JP2009301982A - Stacked battery - Google Patents

Stacked battery Download PDF

Info

Publication number
JP2009301982A
JP2009301982A JP2008157585A JP2008157585A JP2009301982A JP 2009301982 A JP2009301982 A JP 2009301982A JP 2008157585 A JP2008157585 A JP 2008157585A JP 2008157585 A JP2008157585 A JP 2008157585A JP 2009301982 A JP2009301982 A JP 2009301982A
Authority
JP
Japan
Prior art keywords
battery
bus bar
assembled battery
spot welding
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008157585A
Other languages
Japanese (ja)
Other versions
JP5135071B2 (en
Inventor
Katsunori Suzuki
克典 鈴木
Takayuki Mitani
貴之 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2008157585A priority Critical patent/JP5135071B2/en
Publication of JP2009301982A publication Critical patent/JP2009301982A/en
Application granted granted Critical
Publication of JP5135071B2 publication Critical patent/JP5135071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stacked battery capable of preventing damage of a joining site with restraint of heat generation at the joining site at the time of large-current conduction. <P>SOLUTION: A tandem battery 20 has two unit cells provided with an anode lead plate electrically connected with an electrode group and a metal-made inner bottom surface of the battery vessel 17 jointed in spot welding connected by bus bars 4 electrically and mechanically connecting the unit cells. One side of a metal heat dissipation member 10 is fixed to one of the welding part 4A of the bus bars 4, and the other side of the heat dissipation member 10 is in contact with an outer bottom surface on the opposite surface side to a welding site 30 of the inner bottom surface side of the battery vessel 17 jointed in spot welding. Even if the joining site 30 generates heat at large-current conduction of the tandem battery 20, heat is transmitted to the bus bars 4 through the heat dissipation member 10, so that the temperature at the joining site 30 is decreased to enable to prevent damage at the joining site 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は集合電池に係り、特に、電極群に電気的に接続された導電部材と金属製電池缶の内底面とがスポット溶接で接合された複数の二次電池と、二次電池間を電気的機械的に接続するバスバと備えた集合電池に関する。   The present invention relates to an assembled battery, and in particular, a plurality of secondary batteries in which a conductive member electrically connected to an electrode group and an inner bottom surface of a metal battery can are joined by spot welding, and the secondary battery is electrically connected. The present invention relates to an assembled battery including a bus bar that is mechanically and mechanically connected.

近年、電動原動機付自転車、ハイブリッド電気自動車(HEV)や純正電気自動車(PEV)等の移動体用の電源、または、太陽熱発電や風力発電等の据置蓄電システムの電源として、複数個の大電流放電用単電池を直列ないし直並列に接続した集合電池(組電池)が利用されている。これらの集合電池は、通常、バスバ(bus bar)と呼ばれ、単電池間を電気的および機械的に接続する導電部材を、例えば、1の単電池の一方の電極となる金属製電池蓋と、他の単電池の他方の電極となる電池缶底とにシリーズスポット溶接で接合することで、2つの単電池を直列(ないし直並列)接続し、さらにこれを必要な単電池数繰り返して、集合電池の所要出力電圧を得ている(例えば、特許文献1参照)。   In recent years, multiple large-current discharges have been used as power sources for mobile vehicles such as electric motor-powered bicycles, hybrid electric vehicles (HEV), and genuine electric vehicles (PEV), or as power sources for stationary power storage systems such as solar thermal power generation and wind power generation. Collective batteries (assembled batteries) in which unit cells are connected in series or series-parallel are used. These assembled batteries are usually called a bus bar, and a conductive member that electrically and mechanically connects the cells is connected to, for example, a metal battery lid that serves as one electrode of one cell. By joining the bottom of the battery can, which is the other electrode of the other unit cell, with series spot welding, two unit cells are connected in series (or in series-parallel), and this is repeated for the number of unit cells required, The required output voltage of the assembled battery is obtained (see, for example, Patent Document 1).

単電池の電池缶と内部の発電部(電極群に電気的に接続された導電部材)との接続には、通常、電池缶の内底面側で、ダイレクトスポット溶接が用いられている。また、他の単電池とを接続するためのバスバは、上述したダイレクトスポット溶接部(接合箇所)を避けて、電池缶の外底面側で、大電流通電に耐えうるように複数箇所でシリーズスポット溶接がなされている。   Direct spot welding is usually used on the inner bottom surface side of the battery can for connection between the battery can of the unit cell and the internal power generation unit (conductive member electrically connected to the electrode group). In addition, the bus bar for connecting to other single cells avoids the direct spot welds (joint points) described above, and series spots are provided at multiple locations on the outer bottom side of the battery can so that it can withstand large current flow. Welding has been done.

特開2004−152706号公報JP 2004-152706 A

集合電池において、接合部の抵抗を極力下げるためには、溶接点の多点化、接合面積増大およびバスバ接合部と缶底接合箇所の距離を近づけることが有効である。しかしながら、電池缶と発電部との接合箇所では、電池内部の体積密度向上のため、接合箇所の多点化や面積増大は難しい。このため、従来の二次電池では、大電流通電時に、電池缶と発電部との接合箇所が発熱しやすく、最悪の場合、赤熱し接合箇所が溶損に至ることがあった。   In the assembled battery, in order to reduce the resistance of the joint as much as possible, it is effective to increase the number of welding points, increase the joint area, and shorten the distance between the bus bar joint and the can bottom joint. However, at the joint location between the battery can and the power generation unit, it is difficult to increase the number of joint locations and increase the area in order to improve the volume density inside the battery. For this reason, in the conventional secondary battery, when a large current is passed, the joint portion between the battery can and the power generation unit is likely to generate heat, and in the worst case, the joint portion may be red-hot and the joint portion may be melted.

本発明は上記事案に鑑み、大電流通電時でも接合箇所の発熱を抑え接合箇所の損傷を防止できる集合電池を提供することを課題とする。   An object of the present invention is to provide an assembled battery that can suppress heat generation at a joint portion and prevent damage at the joint portion even when a large current is applied.

上記課題を解決するために、本発明は、集合電池であって、電極群に電気的に接続された導電部材と金属製電池缶の内底面とがスポット溶接で接合された複数の二次電池と、前記二次電池間を電気的機械的に接続するバスバと、一側が前記スポット溶接で接合された電池缶の内底面と反対面側の外底面に当接し、他側が前記バスバの両端部のうち少なくとも一方の端部に固定された金属製の放熱部材と、を備える。   In order to solve the above-described problems, the present invention is an assembled battery, and a plurality of secondary batteries in which a conductive member electrically connected to an electrode group and an inner bottom surface of a metal battery can are joined by spot welding. A bus bar that electrically and mechanically connects between the secondary batteries, one side abuts on the outer bottom surface opposite to the inner bottom surface of the battery can joined by spot welding, and the other side is both ends of the bus bar And a metal heat dissipating member fixed to at least one end.

本発明の集合電池は、電極群に電気的に接続された導電部材と金属製電池缶の内底面とがスポット溶接で接合された複数の二次電池が、二次電池間を電気的機械的に接続するバスバで接続されている。バスバの両端部のうち少なくとも一方の端部に金属製の放熱部材の他側が固定されており、放熱部材の一側はスポット溶接で接合された電池缶の内底面と反対面側の外底面に当接している。このため、大電流通電時に、導電部材と電池缶の内底面との接合箇所が発熱しても、この熱が放熱部材を介してバスバに伝達され接合箇所での温度が下がり、接合箇所の損傷を防止することができる。   In the assembled battery of the present invention, a plurality of secondary batteries in which a conductive member electrically connected to an electrode group and an inner bottom surface of a metal battery can are joined by spot welding are electrically mechanically connected between the secondary batteries. It is connected with the bus bar that connects to. The other side of the metal heat dissipating member is fixed to at least one end of both ends of the bus bar, and one side of the heat dissipating member is on the outer bottom surface opposite to the inner bottom surface of the battery can joined by spot welding. It is in contact. For this reason, even when a large current is applied, even if the joint between the conductive member and the inner bottom surface of the battery can generates heat, this heat is transmitted to the bus bar via the heat dissipation member, and the temperature at the joint decreases, resulting in damage to the joint. Can be prevented.

本発明において、放熱部材は、二次電池の電池缶より大きな熱伝導率を有することが好ましい。また、放熱部材の一側が、スポット溶接による電池缶の内定面の接合箇所に対応した外底面側の箇所に当接していることが望ましい。このような放熱部材は、例えば、バスバ側から圧入されたプラグもしくはリベット状部材またはバスバ側から螺入されたネジ状部材を用いることができ、プラグもしくはリベット状部材またはネジ状部材の頭部底面がバスバの両端部のうち少なくとも一方の端部上面に当接しているようにしてもよい。また、放熱部材はバスバと一体形成されていてもよい。   In this invention, it is preferable that a thermal radiation member has a thermal conductivity larger than the battery can of a secondary battery. Moreover, it is desirable that one side of the heat radiating member is in contact with a portion on the outer bottom surface side corresponding to a joint portion of the inner surface of the battery can by spot welding. As such a heat radiating member, for example, a plug or rivet-like member press-fitted from the bus bar side or a screw-like member screwed from the bus bar side can be used, and the bottom surface of the head of the plug or rivet-like member or screw-like member May be in contact with the upper surface of at least one of the both ends of the bus bar. Moreover, the heat radiating member may be integrally formed with the bus bar.

また、本発明において、バスバの両端部のうち少なくとも一方の端部は、スポット溶接による電池缶の内定面の接合箇所に対応した外底面側の箇所を避けるように電池缶の外底面に複数箇所でスポット溶接で接合されていてもよい。さらに、バスバの両端部にスポット溶接用のスリットが形成されているとともに、二次電池は電池蓋の上面中央部に排気口が形成されており、排気口はバスバの両端部のうち少なくとも他方の端部のスリットの直下に位置付けられていることが好ましい。また、バスバの両端部のうち、一側の端部は集合電池を構成する二次電池の負極性の電池缶に接合されており、他側の端部は該二次電池に直列接続される他の二次電池の正極性の電池蓋に接合されていてもよい。さらに、バスバの両端部間の中央部はバスバの両端部に対し段差を有していることが好ましい。   Further, in the present invention, at least one end portion of the both ends of the bus bar is provided at a plurality of locations on the outer bottom surface of the battery can so as to avoid locations on the outer bottom surface corresponding to the joining locations of the inner surface of the battery can by spot welding. And may be joined by spot welding. Further, slits for spot welding are formed at both ends of the bus bar, and the secondary battery has an exhaust port formed at the center of the upper surface of the battery cover, and the exhaust port is at least the other end of the bus bar. It is preferable to be positioned immediately below the slit at the end. Of the both ends of the bus bar, one end is joined to the negative battery can of the secondary battery constituting the assembled battery, and the other end is connected in series to the secondary battery. It may be joined to a positive battery lid of another secondary battery. Furthermore, it is preferable that the center part between the both ends of the bus bar has a step with respect to the both ends of the bus bar.

本発明によれば、一側がスポット溶接で接合された電池缶の内底面と反対面側の外底面に当接し、他側がバスバの両端部のうち少なくとも一方の端部に固定された金属製の放熱部材を備えるので、大電流通電時に、導電部材と電池缶の内底面との接合箇所が発熱しても、この熱が放熱部材を介してバスバに伝達され接合箇所での温度が下がり、接合箇所の損傷を防止することができる、という効果を得ることができる。   According to the present invention, one side is in contact with the outer bottom surface opposite to the inner bottom surface of the battery can joined by spot welding, and the other side is made of metal fixed to at least one end portion of both ends of the bus bar. Since a heat dissipation member is provided, even when a large current is applied, even if the joint between the conductive member and the inner bottom surface of the battery can generates heat, this heat is transmitted to the bus bar via the heat dissipation member, and the temperature at the joint decreases. The effect that the damage of a location can be prevented can be acquired.

(第1実施形態)
以下、図面を参照して、本発明を並置型タンデム電池に適用した第1の実施の形態について説明する。
(First embodiment)
Hereinafter, a first embodiment in which the present invention is applied to a juxtaposed tandem battery will be described with reference to the drawings.

図1および図2に示すように、本実施形態のタンデム電池(集合電池)20は、極性が互いに反対となるように並置された2個の単電池1、5が金属製のバスバ4により直列接続されている。   As shown in FIGS. 1 and 2, the tandem battery (collective battery) 20 according to the present embodiment includes two unit cells 1 and 5 arranged in parallel so that the polarities are opposite to each other in series by a metal bus bar 4. It is connected.

単電池1、5には、例えば、リチウムマンガン複酸化物を正極活物質とし、リチウムイオンを放出、吸蔵可能な炭素材を負極活物質としたリチウムイオン二次電池を用いることができる。   As the unit cells 1 and 5, for example, a lithium ion secondary battery using a lithium manganese complex oxide as a positive electrode active material and a carbon material capable of releasing and occluding lithium ions as a negative electrode active material can be used.

図4を参照して、本実施形態のリチウムイオン二次電池について説明すると、単電池1、5は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器17を有している。電池容器17の中央部には、ポリプロピレン製で中空円筒状の軸芯26に帯状の正極板および負極板がセパレータを介して配置された電極群16が収容されている。なお、本例では、電池容器17の外径は40mm、内径は39mmである。   Referring to FIG. 4, the lithium ion secondary battery of the present embodiment will be described. The single cells 1 and 5 each have a bottomed cylindrical battery container 17 made of nickel plated steel. In the central portion of the battery case 17, an electrode group 16 is accommodated in which a strip-shaped positive electrode plate and a negative electrode plate are disposed on a hollow cylindrical shaft core 26 made of polypropylene with a separator interposed therebetween. In this example, the battery container 17 has an outer diameter of 40 mm and an inner diameter of 39 mm.

本例では、正極板を作製するために、まず、正極活物質として平均粒子径が1〜2μmのリチウム−マンガン−コバルト−ニッケル複酸化物(LiMn0.33Co0.33Ni0.33)と、導電材として平均粒子径が0.5μmの黒鉛粉末と、結着剤としてポリフッ化ビニリデン(PVDF)とを、溶媒のN−メチル−2−ピロリドン(NMP)に分散させてスラリ状の溶液を作製した。この溶液を厚さ20μmのアルミニウム箔の両面にロール・ツー・ロール法転写により塗布し、乾燥させた後、プレスして一体化した。正極板の厚さを160〜165μmとし、正極活物質層の密度を2.8g/cmとした。また、アルミニウム箔の長手方向一側に溶液の未塗布部を形成しておき、未塗布部を櫛状に切り欠き、切り欠き残部を正極リード片15として形成した。 In this example, in order to produce a positive electrode plate, first, a lithium-manganese-cobalt-nickel composite oxide (LiMn 0.33 Co 0.33 Ni 0.33 O having an average particle size of 1 to 2 μm as a positive electrode active material. 2 ), graphite powder having an average particle diameter of 0.5 μm as a conductive material, and polyvinylidene fluoride (PVDF) as a binder are dispersed in a solvent N-methyl-2-pyrrolidone (NMP) to form a slurry. A solution of was prepared. This solution was applied to both surfaces of an aluminum foil having a thickness of 20 μm by roll-to-roll method transfer, dried, and then pressed to be integrated. The thickness of the positive electrode plate was 160 to 165 μm, and the density of the positive electrode active material layer was 2.8 g / cm 3 . Further, an uncoated portion of the solution was formed on one side in the longitudinal direction of the aluminum foil, the uncoated portion was cut out in a comb shape, and the remaining portion of the notch was formed as the positive electrode lead piece 15.

一方、負極板については、負極活物質として非晶質炭素粉末と、結着剤としてPVDFとを、90:10の重量比率で、溶媒のNMPに分散させてスラリ状の溶液を作製した。この溶液を厚さ10μmの圧延銅箔の両面にロール・ツー・ロール法転写により塗布し、乾燥させた後、プレスして一体化した。負極板の厚さを160〜165μmとし、負極活物質層の密度を1.05g/cmとした。また、圧延銅箔の長手方向一側に溶液の未塗布部を形成しておき、未塗布部を櫛状に切り欠き、切り欠き残部を負極リード片13として形成した。 On the other hand, for the negative electrode plate, an amorphous carbon powder as a negative electrode active material and PVDF as a binder were dispersed in NMP as a solvent at a weight ratio of 90:10 to prepare a slurry solution. This solution was applied to both sides of a rolled copper foil having a thickness of 10 μm by a roll-to-roll method transfer, dried, and then pressed to be integrated. The thickness of the negative electrode plate was 160 to 165 μm, and the density of the negative electrode active material layer was 1.05 g / cm 3 . Further, an uncoated part of the solution was formed on one side in the longitudinal direction of the rolled copper foil, the uncoated part was cut out in a comb shape, and the remaining part of the notch was formed as the negative electrode lead piece 13.

正極板と負極板とは、両極板が直接接触しないように、厚さ30μmの多孔質ポリエチレン製セパレータを介して、軸芯26を中心として断面渦巻き状に捲回され、電極群16が構成されている。上述した正極リード片15と負極リード片13とは、それぞれ電極群16の互いに反対側に配置されており、セパレータの端から所定長さ(例えば、4mm)はみ出している。電極群16は、正極板、負極板、セパレータの長さを調整することで、所定の内直径(例えば、9mm)および所定の外直径(例えば、38±0.1mm)に設定されている。   The positive electrode plate and the negative electrode plate are wound in a cross-sectional spiral shape around the shaft core 26 through a porous polyethylene separator having a thickness of 30 μm so that the two electrode plates do not come into direct contact with each other. ing. The positive electrode lead piece 15 and the negative electrode lead piece 13 described above are disposed on opposite sides of the electrode group 16 and protrude a predetermined length (for example, 4 mm) from the end of the separator. The electrode group 16 is set to a predetermined inner diameter (for example, 9 mm) and a predetermined outer diameter (for example, 38 ± 0.1 mm) by adjusting the lengths of the positive electrode plate, the negative electrode plate, and the separator.

電極群16の下側には負極板からの電位を集電するための銅製の負極集電リング27が配置されている。負極集電リング27の内周面には軸芯26の下端部外周面が固定されている。また、負極集電リング27の外周縁には、負極板から導出された負極リード片13の端部が超音波溶接で接合されている。負極集電リング27の下部には銅製で導電部材としての負極リード板18が配置されており、負極リード板18は負極外部端子を兼ねる電池容器17の内底部中央でダイレクトスポット溶接により接合されている。以下、便宜上、このスポット溶接箇所を接合箇所30という。   A copper negative electrode current collecting ring 27 for collecting the electric potential from the negative electrode plate is disposed below the electrode group 16. The outer peripheral surface of the lower end portion of the shaft core 26 is fixed to the inner peripheral surface of the negative electrode current collecting ring 27. Further, the end of the negative electrode lead piece 13 led out from the negative electrode plate is joined to the outer peripheral edge of the negative electrode current collecting ring 27 by ultrasonic welding. A negative electrode lead plate 18 made of copper and serving as a conductive member is disposed below the negative electrode current collecting ring 27. The negative electrode lead plate 18 is joined by direct spot welding at the center of the inner bottom of the battery container 17 that also serves as a negative electrode external terminal. Yes. Hereinafter, for the sake of convenience, this spot welding location is referred to as a joint location 30.

一方、電極群16の上側には、軸芯26のほぼ延長線上に正極板からの電位を集電するためのアルミニウム製の正極集電リング14が配置されている。正極集電リング14は軸芯26の上端部に固定されている。正極集電リング14の周囲から一体に張り出している鍔部周縁には、正極板から導出された正極リード片15の端部が超音波溶接で接合されている。   On the other hand, on the upper side of the electrode group 16, an aluminum positive electrode current collecting ring 14 for collecting the electric potential from the positive electrode plate is disposed on a substantially extension line of the shaft core 26. The positive electrode current collecting ring 14 is fixed to the upper end portion of the shaft core 26. The edge part of the positive electrode lead piece 15 led out from the positive electrode plate is joined to the periphery of the collar part integrally protruding from the periphery of the positive electrode current collecting ring 14 by ultrasonic welding.

正極集電リング14の上方には、正極外部端子を兼ねる電池蓋が配置されている。電池蓋は、金属製で連通穴が形成された蓋ケース22と、断面ハット状でハット部中央に円形穴状の排気口23Aが形成された金属製の蓋キャップ23と、気密を保つ弁押さえ24と、内圧上昇により開裂する金属製の開裂弁21とで構成されており、これらが積層されて蓋ケース22の周縁をかしめ固定することで組み立てられている。従って、単電池1、5の内圧が所定値以上となると、開裂弁21の開裂溝が開裂し、単電池1、5内のガスは、蓋ケース22に形成された連通穴、開裂弁21の開裂溝、蓋キャップ23の排気口23Aを介して、単電池1、5の外部に排出される。正極集電リング14の上面には、リボン状のアルミニウム箔を積層した2本の正極リード板19のうち1本の一側が接合されている。正極リード板19のもう1本の一側は、蓋ケース22の下面に接合されている。2本の正極リード板19の他端同士は接合されている。   A battery lid that also serves as a positive electrode external terminal is disposed above the positive electrode current collecting ring 14. The battery cover is made of a metal cover case 22 having a communication hole, a metal cover cap 23 having a cross-sectional hat shape and a circular hole 23A formed in the center of the hat portion, and a valve retainer that keeps airtightness. 24 and a metal cleavage valve 21 that is cleaved when the internal pressure rises. These are laminated and assembled by caulking and fixing the periphery of the lid case 22. Therefore, when the internal pressure of the single cells 1 and 5 becomes a predetermined value or more, the cleavage groove of the cleavage valve 21 is broken, and the gas in the single cells 1 and 5 flows through the communication hole formed in the lid case 22 and the cleavage valve 21. It is discharged to the outside of the cells 1, 5 through the cleavage groove and the exhaust port 23 </ b> A of the lid cap 23. One side of the two positive electrode lead plates 19 formed by laminating ribbon-like aluminum foils is joined to the upper surface of the positive electrode current collecting ring 14. The other side of the positive electrode lead plate 19 is joined to the lower surface of the lid case 22. The other ends of the two positive electrode lead plates 19 are joined to each other.

電池蓋は、絶縁性および耐熱性のEPDM樹脂製ガスケット25を介して電池容器17の上部にかしめ固定されている。このため、単電池1、5の内部は密封されている。また、電池容器17内には、電極群16全体を浸潤可能な非水電解液(不図示)が注液されている。非水電解液には、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)の体積比30:50:20の割合で混合した溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF)を、1モル/リットル溶解したものを用いることができる。なお、単電池1、5の両端面を除く側周面は、熱収縮性のシュリンクチューブ(不図示)で被覆されている。単電池1、5の定格容量は4.0Ahである。 The battery lid is caulked and fixed to the upper part of the battery container 17 via an insulating and heat resistant EPDM resin gasket 25. For this reason, the inside of the single cells 1 and 5 is sealed. In addition, a nonaqueous electrolytic solution (not shown) that can infiltrate the entire electrode group 16 is injected into the battery container 17. Examples of the non-aqueous electrolyte include hexafluorophosphoric acid as a lithium salt in a solvent in which a volume ratio of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) is mixed at a ratio of 30:50:20. Lithium (LiPF 6 ) dissolved at 1 mol / liter can be used. In addition, the side peripheral surface except the both end surfaces of the single cells 1 and 5 is covered with a heat-shrinkable shrink tube (not shown). The rated capacity of the single cells 1 and 5 is 4.0 Ah.

図1および図2に示すように、バスバ4は、両端部のうち、一側(図1の右側)に配置された略円盤状の溶接部4A、他側(図1の左側)に配置された略円盤状の溶接部4B、および、段差により溶接部4A、4Bより一段高い位置に配置され溶接部4A、4B間を接続する板状の接続部(中央部)4Cで構成されている。溶接部4A、4Bには、溶接点となる位置にプロジェクション(突起)7が正方形の四隅を形成するように、単電池1、5側に向けて突設されている。プロジェクション7間には、スポット溶接用の十字状スリット8が形成されている。   As shown in FIGS. 1 and 2, the bus bar 4 is disposed on the other side (left side in FIG. 1) and on the other side (left side in FIG. 1). Further, it is constituted by a substantially disk-shaped welded portion 4B and a plate-like connecting portion (center portion) 4C that is arranged at a level higher than the welded portions 4A and 4B by a step and connects the welded portions 4A and 4B. In the welded portions 4A and 4B, projections (projections) 7 project toward the unit cells 1 and 5 so as to form square four corners at positions serving as welding points. A cross-shaped slit 8 for spot welding is formed between the projections 7.

本実施形態では、単電池1、5を直列接続するために、バスバ4の溶接部4Aは、単電池5の電池容器17の外底面に、電池容器17の内底面側の接合箇所30を避けるように、4つのプロジェクション7の位置で、ダイレクトスポット溶接で電気的機械的に接合されている。一方、バスバ4の溶接部4Bは、単電池1の電池蓋(蓋キャップ23)に、蓋キャップ23に形成された排気口23Aがスリット8の十字中心部に位置するように(排気口23Aの位置を避けるように)、4つのプロジェクション7の位置で、ダイレクトスポット溶接で電気的機械的に接合されている。すなわち、排気口23Aは、溶接部4Bのスリット8の直下に位置付けられている。   In the present embodiment, in order to connect the cells 1 and 5 in series, the welded portion 4 </ b> A of the bus bar 4 avoids the joint portion 30 on the inner bottom surface side of the battery container 17 on the outer bottom surface of the battery container 17 of the battery cell 5. Thus, the electromechanical joining is performed by direct spot welding at the positions of the four projections 7. On the other hand, the welded portion 4B of the bus bar 4 is connected to the battery lid (lid cap 23) of the unit cell 1 so that the exhaust port 23A formed in the lid cap 23 is positioned at the center of the cross of the slit 8 (of the exhaust port 23A). The four projections 7 are electromechanically joined by direct spot welding (to avoid position). That is, the exhaust port 23A is positioned directly below the slit 8 of the welded portion 4B.

図2に示すように、溶接部4Aのスリット8の十字中央部には金属製でリベット状の放熱部材10が固定されている。本例の放熱部材10は、単電池5と溶接部4Bとが接合された後に、溶接部4B側からスリット8を介して圧入されたもので、一側(断面T字状の脚部側)が接合箇所30に対応した電池容器17の外底面に当接し、他側(断面T字状の腕部(頭部)底面側)が溶接部4Bの上面に当接している。   As shown in FIG. 2, a rivet-shaped heat radiation member 10 made of metal is fixed to the center of the cross of the slit 8 of the weld 4A. The heat dissipating member 10 of this example is press-fitted through the slit 8 from the welded part 4B side after the unit cell 5 and the welded part 4B are joined, and is on one side (leg section side with a T-shaped cross section). Is in contact with the outer bottom surface of the battery case 17 corresponding to the joint location 30, and the other side (the arm portion (head) bottom surface side having a T-shaped cross section) is in contact with the upper surface of the welded portion 4B.

放熱部材10の材質としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、鉄、ステンレススチール等の金属材料を選択することができるが、放熱を主目的とするため、電池容器17より大きな熱伝導率を有する材質がより好ましい。   As a material of the heat radiating member 10, for example, a metal material such as copper, copper alloy, aluminum, aluminum alloy, nickel, iron, and stainless steel can be selected. A material having a large thermal conductivity is more preferable.

(作用等)
次に、本実施形態のタンデム電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the tandem battery 20 of this embodiment will be described.

本実施形態のタンデム電池20は、電極群16に電気的に接続された負極リード板18と電池容器17の内底面とがスポット溶接で接合された2個の単電池1、5が、単電池1、5間を電気的機械的に接続するバスバ4で接続されている。バスバ4の両端部のうち一方の溶接部4Aに放熱部材10の他側が固定されており、放熱部材10の一側はスポット溶接で接合された電池容器17の内底面側の溶接箇所30と反対面側の外底面に当接している。従って、タンデム電池20の大電流通電時に接合箇所30が発熱しても、放熱部材10を介して熱がバスバ4に伝達され接合箇所30での温度が下がり、接合箇所30の損傷を防止することができる。このとき、放熱部材10の熱伝導率が電池容器17の熱伝導率より大きければ、接合箇所30での発熱温度を効率的に下げることができる。   In the tandem battery 20 of the present embodiment, two unit cells 1 and 5 in which the negative electrode lead plate 18 electrically connected to the electrode group 16 and the inner bottom surface of the battery container 17 are joined by spot welding are unit cells. 1 and 5 are connected by a bus bar 4 which electrically and mechanically connects them. The other side of the heat radiating member 10 is fixed to one welded portion 4A of both ends of the bus bar 4, and one side of the heat radiating member 10 is opposite to the welded portion 30 on the inner bottom surface side of the battery case 17 joined by spot welding. It is in contact with the outer bottom surface on the surface side. Therefore, even if the joining point 30 generates heat when the tandem battery 20 is energized, heat is transmitted to the bus bar 4 through the heat radiating member 10 so that the temperature at the joining point 30 is lowered and damage to the joining point 30 is prevented. Can do. At this time, if the thermal conductivity of the heat radiating member 10 is larger than the thermal conductivity of the battery container 17, the heat generation temperature at the joint 30 can be efficiently lowered.

また、本実施形態のタンデム電池20では、放熱部材10の側面部が溶接部4Bに当接しており、放熱部材10の断面T字状の腕部底面が溶接部4Bの上面にも当接しているので(図2参照)、放熱用面積を大きくでき、発熱による接合箇所30の損傷防止に対する信頼性を高めることができる。   In the tandem battery 20 of the present embodiment, the side surface portion of the heat radiating member 10 is in contact with the welded portion 4B, and the bottom surface of the T-shaped arm portion of the heat radiating member 10 is also in contact with the upper surface of the welded portion 4B. Therefore (see FIG. 2), the area for heat dissipation can be increased, and the reliability for preventing damage to the joint 30 due to heat generation can be increased.

さらに、本実施形態のタンデム電池20では、溶接部4Bが、スポット溶接で接合された電池容器17の内定面の接合箇所30に対応した外底面側の箇所を避けるように電池容器17の外底面に4箇所でスポット溶接されているので(図1参照)、接合箇所30に対応した電池容器17の外底面側にスポット溶接した場合(2度の溶接履歴を電池容器17に与える場合)に比べ、接合箇所30の流動化に伴う接合不良や電池容器17の脆弱化による影響(穴あき等)を防止することができる。   Further, in the tandem battery 20 of the present embodiment, the outer bottom surface of the battery container 17 is such that the welded portion 4B avoids a position on the outer bottom surface side corresponding to the joint part 30 of the inner surface of the battery container 17 joined by spot welding. 4 (see FIG. 1), compared with the case where spot welding is performed on the outer bottom surface side of the battery case 17 corresponding to the joint location 30 (when two welding histories are given to the battery case 17). In addition, it is possible to prevent an influence (perforation or the like) due to poor bonding due to fluidization of the joint location 30 or weakening of the battery container 17.

また、本実施形態のタンデム電池20では、排気口23Aが溶接部4Bのスリット8の十字中心部の直下に位置付けられているので(図1参照)、単電池1の電池異常時に、単電池1の内圧が所定値以上となり開裂弁21の開裂溝が開裂しても、単電池1内のガスは、蓋キャップ23Aに形成された排気口23A、および、溶接部4Bの形成されたスリット8を介して、円滑に単電池1の外部に排出される。従って、単電池1が破裂するような事態には至らない。   Further, in the tandem battery 20 of the present embodiment, the exhaust port 23A is positioned immediately below the center of the cross of the slit 8 of the welded part 4B (see FIG. 1). Even if the internal pressure of the battery becomes equal to or higher than a predetermined value and the cleavage groove of the cleavage valve 21 is cleaved, the gas in the unit cell 1 passes through the exhaust port 23A formed in the lid cap 23A and the slit 8 formed with the weld 4B. And is smoothly discharged outside the unit cell 1. Therefore, the situation where the unit cell 1 bursts does not occur.

さらに、本実施形態のタンデム電池20では、バスバ4の接続部4Cが段差により溶接部4A、4Bより一段高い位置に配置されている。このため、放熱部材10を介して熱がバスバ4に伝達されたときにバスバ4の変形が段差で吸収されるとともに、変形による溶接部4Bと単電池1の電池容器との短絡を防止することができる。   Furthermore, in the tandem battery 20 of the present embodiment, the connecting portion 4C of the bus bar 4 is arranged at a position higher than the welded portions 4A and 4B by a step. For this reason, when heat is transmitted to the bus bar 4 through the heat radiating member 10, the deformation of the bus bar 4 is absorbed by the step, and a short circuit between the welded portion 4 </ b> B and the battery container of the unit cell 1 due to the deformation is prevented. Can do.

なお、本実施形態では、二次電池にリチウムイオン二次電池を例示したが、本発明はこれに限らず、例えば、ニッケル水素電池にも適用可能である。また、本実施形態では2本の単電池を直列接続したタンデム電池を例示したが、本発明はこれに限定されず、3本以上の単電池を直列接続した集合電池(組電池)や単電池を並列または直並列に接続した集合電池にも適用可能であることは論を待たない。さらに、放熱部材10にリベット状のものを例示したが、プラグ状のものを用いるようにしてもよい。また、スリット8にネジ穴を螺設しておき、放熱部材10にネジ状部材を用いるようにしてもよい。   In the present embodiment, a lithium ion secondary battery is exemplified as the secondary battery, but the present invention is not limited to this, and can be applied to, for example, a nickel metal hydride battery. Further, in this embodiment, a tandem battery in which two unit cells are connected in series is illustrated, but the present invention is not limited to this, and an assembled battery (assembled battery) or unit cell in which three or more unit cells are connected in series. It cannot be overemphasized that it is applicable also to the assembled battery which connected in parallel or series-parallel. Furthermore, although the rivet-shaped thing was illustrated for the heat radiating member 10, you may make it use a plug-shaped thing. Alternatively, a screw hole may be provided in the slit 8 and a screw-like member may be used for the heat radiating member 10.

(第2実施形態)
次に、本発明を並置型タンデム電池に適用した第2の実施の形態について説明する。本実施形態のタンデム電池は、第1実施形態の放熱部材10をバスバ4と一体形成したものである。なお、本実施形態において、第1実施形態と同一部材には同一の符号を付してその説明を省略し、以下、異なる箇所のみ説明する。
(Second Embodiment)
Next, a second embodiment in which the present invention is applied to a juxtaposed tandem battery will be described. The tandem battery of this embodiment is obtained by integrally forming the heat dissipation member 10 of the first embodiment with the bus bar 4. In the present embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and only different portions will be described below.

図3に示すように、本実施形態における溶接部4Aは、第1実施形態のスリット8が形成された一部から下側(単電池5側)に向けて斜設された板バネ状部材11を有している。板バネ状部材11の先端部は電池容器5の内底面側の溶接箇所30と反対面側の外底面に当接しており、板バネ状部材11の基部は溶接部4Aに固定されている。本形態によれば、第1実施形態と同様の効果を得ることができるとともに、部品点数の削減、コストダウンおよび電池の軽量化を図ることができる。   As shown in FIG. 3, the welded portion 4 </ b> A in the present embodiment is a plate spring-like member 11 that is obliquely arranged from a part where the slit 8 of the first embodiment is formed to the lower side (unit cell 5 side). have. The distal end portion of the leaf spring-shaped member 11 is in contact with the outer bottom surface on the opposite side to the welded portion 30 on the inner bottom surface side of the battery container 5, and the base portion of the leaf spring-shaped member 11 is fixed to the welded portion 4A. According to this embodiment, the same effects as those of the first embodiment can be obtained, and the number of components can be reduced, the cost can be reduced, and the battery can be reduced in weight.

なお、本形態において、溶接部4Aを単電池5に溶接する場合には、板バネ状部材11の付勢力に抗するように押圧し、電池容器17の外底面に4箇所のプロジェクション7でスポット溶接を行うようにしても、スポット溶接した後、板バネ状部材11を折り曲げて、先端部が電池容器5の内底面側の溶接箇所30と反対面側の外底面に当接するようにしてもよい。板バネ状部材11は、電池容器17との接触面積を大きくするために、先端部が付勢力により電池容器17と沿うように折り曲げられていてもよい。また、溶接部4Aは、板バネ状部材11を、図3に示すように1個だけではなく、複数個有していてもよい。   In this embodiment, when welding the welded portion 4A to the unit cell 5, the welding spring 4A is pressed against the urging force of the leaf spring-like member 11, and spotted by four projections 7 on the outer bottom surface of the battery container 17. Even if welding is performed, after spot welding, the leaf spring-like member 11 is bent so that the front end portion comes into contact with the outer bottom surface on the opposite surface side of the inner bottom side of the battery container 5. Good. In order to increase the contact area with the battery container 17, the leaf spring-like member 11 may be bent so that the tip part thereof is along the battery container 17 by the biasing force. Further, the welded portion 4A may have a plurality of leaf spring members 11 instead of only one as shown in FIG.

上述した実施形態に従って、実施例のタンデム電池20を作製し通電試験を行った。なお、比較のために作製した比較例の電池についても併記する。   In accordance with the above-described embodiment, the tandem battery 20 of the example was manufactured and an energization test was performed. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例)
実施例1では、上述した第1実施形態(図1、2参照)のタンデム電池20を作製した。実施例2では、第2実施形態(図3参照)のタンデム電池20を作製した。
(Example)
In Example 1, the tandem battery 20 of the first embodiment (see FIGS. 1 and 2) described above was produced. In Example 2, the tandem battery 20 of the second embodiment (see FIG. 3) was produced.

(比較例)
比較例では、上述した第1実施形態の放熱部材10を欠く、すなわち、従来例のタンデム電池を作製した。
(Comparative example)
In the comparative example, the heat dissipating member 10 of the first embodiment described above was lacked, that is, a conventional tandem battery was produced.

(試験)
作製した実施例1、2および比較例のタンデム電池を8.2V(単電池レベルでは4.1V)に充電した後、電子負荷装置に接続し、200A通電にて4.0Vまで放電し、電池容器17(接合箇所30)の状態の目視観察および通電時間を評価した。その結果を下表1に示す。
(test)
The produced tandem batteries of Examples 1 and 2 and the comparative example were charged to 8.2 V (4.1 V at the unit cell level), then connected to an electronic load device, and discharged to 4.0 V by 200 A energization. Visual observation of the state of the container 17 (joint location 30) and energization time were evaluated. The results are shown in Table 1 below.

Figure 2009301982
Figure 2009301982

表1から明らかなように、実施例1、2のタンデム電池は、溶接箇所30の発熱を抑制でき、大電流の連続放電に適している。   As is clear from Table 1, the tandem batteries of Examples 1 and 2 can suppress heat generation at the welded portion 30 and are suitable for continuous discharge of a large current.

本発明は大電流通電時でも接合箇所の発熱を抑え接合箇所の損傷を防止できる集合電池を提供するものであるため、集合電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention provides an assembled battery that can suppress the generation of heat at the joining portion even when a large current is applied, and can prevent damage to the joining portion. Therefore, the present invention contributes to the manufacture and sale of the collecting battery, and thus has industrial applicability. .

本発明が適用可能な第1実施形態のタンデム電池の放熱部材の圧入前の平面図である。It is a top view before the press-fit of the heat radiating member of the tandem battery of 1st Embodiment which can apply this invention. 第1実施形態のタンデム電池の上部側面図である。It is an upper part side view of the tandem battery of a 1st embodiment. 本発明が適用可能な第2実施形態のタンデム電池の平面図である。It is a top view of the tandem battery of 2nd Embodiment which can apply this invention. タンデム電池を構成するリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery which comprises a tandem battery.

符号の説明Explanation of symbols

1、5 単電池(二次電池)
4 バスバ
4A 溶接部(一方の端部)
4B 溶接部(他方の端部)
4C 接続部(中央部)
8 十字状スリット(スリット)
10 放熱部材
16 電極群
17 電池容器(電池缶)
18 負極リード板(導電部材)
20 タンデム電池(集合電池)
23 蓋キャップ(電池蓋の一部)
23A 排気口
1, 5 Single battery (secondary battery)
4 Busbar 4A Welded part (one end)
4B welded part (the other end)
4C connection part (central part)
8 Cross-shaped slit (slit)
10 Heat Dissipation Member 16 Electrode Group 17 Battery Container (Battery Can)
18 Negative lead plate (conductive member)
20 Tandem battery (collective battery)
23 Lid cap (part of battery lid)
23A Exhaust port

Claims (10)

電極群に電気的に接続された導電部材と金属製電池缶の内底面とがスポット溶接で接合された複数の二次電池と、
前記二次電池間を電気的機械的に接続するバスバと、
一側が前記スポット溶接で接合された電池缶の内底面と反対面側の外底面に当接し、他側が前記バスバの両端部のうち少なくとも一方の端部に固定された金属製の放熱部材と、
を備えた集合電池。
A plurality of secondary batteries in which the conductive member electrically connected to the electrode group and the inner bottom surface of the metal battery can are joined by spot welding;
A bus bar that electrically and mechanically connects the secondary batteries;
A metal heat dissipating member that is in contact with the outer bottom surface on the opposite side to the inner bottom surface of the battery can joined by spot welding on one side, and the other side is fixed to at least one end portion of both ends of the bus bar,
An assembled battery with
前記放熱部材は、前記二次電池の電池缶より大きな熱伝導率を有することを特徴とする請求項1に記載の集合電池。   The assembled battery according to claim 1, wherein the heat radiating member has a thermal conductivity larger than that of the battery can of the secondary battery. 前記放熱部材の一側が、前記スポット溶接による電池缶の内定面の接合箇所に対応した外底面側の箇所に当接していることを特徴とする請求項1に記載の集合電池。   2. The assembled battery according to claim 1, wherein one side of the heat radiating member is in contact with a portion on the outer bottom surface side corresponding to a joint portion of the inner surface of the battery can by spot welding. 前記放熱部材は、前記バスバ側から圧入されたプラグもしくはリベット状部材または前記バスバ側から螺入されたネジ状部材であることを特徴とする請求項1に記載の集合電池。   2. The assembled battery according to claim 1, wherein the heat radiating member is a plug or a rivet-like member press-fitted from the bus bar side or a screw-like member screwed from the bus bar side. 前記プラグもしくはリベット状部材またはネジ状部材の頭部底面が前記バスバの両端部のうち少なくとも一方の端部上面に当接していることを特徴とする請求項4に記載の集合電池。   The assembled battery according to claim 4, wherein a bottom surface of the head of the plug or rivet-shaped member or screw-shaped member is in contact with an upper surface of at least one of the both ends of the bus bar. 前記放熱部材は前記バスバと一体形成されていることを特徴とする請求項1に記載の集合電池。   The assembled battery according to claim 1, wherein the heat radiating member is formed integrally with the bus bar. 前記バスバの両端部のうち少なくとも一方の端部は、前記スポット溶接による電池缶の内定面の接合箇所に対応した外底面側の箇所を避けるように前記電池缶の外底面に複数箇所でスポット溶接で接合されたことを特徴とする請求項3に記載の集合電池。   At least one end of the both ends of the bus bar is spot welded at a plurality of locations on the outer bottom surface of the battery can so as to avoid locations on the outer bottom surface corresponding to the joint location of the inner surface of the battery can by spot welding. The assembled battery according to claim 3, wherein the assembled battery is joined at a joint. 前記バスバの両端部にスポット溶接用のスリットが形成されているとともに、前記二次電池は電池蓋の上面中央部に排気口が形成されており、前記排気口は前記バスバの両端部のうち少なくとも他方の端部の前記スリットの直下に位置付けられていることを特徴とする請求項7に記載の集合電池。   A slit for spot welding is formed at both ends of the bus bar, and the secondary battery has an exhaust port formed at the center of the upper surface of the battery lid, and the exhaust port is at least of both ends of the bus bar. The assembled battery according to claim 7, wherein the assembled battery is positioned immediately below the slit at the other end. 前記バスバの両端部のうち、一側の端部は前記集合電池を構成する二次電池の負極性の電池缶に接合されており、他側の端部は該二次電池に直列接続される他の二次電池の正極性の電池蓋に接合されていることを特徴とする請求項1に記載の集合電池。   Of both ends of the bus bar, one end is joined to a negative battery can of the secondary battery constituting the assembled battery, and the other end is connected in series to the secondary battery. The assembled battery according to claim 1, wherein the assembled battery is joined to a positive battery cover of another secondary battery. 前記バスバの両端部間の中央部は前記バスバの両端部に対し段差を有することを特徴とする請求項1に記載の集合電池。   The assembled battery according to claim 1, wherein a central portion between both end portions of the bus bar has a step with respect to both end portions of the bus bar.
JP2008157585A 2008-06-17 2008-06-17 Battery Expired - Fee Related JP5135071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157585A JP5135071B2 (en) 2008-06-17 2008-06-17 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157585A JP5135071B2 (en) 2008-06-17 2008-06-17 Battery

Publications (2)

Publication Number Publication Date
JP2009301982A true JP2009301982A (en) 2009-12-24
JP5135071B2 JP5135071B2 (en) 2013-01-30

Family

ID=41548662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157585A Expired - Fee Related JP5135071B2 (en) 2008-06-17 2008-06-17 Battery

Country Status (1)

Country Link
JP (1) JP5135071B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480284B1 (en) * 2013-04-29 2015-01-09 주식회사 이랜텍 Battery pack module of height adjustable type
JP2015162318A (en) * 2014-02-27 2015-09-07 日立オートモティブシステムズ株式会社 battery pack
JP2015170395A (en) * 2014-03-05 2015-09-28 日立オートモティブシステムズ株式会社 cylindrical secondary battery
US9368771B2 (en) 2010-04-01 2016-06-14 Hitachi Automotive Systems, Ltd. Electric storage module and electric storage device
JP2016115458A (en) * 2014-12-12 2016-06-23 日立オートモティブシステムズ株式会社 Power storage module
RU2669378C1 (en) * 2016-09-16 2018-10-11 Тойота Дзидося Кабусики Кайся Multi-stage battery
CN110299481A (en) * 2019-07-18 2019-10-01 常州微宙电子科技有限公司 A kind of pin type lithium ion battery
JP2021089893A (en) * 2019-12-04 2021-06-10 新盛力科技股▲ふん▼有限公司 Conductive frame of battery
CN114497902A (en) * 2021-12-31 2022-05-13 美的集团(上海)有限公司 Battery pack and bus bar thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102381962B1 (en) 2018-11-29 2022-04-01 주식회사 엘지에너지솔루션 Battery Pack Having Heat Dissipating Member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252260U (en) * 1988-10-11 1990-04-16
JPH056687U (en) * 1991-07-09 1993-01-29 株式会社ユアサコーポレーシヨン Battery connection conductor
JP2004227954A (en) * 2003-01-23 2004-08-12 Sony Corp Reed terminal and power supply device
JP2004265610A (en) * 2003-01-23 2004-09-24 Sony Corp Lead terminal and power supply device
JP2006261083A (en) * 2004-09-14 2006-09-28 Matsushita Electric Ind Co Ltd Connecting device between batteries
JP2008123769A (en) * 2006-11-10 2008-05-29 Hitachi Vehicle Energy Ltd Battery pack packing structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252260U (en) * 1988-10-11 1990-04-16
JPH056687U (en) * 1991-07-09 1993-01-29 株式会社ユアサコーポレーシヨン Battery connection conductor
JP2004227954A (en) * 2003-01-23 2004-08-12 Sony Corp Reed terminal and power supply device
JP2004265610A (en) * 2003-01-23 2004-09-24 Sony Corp Lead terminal and power supply device
JP2006261083A (en) * 2004-09-14 2006-09-28 Matsushita Electric Ind Co Ltd Connecting device between batteries
JP2008123769A (en) * 2006-11-10 2008-05-29 Hitachi Vehicle Energy Ltd Battery pack packing structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368771B2 (en) 2010-04-01 2016-06-14 Hitachi Automotive Systems, Ltd. Electric storage module and electric storage device
KR101480284B1 (en) * 2013-04-29 2015-01-09 주식회사 이랜텍 Battery pack module of height adjustable type
JP2015162318A (en) * 2014-02-27 2015-09-07 日立オートモティブシステムズ株式会社 battery pack
JP2015170395A (en) * 2014-03-05 2015-09-28 日立オートモティブシステムズ株式会社 cylindrical secondary battery
JP2016115458A (en) * 2014-12-12 2016-06-23 日立オートモティブシステムズ株式会社 Power storage module
RU2669378C1 (en) * 2016-09-16 2018-10-11 Тойота Дзидося Кабусики Кайся Multi-stage battery
CN110299481A (en) * 2019-07-18 2019-10-01 常州微宙电子科技有限公司 A kind of pin type lithium ion battery
JP2021089893A (en) * 2019-12-04 2021-06-10 新盛力科技股▲ふん▼有限公司 Conductive frame of battery
JP7068723B2 (en) 2019-12-04 2022-05-17 新盛力科技股▲ふん▼有限公司 Battery conductive frame
CN114497902A (en) * 2021-12-31 2022-05-13 美的集团(上海)有限公司 Battery pack and bus bar thereof

Also Published As

Publication number Publication date
JP5135071B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5135071B2 (en) Battery
JP4416770B2 (en) Assembled battery
US10418612B2 (en) Secondary battery and a method of manufacturing secondary battery
JP5917407B2 (en) Prismatic secondary battery
JP5558569B2 (en) Battery and battery pack
US8252457B2 (en) Battery cell and power supply
JP5355929B2 (en) Sealed battery and method for manufacturing the same
CN111384355B (en) Secondary battery and battery pack
US11121439B2 (en) Secondary battery
JP2016189248A (en) Square secondary battery and battery pack using the same
JP5137516B2 (en) Sealed battery
JP2009032670A5 (en)
JP2011192547A (en) Battery
JP5384071B2 (en) Sealed battery
JP2001185225A (en) Lithium secondary battery
JP5435268B2 (en) Assembled battery
KR20080047165A (en) Electrode assembly and secondary battery comprising the same
US20140023913A1 (en) Prismatic secondary battery
JP5334429B2 (en) Lithium secondary battery
KR20150035070A (en) Secondary Battery with Electrode Tab Having Low Resistance
JP2017183619A (en) Power storage device
JP2012084541A (en) Film-enclosed battery
JP2019067544A (en) Secondary battery and manufacturing method thereof
JP2018098154A (en) Power storage element, power storage device and method of manufacturing power storage element
JP3906872B2 (en) Battery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees