子の生成を促進し得る。本発明のいくつかの実施態様において、SLMPは、本発明の様々な実施態様で使用し得る溶媒中で形成され得る。溶媒中のSLMPは、溶媒中にて輸送され得る。更に、本発明の実施態様でSLMPと溶媒の混合物を使用でき、それにより電極製造プロセスから混合ステップを除去してよいが、これは溶媒とSLMPが単一の構成要素として利用可能なためである。このことは製造コストを低下させ、本発明の実施態様にてより小さい又は微細なリチウム金属粉末粒子の使用が可能となり得る。   The lithium metal used in the various embodiments of the present invention may be provided as stabilized lithium powder (SLMP). The lithium powder can be processed for stabilization or otherwise conditioned during transport. For example, SLMP can be formed in the presence of carbon dioxide, as is known in the art. Dry lithium powder may be used in various embodiments of the present invention. Alternatively, SLMP can be formed in a suspension, such as a mineral oil solution or other solvent suspension. Formation of lithium powder in the solvent suspension can facilitate the formation of smaller lithium metal particles. In some embodiments of the present invention, SLMP can be formed in a solvent that can be used in various embodiments of the present invention. SLMP in the solvent can be transported in the solvent. Furthermore, a mixture of SLMP and solvent can be used in embodiments of the present invention, thereby eliminating the mixing step from the electrode manufacturing process because the solvent and SLMP are available as a single component. . This reduces manufacturing costs and may allow the use of smaller or finer lithium metal powder particles in embodiments of the present invention.

本発明の実施態様にて使用する溶媒はまた、アノード又はカソードの製造プロセスにて使用する温度で、リチウム金属、バインダーポリマー及びCNTと反応性しないものでなければならない。溶媒又は共溶媒は、十分な揮発性を有してスラリーから容易に蒸発し、電流コレクタに塗布されたスラリーの乾燥を促進することが好ましい。例えば、溶媒は、非環式炭化水素、環式炭化水素、芳香族炭化水素、対称エーテル、非対称エーテル、及び環状エーテルを含み得る。   The solvent used in embodiments of the present invention must also be non-reactive with lithium metal, binder polymer and CNT at the temperatures used in the anode or cathode manufacturing process. The solvent or co-solvent preferably has sufficient volatility to readily evaporate from the slurry and facilitate drying of the slurry applied to the current collector. For example, the solvent can include acyclic hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, symmetric ethers, asymmetric ethers, and cyclic ethers.

本発明の実施態様で様々なバインダーポリマーと溶媒の組み合わせを試験して、相溶性があり、安定なバインダーポリマー−溶媒対を決定した。更に、バインダーポリマー−溶媒対から形成されたアノードを試験して、相溶性を確認した。表Iに、本発明のいくつかの実施態様によるアノード及びカソードの製造に使用するに好ましいバインダーポリマー−溶媒対を列挙する。   Various binder polymer and solvent combinations were tested in embodiments of the present invention to determine compatible and stable binder polymer-solvent pairs. In addition, the anode formed from the binder polymer-solvent pair was tested to confirm compatibility. Table I lists preferred binder polymer-solvent pairs for use in making anodes and cathodes according to some embodiments of the present invention.

Figure 2009527095
Figure 2009527095

本発明の実施態様によるスラリー及びアノードを形成するために、更なるバインダーポリマー−溶媒対も使用し又は組み合わせ得ることが理解される。   It is understood that additional binder polymer-solvent pairs can also be used or combined to form the slurry and anode according to embodiments of the present invention.

セパレータと電解質は、当技術分野にて周知の多数のものから選択し得る。本発明において、液体/固体ポリマー電解質は、この高エネルギー系に安全性を付加する。   The separator and electrolyte can be selected from a number of well known in the art. In the present invention, the liquid / solid polymer electrolyte adds safety to this high energy system.

研究努力により、ポリリン酸塩及びポリホスホン酸塩(PEP)が、ポリマー電解質調製のための良好な候補物として確認された。加えて、液体及び固体状態の電解質系の両方が成功している。これら新規な材料は、ワンステップ工程で調製するに比較的安価であり、ポリエチレンオキシド(PEO)の0.3と比較して、非常に良好なリチウムイオン輸送特性0.5を与えた。熱安定性試験でも、有望な結果が得られた(>300℃迄熱に安定)。作動温度範囲を−20〜+90℃に拡大するために、ポリリン酸塩液体電解質を炭酸プロピレン(PC)とブレンドして、ポリリン酸塩材料の低温性能を向上させ得る。これらの液体は、例えばPC等の極性液体と完全に混和可能である。   Research efforts have identified polyphosphates and polyphosphonates (PEPs) as good candidates for polymer electrolyte preparation. In addition, both liquid and solid state electrolyte systems have been successful. These novel materials were relatively inexpensive to prepare in a one-step process and gave very good lithium ion transport properties of 0.5 compared to 0.3 for polyethylene oxide (PEO). Promising results were also obtained in the thermal stability test (stable to heat up to> 300 ° C.). To extend the operating temperature range from -20 to + 90 ° C, a polyphosphate liquid electrolyte can be blended with propylene carbonate (PC) to improve the low temperature performance of the polyphosphate material. These liquids are completely miscible with polar liquids such as PC.

