JP2009525058A - 拡散テンソルイメージングのための方法およびシステム - Google Patents
拡散テンソルイメージングのための方法およびシステム Download PDFInfo
- Publication number
- JP2009525058A JP2009525058A JP2008543245A JP2008543245A JP2009525058A JP 2009525058 A JP2009525058 A JP 2009525058A JP 2008543245 A JP2008543245 A JP 2008543245A JP 2008543245 A JP2008543245 A JP 2008543245A JP 2009525058 A JP2009525058 A JP 2009525058A
- Authority
- JP
- Japan
- Prior art keywords
- roi
- dti
- module
- operable
- reference volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/283—Intercom or optical viewing arrangements, structurally associated with NMR apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56341—Diffusion imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/546—Interface between the MR system and the user, e.g. for controlling the operation of the MR system or for the design of pulse sequences
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5608—Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
Landscapes
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Radiology & Medical Imaging (AREA)
- Vascular Medicine (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本発明のある実施形態は、入力制御に少なくとも3段階の空間的自由度を持つ入力インターフェースと、少なくとも3段階の空間的自由度を持つ入力インターフェースで操作可能な拡散テンソルイメージング(DTI)モジュールとを備えたシステムを含む。ある実施態様では、DTIモジュールは、ファイバー束を計算するために操作可能である。該モジュールは、さらに、参照ボリューム中の、1以上の3D関心領域(ROI)を特定するために操作可能である。ある実施態様では、このシステムは、3D ROIを通過するファイバー束の3D立体視的画像を表示するのを支援する。
Description
関連出願
本願は、「Method and System for Diffusion Tensor Imaging(拡散テンソルイメージングのための方法およびシステム)」という発明の名称で、2005年11月30日に出願された米国仮特許出願(割り当てられた出願番号:第60/741,194号)の優先権を主張する。この仮出願の内容全体を引用によって本願明細書に援用するものとする。
本願は、「Method and System for Diffusion Tensor Imaging(拡散テンソルイメージングのための方法およびシステム)」という発明の名称で、2005年11月30日に出願された米国仮特許出願(割り当てられた出願番号:第60/741,194号)の優先権を主張する。この仮出願の内容全体を引用によって本願明細書に援用するものとする。
背景技術
拡散テンソルイメージング(DTI)可視化は、成長中の研究分野である。スキャナーでより良好なデータを常時集め、医師や科学者たちは常に、それらのデータのための新しい応用を発見している。拡散磁気共鳴画像診断法(MRI)の成功は、ランダムな拡散駆動型の変位の間に、通常の画像解像度を十分に超えた顕微鏡スケールで、分子が組織構造を突き止めるという強力な概念に根付いている。拡散は、三次元的プロセスであるので、組織中での分子の移動性は、脳の白質中でのように、異方性であるかもしれない。
拡散テンソルイメージング(DTI)可視化は、成長中の研究分野である。スキャナーでより良好なデータを常時集め、医師や科学者たちは常に、それらのデータのための新しい応用を発見している。拡散磁気共鳴画像診断法(MRI)の成功は、ランダムな拡散駆動型の変位の間に、通常の画像解像度を十分に超えた顕微鏡スケールで、分子が組織構造を突き止めるという強力な概念に根付いている。拡散は、三次元的プロセスであるので、組織中での分子の移動性は、脳の白質中でのように、異方性であるかもしれない。
拡散の異方性効果を、抽出し、特徴づけ、利用することができ、それによって、組織の微細構造の詳細が提供される。そのような進んだ応用の1つが、脳におけるファイバートラッキングであり、それは、結合性組織の洞察を提供するかもしれない。DTIはまた、種々の疾患(脳卒中、多発性硬化症、失読症、および精神分裂症を含む)における微細な異常を証明するために利用されてきており、現在では、多くのルーチンの臨床プロトコルの一部となりつつある。
しかしながら、ユーザーに、関心経路を指定させ、それらを外科手術計画およびそれに続くナビゲーションの一環とすることができるようにするには、より直観的な入力インターフェースが必要であるといった課題がある。
発明の概要
本発明のある実施態様は、入力制御に少なくとも3段階の空間的自由度を持つ入力インターフェースと、前記少なくとも3段階の空間的自由度を持つ入力インターフェースで操作可能な拡散テンソルイメージング(DTI)モジュールとを備えたシステムを含む。ある実施態様において、前記DTIモジュールは、ファイバー束を計算するために操作可能である。前記モジュールはさらに、参照ボリューム中に、1以上の3D関心領域(ROI)を特定し、1以上の3D ROIを通過するファイバー束を計算または特定するために操作可能である。ある実施態様において、前記システムは、3D ROIを通過するファイバー束の3D立体画像の表示を支援する。
本発明のある実施態様は、入力制御に少なくとも3段階の空間的自由度を持つ入力インターフェースと、前記少なくとも3段階の空間的自由度を持つ入力インターフェースで操作可能な拡散テンソルイメージング(DTI)モジュールとを備えたシステムを含む。ある実施態様において、前記DTIモジュールは、ファイバー束を計算するために操作可能である。前記モジュールはさらに、参照ボリューム中に、1以上の3D関心領域(ROI)を特定し、1以上の3D ROIを通過するファイバー束を計算または特定するために操作可能である。ある実施態様において、前記システムは、3D ROIを通過するファイバー束の3D立体画像の表示を支援する。
特許または出願は、カラーで作成された少なくとも1つの図面を含む。カラー図面付きの本特許または特許出願公報のコピーは、請求および必要な手数料の支払いに応じて特許商標庁によって提供される。
発明の詳細な説明
