JP2009302644A - Receiver for spread spectrum communication - Google Patents

Receiver for spread spectrum communication Download PDF

Info

Publication number
JP2009302644A
JP2009302644A JP2008151731A JP2008151731A JP2009302644A JP 2009302644 A JP2009302644 A JP 2009302644A JP 2008151731 A JP2008151731 A JP 2008151731A JP 2008151731 A JP2008151731 A JP 2008151731A JP 2009302644 A JP2009302644 A JP 2009302644A
Authority
JP
Japan
Prior art keywords
signal
ternary
reference phase
spread spectrum
accumulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008151731A
Other languages
Japanese (ja)
Other versions
JP4598104B2 (en
Inventor
Hiroaki Yamamoto
博明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008151731A priority Critical patent/JP4598104B2/en
Publication of JP2009302644A publication Critical patent/JP2009302644A/en
Application granted granted Critical
Publication of JP4598104B2 publication Critical patent/JP4598104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a receiver for spread spectrum communication which are simultaneously receivable from a plurality of transmissions, without having to use a multi-bit A/D. <P>SOLUTION: The receiver for spread spectrum communication is provided with: a quadrature detection part 200, which comprises a first multiplier 52 for multiplying a 1 bit quantization signal 49 and a first reference phase signal generated by an oscillator 50; a first accumulator 54 for accumulating outputs of the multiplier 52; a first ternary converter 56 for performing ternary conversion to output of the first accumulator 54; a phase shifter 51 for performing π/2 phase shifting to a first reference phase signal, to generate a second reference phase signal orthogonal to the first reference phase signal; a second multiplier 53 for multiplying the quantization signal 49 and the second reference phase signal; a second accumulator 55 for accumulating the outputs of the second multiplier 53 for accumulating outputs of the second multiplier; and a second ternary converter 57 for performing ternary conversion on the outputs of the second accumulator 55; and a despreading part 300 for performing despreading to signals ternary converted that are outputted by the first and second ternary converters 56 and 57. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、直接スペクトル拡散通信の受信機に関し、更に詳しくは、同時アクセス数が少ない用途向のデジタル式復調回路に関する。   The present invention relates to a receiver for direct spread spectrum communication, and more particularly to a digital demodulator circuit for applications with a small number of simultaneous accesses.

現在、スペクトル拡散通信技術の移動体通信への適用が盛んに進められており、中でも直接拡散方式を使った多元接続方式であるCDMA(code division multiple access:符号分割多重アクセス方式)が利用されている。
この多元接続方式では、等電力制御や同時アクセス数に応じたA/Dビット数のA/D変換器などが必要である。
このような中で、例えば特開2008−92267号公報の車載機器遠隔制御システムで示されている「同時アクセス数が少ない車両用電子キーシステム」のような用途向けとして、低コストで小型の「スペクトル拡散通信の受信機」の開発も望まれている。
Currently, spread spectrum communication technology is actively applied to mobile communications, and among them, CDMA (code division multiple access), which is a multiple access method using a direct spreading method, is used. Yes.
In this multiple access method, an A / D converter having the number of A / D bits corresponding to the equal power control and the number of simultaneous accesses is required.
Under such circumstances, for example, a low-cost and small-sized “for a vehicle electronic key system with a small number of simultaneous accesses” shown in the in-vehicle device remote control system disclosed in Japanese Patent Application Laid-Open No. 2008-92267. Development of a "spread spectrum receiver" is also desired.

スペクトル拡散通信の特徴を保持して、多ビットA/D変換器を使用しないで低コストを実現する従来の例の一つとして、特開平7−183831号公報(特許文献1)に示されたデジタル通信装置がある。
特開平7−183831号公報では、位相偏移変調(PSK:phase shift keying)のデジタル復調で多ビットA/D変換器を使用していたものを、直接スペクトル拡散された信号で1ビット量子化して標本化し、1ビットのA/D変換器(コンパレータ)を用いて多ビット量子化と同等な通信を行うことができるデジタル通信装置が記載されている。
特開平7−183831号公報
Japanese Patent Laid-Open No. 7-183831 (Patent Document 1) shows one of the conventional examples that realize the low cost without using the multi-bit A / D converter while retaining the characteristics of the spread spectrum communication. There are digital communication devices.
In Japanese Patent Application Laid-Open No. 7-183831, a multi-bit A / D converter used for digital demodulation of phase shift keying (PSK) is quantized by 1 bit with a directly spectrum spread signal. A digital communication device that can perform sampling and communication equivalent to multi-bit quantization using a 1-bit A / D converter (comparator) is described.
Japanese Patent Laid-Open No. 7-183831

特開平7−183831号公報には、スペクトル拡散通信の一つの特徴である多元接続についての記載はないが、特開平7−183831号公報で開示されている「直交検波後の信号を1ビットに量子化する方法」では、同時に2つ以上の信号を受信した場合、正しく復調できない。   In Japanese Patent Laid-Open No. 7-183831, there is no description about multiple access, which is one of the characteristics of spread spectrum communication. However, as disclosed in Japanese Patent Laid-Open No. 7-183831, “a signal after quadrature detection is converted into one bit. In the “quantization method”, when two or more signals are received at the same time, they cannot be demodulated correctly.