PEPの合成は単純であり、生産コストを最小限にするワンステップ工程である。ポリマー合成後、リチウム塩を濃度1Mで流体ポリマー中に溶解して、液体ポリマー電解質(LPE)を調製する。これらの電解質中でリチウム塩としてリチウムビス−トリフルオロメタンスルホンイミド(LiIm、3M Co.)を使用することは、非常に有効であった。   The synthesis of PEP is simple and a one-step process that minimizes production costs. After polymer synthesis, the lithium salt is dissolved in a fluid polymer at a concentration of 1M to prepare a liquid polymer electrolyte (LPE). The use of lithium bis-trifluoromethanesulfonimide (LiIm, 3M Co.) as the lithium salt in these electrolytes was very effective.

以下の実施例は本発明の単なる例示であり、本発明を限定するものではない。   The following examples are merely illustrative of the invention and do not limit the invention.

実施例
対照A:
最初に、CNTを含まない対照サンプルを合成した。Osaka Gas Ltdから獲得したメソフェーズカーボンマイクロビーズ(MCMB)9.65gを、PEO粉末(Aldrich、5x10MW)0.35gと混合した。次に、無水p−キシレン(Aldrich)26.25gをLectro(登録商標)Max安定化リチウム金属粉末(SLMP)0.975gと組み合わせた。これをオーバーヘッドミキサーを用いて〜300rpmで5分間混合した。次に、MCMB/PEO混合物をキシレン中のSLMPと連続的に組み合わせた。得られた混合物をスズホイルで包んで溶媒損失を防止し、約55℃に加熱し、約300rpmで3時間撹拌した。得られた物は均質な黒色スラリーであり、これを紙やすりで軽く磨いた銅ホイルの断片上に塗布し、アセトンで脱脂し、使用前に炉内で乾燥させた。これを、グローブボックス内のホットプレート上で一夜乾燥させた。グローブボックスから取り出した際、この材料の小正方形を切り取り、加圧し、アルゴン充填ジッパー付冷凍バッグ内に保管して試験用に準備した。
Example
Control A:
First, a control sample containing no CNT was synthesized. 9.65 g of mesophase carbon microbeads (MCMB) obtained from Osaka Gas Ltd were mixed with 0.35 g of PEO powder (Aldrich, 5 × 10 6 MW). Next, 26.25 g of anhydrous p-xylene (Aldrich) was combined with 0.975 g of Lectro® Max stabilized lithium metal powder (SLMP). This was mixed for 5 minutes at ~ 300 rpm using an overhead mixer. The MCMB / PEO mixture was then continuously combined with SLMP in xylene. The resulting mixture was wrapped in tin foil to prevent solvent loss, heated to about 55 ° C. and stirred at about 300 rpm for 3 hours. The resulting product was a homogeneous black slurry, which was applied onto a piece of copper foil lightly polished with sandpaper, degreased with acetone, and dried in an oven prior to use. This was dried overnight on a hot plate in the glove box. When removed from the glove box, a small square of this material was cut out, pressurized and stored in a frozen bag with an argon-filled zipper and prepared for testing.

対照B:
合成した第二の対照は、前処理していないCNTから形成したスラリーであった。使用した手順は対照Aと類似するが、スケールダウンして、より少量のCNTに対応させた。入手したままの(as-received)Hipco SWNT材料のある量を、使用前、Ar下で一夜乾燥させた。対照Aと同様、この材料及び他の全サンプルの調製をグローブボックス内で実行した。PEOを省略した以外は、対照Aの製造方法に従った。以前と同様、SLMP 0.02gをキシレン10mlと組み合わせ、徹底的に混合した。次に、Hipco SWNT(0.10g)をキシレン混合物に加え、ホットプレート上にて約55℃で3時間撹拌した。得られた混合物は、均質な黒色の薄いペースト状の材料であり、これを大きいアルミニウムパン上に拡げて一夜乾燥した。乾燥後、材料が十分に接着しなかった為、該材料をパンから擦り落とし、バイアル内に配置した。
Control B:
The second control synthesized was a slurry formed from untreated CNTs. The procedure used was similar to Control A but scaled down to accommodate a smaller amount of CNT. An amount of as-received Hipco SWNT material was dried overnight under Ar prior to use. As with Control A, this material and all other sample preparations were performed in a glove box. The production method of Control A was followed except that PEO was omitted. As before, 0.02 g of SLMP was combined with 10 ml of xylene and mixed thoroughly. Next, Hipco SWNT (0.10 g) was added to the xylene mixture and stirred on a hot plate at about 55 ° C. for 3 hours. The resulting mixture was a homogeneous black thin pasty material that was spread on a large aluminum pan and dried overnight. Since the material did not adhere well after drying, the material was scraped from the pan and placed in a vial.

サンプル材料1
この第一のサンプル材料は、NO中にて600℃で20分間燃焼させた後、COを用いて750℃で1時間処理したレーザー生成SWNT煤を組み込んだ。CNTをSLMPと組み合わせる手順は、SWNT 17mgをSLMP 13mg及び十分なキシレンと混合して流体混合物を形成した以外は、対照Bと同一であった。バインダーは全く使用しなかった。混合が完了した後、材料をグローブボックス内のホットプレート上にて55℃で乾燥した。サンプルを収集し、使用迄バイアル内に保管した。
Sample material 1
This first sample material incorporated a laser-generated SWNT soot that was burned in N 2 O at 600 ° C. for 20 minutes and then treated with CO 2 at 750 ° C. for 1 hour. The procedure for combining CNT with SLMP was identical to Control B, except that 17 mg SWNT was mixed with 13 mg SLMP and enough xylene to form a fluid mixture. No binder was used. After mixing was complete, the material was dried at 55 ° C. on a hot plate in a glove box. Samples were collected and stored in vials until use.

