JP2009300244A - Corrosion sensor - Google Patents

Corrosion sensor Download PDF

Info

Publication number
JP2009300244A
JP2009300244A JP2008154867A JP2008154867A JP2009300244A JP 2009300244 A JP2009300244 A JP 2009300244A JP 2008154867 A JP2008154867 A JP 2008154867A JP 2008154867 A JP2008154867 A JP 2008154867A JP 2009300244 A JP2009300244 A JP 2009300244A
Authority
JP
Japan
Prior art keywords
corrosive
corrosion
chip
frequency
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008154867A
Other languages
Japanese (ja)
Inventor
Nobuo Miyaji
宣夫 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008154867A priority Critical patent/JP2009300244A/en
Publication of JP2009300244A publication Critical patent/JP2009300244A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion sensor which shows less power consumption and is capable of measuring a degree of corrosion without being affected by temperature, density and viscosity. <P>SOLUTION: The corrosion sensor is equipped with a corrosion chip fixed to one end of a non-corrosive first elastic body, a non-corrosion chip fixed to one end of a non-corrosive second elastic body, a self-oscillation circuit for respectively resonating the corrosion chip and the non-corrosion chip through the first and second elastic bodies, a frequency counter for counting the resonance frequency from the corrosion chip and the non-corrosion chip, and an arithmetic part for operating the ratio of the square of frequency. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、構造部材の腐食を検出する腐食センサに関し、腐食性部材と、非腐食部材を共振させ、これらの部材の共振周波数の差をもとに測定対象の部材の腐食度を推定する腐食センサに関するものである。   The present invention relates to a corrosion sensor that detects corrosion of a structural member, and corrodes a corrosive member and a non-corrosive member and corrosives that estimate the degree of corrosion of the member to be measured based on the difference in resonance frequency of these members. It relates to sensors.

従来、腐食センサは腐食減量を電気抵抗の増加で測定するもの、電気化学電位を測定するものが知られている。腐食減量法は電気抵抗を測定するものであるが、形状変化に対応した電気抵抗を測定するので電圧が腐食化学反応に影響する可能性があった。   Conventionally, there are known corrosion sensors that measure corrosion weight loss by increasing electrical resistance and those that measure electrochemical potential. The corrosion weight loss method measures the electrical resistance, but the electrical resistance corresponding to the shape change is measured, so the voltage may affect the corrosion chemical reaction.

また、高感度電気抵抗法は環境の腐食性を腐食速度としてモニタリングでき、かつ感度と応答性に優れることから、現場検証試験などで用いられている。
また、化学電位による腐食センサも知られているが、この腐食センサはCL-などその環境に存在するイオンに影響されるので正確に腐食が起きるか予測できない。たとえば、CL-が存在すると、不動態域で孔食が起こり、鉄に孔があく。電位−pH図は、実際の環境で起る現象の全てを予測する事は出来ない。
The high-sensitivity electrical resistance method is used in field verification tests because it can monitor the corrosiveness of the environment as the corrosion rate and is excellent in sensitivity and responsiveness.
Moreover, also known corrosion sensor by chemical potential, the corrosion sensor CL - can not predict exactly corrosion occurs because such is influenced by ions present in the environment. For example, when CL - is present, pitting corrosion occurs in the passive region, and iron is pierced. The potential-pH diagram cannot predict all phenomena that occur in the actual environment.

図2は腐食により変化する共振周波数を検出して測定部材の腐食度を測定する腐食センサの従来例を示すものである。
この腐食センサは円板形状の測定試料11と、その測定試料11の周縁を固定する剛性のある筒状の支持体12と、支持体12の端部を固定して装着する振動子13と、測定試料11、支持体12及び振動子13で囲われた密閉空間で測定試料の真裏またはその近辺に設置された物理量センサ14とから構成されている。
FIG. 2 shows a conventional example of a corrosion sensor that detects a resonance frequency that changes due to corrosion and measures the degree of corrosion of a measurement member.
The corrosion sensor includes a disk-shaped measurement sample 11, a rigid cylindrical support 12 that fixes the periphery of the measurement sample 11, a vibrator 13 that fixes and attaches the end of the support 12, It is composed of a physical quantity sensor 14 installed in the back of the measurement sample or in the vicinity thereof in a sealed space surrounded by the measurement sample 11, the support 12 and the vibrator 13.

上記の構成において、まず外部からの信号により振動子13を振動させ、その振動を支持体12を介して測定試料11の表面に直角方向に伝搬し、その測定試料11の中央部の振動時の振幅を物理量センサ14が測定する。
ここで物理量センサ14は、接触または非接触で測定試料11の歪、変位、または電気容量などを測定し、測定値は電気信号に変換されて外部に取り出される。
In the above configuration, first, the vibrator 13 is vibrated by an external signal, and the vibration is propagated in the direction perpendicular to the surface of the measurement sample 11 via the support 12. The physical quantity sensor 14 measures the amplitude.
Here, the physical quantity sensor 14 measures the distortion, displacement, electric capacity, etc. of the measurement sample 11 in contact or non-contact, and the measurement value is converted into an electric signal and taken out to the outside.

図3はこのような腐食センサの構成図である。
図において腐食センサは図2に示すもので、この腐食センサの測定試料11は振動子駆動回路2により駆動される振動子13の振動に応じて支持体12を介して振動し、測定試料11の中央部の振動は物理量センサ14により測定される。測定された振動データはコンピュータ3に入力されて演算処理される。
FIG. 3 is a block diagram of such a corrosion sensor.
In the figure, the corrosion sensor 1 is shown in FIG. 2, and the measurement sample 11 of the corrosion sensor 1 vibrates through the support 12 in accordance with the vibration of the vibrator 13 driven by the vibrator drive circuit 2, and the measurement sample. 11 is measured by the physical quantity sensor 14. The measured vibration data is input to the computer 3 and processed.

そして、振動子駆動回路2により腐食センサに振動数が高→低または低→高と変動する振動を掃引するとき、腐食センサは、その各次数の共振振動数に達したときに共振する。
図4(a,b)は腐食センサにおける測定試料11の振動特性を示すもので、横軸に測定試料に与えられた振動の振動数を示し、縦軸にはその振動数に対する測定試料11の振幅を示している。
When the sweeping vibration that varies with frequency high → low or low → high corrosion sensor 1 by the vibrator driving circuit 2, the corrosion sensor 1 resonates when it reaches a resonant frequency of the respective orders .
4A and 4B show the vibration characteristics of the measurement sample 11 in the corrosion sensor 1. The horizontal axis indicates the frequency of vibration applied to the measurement sample, and the vertical axis indicates the measurement sample 11 with respect to the frequency. The amplitude of is shown.

そして、実線の曲線は測定試料が腐食などにより質量変化した場合の振動特性を示し、鎖線の曲線は測定試料が初期の新しい状態にある場合の振動特性を示している。これらの図に示すように、共振振動数において測定試料11の振幅はピークに達する。測定時コンピュータ3には各振動数での腐食センサに設置された物理量センサ14より測定試料11の振幅に対応した物理量が、更に振動子駆動回路2から起振力の振動数が入力され、物理量のピークに対応する振動数が共振振動数と判断される。 The solid curve indicates the vibration characteristics when the measurement sample changes in mass due to corrosion or the like, and the chain line curve indicates the vibration characteristics when the measurement sample is in the initial new state. As shown in these figures, the amplitude of the measurement sample 11 reaches a peak at the resonance frequency. At the time of measurement, the physical quantity corresponding to the amplitude of the measurement sample 11 is input from the physical quantity sensor 14 installed in the corrosion sensor 1 at each frequency, and the vibration frequency of the excitation force is input from the vibrator driving circuit 2 to the computer 3 at the time of measurement. The frequency corresponding to the peak of the physical quantity is determined as the resonance frequency.

次に、測定試料11の質量が腐食生成物析出物又は付着物により見かけ上増加した場合、図4(a)に示すように損傷を受けた測定試料の各次数での共振振動数P0’,P1’等は、初期における質量変化がないときの共振周波数P0,P1などに比べ高振動数側にシフトする。また、測定試料の質量が溶出、溶解により減少した場合図4(b)に示すように損傷を受けた測定試料の各次数での共振振動数P0’’,P1’’等は、初期における質量変化がないときの共振周波数P0,P1などに比べ低振動数側にシフトする。   Next, when the mass of the measurement sample 11 is apparently increased due to corrosion product deposits or deposits, the resonance frequency P0 ′ at each order of the measurement sample damaged as shown in FIG. P1 ′ and the like shift to a higher frequency side than the resonance frequencies P0 and P1 when there is no mass change in the initial stage. Further, when the mass of the measurement sample decreases due to elution and dissolution, as shown in FIG. 4B, the resonance frequencies P0 ″, P1 ″, etc. in each order of the measurement sample damaged are the initial masses. It shifts to the lower frequency side compared to the resonance frequencies P0, P1, etc. when there is no change.

従って、コンピュータ3内で測定試料11の初期における共振周波数と測定環境において質量変化を生じた後での共振周波数の差を求め、その値に対応する測定試料の算出し、腐食損傷の定量化を随時行うことができる。そして、各次数の共振振動数の内で最低時の共振振動では測定試料の振幅のピークが他の高次の振幅のピークに比べもっとも大きく、振幅のピークを検出することができる。   Therefore, the difference between the resonance frequency at the initial stage of the measurement sample 11 in the computer 3 and the resonance frequency after the mass change occurs in the measurement environment is obtained, the measurement sample corresponding to the value is calculated, and the corrosion damage is quantified. It can be done at any time. In the lowest resonance vibration among the resonance frequencies of each order, the amplitude peak of the measurement sample is the largest compared to the other higher-order amplitude peaks, and the amplitude peak can be detected.

特開平3−183946号公報JP-A-3-183946

ところで、上述の従来例においては、次のような課題があった。
周波数を掃引して振幅が最大になる周波数、または発振回路の励振信号と振動体の振動信号との位相差がπ/2になる時にその周波数を共振周波数として見つけているので、その間駆動回路での電力を消費するとともに所定の時間を要する。
また、振動が温度、粘度、密度により影響を受けるのでその補正が必要である。
Incidentally, the above-described conventional example has the following problems.
Since the frequency is swept up to the maximum amplitude, or when the phase difference between the excitation signal of the oscillation circuit and the vibration signal of the vibrating body is π / 2, the frequency is found as the resonance frequency. Power consumption and a predetermined time.
Further, since vibration is affected by temperature, viscosity, and density, correction is necessary.

従って本発明は、消費電力が少なく温度、密度、粘度の影響を受けないで腐食度を測定することが可能な腐食度センサを提供することを目的としている。   Accordingly, an object of the present invention is to provide a corrosion degree sensor that consumes less power and can measure the corrosion degree without being affected by temperature, density, and viscosity.

本発明は上記課題を解決するためになされたもので、請求項1に記載の発明においては、
非腐食性第1弾性体の一端に固定された腐食チップと、非腐食性第2弾性体の一端に固定された非腐食チップと、前記第1,第2弾性体を介して前記腐食性チップ及び非腐食性チップをそれぞれ共振させる自励発振回路と、前記腐食性チップ及び非腐食性チップからの共振周波数をカウントする周波数カウンタと、前記2つの共振周波数の2乗の比を演算する演算部を備えたことを特徴とする。
The present invention has been made to solve the above problems, and in the invention according to claim 1,
A corrosive tip fixed to one end of the non-corrosive first elastic body, a non-corrosive tip fixed to one end of the non-corrosive second elastic body, and the corrosive tip via the first and second elastic bodies And a self-oscillation circuit that resonates the non-corrosive chip, a frequency counter that counts the resonance frequency from the corrosive chip and the non-corrosive chip, and a calculation unit that calculates a ratio of the squares of the two resonance frequencies. It is provided with.

請求項2においては、請求項1に記載の腐食センサにおいて、
前記腐食性チップと非腐食性チップは初期段階においては同一周波数で共振するように形成されたことを特徴とする。
In claim 2, in the corrosion sensor according to claim 1,
The corrosive tip and the non-corrosive tip are formed to resonate at the same frequency in the initial stage.

請求項3においては、請求項1に記載の腐食センサにおいて、
前記第1,第2弾性体は不錆鋼若しくは金メッキを含む不錆処理が施されたことを特徴とする。
In claim 3, in the corrosion sensor according to claim 1,
The first and second elastic bodies are subjected to a rust treatment including rust steel or gold plating.

請求項4においては、請求項1に記載の腐食センサにおいて、
前記腐食性チップと非腐食性チップは腐食度を測定すべき構造物が配置された環境中に近接して配置され、前記腐食性チップは腐食度を測定すべき部材と同一部材で形成されたことを特徴とする。
In claim 4, in the corrosion sensor according to claim 1,
The corrosive chip and the non-corrosive chip are arranged close to each other in the environment where the structure whose corrosion degree is to be measured is arranged, and the corrosive chip is formed of the same member as the member whose corrosion degree is to be measured. It is characterized by that.

以上説明したことから明らかなように本発明の請求項1によれば、非腐食性第1弾性体の一端に固定された腐食チップと、非腐食性第2弾性体の一端に固定された非腐食チップと、前記第1,第2弾性体を介して前記腐食性チップ及び非腐食性チップをそれぞれ共振させる自励発振回路と、前記腐食性チップ及び非腐食性チップからの共振周波数をカウントする周波数カウンタと、前記2つの共振周波数の2乗の比を演算する演算部を備えているので、消費電力が少なく温度、密度、粘度の影響を受けないで腐食性チップの腐食度を測定することができる。   As is apparent from the above description, according to claim 1 of the present invention, the corrosion tip fixed to one end of the non-corrosive first elastic body and the non-corrosion fixed to one end of the non-corrosive second elastic body. A corrosion chip, a self-oscillation circuit that resonates the corrosive chip and the non-corrosive chip via the first and second elastic bodies, and a resonance frequency from the corrosive chip and the non-corrosive chip are counted. Since it has a frequency counter and a calculation unit that calculates the ratio of the squares of the two resonance frequencies, the power consumption is low and the corrosion degree of the corrosive chip is measured without being affected by temperature, density, and viscosity. Can do.

請求項2によれば、腐食性チップと非腐食性チップは初期段階においては同一周波数で共振するように形成されているので、腐食の状況を連続して容易に観察することができる。   According to the second aspect, since the corrosive tip and the non-corrosive tip are formed so as to resonate at the same frequency in the initial stage, the state of corrosion can be easily observed continuously.

請求項3によれば、第1,第2弾性体は不錆鋼若しくは金メッキを含む不錆処理が施されているので、ノイズがなく信頼性の高い腐食センサを得ることができる。
また、請求項4によれば、腐食性チップと非腐食性チップは腐食度を測定すべき構造物が配置された環境中に近接して配置され、前記腐食性チップは腐食度を測定すべき部材と同一部材で形成されているので、信頼性の高い構造物の腐食監視が可能となる。
According to the third aspect, since the first and second elastic bodies are subjected to rust treatment including rust steel or gold plating, it is possible to obtain a highly reliable corrosion sensor without noise.
Further, according to claim 4, the corrosive tip and the non-corrosive tip are arranged close to each other in the environment where the structure whose corrosion degree is to be measured is arranged, and the corrosive tip should measure the corrosion degree. Since it is formed of the same member as the member, it is possible to monitor the corrosion of the structure with high reliability.

図1は本発明の腐食センサの実施形態の一例を示すブロック構成図である。
図1において、21は腐食性チップであり、腐食度を測定すべき部材と同じ材質で形成されている。22はリファレンスとして機能する非腐食性(耐食)チップである。
FIG. 1 is a block diagram showing an example of an embodiment of a corrosion sensor according to the present invention.
In FIG. 1, reference numeral 21 denotes a corrosive chip, which is formed of the same material as the member whose corrosion degree is to be measured. Reference numeral 22 denotes a non-corrosive (corrosion resistant) chip that functions as a reference.

これらのチップの寸法は例えば縦横の寸法が10×20mm、厚み5mm程度とし、長さ50mm、直径3mm程度の腐食しないバネ(以下単にバネという)22a,22bの一端に固定されている。24a,24bは固定部材であり、例えば直径10mm、長さ10mmに形成され、その一端にバネ22a,22bの他端が気密に固定されている。   The dimensions of these chips are, for example, 10 × 20 mm in length and width and about 5 mm in thickness, and are fixed to one end of non-corrosive springs (hereinafter simply referred to as springs) 22 a and 22 b having a length of about 50 mm and a diameter of about 3 mm. Reference numerals 24a and 24b denote fixing members, which are formed to have a diameter of 10 mm and a length of 10 mm, for example, and the other ends of the springs 22a and 22b are airtightly fixed to one end thereof.

25a,25bは圧電素子やコイルなどで構成された公知の自励発振回路で、その出力はバネ22a,22bを介して腐食性チップ21および非腐食性チップ22に伝達され、これらのチップを共振周波数により共振させる。   25a and 25b are known self-excited oscillation circuits composed of piezoelectric elements, coils, etc., and their outputs are transmitted to the corrosive chip 21 and the non-corrosive chip 22 via the springs 22a and 22b, and these chips resonate. Resonate with frequency.

26は周波数カウンタ27を含むCPUで、腐食性チップ21および非腐食性チップ22の共振周波数を入力し2つの共振周波数の2乗の比を演算する。図1に示すように、固定部材24(a,b)は例えば一点鎖線Aで示す壁面にその外周が気密に固定され、バネ23a,23bを含む腐食性チップ21、非腐食性チップ22を腐食度を測定すべき構造物が配置された環境中(例えば液体中)に近接して配置されている。   Reference numeral 26 denotes a CPU including a frequency counter 27, which inputs the resonance frequencies of the corrosive chip 21 and the non-corrosive chip 22 and calculates the square ratio of the two resonance frequencies. As shown in FIG. 1, the fixing member 24 (a, b) is hermetically fixed to the wall surface indicated by the alternate long and short dash line A, for example, and corrodes the corrosive tip 21 and the non-corrosive tip 22 including the springs 23a, 23b. It is arranged close to the environment (for example, in the liquid) where the structure whose degree is to be measured is arranged.

上述の構成において、腐食性チップと非腐食性チップ(リファレンス)の形状は等しく質量Mcと質量Mrも等しいものとし、同材質、同形状に形成された腐食しないバネ23a,23bのバネ定数をKとすると、
非腐食性チップ(リファレンス)の周波数fは以下の式で表すことができる。
fr=1/2π・(K/Mr)1/2
また、腐食性チップの周波数fcは以下の式となる。
fc=1/2π・(K/Mc)1/2
In the above-described configuration, the corrosive tip and the non-corrosive tip (reference) have the same shape, and the mass Mc and the mass Mr are also the same, and the spring constants of the non-corrosive springs 23a and 23b formed in the same material and the same shape are represented by K. Then,
The frequency f of the non-corrosive chip (reference) can be expressed by the following formula.
fr = 1 / 2π · (K / Mr) 1/2
Further, the frequency fc of the corrosive chip is represented by the following expression.
fc = 1 / 2π · (K / Mc) 1/2

従って、(fr/fc)2=Mc/Mrとなる。
腐食が進行する前は(fr/fc)2は1に等しい。
腐食が進行するとMcが減量するので腐食度合いを知ることが出来る。
腐食速度はd[(fr/fc)2]/dt で計算することができる。
Therefore, (fr / fc) 2 = Mc / Mr.
Before the corrosion proceeds, (fr / fc) 2 is equal to 1.
As the corrosion progresses, the amount of Mc decreases, so the degree of corrosion can be known.
The corrosion rate can be calculated by d [(fr / fc) 2 ] / dt.

fc=1/2π・(K/Mc)1/2だけでもMcの減少から計測できるが、流体の粘性や温度などの影響で有効バネ定数Kが変化してしまうので、fcの変化となる(fr/fc)2にすることにより質量減量が無次元化されて誤差が小さくなり、温度や粘度の影響が少なくなる。 Although fc = 1 / 2π · (K / Mc) 1/2 can be measured from a decrease in Mc, the effective spring constant K changes due to the influence of fluid viscosity, temperature, etc., so that fc changes ( fr / fc) 2 makes the weight loss non-dimensional, reduces the error, and reduces the influence of temperature and viscosity.

上記の構成によれば、
(1) 腐食電位によらず実際の腐食量となる質量減少を電気機械的共振回路の振動数の変化として検出する腐食センサで、あって、
(2) 腐食による質量減量を連続的に計測することができ、
(3) 腐食する振動子と腐食しないリファレンス振動子の周波数比率演算をすることで腐食減量と腐食速度を出力する腐食センサを実現することができる。
According to the above configuration,
(1) Corrosion sensor that detects the decrease in mass, which is the actual corrosion amount regardless of the corrosion potential, as a change in the frequency of the electromechanical resonance circuit.
(2) Mass loss due to corrosion can be measured continuously,
(3) By calculating the frequency ratio between the corroding vibrator and the reference vibrator that does not corrode, a corrosion sensor that outputs corrosion weight loss and corrosion rate can be realized.

公知文献、配管技術 8086 防食インヒビターの記事によれば、オイル精製プロセスの蒸留塔の腐食速度は0.01mm/年程度とされている。例えばこれより腐食速度が10倍速いとしても腐食速度は0.1mm/年程度である。従って、腐食性チップの厚さは5mm程度あれば耐食センサとして十分に機能する。   According to the article of known literature, piping technology 8086 anticorrosion inhibitor, the corrosion rate of the distillation column of the oil refining process is set to about 0.01 mm / year. For example, even if the corrosion rate is 10 times faster than this, the corrosion rate is about 0.1 mm / year. Therefore, if the thickness of the corrosive chip is about 5 mm, it functions sufficiently as a corrosion-resistant sensor.

(fr/fc)2=Mc/Mrとして周波数の変化分を見ると、
Δ(fc/fc)2=Δ(Mc/Mc)なので、周波数で0.01%(1/1000)の分解能があれば0.02%の腐食チップの腐食度の検出ができる。
即ち腐食チップの厚さを5mmとすれば、5mm×0.0002=0.001mmの変化(腐食)を検出することができる。
Looking at the change in frequency as (fr / fc) 2 = Mc / Mr,
Since Δ (fc / fc) 2 = Δ (Mc / Mc), if the resolution is 0.01% (1/1000) in frequency, the corrosion degree of the corrosion chip of 0.02% can be detected.
That is, if the thickness of the corrosion tip is 5 mm, a change (corrosion) of 5 mm × 0.0002 = 0.001 mm can be detected.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。実施例では腐食性/非腐食性チップの形状を長方形としたが図示の例に限るものではない。また、バネの形状は丸棒であってもよく、要は固有振動数で共振する形状と材質であればよい。
従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. In the embodiment, the shape of the corrosive / non-corrosive chip is rectangular, but the shape is not limited to the illustrated example. Further, the shape of the spring may be a round bar, and it may be any shape and material that resonates at the natural frequency.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

本発明の腐食センサの実施形態の一例を示す構成図である。It is a block diagram which shows an example of embodiment of the corrosion sensor of this invention. 従来の腐食センサの構成図である。It is a block diagram of the conventional corrosion sensor. 従来の腐食センサの構成図である。It is a block diagram of the conventional corrosion sensor. 従来の腐食センサにおける測定試料の振動特性を示す図である。It is a figure which shows the vibration characteristic of the measurement sample in the conventional corrosion sensor.

符号の説明Explanation of symbols

1 腐食センサ
2 振動子駆動回路
3 コンピュータ
11 測定試料
12 支持体
13 振動子
14 物理量センサ
21 腐食性チップ
22 非腐食性チップ
23 バネ
24 固定部材
25 自励発振回路
26 CPU
27 周波数カウンタ
DESCRIPTION OF SYMBOLS 1 Corrosion sensor 2 Vibrator drive circuit 3 Computer 11 Measurement sample 12 Support body 13 Vibrator 14 Physical quantity sensor 21 Corrosive chip 22 Non-corrosive chip 23 Spring 24 Fixing member 25 Self-excited oscillation circuit 26 CPU
27 Frequency counter

Claims (4)

非腐食性第1弾性体の一端に固定された腐食チップと、非腐食性第2弾性体の一端に固定された非腐食チップと、前記第1,第2弾性体を介して前記腐食性チップ及び非腐食性チップをそれぞれ共振させる自励発振回路と、前記腐食性チップ及び非腐食性チップからの共振周波数をカウントする周波数カウンタと、前記2つの共振周波数の2乗の比を演算する演算部を備えたことを特徴とする腐食センサ。   A corrosive tip fixed to one end of the non-corrosive first elastic body, a non-corrosive tip fixed to one end of the non-corrosive second elastic body, and the corrosive tip via the first and second elastic bodies And a self-oscillation circuit that resonates the non-corrosive chip, a frequency counter that counts the resonance frequency from the corrosive chip and the non-corrosive chip, and a calculation unit that calculates a ratio of the squares of the two resonance frequencies. Corrosion sensor characterized by comprising. 前記腐食性チップと非腐食性チップは初期段階においては同一周波数で共振するように形成されたことを特徴とする請求項1に記載の腐食センサ。   The corrosion sensor according to claim 1, wherein the corrosive chip and the non-corrosive chip are formed to resonate at the same frequency in an initial stage. 前記第1,第2弾性体は不錆鋼若しくは金メッキを含む不錆処理が施されたことを特徴とする請求項1に記載の腐食センサ。   The corrosion sensor according to claim 1, wherein the first and second elastic bodies are subjected to an antirust treatment including nonrust steel or gold plating. 前記腐食性チップと非腐食性チップは腐食度を測定すべき構造物が配置された環境中に近接して配置され、前記腐食性チップは腐食度を測定すべき部材と同一部材で形成されたことを特徴とする請求項1に記載の腐食センサ。   The corrosive chip and the non-corrosive chip are arranged close to each other in the environment where the structure whose corrosion degree is to be measured is arranged, and the corrosive chip is formed of the same member as the member whose corrosion degree is to be measured. The corrosion sensor according to claim 1.
JP2008154867A 2008-06-13 2008-06-13 Corrosion sensor Pending JP2009300244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154867A JP2009300244A (en) 2008-06-13 2008-06-13 Corrosion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154867A JP2009300244A (en) 2008-06-13 2008-06-13 Corrosion sensor

Publications (1)

Publication Number Publication Date
JP2009300244A true JP2009300244A (en) 2009-12-24

Family

ID=41547303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154867A Pending JP2009300244A (en) 2008-06-13 2008-06-13 Corrosion sensor

Country Status (1)

Country Link
JP (1) JP2009300244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076400A (en) * 2012-10-23 2013-05-01 中国石油化工股份有限公司 Novel corrosion probe based on vibration frequency and measurement system thereof
CN113496891A (en) * 2020-04-03 2021-10-12 重庆超硅半导体有限公司 Self-adaptive uniform corrosion method for oxide film on surface of integrated circuit silicon wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076400A (en) * 2012-10-23 2013-05-01 中国石油化工股份有限公司 Novel corrosion probe based on vibration frequency and measurement system thereof
CN113496891A (en) * 2020-04-03 2021-10-12 重庆超硅半导体有限公司 Self-adaptive uniform corrosion method for oxide film on surface of integrated circuit silicon wafer
CN113496891B (en) * 2020-04-03 2023-03-14 重庆超硅半导体有限公司 Self-adaptive uniform corrosion method for oxide film on surface of integrated circuit silicon wafer

Similar Documents

Publication Publication Date Title
US20210396565A1 (en) Measuring system having a measuring transducer of vibration-type
JP5603412B2 (en) Heterogeneous fluid density measuring device
JP5352244B2 (en) Metal loss rate sensor and measurement using mechanical oscillators
US7040179B2 (en) Process meter
US9134165B2 (en) Method for detecting accretion or abrasion in a flow measuring device
US9488619B2 (en) Device and method for monitoring interaction between a fluid and a wall
RU2320964C2 (en) Device for measuring physical parameters
JP5888330B2 (en) Fluid characteristic measuring apparatus having a symmetrical resonator
KR101868375B1 (en) Detection of a change in the cross-sectional area of a fluid tube in a vibrating meter by determining a lateral mode stiffness
US10184881B2 (en) Corrosion time profile measurement device
JP5386482B2 (en) Mechanical vibrator that operates or stops according to a predetermined condition
CN115443403A (en) Method for monitoring a coriolis mass flowmeter
JP2009300244A (en) Corrosion sensor
JP2011058950A (en) Coriolis mass flowmeter and correction method of the same
Shanmugavalli et al. Smart Coriolis mass flowmeter
Chakraborty et al. Nonlinear dynamics of resonant microelectromechanical system (MEMS): A review
JP2017072383A (en) Soil monitoring device, soil monitoring system and soil monitoring method
Dultsev et al. QCM operating in threshold mode as a gas sensor
Heinisch et al. Miniaturized resonating viscometers facilitating measurements at tunable frequencies in the low kHz-range
Wolf et al. New tuning fork corrosion sensor with high sensitivity
CN111712702A (en) Dissolution monitoring method and apparatus
Manus et al. Method for Diagnosing Random Zero Shift in Coriolis Flowmeter Caused by its Mechanical Support
KR20190017976A (en) Resonator verification method