本発明は、このような問題点を解決するためになされたものであり、1ビットA/D変換器で構成されていても、同時に複数の信号を受信した場合も正しく復調できる小型で安価なスペクトル拡散通信の受信機を提供することを目的とする。   The present invention has been made to solve such problems, and is small and inexpensive that can be correctly demodulated even when a plurality of signals are received at the same time even if it is constituted by a 1-bit A / D converter. An object is to provide a receiver for spread spectrum communication.

本発明に係るスペクトル拡散通信の受信機は、スペクトル拡散により拡散した情報信号を位相偏移変調して通信を行うスペクトル拡散通信の受信機であって、受信する位相偏移変調信号を中間周波数の信号にダウンシフトする周波数ダウンシフト手段と、前記周波数ダウンシフト手段から出力する中間周波数の信号を1ビットの量子化信号に変換するA/D変換手段と、前記A/D変換手段により変換された前記量子化信号と発振器で生成される第1の基準位相信号とを乗算するる第1の乗算手段、前記第1の乗算手段の出力を所定時間累積する第1の累積手段、前記第1の累積手の出力を3値変換する第1の3値変換手段、前記第1の基準位相信号をπ/2移相して前記第1の基準位相信号と直交する第2の基準位相信号を生成する移相手段、前記量子化信号と前記第2の基準位相信号とを乗算する第2の乗算手段、前記第2の乗算手段の出力を所定時間累積する第2の累積手段、前記第2の累積手段の出力を3値変換する第2の3値変換手段とで構成される直交検波手段と、前記直交検波手段の前記第1の3値変換手段および前記第2の3値変換手段から出力する3値変換された信号を逆拡散して2値符号化された2値受信データを得る逆拡散手段を備えているものである。   A spread spectrum communication receiver according to the present invention is a spread spectrum communication receiver that performs communication by performing phase shift keying on an information signal spread by spread spectrum, and receives a phase shift key modulation signal to be received at an intermediate frequency. Frequency downshift means for downshifting to a signal, A / D conversion means for converting an intermediate frequency signal output from the frequency downshift means into a 1-bit quantized signal, and conversion by the A / D conversion means A first multiplier for multiplying the quantized signal by a first reference phase signal generated by an oscillator; a first accumulator for accumulating an output of the first multiplier for a predetermined time; First ternary conversion means for ternary conversion of the output of the accumulated hand, and generating a second reference phase signal orthogonal to the first reference phase signal by shifting the first reference phase signal by π / 2. Transferee , Second multiplying means for multiplying the quantized signal and the second reference phase signal, second accumulating means for accumulating the output of the second multiplying means for a predetermined time, and output of the second accumulating means. Quadrature detection means composed of second ternary conversion means for ternary conversion of the signal, and ternary conversion output from the first ternary conversion means and the second ternary conversion means of the quadrature detection means And despreading means for despreading the received signal to obtain binary-encoded binary-coded data.

本発明によれば、受信する位相偏移変調信号を周波数ダウンシフトした中間周波数の信号を1ビットのA/D変換手段(A/D変換器)により1ビットの量子化信号に変換しているが、同時に複数の信号を受信した場合でも正しく復調することが可能であり、小型で安価なスペクトル拡散通信の受信機を実現できる。   According to the present invention, an intermediate frequency signal obtained by down-shifting a received phase shift keying signal is converted into a 1-bit quantized signal by a 1-bit A / D converter (A / D converter). However, even when a plurality of signals are received at the same time, it can be demodulated correctly, and a small and inexpensive spread spectrum communication receiver can be realized.

以下、図面に基づいて、本発明の一実施の形態例について説明する。
実施の形態1.
図1は、スペクトラム拡散通信における送信機の構成例を示すブロック図である。
図において、1次変調器15は、図示しないECU(電子制御装置)からの2値送信データ(情報信号)10が“0”の区間はPN符号生成器11で生成される拡散符号(PN0)12を選択し、2値送信データ10が“1”の区間はPN符号生成器13で生成される拡散信号(PN1)14を選択し、直接スペクトラム拡散信号である1次変調信号16を生成する。
1次変調器15からの1次変調信号16により搬送波発生器17の搬送波を変調部18で位相偏移変調(PSK)した2次変調信号19を生成し、生成された2次変調信号19を増幅器20で増幅して送信アンテナ2から電波として送信する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram illustrating a configuration example of a transmitter in spread spectrum communication.
In the figure, a primary modulator 15 is a spreading code (PN0) generated by a PN code generator 11 in a section where binary transmission data (information signal) 10 from an ECU (electronic control unit) (not shown) is “0”. 12 is selected, the spread signal (PN1) 14 generated by the PN code generator 13 is selected in a section where the binary transmission data 10 is “1”, and the primary modulation signal 16 which is a direct spread spectrum signal is generated. .
Based on the primary modulation signal 16 from the primary modulator 15, a secondary modulation signal 19 is generated by phase shift keying (PSK) the carrier wave of the carrier generator 17 by the modulation unit 18, and the generated secondary modulation signal 19 is Amplified by the amplifier 20 and transmitted as a radio wave from the transmitting antenna 2.