サンプル材料2
第二のサンプル材料は、CO−処理Hipcoナノチューブ(10L/分のCOにて750℃で1時間)を組み込んだ。調製方法は、Hipcoナノチューブ50mgとSLMP 38.5mgを使用した以外は、サンプル材料1に関して提供した方法と同様であった。十分なキシレンを加えて、流体混合物を得た。
Sample material 2
Second sample material, CO 2 - incorporating processing Hipco nanotube (1 hour at 750 ° C. at 10L / min CO 2). The preparation method was similar to the method provided for sample material 1 except that 50 mg of Hipco nanotubes and 38.5 mg of SLMP were used. Sufficient xylene was added to obtain a fluid mixture.

サンプル材料3
第3のサンプル材料は、2L/分のNOにより600℃で5分間処理したアーク生成SWNTを組み込んだ。調製は、サンプル材料1に関して提供した方法と同様であったが、SWNT 22mgとSLMP 10mgを、無水キシレン15mlと組み合わせた。混合物を1時間超音波処理し、撹拌し、再度1時間超音波処理した。得られた混合物は、均質なインク様縣濁液であった。この生成物をグローブボックス内で濾過して、ナノチューブペーパーを生成した。
Sample material 3
The third sample material incorporated arc-generated SWNT treated with 2 L / min N 2 O at 600 ° C. for 5 minutes. The preparation was similar to the method provided for sample material 1, but 22 mg SWNT and 10 mg SLMP were combined with 15 ml anhydrous xylene. The mixture was sonicated for 1 hour, stirred and sonicated again for 1 hour. The resulting mixture was a homogeneous ink-like suspension. This product was filtered in a glove box to produce nanotube paper.

電気化学的結果:
ハーフセル試験
数種の調製材料の相対的なリチオ化品質を確認するために、標準的な実験用セル内において、様々な生成物をリチウムホイルカウンター電極に対して放電させた。一般的に言えば、試験は試験材料の量を測定しなかった点で定性的であった。各材料の小正方形を切り取り、油圧式ジャッキを用いてステンレス鋼ペレットプレス内で加圧して(ペレットプレスは、グローブボックス内に存在しないとき、アルゴン充填ジッパー付袋内に保持された)、試験用に準備した。図2にて、数種の材料に関する放電曲線を比較する。
Electrochemical results:
Half-cell test To confirm the relative lithiation quality of several prepared materials, various products were discharged against a lithium foil counter electrode in a standard laboratory cell. Generally speaking, the test was qualitative in that it did not measure the amount of test material. Cut small squares of each material and pressurize in a stainless steel pellet press using a hydraulic jack (the pellet press was kept in a bag with an argon-filled zipper when not in the glove box) for testing Prepared for. In FIG. 2, the discharge curves for several materials are compared.

図2から理解し得るように、対照Aの開放回路電圧(OCV)は極めて低く(120mV対Li/Li)、材料が高度にリチオ化されていることを示している。100μAの放電電流の適用によりセル電圧は徐々に上昇し、MCMB電極からのリチウムの除去が示される。 As can be seen from FIG. 2, the open circuit voltage (OCV) of Control A is very low (120 mV vs. Li / Li + ), indicating that the material is highly lithiated. With the application of 100 μA discharge current, the cell voltage gradually increases, indicating the removal of lithium from the MCMB electrode.

図2に、対照Bに関する放電曲線も示す。対照Bは、比較的高いOCV(〜1.0V対Li/Li)と、放電電流が適用された際のセル電圧のより高い分極とで示されるように、対照Aと比較してリチオ化が低いと思われる。それでも、対照B電極が2.5Vに到達するために、少なくとも4時間の放電を必要とした。 FIG. 2 also shows the discharge curve for Control B. Control B is lithiated compared to Control A as shown by the relatively high OCV (˜1.0 V vs. Li / Li + ) and the higher polarization of the cell voltage when the discharge current is applied. Seems to be low. Nevertheless, at least 4 hours of discharge was required for the Control B electrode to reach 2.5V.

次に、サンプル材料2及びサンプル材料3を試験した。図2から理解し得るように、サンプル材料2は、比較的低いOCVと、放電による遅い分極とで示されるように、2つのサンプルの中でリチオ化がより高いと思われる。   Next, sample material 2 and sample material 3 were tested. As can be seen from FIG. 2, sample material 2 appears to have higher lithiation in the two samples, as shown by the relatively low OCV and slow polarization due to discharge.

ハーフセル試験後、フルセル試験にて異なる電極材料の組み合わせを用いて一連の実験を実施した。第一試験では、SLMP CNT電極材料が、以前にCNT/CNTセル内で使用されていた、電気化学的にリチオ化されたアノードの代替物として使用し得るか否かの決定について模索した。この目的のために、サンプル材料Aを用いてアノードを形成し、非リチオ化の、CO処理したレーザー生成SWNTバッキーペーパーを用いてカソードを形成し、図3に示すように、セルを数回サイクリングした。 After the half cell test, a series of experiments were conducted using different electrode material combinations in the full cell test. In the first test, we sought to determine whether the SLMP CNT electrode material could be used as an alternative to the electrochemically lithiated anode previously used in CNT / CNT cells. For this purpose, sample material A is used to form the anode, non-lithiated, CO 2 treated, laser-generated SWNT bucky paper is used to form the cathode, and the cell is run several times as shown in FIG. Cycling.