本発明のある実施態様は、1以上のサブモジュール、すなわち、「計算テンソル」、「可視化」、「ファイバートラック」、および「ファイバー管理」を含む、DTIモジュールインターフェースを含む。別のいくつかの実施態様において、異なるサブモジュールのセットを用いてもよい。ある実施態様において、DTIモジュールは、入力制御に3段階の空間的自由度を提供する入力インターフェースで操作可能である。入力インターフェースは、事実上は、参照ボリューム内部でのハンドアクセスを提供する。
本発明のある実施態様は、1以上のサブモジュール、すなわち、「計算テンソル」、「可視化」、「ファイバートラック」、および「ファイバー管理」を含む、DTIモジュールインターフェースを含む。別のいくつかの実施態様において、異なるサブモジュールのセットを用いてもよい。ある実施態様において、DTIモジュールは、入力制御に3段階の空間的自由度を提供する入力インターフェースで操作可能である。入力インターフェースは、事実上は、参照ボリューム内部でのハンドアクセスを提供する。
ソースDTIボリュームおよびそれによってテンソルを計算するためのパラメータを選択するために、計算テンソルモジュールが用いられる。可視化モジュールは、一セットのボリュームの可視化を提供するものであり、それは、診断の助けとなるかもしれない。別の実施態様において、ソースDTIボリュームに負荷をかけることができ、テンソルは、所定のパラメータセットに基づいて自動的に計算され、所定の可視化を介して表示される。
ファイバートラックモジュールは、神経線維をトラッキングおよび可視化するために用いられる。ある実施態様において、参照ボリューム中のROIが、1以上の3D ROI(例えば、立方体)として明示される。
ある実施態様において、ファイバートラックモジュールにおいて生成されるファイバーを体系化するために、ファイバー管理モジュールがさらに提供される。例えば、ファイバー管理モジュールは、ユーザーが、ファイバーを付加する、名前を付け直す、または削除することができるようにしている。ある実施態様において、さらに色付けツールがサポートされて、ファイバーを再色付けし、種々のファイバーを視覚的に異ならせることができる。
入力インターフェース
上記したように、ある実施態様において、DTIモジュールは、入力制御に少なくとも3段階の空間的自由度を提供する入力インターフェース(本明細書において、「入力インターフェース」とも称される)で操作可能である。入力インターフェースは、3D空間的相互作用操作を提供する。図1は、ある実施態様における、入力インターフェースを示す図である。入力インターフェースは、事実上、参照ボリューム内部でのハンドアクセスを提供するものである。
上記したように、ある実施態様において、DTIモジュールは、入力制御に少なくとも3段階の空間的自由度を提供する入力インターフェース(本明細書において、「入力インターフェース」とも称される)で操作可能である。入力インターフェースは、3D空間的相互作用操作を提供する。図1は、ある実施態様における、入力インターフェースを示す図である。入力インターフェースは、事実上、参照ボリューム内部でのハンドアクセスを提供するものである。
実例として、3Dレンダリングされたオブジェクトまたは参照ボリュームを用いて作業するために、入力インターフェースは、1以上のハンドヘルド機器102a〜b、例えば、スタイラスを含む。ある実施態様において、該機器は3段階以上の自由度で、ユーザーが自由に動かすことを可能にしている。ハンドヘルド機器(「バーチャルツール」とも称される)の対応画像は、その動きに沿って、参照ボリュームとの相互作用について表示される。
ある実施態様において、ハンドヘルド装置を動かして、3D画像として表示されるかもしれない表示された参照ボリュームを対応して動かす。その結果、参照を異なる角度で回転させ、異なる方向に移動させることができる。ある実施態様において、ユーザーは、ハンドヘルド装置を起動(例えば、ハンドヘルド装置102b上のボタンを押すなど)して、ハンドヘルド装置を動かすことによって、そのボリュームの位置および方向性を動かすことを含めた、表示される参照ボリュームの動きを作り出す。
ある実施態様においては、ハンドヘルド機器の動きを、無線周波数(rf)トラッカーによって、トラッキングする。別の実施態様においては、入力インターフェースは、1以上のハンドヘルド装置で入力制御を提供する皮膚感覚型の装置でもよい。
別のいくつかの実施態様において、2以上のハンドヘルド装置を備えてもよい。例えば、多数のユーザーが、遠隔地または局地で、参照ボリュームと相互作用することができるようにしてもよい。ある実施態様において、単一のハンドヘルド装置を用いて、上記した一セットの活動を行ってもよい。
ある実施態様において、ユーザーとコンピュータスクリーン106の間に、ミラー103を配置する。ミラーは、参照ボリューム、コンピュータスクリーンによって表示されているバーチャルツールを映す。ユーザーは、ミラー後部の作業領域108で手を動かし、反射によって示される参照ボリュームと相互作用することができる。その結果、ユーザーは、参照ボリュームを見えなくすることなく、両手を使って参照ボリュームを用いて作業することができる。さらに、ある実施態様において、入力インターフェースには、ユーザーの腕を休めるためのサポート114を含むワークステーション112が備えられている。
ある実施態様において、参照ボリュームは、スクリーン上に立体的に表示してもよい。ある実施態様において、液晶表示(LCD)シャッター眼鏡120を用いて参照ボリュームを立体的に認識してもよい。LCDシャッター眼鏡を用いれば、代替フレームシーケンシングの概念を用いて、コンピュータディスプレイ上の画像と同期させて光を透過させることができる。多数の閲覧者がシャッター眼鏡を着用して参照ボリュームを同時に観察し、議論することもできる。
脳神経外科手術計画のような複雑なアプリケーションは、典型的に、アプリケーションを制御し、操作の形態やツールを起動させるボタンやスライダーに頻繁にアクセスすることが必要とされる。そのため、ある実施態様は、少なくとも3段階の空間的自由度を持つ作業領域とアプリケーションコントロールとを統合させるために、バーチャルツールパネルを含む。
ある実施態様において、図1Bに示されているように、バーチャルツールパネルは、作業領域108の下の固体表面116に一致する。ある実施態様において、バーチャルツールパネルは、ハンドヘルドツール102aを用いてベース116に触れることに対応して提示させ、該ベースから該ツールを取り除いた途端に消えるようにすることができる。ハンドヘルドツールとバーチャルツールパネルの間の相互作用は、ボタンを押す、スライダーをドラッギングする、曲線をコントロールするなどから1以上を含む他の行動を伴ってもよい。
ある実施態様において、入力インターフェースは、コンピュータ断層撮影法(CT)、陽電子放射形断層撮影法(PET)、単一光子放射形コンピュータ断層撮影法(SPECT)、磁気共鳴画像診断法(MRI)、磁気共鳴血管造影画像診断法(MRA)、容積測定超音波、ならびに1以上のマルチモーダル画像から取得したセグメンテーションのうち1以上に基づいて、マルチモーダル画像をリアルタイムで容積測定し、3D空間表面レンダリングを生成することができるプロセスまたはモジュールを用いて操作可能である。ある実施態様においては、入力インターフェースと該プロセスを一緒に用いて立体的なバーチャルリアリティ(VR)環境が提供され、そこでは、ユーザーは、両手を使って「中まで到達する(reaching into it)」ことによって、3Dデータとリアルタイムでインタラクティブに作業することができる。
ある実施態様において、該プロセスは、透視法による立体的な影付きボリュームと表面レンダリング;多様式画像融合;自動ボリューム登録および登録されたオブジェクトの認証;セグメンテーション;クロッピング、カッティング、ドリリング、回復、クローニング、ローミング、線形および容積測定のための外科的診査ツール;ボリュームレンダリングが事前に設定されているカラー、および/または、透明マッピング;DICOMコンプライアント、ならびに多数のファイルフォーマットのサポート(例えば、TIFF);ならびに、立体的な再生およびビデオエクスポート能をもつ3D空間的相互作用操作の捕獲といった特徴のうち1以上を含む。
拡散テンソルイメージング(DTI)モジュール
上記したように、ある実施態様においては、DTIモジュールは、一セットのサブモジュール含む。それらは、計算テンソルモジュール、可視化モジュール、ファイバートラックモジュール、およびファイバー管理モジュールである。本発明から逸脱せずに、モジュールの別のセットを用いてもよい。例えば、ある実施態様においては、ソースDTIボリュームを負荷し、テンソルは、あらかじめ選択された所定の可視化方法に沿って、所定の一セットのパラメータに基づいて自動的に計算することができるであろう。そのような実施態様においては、計算および/または可視化モジュールは、ユーザーインタラクションのためのDTIモジュールに含まれていなくてもよい。
上記したように、ある実施態様においては、DTIモジュールは、一セットのサブモジュール含む。それらは、計算テンソルモジュール、可視化モジュール、ファイバートラックモジュール、およびファイバー管理モジュールである。本発明から逸脱せずに、モジュールの別のセットを用いてもよい。例えば、ある実施態様においては、ソースDTIボリュームを負荷し、テンソルは、あらかじめ選択された所定の可視化方法に沿って、所定の一セットのパラメータに基づいて自動的に計算することができるであろう。そのような実施態様においては、計算および/または可視化モジュールは、ユーザーインタラクションのためのDTIモジュールに含まれていなくてもよい。
計算テンソルモジュール
図2はさらに、ある実施態様の計算テンソルモジュールを示す図である。該計算テンソルモジュールは、6以上の拡散重み付け画像(DWI)からなる一セットを含むソースDTIボリュームから拡散テンソルを計算するものである。計算テンソルモジュールのパネル202は、ソースDTIボリューム、拡散感覚化パラメータ(「b値」とも称する)、およびDWIの輝度閾値をユーザーに選択させる。
図2はさらに、ある実施態様の計算テンソルモジュールを示す図である。該計算テンソルモジュールは、6以上の拡散重み付け画像(DWI)からなる一セットを含むソースDTIボリュームから拡散テンソルを計算するものである。計算テンソルモジュールのパネル202は、ソースDTIボリューム、拡散感覚化パラメータ(「b値」とも称する)、およびDWIの輝度閾値をユーザーに選択させる。
パネル202のオブジェクトセレクタ204は、ソースDTIボリュームを選択するために設けられたものである。ある実施態様において、該パネルのナンバーセレクタ206は、DWI取得プロセス中に決定されるb値を規定するために設けられたものである。b値パラメータは、テンソルを計算するために用いられる。
パネル202上のスライダー208は、ソースDTIボリュームの輝度閾値を規定する。ある実施態様において、輝度閾値より輝度が小さいボクセルについては、テンソル(3*3マトリックス)は計算せず、ゼロマトリックスと見なす。このように、バックグランドボクセルのテンソルを、計算する必要がないことから、テンソル計算プロセスがスピードアップする。
計算テンソルボタン210を押すと、ソースDTIボリュームのテンソルが計算される。ある実施態様において、パネル202上に提示された特徴212は、テンソルを計算するために用いられるパラメータをまとめたものである。ある実施態様において、特徴212は、テンソルを計算した後に初めて現れる。別のいくつかの実施態様において、計算テンソルモジュールのパネル202上に提示された構成要素は、本発明から逸脱せずに変更してもよい。
可視化モジュール
図3は、ある実施態様の、計算されたテンソルの可視化を選択するために用いられる可視化モジュールを示す図である。ある実施態様において、可視化モジュールのパネル302上に一セットの可視化が存在する。ある実施態様において、可視化には、FA(フラクショナル異方性)ボリューム304、ADC(見かけ上の拡散係数)ボリューム306、FAカラーボリューム308、SEC(形状符号化カラー)ボリューム310、LA(線形異方性)ボリューム312、PA(平面異方性)ボリューム314、SA(球面異方性)ボリューム316、および方向(最大拡散方向)直線318のうちの1以上が含まれる。本発明から逸脱せずに、別の可視化セットを用いてもよい。例えば、可視化モードのある実施態様は、FAを含まなくてもよい。
図3は、ある実施態様の、計算されたテンソルの可視化を選択するために用いられる可視化モジュールを示す図である。ある実施態様において、可視化モジュールのパネル302上に一セットの可視化が存在する。ある実施態様において、可視化には、FA(フラクショナル異方性)ボリューム304、ADC(見かけ上の拡散係数)ボリューム306、FAカラーボリューム308、SEC(形状符号化カラー)ボリューム310、LA(線形異方性)ボリューム312、PA(平面異方性)ボリューム314、SA(球面異方性)ボリューム316、および方向(最大拡散方向)直線318のうちの1以上が含まれる。本発明から逸脱せずに、別の可視化セットを用いてもよい。例えば、可視化モードのある実施態様は、FAを含まなくてもよい。
ある実施態様において、ソースDTIボリュームのDTIテンソルは、パネル上に可視化を選択し、次いで、パネル上の「計算ボリューム(Compute Volume)」ボタン320を押すことによって、レンダリングすることができる。
FA、ADC、LA、PA、SAボリュームは、DTIテンソルの拡散特性を示すグレースケールボリュームである。FAボリュームでは、図4Aの例によって示されるように、ボクセルの輝度が高いほど、このボクセル中のテンソルの拡散がより異方性を持つことがわかる。ADCボリュームは、脳の平均拡散率を示している。図4Bの例によって示されているように、ADCボリュームのボクセルの輝度は、そのボクセル中のDTIテンソルの平均拡散強度を示している。LA、PA、およびSAボリュームは、図4(D〜F)に示されているように、DTIテンソルの線形、平面形、球面形の拡散特性をそれぞれ表している。LA、PA、およびSAボリュームにおけるボクセルの輝度が高いほど、このボクセル中のテンソルの線形、平面、球面状の拡散が高いことを示している。
ある実施態様において、図4Fの例によって示されるように、FAカラーボリュームは、テンソルの方向情報を示すカラーコードボリュームである。ある実施態様において、図4Gの例によって示されるように、SECボリュームは、DTIテンソルの形状情報をコード化するカラーコードボリュームを提供する。ボクセルの色は、このボクセル中の拡散テンソルの形状を示している。図4Gの例では、赤色は、テンソルが長球形状であること、黄色および白色は、拡散テンソルが偏球および球形であることをそれぞれ示している。別のいくつかの実施態様において、別の色の組み合わせを用いてもよい。
ある実施態様において、該方向方法は、図4Hの例によって示されるように、全てのDTIテンソルのうち最大拡散方向を示す一セットの線を生成および表示する。
ファイバートラックモジュール
ある実施態様において、計算されたテンソルは、ファイバートラックモジュールを介してファイバートラック(本明細書において「ファイバー束」とも称する)として可視化してもよい。ある実施態様によれば、ユーザーは、参照ボリューム上の2Dおよび/または3D関心領域(ROI)を特定し、これらのROIを通過するファイバーを計算することができる。ある実施態様において、ファイバートラッキングモジュールは、上記したように、入力制御に少なくとも3段階の空間的自由度を提供する入力インターフェースを用いて操作可能である。ある実施態様において、図5に示されているように、入力インターフェースのバーチャルツール502を用いて、表示された参照ボリューム506中の3D ROI504を特定する。
ある実施態様において、計算されたテンソルは、ファイバートラックモジュールを介してファイバートラック(本明細書において「ファイバー束」とも称する)として可視化してもよい。ある実施態様によれば、ユーザーは、参照ボリューム上の2Dおよび/または3D関心領域(ROI)を特定し、これらのROIを通過するファイバーを計算することができる。ある実施態様において、ファイバートラッキングモジュールは、上記したように、入力制御に少なくとも3段階の空間的自由度を提供する入力インターフェースを用いて操作可能である。ある実施態様において、図5に示されているように、入力インターフェースのバーチャルツール502を用いて、表示された参照ボリューム506中の3D ROI504を特定する。
ある実施態様において、図5にさらに示されているように、参照ボリューム中の3D ROIを選択するために、ユーザーは、バーチャルツール502の先端の3D立方体508を操縦して、参照ボリューム506中のROI504を特定する。ある実施態様においては、ユーザーは、参照ボリュームの領域上の3D立方体508を操縦した後、3D ROI504としての参照ボリュームの領域を選択することができる(例えば、バーチャルツール側のボタンを押す)。これに対応して、3D立方体は、図5に示されているように、3D ROI504をマークした参照ボリューム506に残る。したがって、ユーザーは、3D ROI504を通過するファイバー束が、計算ボタン510を介して計算され、生成されるように、コントロールパネルを介して要求することができる。
ある実施態様において、ROIを通過するファイバー束を計算し、表示する。別法として、ボリューム全体のファイバーを生成してもよいが表示せず、したがって、ROIを通過するファイバー束を特定し、表示する。したがって、本明細書に記載したように、ある実施態様において、ファイバー束またはファイバートラックを計算および/または生成するという言及には、ファイバー束を特定および表示すること、ファイバー束を計算および表示すること、またはファイバー束を計算するが表示しないことを含むことができる。
ある実施態様において、図6に示されているように、多数の3D ROI604a〜cは、参照ボリューム上で選択することができる。ユーザーは、全ての選択された3D ROIを通過するファイバーのみを生成することを選択する(例えば、コントロールパネル620上の交差モード622)こともできるし、または、3D ROIの少なくとも1つを通過する全てのファイバーを見つけることを選択する(パネル620上の組合せモード624)こともできる。
さらに図6に示されているように、ユーザーは、ROIを規定し、計算ファイバーボタン610を選択した後、新たに生成されたファイバー束を自動的に活性ファイバー群に追加する。さらに、ユーザーは、復元ボタンを選択することによって、現在の活性ファイバー群から新たに生成されたファイバー束を削除することができる。ユーザーは、繰り返し復元ボタンを選択することによって、異なる時間に生成され、活性なファイバー群に含有されているファイバー束を連続的に削除することができる。
ある実施態様において、3D立方体の大きさをリアルタイムで調整し、それによって、選択すべきROIの大きさを変えることができる。3D立方体の大きさの調節は、コントロールパネル上に含まれる入力コントロール特徴、または、入力インターフェースのハンドヘルド装置上に含まれる入力コントロール特徴を介して行うことができる。
別のいくつかの実施態様において、本発明から逸脱せずに、3D立方体以外のオブジェクトを用いてもよい。例えば、プリセット3D関心領域を設けてもよい。プリセット3D ROIは、確率的方法によって定義し、位置づけることができるであろう。例えば、コレジスタされたDTIアトラス情報は、特定のファイバートラックを含む可能性のある領域を自動検出するために使用することができるであろう。本明細書に記載の入力インターフェースおよびDTIモジュールは、その後、プリセット3D ROIの大きさや形状に関して該領域を修正するために使用することができるであろう。
ある実施態様において、図7に示されているように、新たに生成されたファイバー群732を第2のファイバー群730に、ファイバー管理モジュール700のコントロールパネル上の添付ボタン742を介して追加される。ある実施態様において、ファイバー群はファイバー束の容器である。ある実施態様において、1つのファイバー群は常時活性であり、現在のファイバー群として参照されることになる。図8に示されているように、第1のファイバー群は、一セットのファイバー群から削除することができる。ある実施態様においては、ユーザーは、ファイバー群が空になるまで、異なる時間に生成されたファイバー束を連続的に削除することができる。
図9に示されているように、ファイバー群はまた、ファイバー管理モジュールにおいて、名前を変えることができるし、別のレンダリングカラーに変えることができる。デフォルトによって、拡散方向情報に基づいて、ファイバー群中のファイバーを色で符号化する。それらはさらに、色付けしなおして、他のファイバー群と異なったものとすることができる。図9に示された例のように、ファイバーの色には2つの選択肢があり、1つは、単一色、他の1つはディレクションカラーである。
ある実施態様において、ユーザーはまた、参照ボリュームの中に配置された3D立方体で特定された、既にマークされている3D ROIを削除することもできる。ある実施態様において、ユーザーは、図6に示されているように、ファイバートラッキングモジュールのコントロールパネル620上の削除ボタン626を選択してもよい。ユーザーは、バーチャルツールを操縦して、既に加えられている3D立方体に接近する。バーチャルツールが、既に加えられている3D立方体の所定の近接位置にあるとき、該3D立方体は高輝度表示される。ユーザーによる起動(例えば、バーチャルツールの側面のボタンを押す)に反応して、高輝度表示された3D立方体は、削除されることになる。
ある実施態様において、参照ボリューム内の領域は、ファイバー束を生成するためにROIを回避し、ROIの一部としないように特定することができる。ある実施態様において、追加ボタンを3D ROIインターフェース(例えば、ファイバートラックモジュールのパネル上)に設けることができる。1以上の立方体を参照ボリューム上に配置して、回避すべきROIを特定することができる。ある実施態様において、回避すべきROIに対応する立方体は、ファイバー束を生成するROIを特定する立方体に関連づけて、異なる色(または、異なる形状)とする。ユーザーがファイバーを計算し始めたとき、ファイバートラッキングアルゴリズムは、これらの回避ROIを考慮し、回避ROIを通過するファイバーを破棄するであろう。
ある実施態様において、図10に示されているように、ユーザーが2D ROI選択ボタン1060を選択したことに対応して、ビューア1062が示される。該ビューアは、参照ボリュームの2Dスライスと、該スライスを操作するいくつかのインターフェースを表示する。該ビューアを用いて、ユーザーは、参照ボリュームの軸方向、矢状、および冠状面のスライスを見ることを選択することができ、2Dスライスを拡大または縮小することができる。ユーザーは、輪郭線を描いて、2D ROIをスライス上に規定したり、または、別に、スライス上に多数の2D ROIを規定することができる。
ある実施態様において、ファイバートラッキングモジュールとともに用いられる参照ボリュームは、DTIボリュームであってもよい。または、CT、PET、SPECT、MRI、MRA、容積測定超音波、もしくはDTIボリュームとともにコレジスタされる他の多様式ボリュームであってもよい。さらに、ある実施態様において、DTIボリュームとともにコレジスタされる1以上の多様式から取得した、分割された画像を参照ボリュームとして用いることができる。
ある実施態様において、ファイバートラッキングパネル620は、ファイバートラッキングの停止条件を調節するためのインターフェースをさらに含む。ある実施態様において、該停止条件は、FA閾値、最大長閾値、最小長閾値、偏差角閾値のうちの1以上を含む。上記閾値を調節することによって、ユーザーは、異なる形状および異なる長さのファイバーを取得することができる。ステップ長スライダーを用いて、ファイバーの平滑度を制御する。例えば、ステップ長が小さいときには、ファイバーをより平滑かつ正確に示されるようにするとよい。これらの制御を用いて、次にユーザーは、所望のファイバートラッキング結果を生み出すパラメータを見つけてもよい。
ファイバートラッキング
図11および12は、ある実施態様における、ファイバーを生成およびトラッキングするプロセスを示すフローチャートである。図11は、ファイバートラックを生成するための前処理について示すフローチャートである。工程1102では、拡散重み付け画像(DWI)(a.k.a.ソースDTIボリューム)を負荷し、テンソルを計算してDWIのボクセルを求める。工程1104では、データのノイズを減少させることによってテンソルを平滑化するための処理を行う。ある実施態様において、ガウスの核を適用して、テンソルを平滑にする。別のいくつかの実施態様においては、本発明の範囲から逸脱せずに、別の処理を用いてもよい。工程1106では、固有ベクトルおよび固有値を計算してテンソルを求める。
図11および12は、ある実施態様における、ファイバーを生成およびトラッキングするプロセスを示すフローチャートである。図11は、ファイバートラックを生成するための前処理について示すフローチャートである。工程1102では、拡散重み付け画像(DWI)(a.k.a.ソースDTIボリューム)を負荷し、テンソルを計算してDWIのボクセルを求める。工程1104では、データのノイズを減少させることによってテンソルを平滑化するための処理を行う。ある実施態様において、ガウスの核を適用して、テンソルを平滑にする。別のいくつかの実施態様においては、本発明の範囲から逸脱せずに、別の処理を用いてもよい。工程1106では、固有ベクトルおよび固有値を計算してテンソルを求める。
図12は、ある実施態様において、ファイバー束を生成するためのトラッキング処理を表すフローチャートを示す。工程1202では、上述したように、参照ボリューム中に1以上のROIを特定する。例えば、多数のROIを選択することができ、および/または、ROIを3D ROIとして選択することができる。さらに、ある実施態様において、得られたファイバーが選択されたROIの全てを通るように(すなわち、交差モード)、一セットのROIを選択することができる。
工程1204では、最大固有値に対応する固有ベクトルを特定して、ROI中のボクセルのテンソルを調べる。代表的なファイバーのトラッキングは、この固有ベクトルの方向に沿って進む。
工程1206では、トラッキングは、現在のトラッキング方向に沿って短い距離を継続し、新たな点に到達する。ある実施態様において、該短い距離は、ステップ長と称され、それは固定値または適応値である。該ステップ長が固定される場合、該ステップ長は、ある値に固定されている。ある実施態様において、ユーザーは、上述したステップ長スライダーを調節することによって、この値を調節することができる。もしステップ長が適応値であれば、その距離は、前の点の上のテンソルの異方性値に従って、ファイバートラッキング処理中に変化する。
工程1208では、新たな点がソースDTIボリュームの境界外にある場合、トラッキングが終了する(1210)。特に、ある実施態様において、参照ボリュームは、ソースDTIボリュームの大きさを示すバウンディングボックスを持つ。新たな点がこのバウンディングボックスの外部にあれば、トラッキングは境界外となり、トラッキングは終了する。そうでない場合は、工程1212では、三線補間プロセスを用いて、新たな点において新たなテンソルを計算し、固有ベクトルと固有値を計算して新たなテンソルを求める。
工程1214では、新たなテンソルのフラクショナル異方性(FA新)値がFA1(すなわち、定義済みの閾値)以下であれば、トラッキングは終了する(1210)。工程1216では、FA新が、FA1とFA2の間であれば(但し、FA2は定義済みの閾値。FA2>FA1)、分離プロセスを用いて次の候補トラッキング方向を生成する。そうでない場合は、工程1218では、それぞれのファイバーのトラッキングが新たなテンソルの最大固有値に対応する固有ベクトルの方向に沿って進む。別のいくつかの実施態様において、本発明から逸脱せずに、FA以外の測定値を用いることができる。
工程1220では、現時点のトラッキング方向と次の候補トラッキング方向の間の偏差角が定義済みの閾値より大きい場合、トラッキングは終了する(1210)。そうでない場合は、工程1222では、次のトラッキング方向に沿ってファイバートラッキングが継続し、再び工程1206でプロセスを継続する。ある実施態様において、工程1202乃至1222は、特定されたROIで特定された一セットのボクセルについて行う。別のいくつかの実施態様において、本発明の範囲を逸脱せずに、記載したプロセスの一部を除外することができ、ならびに、追加プロセスを含ませることができる。
図13は、ある実施態様において、工程1216で述べたように、FA新がFA1とFA2の間にあるときのトラッキング方向を生成するプロセスを説明するフローチャートを示す図である。工程1302では、新たなテンソルの最大固有値に対応する固有ベクトルe1が決定される。工程1304では、工程1302において決定された固有ベクトル(e1)を用いた補間、および現在のトラッキング方向(Vin)を用いて次のトラッキング方向を生成する。ある実施態様において、補間は、ベクトル(v)=(1−w)*Vin+w*e1で表される線形補間を含む(但し、式中、wは、補間の重みを示す)。工程1306では、得られたベクトル(v)が次のトラッキング方向に割り当てられる。別のいくつかの実施態様において、本発明の範囲を逸脱せずに、トラッキングの方向を決定するために該補間の変更例を用いてもよい。
ある実施態様において、線形補間に用いられる重み(w)は、FA新の関数、FA新=f(w)である。ある実施態様において、FA新が小さくなれば、重み(w)もまた小さくなる。逆もまた然りである。
さらに、ある実施態様において、FA値のばらつきに相対させて、重みのばらつきを修正する。ある実施態様において、重みのばらつきを修正するために、二次放物線(f)を用いる。それは、(f)=a*w*w+b*w+c、で定義される。係数a、b、cは、ある実施態様においては、FA値と重みの好ましい対応を用いることに基づいて決定される。別のいくつかの実施態様において、本発明の範囲を逸脱せずに、補間のための重みの決定の変更例を用いてもよい。
結論
本開示の新規の技術の真意から逸脱せずに、本実施の形態は、多くの改変および変更が当業者によって成され得ることは明らかである。
本開示の新規の技術の真意から逸脱せずに、本実施の形態は、多くの改変および変更が当業者によって成され得ることは明らかである。
上記プロセスは、一セットの実行されるべき命令として、コンピュータシステムのメモリに保存することができる。さらに、上記プロセスを行うための命令は、別法として、磁気ディスクおよび光学ディスクを含む、他の形態の機械読取り可能媒体に保存することもできるであろう。例えば、上記プロセスは、ディスクドライブ(またはコンピュータ読取り可能媒体ドライブ)を介してアクセス可能な、磁気ディスクや光学ディスクなどの機械読取り可能媒体に保存することができる。さらに、命令は、データネットワークを介して、コンパイルされ、連結された形態でコンピュータ装置にダウンロードすることができる。
別法として、上記プロセスを行うためのロジックは、大規模集積回路(LSI)、専用集積回路(ASIC)、電気的に消去可能なプログラマブル読取専用メモリ(EEPROM)などのファームウェア、および電気的、工学的、音響的、および他の形態の伝達シグナル(例えば、搬送波、赤外線シグナル、デジタルシグナル、など)などの別個のハードウェアコンポーネントなど追加的なコンピュータおよび/または機械読取り可能媒体において実現することができるであろう。
本開示の新規の技術の真意から逸脱せずに、本実施の形態は、多くの改変および変更が当業者によって成され得ることは明らかである。
Claims (22)
- 入力制御に少なくとも3段階の空間的自由度を持つ入力インターフェースと、
少なくとも3段階の空間的自由度を持つ前記入力インターフェースで操作可能な拡散テンソルイメージング(DTI)モジュールとを含む、システム。 - 前記DTIモジュールは、ファイバー束を生成するために操作可能である、請求項1に記載のシステム。
- 前記DTIモジュールは、さらに、1つの参照ボリューム中に1以上の3D関心領域(ROI)を特定するために操作可能である、請求項2に記載のシステム。
- 前記DTIモジュールは、さらに、1つの3D ROIを通過するファイバー束を生成するために操作可能である、請求項3に記載のシステム。
- 前記システムは、ファイバーの3D立体画像を生成する、請求項4に記載のシステム。
- 前記DTIモジュールは、多数の3D ROIを通過するファイバー束を生成するために操作可能である、請求項5に記載のシステム。
- 前記DTIモジュールは、すべての前記3D ROIを通過するファイバー束を生成するために操作可能である、請求項6に記載のシステム。
- 前記DTIモジュールは、少なくとも第1および第2の3D ROIを通過するすべてのファイバー束を生成するために操作可能である、請求項7に記載のシステム。
- 前記参照ボリュームは、DTI、または、MRI、MRA、PET、SECT、もしくはCTとコレジスタされたDTIである、請求項3に記載のシステム。
- 入力制御に少なくとも3段階の空間的自由度を持つ前記入力インターフェースは、1以上のハンドヘルドの装置を含む、請求項1に記載のシステム。
- ハンドヘルドの装置は、表示された参照ボリュームと相互作用するために入力制御に少なくとも6段階の空間的自由度を含む、請求項10に記載のシステム。
- ハンドヘルドの装置は、表示されたコントロールパネルと相互作用するために操作可能である、請求項11に記載のシステム。
- ハンドヘルドの装置は、表示された参照ボリュームを取り入れるために操作可能である、請求項11に記載のシステム。
- 前記システムは、ハンドヘルドの装置に対応するバーチャルツールの描写を生成する、請求項11に記載のシステム。
- 前記バーチャルツールは、参照ボリューム内のROIを特定するために操作可能である、請求項14に記載のシステム。
- 前記バーチャルツールは、参照ボリューム内のROIを特定するための3Dオブジェクト参照を含む、請求項15に記載のシステム。
- 参照ボリューム内のROIを特定するための前記3Dオブジェクト参照の大きさは、リアルタイムで調整可能である、請求項16に記載のシステム。
- 3D空間的相互作用操作を提供する入力インターフェースと、
3D空間的相互作用操作を提供する入力インターフェースで操作可能な拡散テンソルイメージング(DTI)モジュールと、
を含む、システム。 - 参照ボリュームの拡散テンソルを計算するステップと、
前記参照ボリュームを、入力インターフェースを介して相互作用させ、関心領域(ROI)を特定するステップとを含み、
前記入力インターフェースは、入力制御に少なくとも3段階の空間的自由度を持つ、方法。 - 前記方法は、1つのROIを通過するファイバートラックを生成するステップをさらに含む、請求項19に記載の方法。
- 前記方法は、前記ROIは、3D ROIを含む、請求項20に記載の方法。
- 一セットの命令を保存している機械読取り可能媒体であって、実行されたとき、それは、参照ボリュームの拡散テンソルを計算するステップと、前記参照ボリュームを入力インターフェースを介して相互作用させ、関心領域(ROI)を特定するステップとを含む方法を行い、前記インターフェースは、入力制御に少なくとも3段階の空間的自由度を持つ入力インターフェースである、機械読取り可能媒体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US74119405P | 2005-11-30 | 2005-11-30 | |
US11/336,269 US20070165989A1 (en) | 2005-11-30 | 2006-01-20 | Method and systems for diffusion tensor imaging |
PCT/SG2006/000369 WO2007064302A2 (en) | 2005-11-30 | 2006-11-30 | Method and system for diffusion tensor imaging |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009525058A true JP2009525058A (ja) | 2009-07-09 |
Family
ID=38092672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008543245A Pending JP2009525058A (ja) | 2005-11-30 | 2006-11-30 | 拡散テンソルイメージングのための方法およびシステム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20070165989A1 (ja) |
EP (1) | EP1958152A2 (ja) |
JP (1) | JP2009525058A (ja) |
WO (1) | WO2007064302A2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013017577A (ja) * | 2011-07-08 | 2013-01-31 | Toshiba Corp | 画像処理システム、装置、方法及び医用画像診断装置 |
JP2013123227A (ja) * | 2012-12-25 | 2013-06-20 | Toshiba Corp | 画像処理システム、装置、方法及び医用画像診断装置 |
JP2017531501A (ja) * | 2014-10-17 | 2017-10-26 | シナプティヴ メディカル (バルバドス) インコーポレイテッドSynaptive Medical (Barbados) Inc. | 医用画像相関図のシステム及び方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105913465A (zh) * | 2016-04-07 | 2016-08-31 | 浙江工业大学 | 一种基于全局稀疏正则化模型的纤维重构方法 |
CN105913420A (zh) * | 2016-04-07 | 2016-08-31 | 浙江工业大学 | 一种高阶张量的纤维取向分布估计稀疏去卷积方法 |
CN106097359A (zh) * | 2016-06-16 | 2016-11-09 | 浙江工业大学 | 一种基于磁共振成像的自适应局部特征提取方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5230623A (en) * | 1991-12-10 | 1993-07-27 | Radionics, Inc. | Operating pointer with interactive computergraphics |
WO1995004940A1 (en) * | 1993-08-06 | 1995-02-16 | The Government Of The United States Of America, Represented By The Secretary Of The Department Of Health And Human Services | Method and system for measuring the diffusion tensor and for diffusion tension imaging |
US5512826A (en) * | 1995-06-02 | 1996-04-30 | General Electric Company | Screen-based interactive image-plane prescription for MRI |
US6083163A (en) * | 1997-01-21 | 2000-07-04 | Computer Aided Surgery, Inc. | Surgical navigation system and method using audio feedback |
US5969524A (en) * | 1997-04-14 | 1999-10-19 | The United States Of America As Represented By The Department Of Health And Human Services | Method to significantly reduce bias and variance of diffusion anisotrophy measurements |
US6526305B1 (en) * | 1998-11-25 | 2003-02-25 | The Johns Hopkins University | Method of fiber reconstruction employing data acquired by magnetic resonance imaging |
US6845342B1 (en) * | 1999-05-21 | 2005-01-18 | The United States Of America As Represented By The Department Of Health And Human Services | Determination of an empirical statistical distribution of the diffusion tensor in MRI |
US6463315B1 (en) * | 2000-01-26 | 2002-10-08 | The Board Of Trustees Of The Leland Stanford Junior University | Analysis of cerebral white matter for prognosis and diagnosis of neurological disorders |
US6998841B1 (en) * | 2000-03-31 | 2006-02-14 | Virtualscopics, Llc | Method and system which forms an isotropic, high-resolution, three-dimensional diagnostic image of a subject from two-dimensional image data scans |
AU2002338376A1 (en) * | 2001-04-06 | 2002-10-21 | Lawrence R. Frank | Method for analyzing mri diffusion data |
US6859203B2 (en) * | 2002-05-15 | 2005-02-22 | Koninklijke Philips Electronics N.V. | Sweeping real-time single point fiber |
US6806705B2 (en) * | 2002-05-15 | 2004-10-19 | Koninklijke Philips Electronics N.V. | Diffusion tensor magnetic resonance imaging including local weighted interpolation |
US6642716B1 (en) * | 2002-05-15 | 2003-11-04 | Koninklijke Philips Electronics, N.V. | Diffusion tensor magnetic resonance imaging including fiber rendering using hyperstreamlines |
JP4248822B2 (ja) * | 2002-08-29 | 2009-04-02 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 線維描出方法および線維描出装置 |
US6969991B2 (en) * | 2002-12-11 | 2005-11-29 | The Board Of Trustees Of The Leland Stanford Junior University | Correction of the effect of spatial gradient field distortions in diffusion-weighted imaging |
US6853189B1 (en) * | 2003-05-19 | 2005-02-08 | Catholic Healthcare West, California Nonprofit Public Benefit Corporation | Method and system of quantitatively assessing diffusion characteristics in a tissue |
US7657071B2 (en) * | 2005-04-11 | 2010-02-02 | Siemens Medical Solutions Usa, Inc. | Systems, devices, and methods for bundle segmentation in diffusion tensor magnetic resonance imaging |
-
2006
- 2006-01-20 US US11/336,269 patent/US20070165989A1/en not_active Abandoned
- 2006-11-30 WO PCT/SG2006/000369 patent/WO2007064302A2/en active Application Filing
- 2006-11-30 JP JP2008543245A patent/JP2009525058A/ja active Pending
- 2006-11-30 EP EP06813148A patent/EP1958152A2/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013017577A (ja) * | 2011-07-08 | 2013-01-31 | Toshiba Corp | 画像処理システム、装置、方法及び医用画像診断装置 |
JP2013123227A (ja) * | 2012-12-25 | 2013-06-20 | Toshiba Corp | 画像処理システム、装置、方法及び医用画像診断装置 |
JP2017531501A (ja) * | 2014-10-17 | 2017-10-26 | シナプティヴ メディカル (バルバドス) インコーポレイテッドSynaptive Medical (Barbados) Inc. | 医用画像相関図のシステム及び方法 |
US10078896B2 (en) | 2014-10-17 | 2018-09-18 | Synaptive Medical (Barbados) Inc. | System and method for connectivity mapping |
Also Published As
Publication number | Publication date |
---|---|
EP1958152A2 (en) | 2008-08-20 |
WO2007064302A3 (en) | 2009-03-05 |
WO2007064302A2 (en) | 2007-06-07 |
US20070165989A1 (en) | 2007-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009525510A (ja) | ファイバートラッキングのための方法およびシステム | |
US9014438B2 (en) | Method and apparatus featuring simple click style interactions according to a clinical task workflow | |
US20070279435A1 (en) | Method and system for selective visualization and interaction with 3D image data | |
US20070279436A1 (en) | Method and system for selective visualization and interaction with 3D image data, in a tunnel viewer | |
JP5318877B2 (ja) | データセットのボリュームレンダリングのための方法及び装置 | |
US20060173268A1 (en) | Methods and systems for controlling acquisition of images | |
JP6139143B2 (ja) | 医用画像処理装置及び医用画像処理プログラム | |
EP2745266B1 (en) | Interactive live segmentation with automatic selection of optimal tomography slice | |
CN103402435B (zh) | 医用图像处理装置及医用图像处理方法 | |
US20100208968A1 (en) | Occlusion Reduction and Magnification for Multidimensional Data Presentations | |
US7386153B2 (en) | Medical image segmentation apparatus and method thereof | |
US20210353371A1 (en) | Surgical planning, surgical navigation and imaging system | |
US20130009957A1 (en) | Image processing system, image processing device, image processing method, and medical image diagnostic device | |
EP2116977A2 (en) | Method for editing 3D image segmentation maps | |
CN101535828A (zh) | 用于扩散张量成像的方法和系统 | |
JP2009525058A (ja) | 拡散テンソルイメージングのための方法およびシステム | |
US20150086956A1 (en) | System and method for co-registration and navigation of three-dimensional ultrasound and alternative radiographic data sets | |
Joshi et al. | Novel interaction techniques for neurosurgical planning and stereotactic navigation | |
CN116958486A (zh) | 一种基于卷积神经网络的医学图像处理方法及系统 | |
JP2006516909A (ja) | 医療画像表示方法及び装置 | |
CN101563707A (zh) | 用于纤维跟踪的方法和系统 | |
Fairfield et al. | Volume curtaining: a focus+ context effect for multimodal volume visualization | |
Bruckner et al. | Integrating volume visualization techniques into medical applications | |
US20230237711A1 (en) | Augmenting a medical image with an intelligent ruler | |
Lai et al. | Designs and Implementation of Three Dimensional Nuchal Translucency |