JP2009522810A5 - - Google Patents

Download PDF

Info

Publication number
JP2009522810A5
JP2009522810A5 JP2008549523A JP2008549523A JP2009522810A5 JP 2009522810 A5 JP2009522810 A5 JP 2009522810A5 JP 2008549523 A JP2008549523 A JP 2008549523A JP 2008549523 A JP2008549523 A JP 2008549523A JP 2009522810 A5 JP2009522810 A5 JP 2009522810A5
Authority
JP
Japan
Prior art keywords
substrate
processing
zone
determining
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008549523A
Other languages
Japanese (ja)
Other versions
JP2009522810A (en
Filing date
Publication date
Priority claimed from US11/326,646 external-priority patent/US20070158201A1/en
Application filed filed Critical
Publication of JP2009522810A publication Critical patent/JP2009522810A/en
Publication of JP2009522810A5 publication Critical patent/JP2009522810A5/ja
Pending legal-status Critical Current

Links

Claims (15)

基板を処理するための方法において、
基板に対する処理ターゲットを決定するステップと、
上記基板の表面を電気化学的に処理するステップと、
処理の間に予測処理指標と実際処理指標との間の偏差を決定するステップと、
上記偏差に応答して処理中に少なくとも1つの処理変数を変えるステップと、
を備えた方法。
In a method for processing a substrate,
Determining a processing target for the substrate;
Electrochemically treating the surface of the substrate;
Determining a deviation between a predicted process indicator and an actual process indicator during processing;
Changing at least one process variable during processing in response to the deviation;
With a method.
上記処理ターゲットを決定するステップは、処理すべき上記表面についてのプロファイルを決定する段階を更に含む、請求項1に記載の方法。   The method of claim 1, wherein determining the processing target further comprises determining a profile for the surface to be processed. 上記処理ターゲットを決定するステップは、上記基板上の複数の場所に配置される膜の厚さを決定する段階を更に含む、請求項1に記載の方法。 The method of claim 1, wherein determining the processing target further comprises determining a thickness of a film disposed at a plurality of locations on the substrate. 上記厚さは、渦電流型感知法、容量型感知法又は干渉分光法のうちの少なくとも1つである非破壊測定技法により決定される、請求項3に記載の方法。 4. The method of claim 3, wherein the thickness is determined by a non-destructive measurement technique that is at least one of eddy current sensing, capacitive sensing, or interferometry . 上記少なくとも1つの処理変数を変えるステップは、上記電気化学的処理を行う電流または電圧を調整する段階を更に含む、請求項1に記載の方法。 The method of claim 1, wherein changing the at least one process variable further comprises adjusting a current or voltage to perform the electrochemical process. 上記表面を電気化学的に処理するステップは、
研磨材料に対して上記基板の表面を押し付ける段階と、
前記研磨材料と上記基板の表面との間に相対的運動を確立する段階と、
を更に含む、請求項1に記載の方法。
The step of electrochemically treating the surface comprises:
Pressing the surface of the substrate against an abrasive material;
Establishing a relative motion between the abrasive material and the surface of the substrate;
The method of claim 1, further comprising:
上記基板の表面を電気化学的に処理するステップは、
上記基板の表面から離間された電極に対して上記基板の表面をバイアスする段階と、
上記電極及び上記基板の表面と接触させるように電解質を与える段階と、
を更に含む、請求項1に記載の方法。
The step of electrochemically treating the surface of the substrate comprises:
Biasing the surface of the substrate against an electrode spaced from the surface of the substrate;
Providing an electrolyte in contact with the electrode and the surface of the substrate;
The method of claim 1, further comprising:
上記基板の表面を電気化学的に処理するステップは、
電解質の存在中で導電性ポリマー表面に対して上記基板の表面を押し付ける段階と、
上記導電性ポリマー表面を介して上記基板の表面に電気的バイアスを印加する段階と、
上記基板の表面と上記導電性ポリマー表面との間に相対的運動を与える段階と、
を更に含む、請求項1に記載の方法。
The step of electrochemically treating the surface of the substrate comprises:
Pressing the surface of the substrate against the surface of the conductive polymer in the presence of an electrolyte;
Applying an electrical bias to the surface of the substrate through the conductive polymer surface;
Providing relative motion between the surface of the substrate and the surface of the conductive polymer;
The method of claim 1, further comprising:
上記基板の表面を電気化学的に処理するステップは、
プラテンによって支持された絶縁性ポリマー表面に対して上記基板の表面を押し付ける段階と、
上記基板の表面と上記プラテンにより支持された電極との間に電解質を介して導電路を確立する段階と、
上記プラテンから延る電気的コンタクトを介して上記基板の表面に電気的バイアスを印加する段階と、
上記基板の表面と上記絶縁性ポリマー表面との間に相対的運動を与える段階と、
を更に含む、請求項1に記載の方法。
The step of electrochemically treating the surface of the substrate comprises:
Pressing the surface of the substrate against an insulating polymer surface supported by a platen;
Establishing a conductive path via an electrolyte between the surface of the substrate and the electrode supported by the platen;
Applying an electrical bias to the surface of the substrate through the electrical contacts Ru extending beauty from said platen,
Providing relative motion between the surface of the substrate and the surface of the insulating polymer;
The method of claim 1, further comprising:
上記決定するステップは、
予測電流を測定電流と比較する段階、上記基板から除去される予測電荷を測定電荷と比較する段階、上記電気化学的処理中に予測厚さを実際厚さと比較する段階のうち少なくとも一つの段階
を更に含む、請求項1に記載の方法。
The determining step is
At least one of a step of comparing a predicted current with a measured current, comparing a predicted charge removed from the substrate with a measured charge, and comparing a predicted thickness with an actual thickness during the electrochemical process < The method of claim 1, further comprising:
上記少なくとも1つの処理変数を変えるステップは、第1の処理ゾーンにおける処理変数を第2の処理ゾーンに対する処理変数とは独立して調整し、各処理ゾーンにおける電気化学的除去割合が独立して制御されるようにする段階を更に含む、請求項1に記載の方法。   The step of changing the at least one process variable adjusts the process variable in the first process zone independently of the process variable for the second process zone and controls the electrochemical removal rate in each process zone independently. The method of claim 1, further comprising the step of: 上記電気化学的処理を行う電圧Vは、偏差Dに応答して変えられ、ここで、Vは、上記電気化学的処理が行われる処理システムの各処理ゾーンに印加されるバイス電圧であり、Dは、上記処理システムの各処理ゾーンにおける予測処理指標と実際処理指標との間の偏差であり、iは、上記処理システムにおける横方向に配列された処理ゾーンの数であるような、請求項1に記載の方法。 Voltage V i to perform the electrochemical process, varying gills are in response to the deviation D i, where, V i is By A applied to each processing zone of the processing system in which the electrochemical treatment is carried out a scan voltage, D i is the deviation between the actual processing index and prediction processing indicator in the processing zone of the processing system, i is, the number of treatment zones arranged in the lateral direction in the processing system The method according to claim 1, as described above. Viは、次の式で表され、
ここで、
Ieは、ゾーンiについての電流のエラーであり、
Ceは、ゾーンiについての電荷のエラーであり、
P、I及びDは、定数である、
請求項16に記載の方法。
Vi is expressed by the following equation:
here,
Ie i is the current error for zone i,
Ce i is the charge error for zone i,
P, I and D are constants,
The method of claim 16.
基板を処理するための方法において、
ターゲットプロファイル及び上記ターゲットプロファイルを達成するための予測処理指標を決定するステップと、
複数のゾーンを有する電極を備える処理パッドアセンブリに対して基板の導電性表面を接触させるステップと、
上記基板の上記導電性表面と上記電極の少なくとも1つのゾーンとの間に電解質を介して導電路を確立するステップと、
上記基板の上記導電性表面と上記電極の各ゾーンとの間にれる電気的バイアスを独立して制御するステップと、
処理の間に予測処理指標と実際処理指標との間の偏差を決定するステップと、
上記偏差に応答して処理中に少なくとも1つの処理変数を変えるステップと、
を備えた方法。
In a method for processing a substrate,
Determining a target profile and a predictive processing indicator for achieving the target profile;
Contacting the conductive surface of the substrate against a processing pad assembly comprising an electrode having a plurality of zones;
Establishing a conductive path via an electrolyte between the conductive surface of the substrate and at least one zone of the electrode;
A step of independently controlling the electrical bias applied to between each zone of the conductive surface and the electrode of the substrate,
Determining a deviation between a predicted process indicator and an actual process indicator during processing;
Changing at least one process variable during processing in response to the deviation;
With a method.
基板を処理するための方法において、
ターゲットプロファイル及び上記ターゲットプロファイルを達成するための予測処理指標を決定するステップと、
複数のゾーンを有する電極を備える処理パッドアセンブリに対して基板の導電性表面を接触させるステップと、
上記基板の上記導電性表面と上記電極の少なくとも1つのゾーンとの間に電解質を介して導電路を確立するステップと、
上記基板の上記導電性表面と上記電極の各ゾーンとの間にれる電気的バイアスを独立して制御するステップと、
少なくとも1つのゾーンにおいて上記ターゲットプロファイルを達成するのに必要とされる予測処理時間の変化を決定するステップと、
上記決定された変化を補償するように上記電気化学的処理を調整するステップと、
を備えた方法。
In a method for processing a substrate,
Determining a target profile and a predictive processing indicator for achieving the target profile;
Contacting the conductive surface of the substrate against a processing pad assembly comprising an electrode having a plurality of zones;
Establishing a conductive path via an electrolyte between the conductive surface of the substrate and at least one zone of the electrode;
A step of independently controlling the electrical bias applied to between each zone of the conductive surface and the electrode of the substrate,
Determining a change in predicted processing time required to achieve the target profile in at least one zone;
Adjusting the electrochemical treatment to compensate for the determined change;
With a method.
JP2008549523A 2006-01-06 2006-12-21 Electrochemical processing by dynamic processing control Pending JP2009522810A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/326,646 US20070158201A1 (en) 2006-01-06 2006-01-06 Electrochemical processing with dynamic process control
PCT/US2006/062476 WO2007120357A2 (en) 2006-01-06 2006-12-21 Electrochemical processing with dynamic process control

Publications (2)

Publication Number Publication Date
JP2009522810A JP2009522810A (en) 2009-06-11
JP2009522810A5 true JP2009522810A5 (en) 2009-10-15

Family

ID=38231698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008549523A Pending JP2009522810A (en) 2006-01-06 2006-12-21 Electrochemical processing by dynamic processing control

Country Status (4)

Country Link
US (1) US20070158201A1 (en)
JP (1) JP2009522810A (en)
TW (1) TW200733216A (en)
WO (1) WO2007120357A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192605B2 (en) * 2009-02-09 2012-06-05 Applied Materials, Inc. Metrology methods and apparatus for nanomaterial characterization of energy storage electrode structures
WO2014149330A1 (en) 2013-03-15 2014-09-25 Applied Materials, Inc. Dynamic residue clearing control with in-situ profile control (ispc)
US9286930B2 (en) * 2013-09-04 2016-03-15 Seagate Technology Llc In-situ lapping plate mapping device
JP2021152202A (en) * 2020-03-23 2021-09-30 キオクシア株式会社 Anodizing device
CN113622015B (en) * 2021-10-12 2021-12-24 深圳市景星天成科技有限公司 Online electrolytic polishing monitoring system
CN115142112A (en) * 2022-09-01 2022-10-04 徐州千帆标识系统工程有限公司 Multi-angle efficient electroplating device and method for metal label

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA929891A (en) * 1968-08-07 1973-07-10 Inoue Kiyoshi Adaptive ion-control system for electrochemical machining
US6848970B2 (en) * 2002-09-16 2005-02-01 Applied Materials, Inc. Process control in electrochemically assisted planarization
US20040182721A1 (en) * 2003-03-18 2004-09-23 Applied Materials, Inc. Process control in electro-chemical mechanical polishing
US6991528B2 (en) * 2000-02-17 2006-01-31 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US6582281B2 (en) * 2000-03-23 2003-06-24 Micron Technology, Inc. Semiconductor processing methods of removing conductive material
US7134934B2 (en) * 2000-08-30 2006-11-14 Micron Technology, Inc. Methods and apparatus for electrically detecting characteristics of a microelectronic substrate and/or polishing medium
JP2002093761A (en) * 2000-09-19 2002-03-29 Sony Corp Polishing method, polishing system, plating method and plating system
JP2002110592A (en) * 2000-09-27 2002-04-12 Sony Corp Polishing method and apparatus
US6866763B2 (en) * 2001-01-17 2005-03-15 Asm Nutool. Inc. Method and system monitoring and controlling film thickness profile during plating and electroetching
WO2002085570A2 (en) * 2001-04-24 2002-10-31 Applied Materials, Inc. Conductive polishing article for electrochemical mechanical polishing
US6837983B2 (en) * 2002-01-22 2005-01-04 Applied Materials, Inc. Endpoint detection for electro chemical mechanical polishing and electropolishing processes
US6951599B2 (en) * 2002-01-22 2005-10-04 Applied Materials, Inc. Electropolishing of metallic interconnects
JP3843871B2 (en) * 2002-03-26 2006-11-08 ソニー株式会社 Electropolishing method and semiconductor device manufacturing method
WO2004024394A1 (en) * 2002-09-16 2004-03-25 Applied Materials, Inc. Control of removal profile in electrochemically assisted cmp
TWI285576B (en) * 2003-06-06 2007-08-21 Applied Materials Inc Conductive polishing article for electrochemical mechanical polishing
US20070108066A1 (en) * 2005-10-28 2007-05-17 Applied Materials, Inc. Voltage mode current control

Similar Documents

Publication Publication Date Title
JP2009522810A5 (en)
US7837851B2 (en) In-situ profile measurement in an electroplating process
US8043870B2 (en) CMP pad thickness and profile monitoring system
JP5316904B2 (en) Method for inspecting width of coating film and inspection apparatus used for the inspection method
JP2005303099A5 (en)
Horny et al. Electrochemical DNA biosensors based on long-range electron transfer: investigating the efficiency of a fluidic channel microelectrode compared to an ultramicroelectrode in a two-electrode setup
US6808590B1 (en) Method and apparatus of arrayed sensors for metrological control
TW200609515A (en) Probe of probe card and manufacturing method thereof
RU2589526C2 (en) System and method of determining thickness of analysed layer in multilayer structure
WO2015198185A1 (en) Electrochemical coating stress sensor, apparatus and method for accurately monitoring and controlling electrochemical reactions and material coating
JP2009522810A (en) Electrochemical processing by dynamic processing control
US8721860B2 (en) Protein multi-blotting method and device
US20220397550A1 (en) Horizontal electrophoresis apparatus
KR20100092240A (en) Wafer test method and wafer test apparatus
WO2004111314B1 (en) Algorithm for real-time process control of electro-polishing
RU2676816C1 (en) Electrotechnical steel strip with the oriented structure continuous electrolytic etching method and device for the electrotechnical steel strip with the oriented structure continuous electrolytic etching
CN106471862B (en) Direct resistance heating method and method for producing press-molded article
Sheffer et al. Why is copper locally etched by scanning electrochemical microscopy?
US20160167960A1 (en) Method for Producing a Microelectromechanical Transducer
JP4225843B2 (en) Circuit board inspection equipment
WO2019203094A1 (en) Method for acquiring current value data and device for measuring current
KR101982506B1 (en) Controlling system of flatness
WO2019176412A1 (en) Current measuring method
JP2009160738A (en) Intaglio, contact detecting device, printing device and contact detection method
SU808834A1 (en) Method of measuring surface routhness