この試験では、リチウムをアノード中に戻すために充電を放電と比較して遥かに高率で実施した(500μAで充電、100μAで放電;53Wh/kg)。明らかであり得るように、典型的な電圧プラトーは、1.5V付近で出現する。   In this test, charging was performed at a much higher rate compared to discharging to bring lithium back into the anode (charging at 500 μA, discharging at 100 μA; 53 Wh / kg). As can be seen, a typical voltage plateau appears around 1.5V.

次に、同一材料から形成された2個の電極のサイクリングを実施して、安定化リチウム金属粉末全部を一方の電極から他方の電極中に追いやり、それによってセル電圧を開発し、かつ二材料のリチオ化を改善することを試みた。この概念を、最初に、図4に示すように、対照Aを用いて試験した。最初のサイクリングは高い充電率及び低い放電率で実行して、リチウムを一方の電極から他方の電極へ移動させた(500μAで充電、100μAで放電)。セル内の材料(双方の電極)の総重量は、38mgであった。図4から明かであり得るように、連続的な充電によりセルの放電容量が改善する。第3のサイクリングにより、セルは、100マイクロアンペアでの1時間の放電後、705mVを示す。これらの結果は、このセルが基本的なLiイオン電池であることを示している。   Next, cycling of two electrodes formed from the same material is performed to drive all of the stabilized lithium metal powder from one electrode into the other, thereby developing a cell voltage, and Attempts were made to improve lithiation. This concept was first tested with Control A as shown in FIG. The first cycling was performed with a high charge rate and a low discharge rate to move lithium from one electrode to the other (charge at 500 μA, discharge at 100 μA). The total weight of material (both electrodes) in the cell was 38 mg. As can be seen from FIG. 4, the continuous charge improves the discharge capacity of the cell. With the third cycling, the cell shows 705 mV after 1 hour discharge at 100 microamps. These results indicate that this cell is a basic Li ion battery.

図5に示す結果で示されるように、対照Aセルの更なるリサイクリングにより、セル短絡及びセル破損と思われる結果を招いた。追加のセパレータを挿入することによるこの問題を解決する試みは効果がなく、即ちセルは再度短絡した。   As shown by the results shown in FIG. 5, further recycling of the Control A cell resulted in what appears to be a cell short and cell failure. Attempts to solve this problem by inserting additional separators were ineffective, i.e. the cell was shorted again.

次に、アノードとカソードの双方がサンプル材料2から形成された第二の試験セルを準備した。このセル内の電極の総重量は、8mgであった。図6に、このセルのサイクリング結果を示す。サイクル基準は、対照Aと同一(500μAで充電、100μAで放電)であったが、同一数の最初のサイクリング後、セルは第三の放電にて対照Aセルと比較して高い電圧(1310mV)を示した。MCMB対照Aセル内には、CNTサンプル材料2試験セルの5倍の材料が存在した為、サンプル材料2試験セルは対照Aセルよりも遙かに効率的であると思われる。   Next, a second test cell was prepared in which both anode and cathode were formed from sample material 2. The total weight of the electrodes in this cell was 8 mg. FIG. 6 shows the cycling results of this cell. The cycling criteria were the same as Control A (charge at 500 μA, discharge at 100 μA), but after the same number of initial cycling, the cell was at a higher voltage (1310 mV) compared to the Control A cell at the third discharge. showed that. The sample material 2 test cell appears to be much more efficient than the control A cell because there were 5 times more material in the MCMB control A cell than the CNT sample material 2 test cell.

更に、短絡及びセル破損の問題は、サンプル材料2試験セルにて問題度が遥かに低いと思われ、該セルでは、図7に示すように、12回を超えるサイクリングを実行した(200μAで充電及び放電)。図8に、サンプル材料2試験セルが対照Aセルよりも高い効率を有する更なる証拠を示し、ここで7回目のサイクリングにおける1時間の放電に関する各セルの容量が比較されている。図8から明かであり得るように、いずれのセルも長時間放電しないが、CNTセルの容量はMCMBセルの容量と比較して遙かに大きい。   In addition, the short circuit and cell breakage problems appear to be much less severe in the sample material 2 test cell, where the cell was cycled more than 12 times (charged at 200 μA) as shown in FIG. And discharge). FIG. 8 shows further evidence that the sample material 2 test cell has a higher efficiency than the control A cell, where the capacity of each cell for a one hour discharge in the seventh cycle is compared. As can be seen from FIG. 8, none of the cells discharge for a long time, but the capacity of the CNT cell is much larger than that of the MCMB cell.

本発明の所定の実施態様を記載してきたが、特許請求の範囲で定義される本発明は、特許請求される本発明の趣旨又は範囲から逸脱せずに、その多数の明白な変更物が可能であることから、上記の記載にて説明される特定の詳細に限定されるべきではないことを理解されたい。   While certain embodiments of the invention have been described, the invention as defined in the claims may be subject to numerous obvious variations without departing from the spirit or scope of the claimed invention. As such, it should be understood that it should not be limited to the specific details set forth in the foregoing description.

本発明の実施態様を示す図である。It is a figure which shows the embodiment of this invention. 本発明の実施態様のハーフセル放電試験を示すグラフである。It is a graph which shows the half cell discharge test of the embodiment of the present invention. 本発明の実施態様のサイクル試験を示すグラフである。It is a graph which shows the cycle test of the embodiment of the present invention. 本発明の実施態様のサイクル試験を示すグラフである。It is a graph which shows the cycle test of the embodiment of the present invention. 図4に示した実施態様の更なるサイクリングを示すグラフである。5 is a graph showing further cycling of the embodiment shown in FIG. 本発明の実施態様のサイクル試験を示すグラフである。It is a graph which shows the cycle test of the embodiment of the present invention. 図6に示した実施態様の更なるサイクル試験を示すグラフである。7 is a graph showing further cycle testing of the embodiment shown in FIG. 本発明の実施態様と先行技術の材料を比較するグラフである。4 is a graph comparing embodiments of the present invention with prior art materials.

Claims (8)

カソードと電気的に連絡するアノードと、前記アノードと前記カソードを分離するセパレータと、前記アノードと前記カソード間を電気的に連絡するための手段とを備えた電池であって、
前記アノード及び前記カソードがカーボンナノチューブであり、前記アノードがリチウム金属粉末でリチオ化されたカーボンナノチューブである電池。
A battery comprising: an anode in electrical communication with a cathode; a separator separating the anode and the cathode; and means for electrical communication between the anode and the cathode;
A battery in which the anode and the cathode are carbon nanotubes, and the anode is a carbon nanotube lithiated with lithium metal powder.
前記カーボンナノチューブが、多層ナノチューブ、単層ナノチューブ、ナノホーン、ナノベル、ピーポッド、バッキーボール及びそれらの組み合わせからなる群より選択される、請求項1に記載の電池。   The battery of claim 1, wherein the carbon nanotubes are selected from the group consisting of multi-walled nanotubes, single-walled nanotubes, nanohorns, nanobells, peapods, buckyballs, and combinations thereof. 前記カーボンナノチューブが、単層ナノチューブを含む請求項2に記載の電池。   The battery according to claim 2, wherein the carbon nanotube includes a single-walled nanotube. 前記セパレータが、リチウム塩電解質を含む請求項1に記載の電池。   The battery according to claim 1, wherein the separator includes a lithium salt electrolyte. 前記電解質が、リン酸塩又はポリリン酸塩電解質である請求項4に記載の電池。   The battery according to claim 4, wherein the electrolyte is a phosphate or polyphosphate electrolyte. 前記カーボンナノチューブが、600mAh/gを超える可逆容量を有する請求項1に記載の電池。   The battery according to claim 1, wherein the carbon nanotube has a reversible capacity exceeding 600 mAh / g. 前記カーボンナノチューブのアルカリ飽和度がMC(式中、Mは、K、Rb及びCsからなる群より選択される。)である請求項1に記載の電池。 The battery according to claim 1, wherein the carbon nanotube has an alkali saturation of MC 8 (wherein M is selected from the group consisting of K, Rb, and Cs). 前記カソードが単層ナノチューブを含み、前記アノードが多層ナノチューブを含む請求項1に記載の電池。   The battery of claim 1, wherein the cathode comprises single-walled nanotubes and the anode comprises multi-walled nanotubes.
JP2008555267A 2006-02-15 2007-02-05 Carbon nanotube lithium metal powder battery Withdrawn JP2009527095A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/354,738 US20070190422A1 (en) 2006-02-15 2006-02-15 Carbon nanotube lithium metal powder battery
PCT/US2007/003171 WO2007095013A1 (en) 2006-02-15 2007-02-05 A carbon nanotube lithium metal powder battery

Publications (1)

Publication Number Publication Date
JP2009527095A true JP2009527095A (en) 2009-07-23

Family

ID=37980002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008555267A Withdrawn JP2009527095A (en) 2006-02-15 2007-02-05 Carbon nanotube lithium metal powder battery

Country Status (10)

Country Link
US (1) US20070190422A1 (en)
EP (1) EP1994588A1 (en)
JP (1) JP2009527095A (en)
KR (1) KR20080094658A (en)
CN (1) CN101385167A (en)
CA (1) CA2629684A1 (en)
DE (1) DE112007000185T5 (en)
GB (1) GB2445341A (en)
RU (1) RU2008136838A (en)
WO (1) WO2007095013A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506381A (en) * 2010-12-23 2014-03-13 ナノテク インスツルメンツ インク Surface-mediated lithium ion exchange energy storage device
JP2015138777A (en) * 2014-01-23 2015-07-30 ツィンファ ユニバーシティ lithium ion battery
WO2018128099A1 (en) * 2017-01-06 2018-07-12 学校法人早稲田大学 Secondary battery
JP2022525933A (en) * 2019-03-20 2022-05-20 エフエムシー リチウム ユーエスエー コーポレイション Printed lithium foil and film
JP2022526299A (en) * 2019-03-20 2022-05-24 エフエムシー リチウム ユーエスエー コーポレイション Batteries using printable lithium
US11824182B2 (en) 2018-03-22 2023-11-21 Livent USA Corp. Battery utilizing printable lithium

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968233B2 (en) 2004-02-18 2011-06-28 Solicore, Inc. Lithium inks and electrodes and batteries made therefrom
CN101388447B (en) 2007-09-14 2011-08-24 清华大学 Negative pole for lithium ionic cell and preparing method thereof
CN101409337B (en) 2007-10-10 2011-07-27 清华大学 Lithium ion battery cathode, preparation method thereof and lithium ion battery applying the same
ES2379900T3 (en) * 2007-09-14 2012-05-04 Hong Fu Jin Precision Industry (Shenzhen) Co., (Shenzhen) Co., Ltd. Lithium battery and method to manufacture an anode from it
CN101420021B (en) * 2007-10-26 2011-07-27 清华大学 Positive pole of lithium ion cell and preparation method thereof
US20090148769A1 (en) * 2007-12-06 2009-06-11 Ener1, Inc. Dendrite-free lithium electrode and method of making the same
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
DE112009000443B4 (en) * 2008-02-25 2017-05-11 Ronald Anthony Rojeski Electrodes for high capacity rechargeable battery
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US9705136B2 (en) * 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US10205166B2 (en) 2008-02-25 2019-02-12 Cf Traverse Llc Energy storage devices including stabilized silicon
US20090220408A1 (en) * 2008-02-29 2009-09-03 Korea University Industrial & Academic Foundation Method of cutting carbon nanotubes and carbon nanotubes prepared by the same
CN101576423B (en) * 2008-05-07 2010-12-29 清华大学 Ionization gauge
WO2010036448A2 (en) * 2008-07-24 2010-04-01 California Institute Of Technology Carbon cathodes for fluoride ion storage
DE102008063552A1 (en) * 2008-12-05 2010-06-10 Varta Microbattery Gmbh New electrode active material for electrochemical elements
US8241793B2 (en) * 2009-01-02 2012-08-14 Nanotek Instruments, Inc. Secondary lithium ion battery containing a prelithiated anode
US9406985B2 (en) * 2009-01-13 2016-08-02 Nokia Technologies Oy High efficiency energy conversion and storage systems using carbon nanostructured materials
US20100178568A1 (en) * 2009-01-13 2010-07-15 Nokia Corporation Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US20100216023A1 (en) * 2009-01-13 2010-08-26 Di Wei Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
US20140370380A9 (en) * 2009-05-07 2014-12-18 Yi Cui Core-shell high capacity nanowires for battery electrodes
US8450012B2 (en) * 2009-05-27 2013-05-28 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US9172088B2 (en) 2010-05-24 2015-10-27 Amprius, Inc. Multidimensional electrochemically active structures for battery electrodes
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
CN102971889A (en) * 2010-06-02 2013-03-13 佛罗里达州立大学研究基金有限公司 High energy density electrochemical capacitors
WO2012067943A1 (en) 2010-11-15 2012-05-24 Amprius, Inc. Electrolytes for rechargeable batteries
WO2012065361A1 (en) * 2010-11-19 2012-05-24 中南大学 Method and device for separating lithium from magnesium and enriching lithium in salt lake brine
US8859143B2 (en) * 2011-01-03 2014-10-14 Nanotek Instruments, Inc. Partially and fully surface-enabled metal ion-exchanging energy storage devices
US9166252B2 (en) * 2010-12-23 2015-10-20 Nanotek Instruments, Inc. Surface-controlled lithium ion-exchanging energy storage device
US10326168B2 (en) * 2011-01-03 2019-06-18 Nanotek Instruments, Inc. Partially and fully surface-enabled alkali metal ion-exchanging energy storage devices
TWI563707B (en) 2011-06-29 2016-12-21 Nitto Denko Corp Positive electrode sheet for non-aqueous electrolyte secondary battery
DE102011079026A1 (en) * 2011-07-12 2013-01-17 Robert Bosch Gmbh Electrode, method for producing an electrode and energy storage comprising an electrode
WO2013040137A1 (en) 2011-09-13 2013-03-21 Georgia Tech Research Corporation Self-charging power pack
US8914176B2 (en) * 2012-01-23 2014-12-16 Nanotek Instruments, Inc. Surface-mediated cell-powered vehicles and methods of operating same
US8895189B2 (en) * 2012-02-03 2014-11-25 Nanotek Instruments, Inc. Surface-mediated cells with high power density and high energy density
US9673447B2 (en) * 2012-04-12 2017-06-06 Nanotek Instruments, Inc. Method of operating a lithium-ion cell having a high-capacity cathode
ITSA20120011A1 (en) * 2012-07-12 2014-01-13 Univ Degli Studi Salerno "REAL TIME" RADIATION DOSIMETER BASED ON CARBON NANOMATERIALS (CARBON NANOMATERIALS BASED REAL TIME RADIATION DOSIMETER).
EP2934792B1 (en) * 2012-12-19 2019-07-24 Albemarle Germany GmbH Suspension and method for preparing a lithium powder anode
US9029013B2 (en) 2013-03-13 2015-05-12 Uchicago Argonne, Llc Electroactive compositions with poly(arylene oxide) and stabilized lithium metal particles
WO2015139660A1 (en) * 2014-03-21 2015-09-24 中国科学院苏州纳米技术与纳米仿生研究所 Porous carbon nanotube microsphere and preparation method therefor and application thereof, lithium metal-skeleton carbon composite material and preparation method therefor, negative electrode, and battery
WO2015175509A1 (en) 2014-05-12 2015-11-19 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
US20190221886A1 (en) * 2018-03-22 2019-07-18 Fmc Lithium Usa Corp. Solid-state battery
US11101495B2 (en) 2019-02-13 2021-08-24 Robert Bosch Gmbh Phosphorous-based polyester electrolytes for high voltage lithium ion batteries
US20210242550A1 (en) * 2019-12-23 2021-08-05 Central Intelligence Agency System and method for multi-electrolyte activation and refurbishment of electrochemical cells
US11923535B2 (en) * 2020-02-19 2024-03-05 Livent USA Corp. Fast charging pre-lithiated silicon anode
CN112751022B (en) * 2020-12-29 2022-04-08 无锡晶石新型能源股份有限公司 Process method for coating lithium manganate by carbon nano tube
CN114188509B (en) * 2021-12-01 2023-12-01 杭州电子科技大学 Preparation method of lithium sulfide electrode based on carbon nano tube packaging means
WO2023216209A1 (en) * 2022-05-13 2023-11-16 宁德时代新能源科技股份有限公司 Pore-forming agent for secondary battery, preparation method for pore-forming agent, negative electrode sheet, electrode assembly, and secondary battery

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271196A (en) * 1961-11-08 1966-09-06 Leesona Corp Fuel cell electrodes
US3508967A (en) * 1967-09-22 1970-04-28 Gulton Ind Inc Negative lithium electrode and electrochemical battery containing the same
JPH0789483B2 (en) * 1984-05-07 1995-09-27 三洋化成工業株式会社 Secondary battery
DE3680249D1 (en) * 1985-05-10 1991-08-22 Asahi Chemical Ind SECONDARY BATTERY.
US5153082A (en) * 1990-09-04 1992-10-06 Bridgestone Corporation Nonaqueous electrolyte secondary battery
JP3162437B2 (en) * 1990-11-02 2001-04-25 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery
US5244757A (en) * 1991-01-14 1993-09-14 Kabushiki Kaisha Toshiba Lithium secondary battery
DE4101533A1 (en) * 1991-01-19 1992-07-23 Varta Batterie ELECTROCHEMICAL SECONDARY ELEMENT
DE69325006T2 (en) * 1992-12-07 1999-09-23 Honda Giken Kogyo K.K., Tokio/Tokyo Alkaline ion absorbing / desorbing carbonaceous material, electrode material for secondary battery using this material and lithium battery using this electrode material
US5312623A (en) * 1993-06-18 1994-05-17 The United States Of America As Represented By The Secretary Of The Army High temperature, rechargeable, solid electrolyte electrochemical cell
US5879836A (en) * 1993-09-10 1999-03-09 Hyperion Catalysis International Inc. Lithium battery with electrodes containing carbon fibrils
US5393621A (en) * 1993-10-20 1995-02-28 Valence Technology, Inc. Fire-resistant solid polymer electrolytes
CA2127621C (en) * 1994-07-08 1999-12-07 Alfred Macdonald Wilson Carbonaceous insertion compounds and use as anodes in rechargeable batteries
US5543021A (en) * 1994-09-01 1996-08-06 Le Carbone Lorraine Negative electrode based on pre-lithiated carbonaceous material for a rechargeable electrochemical lithium generator
US5707756A (en) * 1994-11-29 1998-01-13 Fuji Photo Film Co., Ltd. Non-aqueous secondary battery
US5595837A (en) * 1995-04-12 1997-01-21 Valence Technology, Inc. Process for prelithiation of carbon based anodes for lithium batteries
US5753387A (en) * 1995-11-24 1998-05-19 Kabushiki Kaisha Toshiba Lithium secondary battery
US5672446A (en) * 1996-01-29 1997-09-30 Valence Technology, Inc. Lithium ion electrochemical cell
US5958622A (en) * 1996-03-28 1999-09-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Negative electrode material for lithium secondary batteries
US6270926B1 (en) * 1996-07-16 2001-08-07 Murata Manufacturing Co., Ltd. Lithium secondary battery
DE69705428T2 (en) * 1996-12-20 2001-10-11 Danionics A/S, Odense S LITHIUM SECONDARY BATTERY WITH A NEGATIVE ELECTRODE CONTAINING NATURAL SCALE GRAPHITE
CN1139142C (en) * 1997-02-28 2004-02-18 旭化成株式会社 Nonaqueous secondary battery and method for mfg. same
US6156457A (en) * 1997-03-11 2000-12-05 Kabushiki Kaisha Toshiba Lithium secondary battery and method for manufacturing a negative electrode
US5807645A (en) * 1997-06-18 1998-09-15 Wilson Greatbatch Ltd. Discharge promoter mixture for reducing cell swelling in alkali metal electrochemical cells
US5948569A (en) * 1997-07-21 1999-09-07 Duracell Inc. Lithium ion electrochemical cell
KR20010033603A (en) * 1997-12-25 2001-04-25 다니구찌 이찌로오, 기타오카 다카시 Lithium ion secondary battery
KR100245808B1 (en) * 1997-12-30 2000-03-02 박찬구 Process for manufacturing lithium ion secondary battery electrode compounds
US6168885B1 (en) * 1998-08-21 2001-01-02 Sri International Fabrication of electrodes and devices containing electrodes
US6280697B1 (en) * 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
KR100326457B1 (en) * 1999-03-10 2002-02-28 김순택 A positive active material for a lithium secondary battery and a method of preparing the same
SE516891C2 (en) * 1999-06-14 2002-03-19 Ericsson Telefon Ab L M Binder and / or electrolyte material for an electrode in a battery cell, electrode for a battery cell, and process for producing a binder and / or electrolyte material for an electrode
JP4399904B2 (en) * 1999-07-15 2010-01-20 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrode and use thereof
US6541156B1 (en) * 1999-11-16 2003-04-01 Mitsubishi Chemical Corporation Negative electrode material for non-aqueous lithium secondary battery, method for manufacturing the same, and non-aqueous lithium secondary battery using the same
KR100350535B1 (en) * 1999-12-10 2002-08-28 삼성에스디아이 주식회사 Negative active material for lithium secondary battery and method of preparing same
US6528033B1 (en) * 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US7001690B2 (en) * 2000-01-18 2006-02-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6334939B1 (en) 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
US6706447B2 (en) * 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
US7276314B2 (en) * 2000-12-22 2007-10-02 Fmc Corporation Lithium metal dispersion in secondary battery anodes
US8980477B2 (en) * 2000-12-22 2015-03-17 Fmc Corporation Lithium metal dispersion in secondary battery anodes
KR101178643B1 (en) * 2001-07-27 2012-09-07 에이일이삼 시스템즈 인코포레이티드 Battery structures, self-organizing structures and related methods
US20030072942A1 (en) * 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
KR100433822B1 (en) * 2002-01-17 2004-06-04 한국과학기술연구원 Metal-coated carbon, preparation method thereof, and composite electrode and lithium secondary batteries comprising the same
KR100560208B1 (en) * 2002-03-12 2006-03-10 에스케이씨 주식회사 Composition for gel polymer electrolyte gellationable at ambient temperature
US20040234844A1 (en) * 2003-05-20 2004-11-25 Phoenix Innovation, Inc. Novel carbon nanotube lithium battery
US20050130043A1 (en) * 2003-07-29 2005-06-16 Yuan Gao Lithium metal dispersion in electrodes
CA2488981C (en) 2003-12-15 2008-06-17 Rohm And Haas Company Oil absorbing composition and process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506381A (en) * 2010-12-23 2014-03-13 ナノテク インスツルメンツ インク Surface-mediated lithium ion exchange energy storage device
JP2017033936A (en) * 2010-12-23 2017-02-09 ナノテク インスツルメンツ インク Surface mediation lithium ion exchange energy storage device
JP2015138777A (en) * 2014-01-23 2015-07-30 ツィンファ ユニバーシティ lithium ion battery
WO2018128099A1 (en) * 2017-01-06 2018-07-12 学校法人早稲田大学 Secondary battery
JP2018113108A (en) * 2017-01-06 2018-07-19 学校法人早稲田大学 Secondary battery
US11081701B2 (en) 2017-01-06 2021-08-03 Waseda University Secondary battery
US11824182B2 (en) 2018-03-22 2023-11-21 Livent USA Corp. Battery utilizing printable lithium
JP2022525933A (en) * 2019-03-20 2022-05-20 エフエムシー リチウム ユーエスエー コーポレイション Printed lithium foil and film
JP2022526299A (en) * 2019-03-20 2022-05-24 エフエムシー リチウム ユーエスエー コーポレイション Batteries using printable lithium
JP7476226B2 (en) 2019-03-20 2024-04-30 リベント ユーエスエー コーポレイション Printable lithium battery
JP7507782B2 (en) 2019-03-20 2024-06-28 リベント ユーエスエー コーポレイション Printed Lithium Foils and Films

Also Published As

Publication number Publication date
CN101385167A (en) 2009-03-11
GB2445341A (en) 2008-07-02
KR20080094658A (en) 2008-10-23
DE112007000185T5 (en) 2008-12-24
WO2007095013A1 (en) 2007-08-23
CA2629684A1 (en) 2007-08-23
GB0808334D0 (en) 2008-06-18
EP1994588A1 (en) 2008-11-26
US20070190422A1 (en) 2007-08-16
RU2008136838A (en) 2010-03-20

Similar Documents

Publication Publication Date Title
JP2009527095A (en) Carbon nanotube lithium metal powder battery
Wang et al. Ice templated free‐standing hierarchically WS2/CNT‐rGO aerogel for high‐performance rechargeable lithium and sodium ion batteries
Li et al. A sulfur cathode with pomegranate-like cluster structure
Zhao et al. Electrochemical intercalation of potassium into graphite
Ding et al. Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range
Li et al. SnSb@ carbon nanocable anchored on graphene sheets for sodium ion batteries
Wang et al. Hierarchical sulfur‐based cathode materials with long cycle life for rechargeable lithium batteries
Han et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries
Wang et al. Tungsten disulfide nanotubes for lithium storage
Zaghib et al. Effect of particle size on lithium intercalation rates in natural graphite
Zhang et al. Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries
WO2005022666A2 (en) A novel carbon nanotube lithium battery
US20210234167A1 (en) Porous graphene/carbon composite balls for an alkali metal battery anode
Zhang et al. Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance
JP2004119367A (en) Positive electrode activator for lithium-sulfur battery, lithium-sulfur battery, and electronic product
JP5354893B2 (en) Lithium battery
JP2004296108A (en) Nonaqueous electrolyte battery
Zhou et al. Selective carbon coating techniques for improving electrochemical properties of NiO nanosheets
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP2022533993A (en) Anode active material containing low-defect turbostratic carbon
Fahad et al. In-situ TEM observation of fast and stable reaction of lithium polysulfide infiltrated carbon composite and its application as a lithium sulfur battery electrode for improved cycle lifetime
Abe et al. Vapor-grown carbon fiber anode for cylindrical lithium ion rechargeable batteries
Ee et al. An Interwoven Network of MnO2 Nanowires and Carbon Nanotubes as the Anode for Bendable Lithium‐Ion Batteries
KR20230011984A (en) Graphene-Containing Metalized Silicon Oxide Composite Materials
Zhang et al. Semi-liquid anode for dendrite-free K-ion and Na-ion batteries

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406