図2は、実施の形態1によるスペクトラム拡散通信の受信機の構成例を示すブロック図である。
図2に示すように、受信機4では、受信アンテナ3で受信された信号(即ち、送信機1から送信されてくる位相偏移変調信号19)を、この通信で使用する帯域のみを通過させるバンドパスフィルタ(BPF)40で濾過し、このバンドパスフィルタ(BPF)40で濾過された信号を増幅器41で増幅し、増幅器41で増幅された信号と局部発振器42からの信号を乗算器43で乗算し、乗算器43の出力を低域通過フィルタ(LPF)44を通すことによって低い周波数の中間周波数とする。
つまり、局部発振器42、乗算器43および低域通過フィルタ44は、受信機4が受信する位相偏移変調信号を中間周波数の信号にダウンシフトする周波数ダウンシフト手段を構成している。
この周波数ダウンシフト手段でダウンシフトされた中間周波数の信号を1ビットのA/D変換器(A/D変換手段)45によって1ビット量子化し、中間周波数のデジタル信号49としてデジタル処理部5に出力する。
FIG. 2 is a block diagram showing a configuration example of a spread spectrum communication receiver according to the first embodiment.
As shown in FIG. 2, in the receiver 4, the signal received by the receiving antenna 3 (that is, the phase shift keying signal 19 transmitted from the transmitter 1) is allowed to pass through only the band used in this communication. The signal is filtered by the band pass filter (BPF) 40, the signal filtered by the band pass filter (BPF) 40 is amplified by the amplifier 41, and the signal amplified by the amplifier 41 and the signal from the local oscillator 42 are multiplied by the multiplier 43. Multiplication is performed, and the output of the multiplier 43 is passed through a low-pass filter (LPF) 44 to obtain a low intermediate frequency.
That is, the local oscillator 42, the multiplier 43, and the low-pass filter 44 constitute frequency downshift means for downshifting the phase shift keying signal received by the receiver 4 to an intermediate frequency signal.
The intermediate frequency signal downshifted by the frequency downshift means is quantized 1 bit by a 1-bit A / D converter (A / D conversion means) 45 and output to the digital processing unit 5 as an intermediate frequency digital signal 49. To do.

図3は、図2に示したデジタル処理部5の構成を示すブロック図である。
図に示すように、デジタル処理部5は、直交検波部(直交検波手段)200と逆拡散部(逆拡散手段)300とで構成されている。
直交検波部(直交検波手段)200には、「I系列処理ルート」と「Q系列処理ルート」の2つの信号処理ルートがある。
「I系列処理ルート」は、A/D変換器(A/D変換手段)45から入力する「中間周波数のデジタル信号(即ち、1ビットの量子化信号)49」と発振器50で生成される第1の基準位相信号50aとを乗算するる第1の乗算手段52、第1の乗算器52の出力を拡散符号1チップ分累積する第1の累積器(第1の累積手段)54、第1の累積器54の出力を3値(1,0,−1)化する第1の3値変換器(第1の3値変換手段)56とからなっている。
FIG. 3 is a block diagram showing a configuration of the digital processing unit 5 shown in FIG.
As shown in the figure, the digital processing unit 5 includes an orthogonal detection unit (orthogonal detection unit) 200 and a despreading unit (despreading unit) 300.
The quadrature detection unit (orthogonal detection means) 200 has two signal processing routes, an “I sequence processing route” and a “Q sequence processing route”.
The “I-sequence processing route” is generated by the “intermediate frequency digital signal (ie, 1-bit quantized signal) 49” input from the A / D converter (A / D conversion means) 45 and the oscillator 50. A first multiplying unit 52 for multiplying one reference phase signal 50a; a first accumulator (first accumulating unit) 54 for accumulating the output of the first multiplier 52 for one chip of the spreading code; The first ternary converter (first ternary conversion means) 56 for converting the output of the accumulator 54 into three values (1, 0, −1).

「Q系列処理ルート」は、発振器50が生成する第1の基準位相信号50aをπ/2移相して第1の基準位相信号と直交する第2の基準位相信号を生成する移相器(移相手段)51と、1ビットの量子化信号49と位相器(移相手段)51で生成される第2の基準位相信号とを乗算する第2の乗算器(第2の乗算手段)53と、第2の乗算器(第2の乗算手段)53の出力を所定時間累積する第2の累積器(第2の累積手段)55と、第2の累積器(第2の累積手段)55の出力を3値変換する第2の3値変換器(第2の3値変換手段)57とからなっている。
A/D変換器(A/D変換手段)45から直交検波部(直交検波手段)200に入力された中間周波数のデジタル信号(1ビットの量子化信号)49は、上述した「I系列処理ルート」および「Q系列処理ルート」で信号処理される。
The “Q sequence processing route” is a phase shifter (a phase shifter that generates a second reference phase signal that is orthogonal to the first reference phase signal by phase-shifting the first reference phase signal 50a generated by the oscillator 50 by π / 2. Phase shift means) 51, second multiplier (second multiplier means) 53 that multiplies the 1-bit quantized signal 49 and the second reference phase signal generated by the phase shifter (phase shift means) 51. A second accumulator (second accumulating means) 55 that accumulates the output of the second multiplier (second multiplying means) 53 for a predetermined time, and a second accumulator (second accumulating means) 55. The output is a second ternary converter (second ternary conversion means) 57 for ternary conversion.
The intermediate frequency digital signal (1-bit quantized signal) 49 input from the A / D converter (A / D conversion means) 45 to the quadrature detection unit (orthogonal detection means) 200 is the “I-sequence processing route” described above. ”And“ Q sequence processing route ”.

次に、I系列処理ルートの出力(即ち、第1の3値変換器(第1の3値変換手段)56の出力)であるI出力58とQ系列処理ルートの出力(即ち、第2の3値変換手段57の出力)であるQ出力59は、逆拡散部(逆拡散手段)300に送られる。
逆拡散部(逆拡散手段)300において、デジタル整合フィルタ(DMF60〜DMF63)は、逆拡散処理を行う部分であって、参照PN符号(PN0又はPN1)とチップ単位(Tc)の排他的論理和を情報1ビット長(Tb=Tc×Nc)分の総和演算する相関評価を行い、相関値(総和)を出す回路部である。
演算器64、演算器65は、I成分とQ成分に対して、それぞれ所定相関高さ(相関閾値)より高くて、相関の高い方を選択する。
Next, the output of the I-sequence processing route (that is, the output of the first ternary converter (first ternary conversion means) 56) and the output of the Q-sequence processing route (that is, the second The Q output 59, which is the output of the ternary conversion unit 57, is sent to the despreading unit (despreading unit) 300.
In the despreading unit (despreading means) 300, the digital matched filters (DMF60 to DMF63) perform despreading processing, and are exclusive OR of the reference PN code (PN0 or PN1) and the chip unit (Tc). Is a circuit unit that performs correlation evaluation for calculating the sum of information for one bit length (Tb = Tc × Nc) and outputs a correlation value (sum).
The computing unit 64 and the computing unit 65 select the higher correlation between the I component and the Q component that are higher than the predetermined correlation height (correlation threshold).

2値符号化演算部(2値符号化演算手段)68は、PN0相関値とPN1相関値を比較して相関の高い方を選び、それぞれに対応した2値を出力する(PN0相関が高い場合、出力は“0”、PN1相関が高い場合、出力は“1”)。
即ち、逆拡散部(逆拡散手段)300によって、直交検波手段200の第1の3値変換手段56および第2の3値変換手段57から出力する3値変換された信号を逆拡散して、2値符号化された2値受信データを得る。
A binary coding computation unit (binary coding computing means) 68 compares the PN0 correlation value and the PN1 correlation value, selects the one with the higher correlation, and outputs a binary corresponding to each (when the PN0 correlation is high) The output is “0”, and when the PN1 correlation is high, the output is “1”).
That is, the despreading unit (despreading unit) 300 despreads the ternary converted signal output from the first ternary conversion unit 56 and the second ternary conversion unit 57 of the orthogonal detection unit 200, Binary-encoded binary reception data is obtained.

チップ位相は送信側と受信側で同期していないので、デジタル整合フィルタDMF60〜DMF63の逆拡散処理は、チップ単位(Tc)間隔での相関値計算では相関ピークを検出できない場合があるので、Tc/2程度ずらした2系列のTc間隔で相関値計算を実施し、相関が高い方を採用するのが好適である。   Since the chip phase is not synchronized between the transmission side and the reception side, the despreading processing of the digital matched filters DMF60 to DMF63 may not be able to detect a correlation peak in the correlation value calculation at the chip unit (Tc) interval. It is preferable that the correlation value calculation is performed at two series of Tc intervals shifted by about / 2, and the one with higher correlation is employed.

図4は、本実施の形態による受信機の動作(効果)を説明するための図であって、同じ拡散符号で拡散された2つの信号(信号Aと信号B)を受信した場合の相関値ピーク検出の方式(多bit A/D方式、1bit A/Dの従来方式、本発明の方式)比較を表形式にしたものである。
図4において、拡散符号は、15チップのバーカー符号(111101011001000)であり、図1のPN0とし、簡単のために、図4の例では、2値送信データ10は全て“0”として例示する。
送信機Aから送信される「1次変調信号A」102は、チップ単位の時刻101で時刻3〜17が1bit分に相当する。
他方、送信機Bから送信される「1次変調信号B」103は、チップ時刻10〜24が1bit分に相当する。
FIG. 4 is a diagram for explaining the operation (effect) of the receiver according to the present embodiment, and the correlation value when two signals (signal A and signal B) spread by the same spreading code are received. The comparison of peak detection methods (multi-bit A / D method, conventional method of 1-bit A / D, method of the present invention) is tabulated.
In FIG. 4, the spreading code is a 15-chip Barker code (111101011001000), which is PN0 in FIG. 1. For simplicity, in the example of FIG. 4, all binary transmission data 10 is illustrated as “0”.
The “primary modulated signal A” 102 transmitted from the transmitter A corresponds to 1 bit at times 3 to 17 at time 101 in units of chips.
On the other hand, the “primary modulated signal B” 103 transmitted from the transmitter B corresponds to the chip time 10 to 24 corresponding to 1 bit.

図4では、「1次変調信号A」102と「1次変調信号B」103の信号が7チップ分位相がずれた状態の例を示している。
「1次変調信号A」102、「1次変調信号B」103に対応する「2次変調信号A」104、「2次変調信号B」105の数値“1”と“−1”は、それぞれ1次変調信号の行の数値“0”と“1”に対応し、搬送波発生器17が発生する搬送波に対して同相か逆相かを表示していて、搬送波の振幅が“1”と“−1”であることを表している。
この信号が電波として送信機1から送信され、受信機2で等電力の電波として受信された場合の受信信号の振幅が図4に示す受信信号106で、「2次変調信号A」104と「2次変調信号B」105の和である。
FIG. 4 shows an example of a state where the signals of “primary modulation signal A” 102 and “primary modulation signal B” 103 are out of phase by 7 chips.
Numerical values “1” and “−1” of “secondary modulation signal A” 104 and “secondary modulation signal B” 105 corresponding to “primary modulation signal A” 102 and “primary modulation signal B” 103 are respectively Corresponding to the numerical values “0” and “1” in the row of the primary modulation signal, it indicates whether the carrier wave is generated in phase or in phase with respect to the carrier wave generated by the carrier wave generator 17, and the carrier wave amplitudes are “1” and “1”. -1 ".
When this signal is transmitted as a radio wave from the transmitter 1 and received by the receiver 2 as a radio wave of equal power, the amplitude of the received signal is the received signal 106 shown in FIG. 4 and the “secondary modulation signal A” 104 and “ This is the sum of the secondary modulation signal B ”105.

図5は、従来の受信機におけるデジタル処理部の構成を示すブロック図である。
多ビット方式で、この受信波形振幅に完全に対応させるためには3ビット(−2〜2)が必要であり、図2のA/D変換器45を3ビットA/Dにして、図5に示すデジタル処理部に入力して、相関値を求めたものが「3bit A/Dでの相関値」107で、受信信号106と参照PN符号112(前記バーカー信号の“0”を“1”に、“1”を“−1”に変換したもの)で、チップ毎に前述した相関演算をした数値である。
「3bit A/Dでの相関値」107で、1ビット=15チップの終わりのチップ(チップ時刻17と24)に太字の“14”で表記した「相関値のAとBに対応した2つのピーク」があり、正確に2つの送信機からの受信信号を各々、2値信号(情報信号)に復調できることを示している。
図5のブロック図において、信号のビット数は異なるが、信号処理の流れとしては、図3のブロックとは、3値変換器(3値変換手段)56と3値変換器(3値変換手段)57を除いて同じであるので、図5の説明は省略する。
「3bit A/Dでの相関値」107は、図5の「m bit」のm=3となる。
FIG. 5 is a block diagram showing a configuration of a digital processing unit in a conventional receiver.
In the multi-bit method, 3 bits (-2 to 2) are required to completely correspond to the received waveform amplitude, and the A / D converter 45 of FIG. 2 is changed to 3 bits A / D. The correlation value obtained by inputting to the digital processing unit shown in FIG. 5 is “correlation value at 3 bit A / D” 107, and the received signal 106 and the reference PN code 112 (“0” of the Barker signal is “1”). In addition, “1” is converted to “−1”), and is a numerical value obtained by performing the above-described correlation calculation for each chip.
"Correlation value at 3bit A / D" 107, 1 bit = 2 chips corresponding to the correlation values A and B written in bold "14" at the end chip (chip time 17 and 24) "Peak" indicates that the received signals from the two transmitters can be accurately demodulated into binary signals (information signals).
In the block diagram of FIG. 5, although the number of bits of the signal is different, the signal processing flow differs from the block of FIG. 3 in terms of a ternary converter (ternary converter) 56 and a ternary converter (ternary converter). ), Except for 57, the description of FIG. 5 is omitted.
The “correlation value at 3 bit A / D” 107 is m = 3 of “m bit” in FIG.

従来の方式例を示す特開平7−183831号公報では、直交検波し、累積後にコンパレータで1bit量子化を行って相関計算をしているので、図5の「m bit」のm=1にしたものに相当する。
直交検波し、累積後のデータを1ビット(1、−1)にすることは、受信信号が1つの場合は存在しない「受信振幅0」という状態を表現できない。
図4に示した従来の方式例の「受信信号1bit A/D」108では、受信信号106の“−2”と“−1”は、“−1”に、“2“と“1“は“1“に変換されるが、“0”は変換できないので、ここでは変換確率を50%として、“0”の出現順に“1”と“−1”を交互に割当てた。
In Japanese Patent Application Laid-Open No. 7-183831 showing an example of a conventional method, orthogonal detection is performed, and after accumulation, 1-bit quantization is performed by a comparator to calculate correlation. Therefore, m = 1 of “m bit” in FIG. 5 is set. It corresponds to a thing.
Performing quadrature detection and setting the accumulated data to 1 bit (1, −1) cannot express a state of “reception amplitude 0” that does not exist when there is one reception signal.
In the “reception signal 1 bit A / D” 108 of the conventional system example shown in FIG. 4, “−2” and “−1” of the reception signal 106 are “−1”, “2” and “1” are Since “1” is converted but “0” cannot be converted, “1” and “−1” are alternately assigned in the order of appearance of “0”, assuming that the conversion probability is 50%.

「受信信号1bit A/D」108を同様に相関計算したものが「1bit A/Dでの相関値」109であり、それぞれの1ビットの終わりのチップに相関値ピークが見られるが、それ以外のところにも高い相関値(チップ時刻22の相関値7と、チップ時刻23の相関値−9)があり、正しい相関値のピーク検出ができないので、2値データへの復調ができないことを示している。
本実施の形態による値変換方式では、相関値計算に使用する「累積後の3値」110は、受信信号106の“−2”と“−1”は“−1”に、“2”と“1”は“1”に、“0”は“0”に変換される。
同様に、「累積後の3値」110で相関計算をしたものが、「累積後の3値での相関値」111であり、「3bit A/Dでの相関値」107に比べ相関ピーク値は低くなっているが、正しくピーク検出ができるので、2値データに正しく復調できることを示している。
即ち、本実施の形態によれば、周波数ダウンシフト手段から出力する中間周波数の信号を1ビットの量子化信号49に変換するA/D変換手段45として1ビットA/D変換器を用いていても、同時に複数の信号を受信した場合でも正しく復調できる。
Correlation calculation of “reception signal 1-bit A / D” 108 in the same manner is “correlation value at 1-bit A / D” 109, and a correlation value peak is seen at the chip at the end of each 1-bit. There is also a high correlation value (correlation value 7 at chip time 22 and correlation value −9 at chip time 23), and the peak of the correct correlation value cannot be detected, indicating that it cannot be demodulated into binary data. ing.
In the value conversion method according to the present embodiment, the “three values after accumulation” 110 used for calculating the correlation value is “−2” and “−1” of the received signal 106, “−1”, and “2”. “1” is converted to “1”, and “0” is converted to “0”.
Similarly, “correlation value with three values after accumulation” 111 obtained by performing correlation calculation with “three values after accumulation” 110 is a correlation peak value compared with “correlation value with 3 bits A / D” 107. Although it is low, it can be correctly demodulated into binary data because the peak can be detected correctly.
That is, according to the present embodiment, the 1-bit A / D converter is used as the A / D conversion means 45 for converting the intermediate frequency signal output from the frequency downshift means into the 1-bit quantized signal 49. However, it is possible to correctly demodulate even when a plurality of signals are received simultaneously.

以上説明したように、本実施の形態によるスペクトル拡散通信の受信機は、スペクトル拡散により拡散した情報信号を位相偏移変調して通信を行うスペクトル拡散通信の受信機であって、受信する位相偏移変調信号を中間周波数の信号にダウンシフトする周波数ダウンシフト手段(局部発振器42、乗算器43および低域通過フィルタ44とで構成)と、周波数ダウンシフト手段から出力する中間周波数の信号を1ビットの量子化信号49に変換するA/D変換手段45と、A/D変換手段45により変換された量子化信号49と発振器50で生成される第1の基準位相信号とを乗算するる第1の乗算手段52、第1の乗算手段52の出力を所定時間累積する第1の累積手段54、第1の累積手54の出力を3値変換する第1の3値変換手段56、第1の基準位相信号をπ/2移相して第1の基準位相信号と直交する第2の基準位相信号を生成する移相手段51、量子化信号49と第2の基準位相信号とを乗算する第2の乗算手段53、第2の乗算手段53の出力を所定時間累積する第2の累積手段55、第2の累積手段55の出力を3値変換する第2の3値変換手段57とで構成される直交検波手段200と、直交検波手段200の第1の3値変換手段56および第2の3値変換手段57から出力する3値変換された信号を逆拡散して2値符号化された2値受信データを得る逆拡散手段300とを備えている。
従って、本実施の形態によれば、受信する位相偏移変調信号を周波数ダウンシフトした中間周波数の信号を1ビットのA/D変換手段(A/D変換器)により1ビットの量子化信号に変換しているが、同時に複数の信号を受信した場合でも正しく復調することが可能であり、小型で安価なスペクトル拡散通信の受信機を実現できるので、車両用電子キーシステムのような用途向けには好適である。
As described above, the spread spectrum communication receiver according to the present embodiment is a spread spectrum communication receiver that performs communication by performing phase shift keying on an information signal spread by spread spectrum. 1-bit frequency downshift means (comprising a local oscillator 42, a multiplier 43 and a low-pass filter 44) for downshifting the modulation signal to an intermediate frequency signal, and an intermediate frequency signal output from the frequency downshift means A / D conversion means 45 for converting to a first quantized signal 49, and a first reference phase signal generated by the oscillator 50 multiplied by the quantized signal 49 converted by the A / D conversion means 45 Multiplication means 52, first accumulation means 54 for accumulating the output of the first multiplication means 52 for a predetermined time, and first ternary conversion means for ternary conversion of the output of the first accumulation hand 54. 6. Phase shift means 51 for generating a second reference phase signal orthogonal to the first reference phase signal by π / 2 phase shifting of the first reference phase signal, quantized signal 49 and second reference phase signal The second multiplication means 53 for multiplying the outputs, the second accumulation means 55 for accumulating the outputs of the second multiplication means 53 for a predetermined time, and the second ternary conversion for ternary conversion of the output of the second accumulation means 55 A quadrature detection means 200 composed of the means 57, and a ternary converted signal output from the first ternary conversion means 56 and the second ternary conversion means 57 of the quadrature detection means 200 to despread 2 And despreading means 300 for obtaining binary encoded reception data.
Therefore, according to the present embodiment, an intermediate frequency signal obtained by down-shifting the received phase shift keying signal is converted into a 1-bit quantized signal by a 1-bit A / D converter (A / D converter). Even though multiple signals are received at the same time, it can be demodulated correctly, and a small and inexpensive spread spectrum communication receiver can be realized. Is preferred.

