JP2009300202A - Method and system for inspecting semiconductor device - Google Patents

Method and system for inspecting semiconductor device Download PDF

Info

Publication number
JP2009300202A
JP2009300202A JP2008153853A JP2008153853A JP2009300202A JP 2009300202 A JP2009300202 A JP 2009300202A JP 2008153853 A JP2008153853 A JP 2008153853A JP 2008153853 A JP2008153853 A JP 2008153853A JP 2009300202 A JP2009300202 A JP 2009300202A
Authority
JP
Japan
Prior art keywords
semiconductor device
irradiation
laser beam
laser light
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008153853A
Other languages
Japanese (ja)
Inventor
Kenji Norimatsu
研二 則松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008153853A priority Critical patent/JP2009300202A/en
Publication of JP2009300202A publication Critical patent/JP2009300202A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system for inspecting a semiconductor device which enable pinpointing of a faulty spot in a short time. <P>SOLUTION: A plurality of spots in an observation object area of the semiconductor device are irradiated locally by laser light as the light is made to scan the area, while the semiconductor device is made to operate for testing at the same time, and the result of this test is made to correspond to the position of irradiation of the laser light to produce a quality determination image made a two-dimensional image, so that the faulty spot may be pinpointed. In the case of producing the quality determination image with the maximum number of pixels allowed for one screen, in this method for inspecting the semiconductor device, the laser light irradiation is performed with the number of points of irradiation lessened and irradiation point intervals widened, while a range of the laser light scanning is left unvaried. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置の検査方法及び半導体装置の検査装置に関する。   The present invention relates to a semiconductor device inspection method and a semiconductor device inspection apparatus.

最近のLSIの高集積化、高性能化により、LSIテスタを接続したファンクション不良解析の必要性が高まっている。その解析方法として、レーザ照射ダイナミック解析法がある(例えば非特許文献1参照)。LSIテスタからデバイスに対しテストパターンを入力して試験動作させた状態でレーザ光を照射すると、ボイド等の配線欠陥箇所や特性不良のあるトランジスタにおいてレーザ加熱により動作状態が変わり、デバイスのPass/Fail状態(良否状態)が変化する。この変化を信号として取り込み画像化することで、動作状態に関係する時間遅延不良やマージナル不良箇所を特定可能となる。   With the recent high integration and high performance of LSIs, there is an increasing need for function failure analysis with LSI testers connected. As the analysis method, there is a laser irradiation dynamic analysis method (see, for example, Non-Patent Document 1). When a test pattern is input to a device from an LSI tester and irradiated with laser light, the operating state changes due to laser heating in a wiring defect location such as a void or a transistor with poor characteristics, and the device passes / fails. The state (good or bad state) changes. By capturing this change as a signal and imaging it, it becomes possible to identify a time delay defect or a marginal defect location related to the operation state.

レーザ照射ダイナミック解析法においては、半導体チップの被観測領域にレーザ照射を行いながら同時にテスタで機能試験を行い良否の判定を行う。この良否判定結果をレーザが照射されている箇所と対応させ、各レーザ照射点に対応した画素ごとに明暗あるいは擬似カラーで表示することで、マージナル不良箇所の絞り込みが可能となる。このような方法をとるため、一箇所にレーザ光を照射している間に少なくともテストパターンが1ループ回り、1回のテストが終了することが必要とされる。   In the laser irradiation dynamic analysis method, a function test is performed simultaneously with a tester while laser irradiation is performed on a region to be observed of a semiconductor chip to determine whether the semiconductor chip is good or bad. By matching this pass / fail judgment result with the location where the laser is irradiated and displaying each pixel corresponding to each laser irradiation point in light or dark or pseudo color, it is possible to narrow down the marginal failure locations. In order to adopt such a method, it is necessary to complete at least one test pattern for one loop while irradiating laser light to one place, and to end one test.

逆に言うと、各照射点について少なくとも1回のテスト(良否判定)が終了するまではレーザの照射箇所を動かせないということであり、そのテスト時間によって故障解析の総時間が大きく影響される。実際の観測時のシーケンスとしては、まず比較的広範囲を低倍率で観測し粗く故障被疑箇所の絞り込みを行った上で、絞り込まれた範囲について高倍率での詳細な場所特定のための観測を行うのが普通であり、場合によっては低倍率から中間倍率での観測を数回繰り返す必要もあり、解析の総時間が長時間になりがちであった。
二川清著、「LSI故障解析技術のすべて」、株式会社工業調査会、2007年11月、p.103−104
In other words, the laser irradiation position cannot be moved until at least one test (good / bad determination) is completed for each irradiation point, and the total time of failure analysis is greatly influenced by the test time. As an actual observation sequence, first, a relatively wide area is observed at a low magnification, and after roughly narrowing the suspected failure area, the narrowed area is observed for detailed location identification at a high magnification. In some cases, it was necessary to repeat observation from low magnification to intermediate magnification several times, and the total analysis time tended to be long.
Futagawa Kiyoshi, “All about LSI failure analysis technology”, Industrial Research Institute, Inc., November 2007, p. 103-104

本発明は、短時間で故障箇所の特定を行える半導体装置の検査方法及び半導体装置の検査装置を提供する。   The present invention provides a semiconductor device inspection method and a semiconductor device inspection device that can identify a failure location in a short time.

本発明の一態様によれば、半導体装置の被観測領域に対してレーザ光を走査しながら複数箇所に局所的に照射し、同時に前記半導体装置を試験動作させ、この試験結果と前記レーザ光の照射位置とを対応付けて二次元画像化した良否判定像を生成して故障箇所を特定する半導体装置の検査方法であって、一画面あたりに許容された最大画素数で前記良否判定像を生成した場合に対して、レーザ光走査範囲は同じとしたまま照射点数は減らし且つ照射点間隔を広げて、レーザ光照射を行うことを特徴とする半導体装置の検査方法が提供される。   According to one aspect of the present invention, a laser beam is scanned locally on a region to be observed of a semiconductor device, and a plurality of locations are irradiated locally. At the same time, the semiconductor device is subjected to a test operation. A method for inspecting a semiconductor device that generates a pass / fail judgment image that is associated with an irradiation position to form a two-dimensional image and identifies a fault location, and generates the pass / fail judgment image with the maximum number of pixels allowed per screen. In contrast, there is provided a semiconductor device inspection method characterized in that laser beam irradiation is performed by reducing the number of irradiation points and increasing the interval between irradiation points while keeping the same laser beam scanning range.

また、本発明の他の一態様によれば、レーザ光源と、前記レーザ光源から出力されたレーザ光を半導体装置の被観測領域に対して走査しながら複数箇所に局所的に照射させる走査部と、前記レーザ光の照射と同時に前記半導体装置を試験動作させるテスタと、前記半導体装置の試験結果と前記レーザ光の照射位置とを対応付けて二次元画像化した良否判定像を生成する画像処理部と、一画面あたりに許容された最大画素数で前記良否判定像を生成した場合に対して、レーザ光走査範囲は同じとしたまま照射点数は減らし且つ照射点間隔を広げて前記レーザ光の照射が行われるように前記走査部を制御する制御部と、を備えたことを特徴とする半導体装置の検査装置が提供される。   According to another aspect of the present invention, a laser light source, and a scanning unit that locally irradiates a plurality of locations while scanning the observed region of the semiconductor device with the laser light output from the laser light source, A tester for performing a test operation of the semiconductor device simultaneously with the laser light irradiation, and an image processing unit for generating a pass / fail judgment image in which the test result of the semiconductor device and the irradiation position of the laser light are associated with each other to form a two-dimensional image In contrast to the case where the pass / fail judgment image is generated with the maximum number of pixels allowed per screen, the laser beam irradiation is performed by reducing the number of irradiation points and widening the irradiation point interval while keeping the laser beam scanning range the same. And a control unit for controlling the scanning unit so that the inspection is performed.

本発明によれば、短時間で故障箇所の特定を行える半導体装置の検査方法及び半導体装置の検査装置が提供される。   According to the present invention, there are provided a semiconductor device inspection method and a semiconductor device inspection device capable of specifying a failure location in a short time.

レーザ照射ダイナミック解析法における解析時間を短時間にするための方法として、テストパターンを短くしてテスタによるテスト時間を短くしたり、レーザ光の照射点数を減らすことが考えられる。   As a method for shortening the analysis time in the laser irradiation dynamic analysis method, it is conceivable to shorten the test time by shortening the test pattern, or to reduce the number of laser light irradiation points.

テストパターンを短くするためには、故障解析する際に対象半導体装置内の回路動作を理解し、且つその回路をテストするパターンを作成できるスキルを持った技術者が必要となる。しかし、実際の故障解析の際にそのような技術者を常時確保するのは困難である。また、近年の回路規模が大規模な半導体装置ではテストパターンをCAD(Computer Aided Design)ツールにより自動作成している場合がほとんどであり、短いテストパターンを作成しようにもその作成までの解析に時間をとられたり、場合によっては短くできない場合もあり、現実には故障を検出できている実績のあるテストパターンをそのまま用いている場合が多い。したがって、テスト時間そのものを短くするということはほとんどの場合できていないのが実情である。   In order to shorten the test pattern, an engineer who has the skill to understand the circuit operation in the target semiconductor device and to create a pattern for testing the circuit when analyzing the failure is required. However, it is difficult to always secure such engineers for actual failure analysis. Also, in recent semiconductor devices with a large circuit scale, test patterns are usually created automatically by CAD (Computer Aided Design) tools, and even when creating short test patterns, it takes time to analyze them. In some cases, a test pattern with a proven track record of detecting a failure is often used as it is. Therefore, in reality, it is almost impossible to shorten the test time itself.

レーザ光照射点数(得られる良否判定像における画素数に対応)を減らすと良否判定像を一画面分取得するのに要する時間を短くすることができる。しかし、図4に示すように例えば(行数512×列数512)個の照射点に対してレーザ光照射及びテストを行っていた場合に対して、図5に示すように単純に照射点数を例えば(行数128×列数128)個に減らした場合には、レーザ光走査範囲すなわち良否判定を行う範囲が狭くなる。   If the number of laser light irradiation points (corresponding to the number of pixels in the obtained pass / fail judgment image) is reduced, the time required for acquiring the pass / fail judgment image for one screen can be shortened. However, for example, as shown in FIG. 5, the number of irradiation points is simply set as shown in FIG. 5 when the laser beam irradiation and the test are performed on (irradiation number 512 × column number 512) irradiation points. For example, when the number is reduced to (number of rows 128 × number of columns 128), the laser beam scanning range, that is, the range for determining pass / fail is narrowed.

故障の被疑箇所がどこにあるかある程度の範囲を予め絞り込むことが可能であれば、比較的広い範囲を低倍率または中間倍率で観測することを省略して、すぐに絞り込んだ範囲についての高倍率での観測を行うことができ、より照射点数を減らした狭い範囲のみのレーザ光照射及びテストだけで済み観測時間の短縮が可能となる。   If it is possible to narrow down in advance a certain range of the location where the failure is suspected, it is possible to omit observing a relatively wide range at a low magnification or intermediate magnification, and at a high magnification for the immediately narrowed range. The observation time can be shortened by only irradiating and testing the laser beam only in a narrow range where the number of irradiation points is further reduced.

しかし、一般にマージナル不良は予めどこにあるか範囲を絞り込むことが難しく、あるいは可能であっても故障解析は短時間で結果を出すことを求められることが多く、事前の準備期間を十分にとれず絞り込むことなしに解析を行わざるを得ない場合も多い。レーザ光照射点数を減らすべくレーザ光走査範囲を狭めた場合において、故障の被疑箇所が絞り込まれていない場合には、狭い範囲の短時間の観測を何度も繰り返すことになり、結局トータルで必要となる観測時間は短縮できないことになる。   However, Filter generally marginal defects are difficult to narrow the scope or advance where is, or can be a even failure analysis is often asked to issue a short time results, without taking the preliminary preparation period sufficiently In many cases, analysis must be performed without any problems. When the laser beam scanning range is narrowed to reduce the number of laser beam irradiation points, if the suspicious point of failure is not narrowed down, the short range of observations in the narrow range will be repeated many times, which is ultimately necessary in total. Therefore, the observation time will not be shortened.

以上のような実情を鑑み、実際の故障解析の場面では、事前の故障箇所の絞り込み作業なしでも観測時間を短縮できる方法が望まれている。   In view of the above circumstances, in the actual failure analysis scene, a method that can shorten the observation time without prior narrowing down of failure locations is desired.

以下、図面を参照し、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

一般に、製造工程の途中あるいは製造が完了した時点で機能を満たしていないものを不良品といい、その現象を不良という。製造完了時には良品であったものが、その後不良になる現象を故障という。故障したものは故障品とも不良品ともいう。本明細書では、「故障」という言葉で不良も含めて表す。   In general, a product that does not satisfy the function during the manufacturing process or at the time when the manufacturing is completed is called a defective product, and the phenomenon is called a defective product. A phenomenon in which a non-defective product at the time of completion of manufacture becomes defective afterwards is called a failure. A faulty product is called a faulty product or a defective product. In this specification, the term “failure” is used to indicate a defect.

図1は、本発明の実施形態に係る半導体装置の検査装置の構成を示す模式図である。   FIG. 1 is a schematic diagram showing a configuration of a semiconductor device inspection apparatus according to an embodiment of the present invention.

本実施形態に係る半導体装置の検査装置は、主要構成要素として、レーザ光源11、12、走査部13、テスタ14、処理装置15、表示装置18を備える。   The semiconductor device inspection apparatus according to the present embodiment includes laser light sources 11 and 12, a scanning unit 13, a tester 14, a processing device 15, and a display device 18 as main components.

レーザ光源11とレーザ光源12とは出力するレーザ光の波長が異なる。レーザ光源11は、例えば波長1.3μmの赤外レーザ光を出力する。レーザ光源12は、検査対象である半導体装置10に形成されたトランジスタのアクティブ領域(pn接合を含む領域)に光励起電流を発生可能な波長(例えば1.06μm)のレーザ光を出力する。レーザ光源11からの赤外レーザ光は、半導体装置10に光励起電流を発生させない。なお、異なる2波長のレーザ光を切り換えて出力可能な一つのレーザ光源を用いてもよい。   The laser light source 11 and the laser light source 12 have different wavelengths of laser light to be output. The laser light source 11 outputs infrared laser light having a wavelength of 1.3 μm, for example. The laser light source 12 outputs laser light having a wavelength (for example, 1.06 μm) capable of generating a photoexcitation current in an active region (a region including a pn junction) of a transistor formed in the semiconductor device 10 to be inspected. The infrared laser light from the laser light source 11 does not generate a photoexcitation current in the semiconductor device 10. Note that one laser light source capable of switching and outputting two different wavelength laser beams may be used.

レーザ光源11またはレーザ光源12から出力されたレーザ光は、図示しないマイクロスコープなどで細く収束させられて半導体装置(半導体チップ)10におけるトランジスタや配線などの集積回路が形成された被観測領域に照射される。このレーザ光は、走査部13によって所定範囲を走査されながら半導体装置10の被観測領域の複数箇所に局所的に照射される。   Laser light output from the laser light source 11 or the laser light source 12 is converged finely by a microscope (not shown) or the like, and irradiated to an observation region in the semiconductor device (semiconductor chip) 10 in which integrated circuits such as transistors and wirings are formed. Is done. This laser light is irradiated locally at a plurality of locations in the observed region of the semiconductor device 10 while scanning a predetermined range by the scanning unit 13.

テスタ14は、上記レーザ光照射を受けている半導体装置10にテストパターンを入力し、半導体装置10を試験動作させる。なお、ここでの「試験動作」には、テストパターンが入力された状態に限らず、定電圧または定電流が与えられた状態も含む。   The tester 14 inputs a test pattern to the semiconductor device 10 receiving the laser beam irradiation, and causes the semiconductor device 10 to perform a test operation. The “test operation” here is not limited to a state in which a test pattern is input, but also includes a state in which a constant voltage or a constant current is applied.

また、テスタ14は、レーザ光照射を受け且つ試験動作させられている半導体装置10の状態変化を検出し、その状態変化に基づいて良否判定を行う。「状態変化」とは、抵抗変化、電圧変化、電流変化、Pass/Fail状態(良否状態)の変化などである。一箇所の照射点がレーザ光照射を受けている間に、少なくともテストパターンは1ループまわり1回のテストが終了し、各照射点ごとにそれぞれ対応した良否判定結果が得られるようにする。逆に言えば、1回のテストが終了するまでは対象となるある一つの照射点はレーザ光照射を受け続けている。   In addition, the tester 14 detects a change in the state of the semiconductor device 10 that has been irradiated with the laser light and is in a test operation, and performs pass / fail determination based on the change in the state. “State change” means resistance change, voltage change, current change, change in Pass / Fail state (good or bad state), and the like. While one irradiation point is being irradiated with laser light, at least one test pattern is completed once around one loop, and a quality determination result corresponding to each irradiation point is obtained. In other words, one target irradiation point continues to receive laser light irradiation until one test is completed.

処理装置15は、画像処理部17と制御部16を有する。画像処理部17は、テスタ14から上記良否判定結果を受け、良否判定結果とこの良否判定結果を得たときにレーザ光が照射されている照射点位置とを対応付けて二次元画像化した良否判定像を生成し、表示装置18に表示させる。制御部16は、走査部13を制御し、レーザ光の走査ステップ(照射点間隔、走査ライン間隔など)を制御する。   The processing device 15 includes an image processing unit 17 and a control unit 16. The image processing unit 17 receives the above pass / fail determination result from the tester 14 and associates the pass / fail determination result with the irradiation point position irradiated with the laser beam when the pass / fail determination result is obtained to obtain a pass / fail image. A determination image is generated and displayed on the display device 18. The control unit 16 controls the scanning unit 13 to control a laser light scanning step (irradiation point interval, scanning line interval, etc.).

前述した装置を使って行う本発明の実施形態に係る半導体装置の検査方法によれば、半導体装置の故障箇所を特定できるが、特にマージナル不良を特定する具体例について以下に説明する。マージナル不良は、本来正常動作すべき電源電圧やタイミングの範囲でも電源電圧やタイミングによってはFail(不良)となってしまう不良である。   According to the method for inspecting a semiconductor device according to the embodiment of the present invention performed using the above-described device, a failure location of the semiconductor device can be specified. A specific example of specifying a marginal failure will be described below. The marginal failure is a failure that results in a failure (failure) depending on the power supply voltage and timing even within the range of the power supply voltage and timing that should normally operate normally.

例えばレーザ光源11から赤外レーザ光を半導体装置10の被観測領域に走査しながら照射し、同時にPass(良)とFail(不良)の境界付近の電源電圧やタイミング条件で設定したテストパターンをテスタ14から半導体装置10に与える。レーザ光照射を受けた部分は加熱により抵抗が変化し、故障箇所ではその抵抗変化によりPass/Fail状態が変化する場合がある。   For example, the laser light source 11 irradiates an observed region of the semiconductor device 10 with an infrared laser beam, and at the same time, a test pattern set by a power supply voltage and timing conditions in the vicinity of the boundary between Pass (good) and Fail (bad). 14 to the semiconductor device 10. The resistance of the portion that has been irradiated with the laser light changes due to heating, and the Pass / Fail state may change due to the resistance change at the failure location.

テスタ14はPass/Fail状態の変化から各照射点ごとに良否判定を行い、画像処理部17はその良否判定結果をレーザ光照射点の位置と対応付けて二次元画像化し良否判定像を生成する。良否判定像において故障箇所は正常箇所に対して輝度(明暗)または色の違いとして表示される。   The tester 14 performs pass / fail determination for each irradiation point from the change in the Pass / Fail state, and the image processing unit 17 generates a pass / fail determination image by associating the pass / fail determination result with the position of the laser light irradiation point to form a two-dimensional image. . In the pass / fail judgment image, the failed part is displayed as a luminance (brightness / darkness) or a color difference with respect to the normal part.

上記良否判定像は、レーザ光照射と、テスタ14による良否判定結果とをリンクさせて得られる像であるが、本実施形態に係る装置においてレーザ光照射を行うユニットはテスタ14とリンクさせなければ、半導体装置10の被観測領域の単なる光学像(集積回路パターン像)を得るレーザ走査顕微鏡としても機能する。   The above pass / fail judgment image is an image obtained by linking the laser light irradiation and the pass / fail judgment result by the tester 14. However, in the apparatus according to the present embodiment, the unit that performs laser light irradiation must be linked to the tester 14. Also, it functions as a laser scanning microscope that obtains a simple optical image (integrated circuit pattern image) of the observed region of the semiconductor device 10.

すなわち、レーザ光照射ユニットは、半導体装置10の被観測領域に対して走査・照射されたレーザ光の反射光を検出する光検出器をさらに備え、この光検出器の出力信号は画像処理部17にて処理されて被観測領域の光学像が生成される。   That is, the laser beam irradiation unit further includes a photodetector that detects reflected light of the laser beam that is scanned and irradiated onto the observation region of the semiconductor device 10, and the output signal of this photodetector is the image processing unit 17. To generate an optical image of the observed region.

さらに、画像処理部17は、その光学像と上記良否判定像とを重ね合わせた画像を生成する。良否判定像は同一視野且つ同倍率の光学像と重ね合わせられる。この重ね合わせ画像から故障箇所が集積回路のどこにあるのかを特定することが可能となる。   Further, the image processing unit 17 generates an image obtained by superimposing the optical image and the quality determination image. The pass / fail judgment image is overlaid with the optical image having the same field of view and the same magnification. From this superimposed image, it is possible to specify where in the integrated circuit the failure location is.

故障箇所の特定を行うにあたっては観測範囲を段階的に狭めて故障箇所を絞り込んでいく。まず、被観測領域の全体もしくは比較的広い範囲にわたって低倍率(例えば1倍)や中間倍率(例えば5倍〜20倍)で良否判定像の取得を行い、故障箇所が疑われる範囲をある程度絞った上で、その絞り込まれた狭い範囲について高倍率(例えば50〜200倍)で良否判定像を取得し、より詳細に故障箇所を特定していく。   When identifying the failure location, narrow down the observation range in stages and narrow down the failure location. First, a pass / fail judgment image is acquired at a low magnification (for example, 1 ×) or an intermediate magnification (for example, 5 × to 20 ×) over the entire observation area or a relatively wide range, and the range where a failure point is suspected is narrowed to some extent. In the above, a pass / fail determination image is acquired at a high magnification (for example, 50 to 200 times) for the narrowed narrow range, and the failure location is specified in more detail.

絞り込まれた比較的狭い範囲を観測する高倍率観測においては、観測範囲が狭いため、レーザ光の照射点数(良否判定像における画素数に対応)を減らすことができ、良否判定像を一画面分取得するのに要する時間もそれほどかからない。   In high-magnification observation for observing a narrow, narrow range, the observation range is narrow, so the number of laser light irradiation points (corresponding to the number of pixels in the pass / fail judgment image) can be reduced, and the pass / fail judgment image is displayed for one screen. It doesn't take much time to get.

しかし、低倍率や中間倍率での比較的広い範囲を観測する場合には、レーザ光照射点数が多く良否判定像の取得に時間を要していた。   However, in the case of observing a relatively wide range at a low magnification or an intermediate magnification, the number of laser light irradiation points is large and it takes time to acquire a pass / fail judgment image.

例えば、一つの照射点につきレーザ光照射が行われている間の1回のテストに10ミリ秒かかり、レーザ光の照射を一画面あたり行数512×列数512個の照射点数(画素数)に対して行うとすると、良否判定像の一画面の取得時間は512×512×10ミリ秒≒2600秒≒43分かかることになる。   For example, it takes 10 milliseconds to perform one test while laser light irradiation is being performed for one irradiation point, and the irradiation of laser light is 512 rows per screen × 512 irradiation points (number of pixels) per screen. If this is done, the acquisition time of one screen of the pass / fail judgment image will take 512 × 512 × 10 milliseconds≈2600 seconds≈43 minutes.

これに対して本発明の実施形態では、一画面あたりに許容された最大画素数で良否判定像を生成した場合に対して、レーザ光走査範囲は同じとしたまま照射点数は減らし且つ照射点間隔を広げてレーザ光の照射を行う。これは、制御部16によって走査部13を制御することによって実現できる。   On the other hand, in the embodiment of the present invention, the number of irradiation points is reduced and the irradiation point interval is kept while the laser beam scanning range is kept the same as when the pass / fail judgment image is generated with the maximum number of pixels allowed per screen. Irradiate with laser light. This can be realized by controlling the scanning unit 13 by the control unit 16.

最大画素数での照射例を図4に、本発明の実施形態による照射点数を減らした照射例を図2に示す。図2及び図4とも、得られる良否判定像の一画面に対応するレーザ光走査範囲20は同じ範囲(面積)である。各図においてレーザ光の照射点を黒丸で模式的に示す。   FIG. 4 shows an irradiation example with the maximum number of pixels, and FIG. 2 shows an irradiation example with the number of irradiation points reduced according to the embodiment of the present invention. 2 and 4, the laser beam scanning range 20 corresponding to one screen of the obtained pass / fail judgment image is the same range (area). In each figure, the irradiation point of the laser beam is schematically shown by a black circle.

一画面あたりに許容された最大画素数が例えば図4に示すように(行数512×列数512)画素とすると、本実施形態では、図2に示すように例えば(行数128×列数128)画素に減らす。ただし、レーザ光走査範囲20は、最大画素数(図4)の場合と同じとしたまま、照射点間隔を最大画素数の場合よりも広げることで、観測範囲を狭めることなく照射点数を減らすことができる。   If the maximum number of pixels allowed per screen is, for example, as shown in FIG. 4 (number of rows 512 × number of columns 512), in this embodiment, for example, as shown in FIG. 128) Reduce to pixels. However, while the laser beam scanning range 20 is the same as in the case of the maximum number of pixels (FIG. 4), the number of irradiation points can be reduced without narrowing the observation range by widening the interval between irradiation points as compared with the case of the maximum number of pixels. Can do.

図2に示す例では、各照射点の列間の間隔および行間の間隔を最大画素数の場合に比べて広げ、各照射点間の間隔は列方向及び行方向で等しくされ、照射点すなわち観測点が走査範囲20の全体にわたって偏ることなく配置されている。   In the example shown in FIG. 2, the distance between the columns of the respective irradiation points and the distance between the rows are expanded as compared with the case of the maximum number of pixels, and the distance between the respective irradiation points is made equal in the column direction and the row direction. The points are arranged without deviation over the entire scanning range 20.

照射点がない領域というのは観測されない領域であるので、観測領域の実質的な縮小を回避するために照射点はレーザ光走査範囲20内に偏ることなく全体にわたって存在することが望ましい。また、照射点数も最大画素数に対して少なければよく、128×128に限ることはない。   Since the region having no irradiation point is a region that is not observed, it is desirable that the irradiation point be present throughout the laser beam scanning range 20 without being biased in order to avoid substantial reduction of the observation region. Further, the number of irradiation points is not limited to 128 × 128 as long as it is smaller than the maximum number of pixels.

以上説明したように本実施形態によれば、最大画素数に対して照射点数(画素数)を減らせる。例えば上記具体例の場合、照射点数を(512×512)から(128×128)に減らせるので、最大画素数と同じ走査範囲20についての一画面の良否判定像を取得するためにレーザ光照射及びテストすべき箇所を最大画素数の場合の1/16に減らすことができ、一画面取得時間も1/16に短縮できる。しかも走査範囲すなわち観測範囲の縮小を伴わないため、トータルで取得すべき良否判定像の画面数の増大、すなわち全体の観測時間の増大を抑えることができる。   As described above, according to the present embodiment, the number of irradiation points (number of pixels) can be reduced with respect to the maximum number of pixels. For example, in the case of the above specific example, since the number of irradiation points can be reduced from (512 × 512) to (128 × 128), laser beam irradiation is performed in order to obtain a single pass / fail judgment image for the same scanning range 20 as the maximum number of pixels. In addition, the number of points to be tested can be reduced to 1/16 of the maximum number of pixels, and the time for obtaining one screen can be reduced to 1/16. In addition, since the scanning range, that is, the observation range is not reduced, an increase in the number of pass / fail judgment images to be acquired in total, that is, an increase in the entire observation time can be suppressed.

このような本実施形態の方法は、特に比較的広範囲の観測を行う低倍率(例えば1倍)や中間倍率(例えば5倍〜20倍)での観測に有効である。したがって、半導体装置の動作条件(テストパターン)の変更や事前の解析に時間をかけることなく、低倍率や中間倍率での観測時間を大幅に低減することが可能になる。結果として、故障解析に要する全体の時間短縮が図れる。   Such a method of the present embodiment is particularly effective for observation at a low magnification (for example, 1 ×) or an intermediate magnification (for example, 5 × to 20 ×) for performing observation over a relatively wide range. Therefore, it is possible to significantly reduce the observation time at a low magnification or an intermediate magnification without taking time for changing the operating conditions (test pattern) of the semiconductor device or performing prior analysis. As a result, the overall time required for failure analysis can be reduced.

また、レーザ照射ダイナミック解析法を行うための既存の装置に対して、走査部13をどのように制御するかといったソフトウェア的なアプローチだけで前述した本発明の実施形態を実現でき、既存の装置構成に対してハードウェア的には変更を加える必要がない、あるいは変更を加えるとしても極めて小規模の変更で実現可能であるため、本発明の実施形態の実現に伴うコストアップを最低限に抑えることが可能である。   In addition, the above-described embodiment of the present invention can be realized only by a software approach such as how to control the scanning unit 13 with respect to an existing apparatus for performing a laser irradiation dynamic analysis method. In terms of hardware, it is not necessary to make a change, or even if a change is made, it can be realized with a very small change, so that the cost increase associated with the implementation of the embodiment of the present invention is minimized. Is possible.

照射箇所を加熱するだけのレーザ光源11を用いた場合、異常箇所(例えば導通不良の異常ビア)が直接レーザ光の照射を受けて加熱されたときには、正常箇所への加熱時と異なる試験結果が得られ良否判定が可能となる。しかし、レーザ光が異常箇所に当たらなかった場合には、異常箇所加熱時特有の試験結果が得られず、異常箇所を検出できない。特に、前述した実施形態のように照射点の間隔を最大画素数に対して広げて観測を行う場合には、異常箇所にレーザ光が照射されず異常箇所を見落とす可能性がある。   When the laser light source 11 that only heats the irradiated portion is used, when an abnormal portion (for example, an abnormal via having a poor continuity) is heated by being directly irradiated with laser light, a test result different from that when heating the normal portion is obtained. The obtained quality can be determined. However, if the laser beam does not hit the abnormal part, a test result peculiar to heating of the abnormal part cannot be obtained, and the abnormal part cannot be detected. In particular, when the observation is performed with the interval between the irradiation points being increased with respect to the maximum number of pixels as in the above-described embodiment, there is a possibility that the abnormal part is overlooked without being irradiated with the laser beam.

そこで、光励起電流(OBIC:Optical Beam Induced Current)を発生可能な波長のレーザ光を出力するレーザ光源12を使うことが有効である。   Therefore, it is effective to use a laser light source 12 that outputs a laser beam having a wavelength capable of generating an optical excitation current (OBIC: Optical Beam Induced Current).

図3(a)は、半導体装置10の被観測領域におけるある一部分を示す。ここに示す領域には、トランジスタのアクティブ領域(pn接合を含む領域)5a、5bとこれらアクティブ領域5a、5b間を接続する配線6が形成されている。また、配線6の途中には異常ビア9があるとする。また、同図においてレーザ光の照射点を黒丸で模式的に示す。   FIG. 3A shows a part of the observed region of the semiconductor device 10. In the region shown here, active regions (regions including a pn junction) 5a, 5b of the transistor and wirings 6 connecting these active regions 5a, 5b are formed. Further, it is assumed that there is an abnormal via 9 in the middle of the wiring 6. In addition, the irradiation point of the laser beam is schematically shown by a black circle in FIG.

レーザ光源12からのレーザ光がアクティブ領域5a、5bに照射されると、光励起により電子・正孔対が発生し、その発生箇所に電位勾配がある状態に設定しておくと光励起電流が発生する。このアクティブ領域5a、5bで発生した光励起電流は、配線6を伝播する信号の伝播時間に影響を与える。したがって、配線6に異常ビア9があるかないかで配線6を伝播する信号が光励起電流から受ける影響の程度が異なり、配線6を伝播する信号の伝播時間をテスタ14で検出することで、異常ビア9にレーザ光が直接当たっていなくても、アクティブ領域5a、5bを接続する配線6における異常を判定することが可能となる。   When the active regions 5a and 5b are irradiated with laser light from the laser light source 12, electron-hole pairs are generated by photoexcitation, and a photoexcitation current is generated if a potential gradient is set at the generation location. . The photoexcitation current generated in the active regions 5 a and 5 b affects the propagation time of the signal propagating through the wiring 6. Therefore, the degree of influence of the signal propagating through the wiring 6 from the photoexcitation current differs depending on whether or not the wiring 6 has the abnormal via 9, and the propagation time of the signal propagating through the wiring 6 is detected by the tester 14 to thereby detect the abnormal via. Even if the laser beam is not directly applied to 9, the abnormality in the wiring 6 connecting the active regions 5a and 5b can be determined.

なお、光励起電流を発生可能なレーザ光源12を用いた場合でも、そのレーザ光が当たった箇所は加熱されるため、異常ビア9に直接レーザ光が当たれば、加熱による抵抗変化やPass/Fail状態の変化から良否の判定を行うことができる。   Even when the laser light source 12 capable of generating a photoexcitation current is used, the portion irradiated with the laser light is heated. Therefore, if the abnormal via 9 is directly irradiated with the laser light, a resistance change due to heating or a Pass / Fail state is generated. It is possible to make a pass / fail judgment based on the change in.

図3(b)は、同図(a)の領域を観測した結果得られた良否判定像を示す。レーザ光照射点に一対一で対応して画素Pが生成される。   FIG. 3B shows a pass / fail judgment image obtained as a result of observing the region of FIG. Pixels P are generated in one-to-one correspondence with laser beam irradiation points.

異常ビア9にはレーザ光が当たらず、アクティブ領域5a、5bにレーザ光が当たることによる光励起電流を利用した前述の観測では、配線6を介してアクティブ領域5a、5b間を伝播する信号の伝播時間に基づいた良否判定であるため、異常ビア9の位置そのものをピンポイントで特定することはできない。   In the above-described observation using the photoexcitation current caused by the laser beam not hitting the abnormal via 9 and the laser beam hitting the active regions 5a and 5b, the propagation of the signal propagating between the active regions 5a and 5b via the wiring 6 is performed. Since the pass / fail judgment is based on time, the position of the abnormal via 9 itself cannot be pinpointed.

したがって、図3(b)に示される良否判定像においては、アクティブ領域5a、5bを表示するための画素を他の画素に対して輝度(明暗)を異ならせたり、色を異ならせて表示する。これにより、アクティブ領域5a、5bまたはこれらを接続する配線6に欠陥があるということが示される。   Therefore, in the pass / fail judgment image shown in FIG. 3B, the pixels for displaying the active areas 5a and 5b are displayed with different brightness (brightness and darkness) or different colors from other pixels. . This indicates that the active regions 5a and 5b or the wiring 6 connecting them are defective.

上記方法によってある程度故障箇所の存在範囲が絞られれば、その絞られたより狭い範囲について高倍率で観測を行うことで、異常ビア9の位置特定は可能となる。   If the range of the fault location is narrowed to some extent by the above method, the position of the abnormal via 9 can be specified by observing the narrowed narrow range at a high magnification.

以上説明したような光励起電流を利用した観測によれば、低倍率や中間倍率での比較的粗いレーザ光走査、すなわち照射点間隔が比較的広いレーザ光走査においてレーザ光が直接故障箇所に当たらなくても、故障の被疑箇所を短時間で絞り込むことが可能となる。   According to the observation using the photoexcitation current as described above, the laser beam does not directly hit the failure point in the relatively coarse laser beam scanning at the low magnification or the intermediate magnification, that is, in the laser beam scanning with the relatively wide irradiation point interval. However, it becomes possible to narrow down the suspected part of the failure in a short time.

一般に、アクティブ領域の面積はビアに比べれば桁違いに大きく、照射点間隔を広げたとしても、ビアよりもアクティブ領域にはレーザ光が当たりやすい。ただし、確実にアクティブ領域にレーザ光が照射されるようにするため、アクティブ領域の平面寸法よりも、照射点間隔は小さくすることが望ましい。   In general, the area of the active region is an order of magnitude larger than that of the via, and even if the irradiation point interval is increased, the active region is more likely to hit the active region than the via. However, in order to ensure that the active region is irradiated with laser light, it is desirable that the interval between the irradiation points be smaller than the plane size of the active region.

例えば図3(a)に示す例では、アクティブ領域5a、5bの縦(行)方向寸法Yよりも、黒丸で示される照射点の行間隔を小さくし、アクティブ領域5a、5bの横(列)方向寸法Xよりも照射点の列間隔を小さくすれば、確実にレーザ光をアクティブ領域5a、5bに当てて光励起電流を発生させることができる。   For example, in the example shown in FIG. 3A, the row interval of irradiation points indicated by black circles is made smaller than the vertical (row) direction dimension Y of the active regions 5a and 5b, and the horizontal (column) of the active regions 5a and 5b. If the column spacing of the irradiation points is made smaller than the directional dimension X, the laser beam can be reliably applied to the active regions 5a and 5b to generate the photoexcitation current.

以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明は、それらに限定されるものではなく、本発明の技術的思想に基づいて種々の変形が可能である。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to them, and various modifications can be made based on the technical idea of the present invention.

Pass/Fail状態に基づいて良否判定を行うことに限らず、単にレーザ光加熱により照射点の抵抗が変化することによる電流または電圧の変化を検出して、その変化の大小もしくは程度から良否判定を行うようにしてもよい。   It is not limited to performing pass / fail determination based on the Pass / Fail state, but simply detecting a change in current or voltage due to a change in the resistance of the irradiation point by laser light heating, and determining pass / fail from the magnitude or degree of the change. You may make it perform.

また、上記実施形態で挙げた照射点数(画素数)、レーザ光波長などの具体的な数値は一例であって、それらに限られるものではない。   In addition, specific numerical values such as the number of irradiation points (number of pixels) and the laser light wavelength described in the above embodiment are merely examples, and are not limited thereto.

本発明の実施形態に係る半導体装置の検査装置の構成を示す模式図。The schematic diagram which shows the structure of the inspection apparatus of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態による照射点数を減らしたレーザ光照射例を示す模式図。The schematic diagram which shows the example of laser beam irradiation which reduced the number of irradiation points by embodiment of this invention. (a)は本発明の実施形態において光励起電流を発生可能な波長のレーザ光を用いた照射例を示し、(b)は(a)に対応する領域の良否判定像を示す模式図。(A) shows the example of irradiation using the laser beam of the wavelength which can generate | occur | produce photoexcitation current in embodiment of this invention, (b) is a schematic diagram which shows the quality determination image of the area | region corresponding to (a). 最大照射点数(画素数)でのレーザ光照射例を示す模式図。The schematic diagram which shows the example of laser beam irradiation in the maximum number of irradiation points (the number of pixels). 比較例による照射点数を減らしたレーザ光照射例を示す模式図。The schematic diagram which shows the example of laser beam irradiation which reduced the number of irradiation points by a comparative example.

符号の説明Explanation of symbols

5a,5b…アクティブ領域、6…配線、9…異常ビア、10…半導体装置、11…レーザ光源、12…レーザ光源、13…走査部、14…テスタ、15…処理装置、16…制御部、17…画像処理部、18…表示装置   5a, 5b ... active region, 6 ... wiring, 9 ... abnormal via, 10 ... semiconductor device, 11 ... laser light source, 12 ... laser light source, 13 ... scanning unit, 14 ... tester, 15 ... processing device, 16 ... control unit, 17 ... Image processing unit, 18 ... Display device

Claims (5)

半導体装置の被観測領域に対してレーザ光を走査しながら複数箇所に局所的に照射し、同時に前記半導体装置を試験動作させ、この試験結果と前記レーザ光の照射位置とを対応付けて二次元画像化した良否判定像を生成して故障箇所を特定する半導体装置の検査方法であって、
一画面あたりに許容された最大画素数で前記良否判定像を生成した場合に対して、レーザ光走査範囲は同じとしたまま照射点数は減らし且つ照射点間隔を広げて、レーザ光照射を行うことを特徴とする半導体装置の検査方法。
A laser beam is scanned over a region to be observed of a semiconductor device to irradiate a plurality of locations at the same time, and the semiconductor device is tested at the same time, and the test result and the irradiation position of the laser beam are associated with each other in two dimensions. A method for inspecting a semiconductor device that generates an image of a pass / fail judgment image and identifies a fault location,
Compared to the case where the pass / fail judgment image is generated with the maximum number of pixels allowed per screen, the number of irradiation points is reduced and the irradiation point interval is widened while the laser beam scanning range remains the same, and laser beam irradiation is performed. A method for inspecting a semiconductor device.
前記レーザ光の波長を、前記半導体装置に光励起電流を発生可能な波長とすることを特徴とする請求項1記載の半導体装置の検査方法。   2. The method for inspecting a semiconductor device according to claim 1, wherein the wavelength of the laser beam is set to a wavelength capable of generating a photoexcitation current in the semiconductor device. 前記レーザ光の光励起により電子・正孔対が発生可能な前記半導体装置におけるアクティブ領域の平面寸法よりも、前記照射点間隔を小さくすることを特徴とする請求項2記載の半導体装置の検査方法。   3. The method for inspecting a semiconductor device according to claim 2, wherein the irradiation point interval is made smaller than a planar dimension of an active region in the semiconductor device capable of generating electron-hole pairs by photoexcitation of the laser beam. レーザ光源と、
前記レーザ光源から出力されたレーザ光を半導体装置の被観測領域に対して走査しながら複数箇所に局所的に照射させる走査部と、
前記レーザ光の照射と同時に前記半導体装置を試験動作させるテスタと、
前記半導体装置の試験結果と前記レーザ光の照射位置とを対応付けて二次元画像化した良否判定像を生成する画像処理部と、
一画面あたりに許容された最大画素数で前記良否判定像を生成した場合に対して、レーザ光走査範囲は同じとしたまま照射点数は減らし且つ照射点間隔を広げて前記レーザ光の照射が行われるように前記走査部を制御する制御部と、
を備えたことを特徴とする半導体装置の検査装置。
A laser light source;
A scanning unit for locally irradiating a plurality of locations while scanning the observed region of the semiconductor device with the laser light output from the laser light source;
A tester for performing a test operation of the semiconductor device simultaneously with the irradiation of the laser beam;
An image processing unit that generates a pass / fail judgment image in which a test result of the semiconductor device and an irradiation position of the laser beam are associated with each other to form a two-dimensional image;
When the pass / fail judgment image is generated with the maximum number of pixels allowed per screen, the number of irradiation points is reduced while the laser beam scanning range is the same, and the irradiation of the laser beam is performed with a wider interval between irradiation points. A control unit for controlling the scanning unit as shown in FIG.
An inspection apparatus for a semiconductor device, comprising:
前記レーザ光源は、前記半導体装置に光励起電流を発生可能な波長のレーザ光を出力可能であることを特徴とする請求項4記載の半導体装置の検査装置。   5. The semiconductor device inspection apparatus according to claim 4, wherein the laser light source is capable of outputting a laser beam having a wavelength capable of generating a photoexcitation current to the semiconductor device.
JP2008153853A 2008-06-12 2008-06-12 Method and system for inspecting semiconductor device Pending JP2009300202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008153853A JP2009300202A (en) 2008-06-12 2008-06-12 Method and system for inspecting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008153853A JP2009300202A (en) 2008-06-12 2008-06-12 Method and system for inspecting semiconductor device

Publications (1)

Publication Number Publication Date
JP2009300202A true JP2009300202A (en) 2009-12-24

Family

ID=41547265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153853A Pending JP2009300202A (en) 2008-06-12 2008-06-12 Method and system for inspecting semiconductor device

Country Status (1)

Country Link
JP (1) JP2009300202A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185016A (en) * 2011-03-04 2012-09-27 Panasonic Corp Heating and cooling test method and heating and cooling test equipment
JP2014048282A (en) * 2012-08-30 2014-03-17 Npc Inc Defect inspection device and method of solar cell
JP2015517667A (en) * 2012-05-16 2015-06-22 ディーシージー システムズ、 インコーポライテッドDcg Systems Inc. Laser assisted device alternation using synchronized laser pulses
JP2015210099A (en) * 2014-04-24 2015-11-24 浜松ホトニクス株式会社 Image generation device and image generation method
JP2016521352A (en) * 2013-03-24 2016-07-21 ディーシージー システムズ、 インコーポレイテッドDcg Systems Inc. Synchronous pulse LADA for simultaneous acquisition of timing diagrams and laser-induced upsets
JP2018165727A (en) * 2018-08-06 2018-10-25 浜松ホトニクス株式会社 Image generation device and image generation method
JP2020051858A (en) * 2018-09-26 2020-04-02 浜松ホトニクス株式会社 Semiconductor device inspection method and semiconductor device inspection apparatus
US11971364B2 (en) 2018-09-26 2024-04-30 Hamamatsu Photonics K.K. Semiconductor device inspection method and semiconductor device inspection device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185016A (en) * 2011-03-04 2012-09-27 Panasonic Corp Heating and cooling test method and heating and cooling test equipment
JP2015517667A (en) * 2012-05-16 2015-06-22 ディーシージー システムズ、 インコーポライテッドDcg Systems Inc. Laser assisted device alternation using synchronized laser pulses
JP2014048282A (en) * 2012-08-30 2014-03-17 Npc Inc Defect inspection device and method of solar cell
JP2016521352A (en) * 2013-03-24 2016-07-21 ディーシージー システムズ、 インコーポレイテッドDcg Systems Inc. Synchronous pulse LADA for simultaneous acquisition of timing diagrams and laser-induced upsets
US10139447B2 (en) 2014-04-24 2018-11-27 Hamamatsu Photonics K.K. Image generation apparatus and image generation method
JP2015210099A (en) * 2014-04-24 2015-11-24 浜松ホトニクス株式会社 Image generation device and image generation method
JP2018165727A (en) * 2018-08-06 2018-10-25 浜松ホトニクス株式会社 Image generation device and image generation method
JP2020051858A (en) * 2018-09-26 2020-04-02 浜松ホトニクス株式会社 Semiconductor device inspection method and semiconductor device inspection apparatus
WO2020066177A1 (en) 2018-09-26 2020-04-02 浜松ホトニクス株式会社 Semiconductor device inspection method and semiconductor device inspection device
CN112752980A (en) * 2018-09-26 2021-05-04 浜松光子学株式会社 Semiconductor device inspection method and semiconductor device inspection apparatus
KR20210062623A (en) 2018-09-26 2021-05-31 하마마츠 포토닉스 가부시키가이샤 Semiconductor device inspection method and semiconductor device inspection apparatus
EP3859360A4 (en) * 2018-09-26 2022-06-15 Hamamatsu Photonics K.K. Semiconductor device inspection method and semiconductor device inspection device
JP7158224B2 (en) 2018-09-26 2022-10-21 浜松ホトニクス株式会社 Semiconductor device inspection method and semiconductor device inspection apparatus
US11971364B2 (en) 2018-09-26 2024-04-30 Hamamatsu Photonics K.K. Semiconductor device inspection method and semiconductor device inspection device

Similar Documents

Publication Publication Date Title
JP2970505B2 (en) Semiconductor device wiring current observation method, inspection method and apparatus
JP2009300202A (en) Method and system for inspecting semiconductor device
US20150379707A1 (en) Mask inspection apparatus, mask evaluation method and mask evaluation system
JP4917975B2 (en) Inspection failure analysis method and inspection failure analysis apparatus
US7495449B2 (en) Non-destructive testing apparatus and non-destructive testing method
JP2011524635A5 (en)
WO2015098343A1 (en) Image processing method, image processing apparatus, image processing program, and storage medium on which image processing program is stored
JPS61267336A (en) Method and device for inspecting semiconductor device
US9739831B2 (en) Defect isolation methods and systems
JP2009008626A (en) Failure analysis method and failure analysis device
JP2019050376A (en) Method generating testing measure and system thereof
JP7158224B2 (en) Semiconductor device inspection method and semiconductor device inspection apparatus
JP5005893B2 (en) Semiconductor failure analysis apparatus, failure analysis method, and failure analysis program
Niu et al. Laser logic state imaging (llsi)
TWI732027B (en) Semiconductor element inspection method and semiconductor element inspection device
US9958502B2 (en) Defect isolation methods and systems
US9869712B2 (en) Method and system for detecting defects of wafer by wafer sort
US9557377B2 (en) Fault analysis apparatus and fault analysis method
JP4684690B2 (en) Inspection method and apparatus using scanning laser SQUID microscope
US20130283227A1 (en) Pattern review tool, recipe making tool, and method of making recipe
Yeoh et al. A demonstration on the effectiveness of wafer-level thermal microscopy as a complementary tool to photon emission microscopy using MBIST Failure debug
US11971364B2 (en) Semiconductor device inspection method and semiconductor device inspection device
JP2008286658A (en) Semiconductor inspection device, and semiconductor inspection method using the same
US7899237B2 (en) Method, apparatus and system for detecting anomalies in mixed signal devices
JP2518162B2 (en) Semiconductor integrated circuit failure inspection equipment