また、本実施の形態によるスペクトル拡散通信の受信機において、第1の累積手段54および第2の累積手段55を低域通過フィルタとすることにより、デジタル回路構成が簡単になるという利点がある。
また、本実施の形態によるスペクトル拡散通信の受信機において、第1の基準位相信号および第2の基準位相信号を矩形波信号とすることにより、同様にデジタル回路構成が簡単になるという利点がある。
In the spread spectrum communication receiver according to the present embodiment, the first accumulating unit 54 and the second accumulating unit 55 are low-pass filters, so that there is an advantage that the digital circuit configuration is simplified.
In addition, in the spread spectrum communication receiver according to the present embodiment, the first reference phase signal and the second reference phase signal are rectangular wave signals, so that the digital circuit configuration is similarly simplified. .

本発明は、1ビットA/D変換器を用いていながら、同時に複数の信号を受信した場合でも正しく復調できる小型で安価なスペクトル拡散通信の受信機の実現に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for realizing a small and inexpensive spread spectrum communication receiver that can correctly demodulate even when a plurality of signals are received simultaneously while using a 1-bit A / D converter.

スペクトラム拡散通信における送信機の構成例を示すブロック図である。It is a block diagram which shows the structural example of the transmitter in spread spectrum communication. 実施の形態1によるスペクトラム拡散通信の受信機の構成を示すブロック図である。2 is a block diagram showing a configuration of a receiver of spread spectrum communication according to Embodiment 1. FIG. 図2に示したデジタル処理部の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a digital processing unit illustrated in FIG. 2. 実施の形態1による受信機の動作を説明するための図である。6 is a diagram for explaining an operation of the receiver according to Embodiment 1. FIG. 従来の受信機におけるデジタル処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the digital processing part in the conventional receiver.

符号の説明Explanation of symbols

3 受信アンテナ 4 受信機
5 デジタル処理部 6 2値受信データ
40 BPF(バンドパスフィルタ) 41 増幅器
42 局部発振器 43 乗算器
44 LPF(低域通過フィルタ) 45 A/D変換手段
49 1ビットの量子化信号 50 発振器
50a 第1の基準位相信号 51 移相手段
52 第1の乗算手段 53 第2の乗算手段
54 第1の累積手段 55 第2の累積手段
56 第1の3値変換手段 57 第2の3値変換手段
60〜63 DMF(デジタル整合フィルタ)
64、65 演算器 68 2値符号化演算部
200 直交検波手段 300 逆拡散部
DESCRIPTION OF SYMBOLS 3 Reception antenna 4 Receiver 5 Digital processing part 6 Binary reception data 40 BPF (band pass filter) 41 Amplifier 42 Local oscillator 43 Multiplier 44 LPF (low-pass filter) 45 A / D conversion means 49 1 bit quantization Signal 50 Oscillator 50a First reference phase signal 51 Phase shift means 52 First multiplication means 53 Second multiplication means 54 First accumulation means 55 Second accumulation means 56 First ternary conversion means 57 Second Ternary conversion means 60-63 DMF (digital matched filter)
64, 65 arithmetic unit 68 binary encoding arithmetic unit 200 orthogonal detection means 300 despreading unit

Claims (3)

スペクトル拡散により拡散した情報信号を位相偏移変調して通信を行うスペクトル拡散通信の受信機であって、
受信する位相偏移変調信号を中間周波数の信号にダウンシフトする周波数ダウンシフト手段と、
前記周波数ダウンシフト手段から出力する中間周波数の信号を1ビットの量子化信号に変換するA/D変換手段と、
前記A/D変換手段により変換された前記量子化信号と発振器で生成される第1の基準位相信号とを乗算する第1の乗算手段、前記第1の乗算手段の出力を所定時間累積する第1の累積手段、前記第1の累積手の出力を3値変換する第1の3値変換手段、前記第1の基準位相信号をπ/2移相して前記第1の基準位相信号と直交する第2の基準位相信号を生成する移相手段、前記量子化信号と前記第2の基準位相信号とを乗算する第2の乗算手段、前記第2の乗算手段の出力を所定時間累積する第2の累積手段、前記第2の累積手段の出力を3値変換する第2の3値変換手段とで構成される直交検波手段と、
前記直交検波手段の前記第1の3値変換手段および前記第2の3値変換手段から出力する3値変換された信号を逆拡散して2値符号化された2値受信データを得る逆拡散手段を備えていることを特徴とするスペクトル拡散通信の受信機。
A spread spectrum communication receiver that performs communication by performing phase shift keying on an information signal spread by spread spectrum,
A frequency downshift means for downshifting the received phase shift keying signal to an intermediate frequency signal;
A / D conversion means for converting an intermediate frequency signal output from the frequency downshift means into a 1-bit quantized signal;
First multiplication means for multiplying the quantized signal converted by the A / D conversion means by a first reference phase signal generated by an oscillator, and a first multiplication means for accumulating outputs of the first multiplication means for a predetermined time. 1 accumulating means, a first ternary converting means for ternary conversion of the output of the first accumulating hand, and a phase shift of the first reference phase signal by π / 2 to be orthogonal to the first reference phase signal. Phase shifting means for generating a second reference phase signal, second multiplication means for multiplying the quantized signal and the second reference phase signal, and a second time for accumulating outputs of the second multiplication means for a predetermined time. Quadrature detection means comprising two accumulation means, and second ternary conversion means for ternary conversion of the output of the second accumulation means;
Despreading to obtain binary-encoded binary reception data by despreading the ternary converted signals output from the first ternary conversion unit and the second ternary conversion unit of the orthogonal detection unit A spread spectrum communication receiver comprising: means.
前記第1の累積手段および第2の累積手段は低域通過フィルタであることを特徴とする請求項1に記載のスペクトル拡散通信の受信機。   2. The spread spectrum communication receiver according to claim 1, wherein the first accumulating means and the second accumulating means are low-pass filters. 前記第1の基準位相信号および第2の基準位相信号は矩形波信号であることを特徴とする請求項1または2に記載のスペクトル拡散通信の受信機。   3. The spread spectrum communication receiver according to claim 1, wherein the first reference phase signal and the second reference phase signal are rectangular wave signals.
JP2008151731A 2008-06-10 2008-06-10 Spread spectrum communication receiver Expired - Fee Related JP4598104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151731A JP4598104B2 (en) 2008-06-10 2008-06-10 Spread spectrum communication receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151731A JP4598104B2 (en) 2008-06-10 2008-06-10 Spread spectrum communication receiver

Publications (2)

Publication Number Publication Date
JP2009302644A true JP2009302644A (en) 2009-12-24
JP4598104B2 JP4598104B2 (en) 2010-12-15

Family

ID=41549131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151731A Expired - Fee Related JP4598104B2 (en) 2008-06-10 2008-06-10 Spread spectrum communication receiver

Country Status (1)

Country Link
JP (1) JP4598104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105959035A (en) * 2016-06-14 2016-09-21 东南大学 Direct sequence spread spectrum signal interception detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108987A (en) * 2004-10-04 2006-04-20 Tama Tlo Kk Correlator
JP2007116578A (en) * 2005-10-24 2007-05-10 Sony Corp Satellite signal receiving device and satellite signal receiving method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108987A (en) * 2004-10-04 2006-04-20 Tama Tlo Kk Correlator
JP2007116578A (en) * 2005-10-24 2007-05-10 Sony Corp Satellite signal receiving device and satellite signal receiving method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105959035A (en) * 2016-06-14 2016-09-21 东南大学 Direct sequence spread spectrum signal interception detection method
CN105959035B (en) * 2016-06-14 2018-04-03 东南大学 A kind of direct sequence signal intercepts and captures detection method

Also Published As

Publication number Publication date
JP4598104B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4771646B2 (en) Spread spectrum digital communication method, transmitter and receiver by Golay complementary sequence modulation
CN100358247C (en) Reextending circuit and extending method
EP0952678A1 (en) Digital modulation system using modified orthogonal codes to reduce autocorrelation sidelobes
US7027487B2 (en) Combination power/inphase correlator for spread spectrum receiver
US20060198522A1 (en) Wide band-DCSK modulation method, transmitting apparatus thereof, wide band-DCSK demodulation method, and receiving apparatus thereof
US7366227B2 (en) Chip-to-symbol receiver despreader architectures and methods for despreading spread spectrum signals
US6674790B1 (en) System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
KR20210032565A (en) A method and system using ternary sequences for simultaneous transmission to coherent and non-coherent recievers
US10461796B2 (en) Multimode receiving device, multimode transmitting device and multimode transceiving method
JP6061773B2 (en) Signal processing apparatus, signal processing method, and signal processing program
RU2625529C2 (en) Demodulator of pseudo-random signals with relative phase modulation
JP3917637B2 (en) Wireless communication system, wireless transmitter, wireless receiver, and wireless communication method
JP4598104B2 (en) Spread spectrum communication receiver
JP4895254B2 (en) Radio transmitter and radio receiver
US7242663B2 (en) Multi-channel spread spectrum communications system
US20030112849A1 (en) Efficient quadrature code position modulation
JP2001223674A (en) Spread spectrum demodulator
KR102509820B1 (en) Method and system of transmitting independent data by at least two transmitters to receivers
US8335288B2 (en) Communication method, system, transmitter, and receiver
JP4814754B2 (en) Communication device
KR100716722B1 (en) Apparatus and method for ultra wideband communication
EP1267534A1 (en) Digital modulation system, radio communication system, radio communication device
JP4655429B2 (en) Transmitting apparatus and method thereof, receiving apparatus and method thereof, and communication system and method thereof
JP4148879B2 (en) Receiving method and apparatus
US6393048B1 (en) Method for the transferring a digital data signal using spread spectrum

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100922

R151 Written notification of patent or utility model registration

Ref document number: 4598104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees