JP2009300123A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2009300123A
JP2009300123A JP2008152297A JP2008152297A JP2009300123A JP 2009300123 A JP2009300123 A JP 2009300123A JP 2008152297 A JP2008152297 A JP 2008152297A JP 2008152297 A JP2008152297 A JP 2008152297A JP 2009300123 A JP2009300123 A JP 2009300123A
Authority
JP
Japan
Prior art keywords
core
current sensor
substrate
gap
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008152297A
Other languages
Japanese (ja)
Other versions
JP4814283B2 (en
Inventor
Kenji Sakawaki
賢二 坂脇
Tetsuo Ishikawa
哲郎 石川
Masakazu Kobayashi
正和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2008152297A priority Critical patent/JP4814283B2/en
Priority to PCT/JP2009/060366 priority patent/WO2009151011A1/en
Publication of JP2009300123A publication Critical patent/JP2009300123A/en
Application granted granted Critical
Publication of JP4814283B2 publication Critical patent/JP4814283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/18Screening arrangements against electric or magnetic fields, e.g. against earth's field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current sensor which can measure a high-voltage AC current without increasing the numbers of part items and man-hours. <P>SOLUTION: The current sensor includes: a magnetoelectric conversion element which is installed in a substrate so that its magnetosensitive surface is nearly perpendicular to the substrate; a circular core formed with a gap; a shield means having a first portion covering one side of the magnetosensitive surface, a second portion which is connected to the first portion and covers the other side of the magnetosensitive surface, and a third portion which extends from one sides of the first portion and the second portion and is connected to a ground pad on the substrate; and a first pressing means which is arranged between the first portion and a first end face facing the first portion out of both end faces constituting the gap in the core, is connected to the first portion, and presses the first end face, thereby establishing conduction between the core and the shield means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁電変換素子を使用する電流センサに関する。   The present invention relates to a current sensor using a magnetoelectric conversion element.

電流の大きさを検出する電流センサとして、ホール素子などの磁電変換素子を使用したものが広く利用されている。このような電流センサは環状のコアを有しており、コアの穴の部分に通過させた電線に電流を流すと、コアの周方向に沿ってコア内部を周回する磁束が発生する。この磁束の磁束密度は電線を流れる電流の大きさに略比例するため、磁電変換素子により磁束密度を検出することによって電線に流れる電流の大きさを計測することができる。   As a current sensor for detecting the magnitude of current, one using a magnetoelectric conversion element such as a Hall element is widely used. Such a current sensor has an annular core, and when a current is passed through an electric wire passed through the hole of the core, a magnetic flux that circulates in the core along the circumferential direction of the core is generated. Since the magnetic flux density of this magnetic flux is substantially proportional to the magnitude of the current flowing through the electric wire, the magnitude of the current flowing through the electric wire can be measured by detecting the magnetic flux density with a magnetoelectric transducer.

このような電流センサに用いられる磁電変換素子は、磁束密度をより正確に計測するため、近接する他の電子回路からの静電場に素子が曝されないように、シールド部材によってシールドされていることが望ましい。磁電変換素子に対するこのようなシールド部材としては、例えば特許文献1に記載されているものがある。特許文献1に記載の磁電変換素子用のシールド部材は、金属板をコの字状に折り曲げたものを、磁電変換素子において検出する磁束が通過する面(感磁面)を覆うように素子に取り付けたものである。このシールド部材の一方の先端部は、素子が実装される基板と略平行になるよう折り曲げられており、基板上に設けられたグランドパッドに当接して、当接部にてはんだ付けされるようになっている。
特開2005−024519号
In order to measure the magnetic flux density more accurately, the magnetoelectric conversion element used in such a current sensor may be shielded by a shield member so that the element is not exposed to an electrostatic field from other nearby electronic circuits. desirable. An example of such a shield member for the magnetoelectric conversion element is described in Patent Document 1. The shield member for a magnetoelectric conversion element described in Patent Document 1 is formed by bending a metal plate into a U-shape so as to cover a surface (magnetic sensitive surface) through which a magnetic flux detected by the magnetoelectric conversion element passes. It is attached. One end portion of the shield member is bent so as to be substantially parallel to the substrate on which the element is mounted, and comes into contact with a ground pad provided on the substrate and is soldered at the contact portion. It has become.
JP 2005-024519 A

また、このシールド部材は、コの字状部分で磁電変換素子を把持できるようになっている。このため、磁電変換素子をコの字状部分の奥まで差し込むことにより、シールド部材先端部に直交する方向(すなわち基板の法線方向)におけるシールド部材に対する磁電変換素子の位置決めを行うことができる。このように、特許文献1のシールド部材は、磁電変換素子のシールドのみならず、位置決めを行うための部材としても機能する。   Further, this shield member can hold the magnetoelectric conversion element at the U-shaped portion. For this reason, the magnetoelectric conversion element can be positioned with respect to the shield member in the direction perpendicular to the tip of the shield member (that is, the normal direction of the substrate) by inserting the magnetoelectric conversion element to the back of the U-shaped portion. As described above, the shield member of Patent Document 1 functions not only as a shield of the magnetoelectric conversion element but also as a member for positioning.

以上の構成による電流センサは、コアよりも一回り大きい程度の大きさの小型のものである。しかしながら、上記構成の電流センサは、一次側の電位が急激に変化すると静電結合によりコアの電位が振られて電気回路にノーマルモードのノイズが発生し、これによってセンサにノイズが出力されるため、正確に電流の大きさを計測できないという問題があった。この問題を解消するためには、コアを接地する必要がある。しかし、この場合には、コアを接地するための機構を別途電流センサに追加する必要があり、電流センサの大型化や、部品点数の増大、延いては電流センサの組立工数の大幅な増大を招くことになる。このように、従来の電流センサにおいては、例えば三相モータの駆動回路のように電位が急激に変化する導体を流れる電流を計測する場合は、大型で部品点数が多く、組立工数の多い電流センサを選択せざるを得なかった。   The current sensor having the above configuration is a small sensor having a size slightly larger than the core. However, in the current sensor having the above configuration, when the potential on the primary side changes abruptly, the core potential is shaken by electrostatic coupling, and noise in the normal mode is generated in the electric circuit, which outputs noise to the sensor. There was a problem that the magnitude of the current could not be measured accurately. In order to solve this problem, it is necessary to ground the core. However, in this case, it is necessary to add a mechanism for grounding the core to the current sensor separately, which increases the size of the current sensor, the number of parts, and the increase in the number of assembly steps of the current sensor. Will be invited. Thus, in a conventional current sensor, when measuring a current flowing through a conductor whose potential changes abruptly, such as a three-phase motor drive circuit, the current sensor is large, has a large number of parts, and has a large number of assembly steps. I had to choose.

本発明は上記の問題を解決するためになされたものである。すなわち、本発明は部品点数や工数をほとんど増大させることなく、高電圧交流の電流の大きさを正確に計測可能な電流センサを提供することを目的とする。   The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a current sensor that can accurately measure the magnitude of a high-voltage alternating current without substantially increasing the number of parts and man-hours.

上記の目的を達成するため、本発明の電流センサは、感磁面が前記基板と略垂直となるよう該基板に実装されている磁電変換素子と、ギャップが形成されている環状のコアと、感磁面の一方を覆う第1部とこの第1部と接続されて感磁面の他方を覆う第2部と第1部と第2部の一方から延びて基板上のグランドパッドに接続されている第3部とを有するシールド手段と、コアにおいてギャップを構成する両端面のうち第1部と対向する第1端面と第1部との間に配置されており、第1部に接続されると共に該第1端面を圧迫して該コアと前記シールド手段とを導通させる第1の圧迫手段と、を有する。
また、第1部を第1端面に向かって折り曲げて形成した板ばね状部材を第1の圧迫手段とすることがより好ましい。
In order to achieve the above object, a current sensor according to the present invention includes a magnetoelectric conversion element mounted on a substrate so that a magnetosensitive surface is substantially perpendicular to the substrate, an annular core having a gap formed therein, A first part that covers one of the magnetic sensitive surfaces and a second part that is connected to the first part and covers the other of the magnetic sensitive surfaces, extends from one of the first part and the second part, and is connected to a ground pad on the substrate. The shield means having the third part, and is disposed between the first end part and the first part facing the first part among the both end faces constituting the gap in the core, and is connected to the first part And a first pressing means for compressing the first end face and electrically connecting the core and the shielding means.
It is more preferable that a leaf spring-like member formed by bending the first portion toward the first end face is used as the first compression means.

このように、本発明によれば、第1の圧迫手段をシールド手段とコアの間に設けることのみによってコアの電位をグランドに落とすことができるようになっており、部品点数及び工数をほとんど増やすことなく高電圧交流に対応した小型の電流センサが実現される。特に、第1部を第1端面に向かって折り曲げて形成した板ばね状部材を第1の圧迫手段とすると、工数や部品点数を増やすことなく上記の電流センサを実現することができる。   As described above, according to the present invention, the potential of the core can be dropped to the ground only by providing the first pressing means between the shield means and the core, and the number of parts and man-hours are almost increased. A small current sensor corresponding to high-voltage alternating current can be realized without any problems. In particular, when a leaf spring-like member formed by bending the first portion toward the first end surface is used as the first compression means, the above-described current sensor can be realized without increasing the number of steps and the number of parts.

以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本発明の実施の形態の電流センサの斜視図である。また、図2は図1のA矢視図である。図1に示されるように、本実施形態の電流センサ1は、ホール素子40が実装されている基板20と環状のコア30とがケース10内に収められたものである。図2に示されるように、ケース10の内部には突出部14a、14b、15a及び15bが設けられている。コア30は突出部14a及び14bに、基板20は突出部15a及び15bに夫々ガイドされて保持されるようになっている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of a current sensor according to an embodiment of the present invention. FIG. 2 is a view taken in the direction of arrow A in FIG. As shown in FIG. 1, the current sensor 1 of the present embodiment is a case in which a substrate 20 on which a Hall element 40 is mounted and an annular core 30 are housed in a case 10. As shown in FIG. 2, protrusions 14 a, 14 b, 15 a and 15 b are provided inside the case 10. The core 30 is guided and held by the protrusions 14a and 14b, and the substrate 20 is held by the protrusions 15a and 15b.

本実施形態の電流センサ1は、コア30の穴35に電線Wを通し、電線Wに電流を流してコア30の内部にコア30を周回する磁束を発生させる。この磁束の大きさは、電線Wに流れる電流の大きさに比例するので、磁電変換素子の一種であるホール素子40によってコア30内の磁束の磁束密度を計測することによって、電線Wを流れる電流の大きさを測定することができる。このため、図2に示されるように、電線Wをコア30の穴35に通すための開口12、13及び22がケース10の上下面又は基板20に形成されている。   In the current sensor 1 of the present embodiment, the electric wire W is passed through the hole 35 of the core 30, and a current flows through the electric wire W to generate a magnetic flux that goes around the core 30 inside the core 30. Since the magnitude of the magnetic flux is proportional to the magnitude of the current flowing through the electric wire W, the current flowing through the electric wire W is measured by measuring the magnetic flux density of the magnetic flux in the core 30 by the Hall element 40 which is a kind of magnetoelectric conversion element. Can be measured. For this reason, as shown in FIG. 2, openings 12, 13, and 22 for passing the electric wires W through the holes 35 of the core 30 are formed in the upper and lower surfaces of the case 10 or the substrate 20.

また、基板20には、ホール素子40を駆動するための電力を供給すると共に電流の計測結果を出力するための4本の端子21が設けられている。図1及び2に示されるように、端子21は基板20に平行な方向に延びており、ケース10の側面にはこの端子21を通過させるための開口11が設けられている。すなわち、端子21の先端部はケース10の外側に突出しており、この端子21を介してホール素子40へ駆動電力を供給するとともに電線Wを流れる電流の大きさを取得することができる。   The substrate 20 is provided with four terminals 21 for supplying electric power for driving the Hall element 40 and outputting a current measurement result. As shown in FIGS. 1 and 2, the terminal 21 extends in a direction parallel to the substrate 20, and an opening 11 for allowing the terminal 21 to pass through is provided on a side surface of the case 10. That is, the tip of the terminal 21 protrudes outside the case 10, and driving power is supplied to the Hall element 40 through the terminal 21 and the magnitude of the current flowing through the electric wire W can be acquired.

図1に示されるように、ホール素子40は、矩形プレート形状のパッケージ本体41の一端面から4本のリード端子42が延びる、いわゆるSIP(System−in−package)形状のデバイスであり、パッケージ本体41は基板20に対して略垂直に配置されるように基板20に実装されている。   As shown in FIG. 1, the Hall element 40 is a so-called SIP (System-in-package) -shaped device in which four lead terminals 42 extend from one end surface of a rectangular plate-shaped package body 41. 41 is mounted on the substrate 20 so as to be arranged substantially perpendicular to the substrate 20.

コア30の一部は周方向と直交する2つの互いに平行な面によって切り欠かれており、ギャップ31が形成されている。ホール素子40は、このギャップ31に収納されるように配置されている。具体的には、図2に示されるように、ギャップ31を形成するコア30の第1端面32と第2端面33と、ホール素子40のパッケージ本体41の両面に設けられた第1感磁面41a及び第2感磁面41bとが夫々対向するようにホール素子40がギャップ31内に配置されている。これによって、コア30内を周回する磁束線がホール素子40の感磁面41a、41bに対して略垂直にホール素子を通過することになる。   A part of the core 30 is cut away by two mutually parallel surfaces orthogonal to the circumferential direction, and a gap 31 is formed. The hall element 40 is disposed so as to be accommodated in the gap 31. Specifically, as shown in FIG. 2, the first magnetosensitive surface provided on both surfaces of the first end surface 32 and the second end surface 33 of the core 30 forming the gap 31 and the package body 41 of the Hall element 40. The Hall element 40 is disposed in the gap 31 so that 41a and the second magnetosensitive surface 41b face each other. As a result, the magnetic flux lines that circulate in the core 30 pass through the Hall element substantially perpendicular to the magnetic sensitive surfaces 41a and 41b of the Hall element 40.

本実施形態においては、ホール素子40を不要な電磁場からシールドするため、クリップ状のシールド部材50が使用されている。シールド部材50は、りん青銅等の非磁性の導体のプレートを折り曲げ加工して形成したものである。図2に示されるように、シールド部材50は、ホール素子40の第1感磁面41a及び第2感磁面41bを覆うカバー部51を有する。カバー部51は、第1感磁面41aと対向する第1部51aと、第2感磁面41bと対向する第2部51bと、ホール素子40のパッケージ本体41の上面に当接し且つ第1部51a及び第2部51bを連結する連結部51cとを有する。   In the present embodiment, a clip-shaped shield member 50 is used to shield the Hall element 40 from an unnecessary electromagnetic field. The shield member 50 is formed by bending a plate of a nonmagnetic conductor such as phosphor bronze. As shown in FIG. 2, the shield member 50 includes a cover portion 51 that covers the first magnetic sensitive surface 41 a and the second magnetic sensitive surface 41 b of the Hall element 40. The cover portion 51 is in contact with the first portion 51a facing the first magnetic sensitive surface 41a, the second portion 51b facing the second magnetic sensitive surface 41b, the upper surface of the package body 41 of the Hall element 40, and the first portion 51a. It has the connection part 51c which connects the part 51a and the 2nd part 51b.

第1部51aは、連結部51cに対して略垂直である。一方、第2部51bと連結部51cとがなす角は直角よりも小さい大きさである。このため、第1部51aと第2部51bとの間隔は、連結部51cから遠ざかるに従って小さくなる。第1部51aと第2部51bとの最小間隔dは、自然状態ではパッケージ本体41の厚さよりも小さい。このため、カバー部51にパッケージ本体41を差し込むと、第2部51bが図2中反時計回りに移動して、間隔dが広がる。そして、この時に第2部51bに生じる弾性力によって、パッケージ本体41は、第1部51aと第2部51bとの間で挟み込まれ、容易には移動しないようシールド部材50によって保持される。また、前述のように第1部51aは、連結部51cに対して略直角であるので、カバー部51にパッケージ本体41を奥まで差し込んだ状態では、パッケージ本体41の上面41cは、連結部51cの内面(図2中下側)と当接し、且つ第1感磁面41aが第1部51aの内面(図2中右側)と当接する。このように、パッケージ本体41をカバー部51の内面に当接させることによって、シールド部材50に対するホール素子40の位置決めを行うことができる。 The first part 51a is substantially perpendicular to the connecting part 51c. On the other hand, the angle formed by the second part 51b and the connecting part 51c is smaller than a right angle. For this reason, the space | interval of the 1st part 51a and the 2nd part 51b becomes small as it distances from the connection part 51c. Minimum distance d 1 between the first part 51a and second part 51b is smaller than the thickness of the package body 41 in a natural state. Therefore, when inserting the package body 41 to the cover portion 51, second portion 51b is moved in the counterclockwise direction in FIG. 2, spreads distance d 1. At this time, the package body 41 is sandwiched between the first part 51a and the second part 51b by the elastic force generated in the second part 51b, and is held by the shield member 50 so as not to move easily. Further, as described above, the first portion 51a is substantially perpendicular to the connecting portion 51c, and therefore the upper surface 41c of the package body 41 is connected to the connecting portion 51c when the package main body 41 is fully inserted into the cover portion 51. The first magnetosensitive surface 41a contacts the inner surface (right side in FIG. 2) of the first portion 51a. Thus, the Hall element 40 can be positioned with respect to the shield member 50 by bringing the package body 41 into contact with the inner surface of the cover portion 51.

第1部51aの先端(図2中下部)からは第3部52が基板20に向かって延びている。第3部52はその途中で屈曲しており、その先端部52aは第1部51aと略直交する方向を向いている。そのため、第3部52の先端部52aを基板20に当接させると、第1部51aは基板20に対して略垂直になる。このように、第3部52の先端部52aと基板との当接により、シールド部材50と基板20との位置決めがなされるので、シールド部材50によって位置決めされているホール素子40もまた、基板20に対して位置決めされることになる。このように、シールド部材50はホール素子40を基板20に対して位置決めするための位置決め部材としての機能を有する。   A third portion 52 extends toward the substrate 20 from the tip of the first portion 51a (the lower portion in FIG. 2). The third portion 52 is bent in the middle thereof, and the tip portion 52a faces a direction substantially orthogonal to the first portion 51a. Therefore, when the tip end portion 52 a of the third portion 52 is brought into contact with the substrate 20, the first portion 51 a is substantially perpendicular to the substrate 20. Thus, since the shield member 50 and the substrate 20 are positioned by the contact between the tip 52a of the third portion 52 and the substrate, the Hall element 40 positioned by the shield member 50 is also used by the substrate 20. Will be positioned. Thus, the shield member 50 has a function as a positioning member for positioning the Hall element 40 with respect to the substrate 20.

基板20上の4本の端子21のうち一本はグランド端子であり、基板20の表面にはこのグランド端子と接続されているグランドパッド23が形成されている(図1)。図2に示されるようにシールド部材50の第3部52の先端部52aをグランドパッド23に当接させ、且つグランドパッド23にはんだ付けすることにより、シールド部材50を接地することができる。これによって、ホール素子40は、電流検出誤差の原因となる不要な静電場から保護される。   One of the four terminals 21 on the substrate 20 is a ground terminal, and a ground pad 23 connected to the ground terminal is formed on the surface of the substrate 20 (FIG. 1). As shown in FIG. 2, the shield member 50 can be grounded by bringing the tip 52 a of the third portion 52 of the shield member 50 into contact with the ground pad 23 and soldering to the ground pad 23. Thus, the Hall element 40 is protected from an unnecessary electrostatic field that causes a current detection error.

本実施形態による電流センサ1のシールド部材50は、ホール素子40のシールドや位置決めを行うと共に、コア30の電位を接地する機能を有する。コア30の電位が変化することによってコア30内の磁束の大きさが変化するが、本実施形態の構成では、コア30が接地電位に保たれるため、コア30内の磁束の大きさから電線Wに流れる電流の大きさを正確に算出することができる。これは、コア30、電線W、基板20の静電結合によってコア30内の電位が大きく変化しうる環境、例えば電線Wに流れる電流が高電圧の交流電流である場合に特に有効である。   The shield member 50 of the current sensor 1 according to the present embodiment functions to shield and position the Hall element 40 and to ground the potential of the core 30. Although the magnitude of the magnetic flux in the core 30 changes as the potential of the core 30 changes, in the configuration of the present embodiment, the core 30 is kept at the ground potential. The magnitude of the current flowing through W can be accurately calculated. This is particularly effective in an environment where the potential in the core 30 can change greatly due to electrostatic coupling of the core 30, the electric wire W, and the substrate 20, for example, when the current flowing through the electric wire W is a high-voltage AC current.

シールド部材50によるコア30の接地機能について以下説明する。図3は、本実施形態によるシールド部材50を図1の正面側から見た斜視図である。また、図4は、本実施形態によるシールド部材50を図1の背面側から見た斜視図である。図3及び4に示されるように、シールド部材50の第1部51aの一部にはコの字状に切断されて外側(図3中左上側、図4中左下側)に引き出された第1圧迫部53が形成されている。また、シールド部材50の第2部51bの一部にはコの字状に切断されて外側(図3中右下側、図4中右上側)に引き出された第2圧迫部54が形成されている。ここで、自然状態における第1圧迫部53と第2圧迫部54の先端部の間隔dは、コア30のギャップ31の幅、すなわち、第1端面32と第2端面33の間隔d(図1)よりも大きくなるように形成されている。このため、ギャップ31の中にシールド部材50のカバー部51を差し込むと、第1圧迫部53及び第2圧迫部54は夫々内側に向かって押し込まれる。この時に両圧迫部に生じる弾性力によって、第1端面32及び第2端面33は圧迫される。この結果、第1圧迫部53及び第2圧迫部54は夫々第1端面32及び第2端面33に密着するため、コア30とシールド部材50とが2面で接触して確実に導通することになる。また、前述のように、シールド部材50は基板20のグランドパッド23にはんだ付けされているため、コア30の電位は接地電位に保たれる。 The grounding function of the core 30 by the shield member 50 will be described below. FIG. 3 is a perspective view of the shield member 50 according to the present embodiment as viewed from the front side of FIG. FIG. 4 is a perspective view of the shield member 50 according to the present embodiment as viewed from the back side of FIG. As shown in FIGS. 3 and 4, a part of the first portion 51a of the shield member 50 is cut into a U-shape and pulled out to the outside (upper left in FIG. 3, lower left in FIG. 4). One compression part 53 is formed. Further, a part of the second portion 51b of the shield member 50 is formed with a second compression portion 54 that is cut into a U-shape and pulled out to the outside (lower right side in FIG. 3, upper right side in FIG. 4). ing. Here, the distance d 2 between the distal ends of the first compression portion 53 and the second compression portion 54 in the natural state is the width of the gap 31 of the core 30, that is, the distance d 3 between the first end surface 32 and the second end surface 33 ( It is formed to be larger than FIG. For this reason, when the cover part 51 of the shield member 50 is inserted into the gap 31, the first pressing part 53 and the second pressing part 54 are each pushed inward. At this time, the first end face 32 and the second end face 33 are pressed by the elastic force generated in the both pressing portions. As a result, since the first pressing portion 53 and the second pressing portion 54 are in close contact with the first end surface 32 and the second end surface 33, respectively, the core 30 and the shield member 50 are in contact with each other on the two surfaces to be surely connected. Become. Further, as described above, since the shield member 50 is soldered to the ground pad 23 of the substrate 20, the potential of the core 30 is maintained at the ground potential.

以上説明した本実施形態の電流センサ1においては、シールド部材50の第1部51aと第2部51bの一部が一種の板ばねとしてコア30を圧迫するようになっている。しかしながら、本発明はこの構成に限定されるものではない。すなわち、圧迫部は必ずしもシールド部材50の第1部側と第2部側の双方に設けられている必要はなく、いずれか一方のみに圧迫部が設けられる構成としてもよい。   In the current sensor 1 of the present embodiment described above, a part of the first part 51a and the second part 51b of the shield member 50 presses the core 30 as a kind of leaf spring. However, the present invention is not limited to this configuration. That is, the compression part does not necessarily need to be provided on both the first part side and the second part side of the shield member 50, and the compression part may be provided only on one of them.

或いは、他の構成によりコア30を圧迫し、シールド部材50とコア30を導通させる構成としてもよい。例えば、図5のように、シールド部材50の第1部51aとコア30の第1端面32の間、及び第2部51bと第2端面33の間に、プレート状の導電性材料53’、54’を挟み込む構成を採用してもよい。更に、図6に示されるように、図5の導電性材料53’、54’を一体化したコの字断面の導電性材料55をギャップ31に配する構成をとってもよい。   Or it is good also as a structure which presses the core 30 with another structure, and makes the shield member 50 and the core 30 electrical conduction. For example, as shown in FIG. 5, a plate-shaped conductive material 53 ′ between the first portion 51a of the shield member 50 and the first end surface 32 of the core 30 and between the second portion 51b and the second end surface 33, A configuration in which 54 'is sandwiched may be employed. Further, as shown in FIG. 6, a conductive material 55 having a U-shaped cross section in which the conductive materials 53 ′ and 54 ′ of FIG. 5 are integrated may be arranged in the gap 31.

また、図4に示されるように、シールド部材50のカバー部51の幅と、第3部52の先端部52aの幅は等しくなっている。しかしながら、先端部52aの幅をカバー部51の幅よりも小さくしてもよい。この構成においては、先端部52aが小さくなるため、先端部52aのグランドパッド23(図1、図2)へのはんだ付けが容易なものとなる。   Further, as shown in FIG. 4, the width of the cover portion 51 of the shield member 50 is equal to the width of the tip portion 52 a of the third portion 52. However, the width of the tip 52a may be smaller than the width of the cover 51. In this configuration, since the tip end portion 52a is small, it is easy to solder the tip portion 52a to the ground pad 23 (FIGS. 1 and 2).

本発明の実施の形態による電流センサの斜視図である。1 is a perspective view of a current sensor according to an embodiment of the present invention. 図1のA矢視図である。It is A arrow directional view of FIG. 本発明の実施の形態によるシールド部材を図1の正面側から見た斜視図である。It is the perspective view which looked at the shield member by embodiment of this invention from the front side of FIG. 本発明の実施の形態によるシールド部材を図1の背面側から見た斜視図である。It is the perspective view which looked at the shield member by embodiment of this invention from the back side of FIG. 本発明の実施の形態の電流センサの別例を示したものである。It shows another example of the current sensor according to the embodiment of the present invention. 本発明の実施の形態の電流センサのさらなる別例を示したものである。The another example of the current sensor of embodiment of this invention is shown.

符号の説明Explanation of symbols

1 電流センサ
10 ケース
20 基板
21 端子
23 グランドパッド
30 コア
31 ギャップ
32 第1端面
33 第2端面
35 穴
40 ホール素子
41 パッケージ本体
41a 第1感磁面
41b 第2感磁面
50 シールド部材
51 カバー部
51a 第1部
51b 第2部
52 第3部
53 第1圧迫部
54 第2圧迫部
W 電線
DESCRIPTION OF SYMBOLS 1 Current sensor 10 Case 20 Board | substrate 21 Terminal 23 Ground pad 30 Core 31 Gap 32 1st end surface 33 2nd end surface 35 Hole 40 Hall element 41 Package main body 41a 1st magnetosensitive surface 41b 2nd magnetosensitive surface 50 Shield member 51 Cover part 51a 1st part 51b 2nd part 52 3rd part 53 1st compression part 54 2nd compression part W Electric wire

Claims (6)

基板と、
感磁面が前記基板と略垂直となるよう該基板に実装されている磁電変換素子と、
ギャップが形成されている環状のコアと、
前記感磁面の一方を覆う第1部と、該第1部と接続され前記感磁面の他方を覆う第2部と、該第1部と第2部の一方から延びて基板上のグランドパッドに接続される第3部とを有するシールド手段と、
前記コアにおいてギャップを構成する2端面のうち前記第1部と対向する第1端面と前記第1部との間に配置され、該第1部に接続されると共に該第1端面を圧迫して該コアと前記シールド手段とを導通させる第1の圧迫手段と、
を有する電流センサ。
A substrate,
A magnetoelectric conversion element mounted on the substrate such that the magnetic sensitive surface is substantially perpendicular to the substrate;
An annular core in which a gap is formed;
A first portion covering one of the magnetic sensitive surfaces; a second portion connected to the first portion and covering the other of the magnetic sensitive surfaces; and extending from one of the first and second portions to a ground on the substrate Shielding means having a third part connected to the pad;
Of the two end surfaces constituting the gap in the core, the first end surface is disposed between the first end surface facing the first portion and the first portion, and is connected to the first portion and presses the first end surface. First compression means for conducting the core and the shield means;
A current sensor.
前記第1の圧迫手段は、前記第1部の一部が前記第1端面に向かって折り曲げられて形成された板ばね状部材であることを特徴とする請求項1に記載の電流センサ。   2. The current sensor according to claim 1, wherein the first compression unit is a leaf spring-like member formed by bending a part of the first part toward the first end surface. 前記コアにおいてギャップを構成する両端面のうち前記第2部と対向する第2端面と前記第2部との間に配置され、前記第2部に接続されると共に該第2端面を圧迫して該コアと前記シールド手段とを導通させる第2の圧迫手段をさらに有することを特徴とする請求項2に記載の電流センサ。   Of the both end faces constituting the gap in the core, the second end face is arranged between the second end face facing the second part and the second part, and is connected to the second part and presses the second end face. The current sensor according to claim 2, further comprising second compression means for conducting the core and the shield means. 前記第1の圧迫手段は、前記第1部と前記第1端面との間に挟み込まれる導電性の弾性部材であることを特徴とする請求項1に記載の電流センサ。   2. The current sensor according to claim 1, wherein the first compression unit is a conductive elastic member sandwiched between the first part and the first end surface. 前記弾性部材は、前記コアにおいてギャップを構成する2端面のうち前記第2部と対向する第2端面と前記第2部との間にも挟み込まれるコの字断面形状の部材であることを特徴とする請求項4に記載の電流センサ。   The elastic member is a member having a U-shaped cross-sectional shape that is also sandwiched between the second portion and the second end surface facing the second portion of the two end surfaces constituting the gap in the core. The current sensor according to claim 4. 前記磁電変換素子が前記ギャップ内に配置されるように、前記基板及び前記コアを保持する保持手段を更に有することを特徴とする請求項1から5のいずれかに記載の電流センサ。   The current sensor according to claim 1, further comprising a holding unit that holds the substrate and the core so that the magnetoelectric conversion element is disposed in the gap.
JP2008152297A 2008-06-10 2008-06-10 Current sensor Expired - Fee Related JP4814283B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008152297A JP4814283B2 (en) 2008-06-10 2008-06-10 Current sensor
PCT/JP2009/060366 WO2009151011A1 (en) 2008-06-10 2009-06-05 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152297A JP4814283B2 (en) 2008-06-10 2008-06-10 Current sensor

Publications (2)

Publication Number Publication Date
JP2009300123A true JP2009300123A (en) 2009-12-24
JP4814283B2 JP4814283B2 (en) 2011-11-16

Family

ID=41416716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152297A Expired - Fee Related JP4814283B2 (en) 2008-06-10 2008-06-10 Current sensor

Country Status (2)

Country Link
JP (1) JP4814283B2 (en)
WO (1) WO2009151011A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007596A (en) * 2009-06-25 2011-01-13 Tamura Seisakusho Co Ltd Current sensor
WO2012026141A1 (en) * 2010-08-23 2012-03-01 住友電装株式会社 Current detector
JP2012137452A (en) * 2010-12-28 2012-07-19 Nidec Sankyo Corp Magnetic sensor device
CN104408812A (en) * 2010-12-28 2015-03-11 日本电产三协株式会社 Magnetic sensor device and method for manufacturing magnetic sensor device
JP2015045519A (en) * 2013-08-27 2015-03-12 三菱電機株式会社 Current sensor, and manufacturing method of current sensor
CN105006057A (en) * 2011-12-20 2015-10-28 日本电产三协株式会社 Magnetic sensor device
CN106104281A (en) * 2014-03-21 2016-11-09 莱姆知识产权股份有限公司 Magnetic field sensor device and the current converter with it
WO2017208753A1 (en) * 2016-06-02 2017-12-07 日本電産サンキョー株式会社 Magnetic sensor device
JP2019105546A (en) * 2017-12-13 2019-06-27 富士電機メーター株式会社 Current sensor and watt-hour meter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2741091A1 (en) * 2012-12-07 2014-06-11 LEM Intellectual Property SA Electrical current transducer with grounding device
CN113412429A (en) * 2019-02-18 2021-09-17 松下知识产权经营株式会社 Three-phase current detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302371A (en) * 1987-06-02 1988-12-09 Yaskawa Electric Mfg Co Ltd Current detector
JPH06194388A (en) * 1992-12-25 1994-07-15 Mitsubishi Electric Corp Current detector
JP2003161744A (en) * 2001-11-29 2003-06-06 Hioki Ee Corp Clamp sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302371A (en) * 1987-06-02 1988-12-09 Yaskawa Electric Mfg Co Ltd Current detector
JPH06194388A (en) * 1992-12-25 1994-07-15 Mitsubishi Electric Corp Current detector
JP2003161744A (en) * 2001-11-29 2003-06-06 Hioki Ee Corp Clamp sensor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007596A (en) * 2009-06-25 2011-01-13 Tamura Seisakusho Co Ltd Current sensor
WO2012026141A1 (en) * 2010-08-23 2012-03-01 住友電装株式会社 Current detector
JP2012042412A (en) * 2010-08-23 2012-03-01 Sumitomo Wiring Syst Ltd Current detection device
JP2012137452A (en) * 2010-12-28 2012-07-19 Nidec Sankyo Corp Magnetic sensor device
CN104408812A (en) * 2010-12-28 2015-03-11 日本电产三协株式会社 Magnetic sensor device and method for manufacturing magnetic sensor device
KR101564126B1 (en) 2010-12-28 2015-10-28 니혼 덴산 산쿄 가부시키가이샤 Magnetic sensor device and method of manufacturing magnetic sensor device
CN105006057A (en) * 2011-12-20 2015-10-28 日本电产三协株式会社 Magnetic sensor device
JP2015045519A (en) * 2013-08-27 2015-03-12 三菱電機株式会社 Current sensor, and manufacturing method of current sensor
CN106104281A (en) * 2014-03-21 2016-11-09 莱姆知识产权股份有限公司 Magnetic field sensor device and the current converter with it
KR20160135734A (en) * 2014-03-21 2016-11-28 렘 인텔렉튜얼 프라퍼티 에스.에이. Magnetic Field Sensor Arrangement and Current Transducer therewith
JP2017513019A (en) * 2014-03-21 2017-05-25 レム・インテレクチュアル・プロパティ・エスエイLem Intellectual Property Sa Magnetic field sensor device and current transducer including the same
CN106104281B (en) * 2014-03-21 2019-01-08 莱姆知识产权股份有限公司 Magnetic field sensor device and current converter with it
KR102248948B1 (en) 2014-03-21 2021-05-07 렘 인터내셔널 에스에이 Magnetic Field Sensor Arrangement and Current Transducer therewith
WO2017208753A1 (en) * 2016-06-02 2017-12-07 日本電産サンキョー株式会社 Magnetic sensor device
JP2019105546A (en) * 2017-12-13 2019-06-27 富士電機メーター株式会社 Current sensor and watt-hour meter
JP7149701B2 (en) 2017-12-13 2022-10-07 富士電機メーター株式会社 Current sensor and electricity meter

Also Published As

Publication number Publication date
JP4814283B2 (en) 2011-11-16
WO2009151011A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4814283B2 (en) Current sensor
JP5464098B2 (en) Current detector
JP5098855B2 (en) Current sensor
KR102248948B1 (en) Magnetic Field Sensor Arrangement and Current Transducer therewith
JP5872758B2 (en) Current detector
JP5435825B2 (en) Connector and connector assembly
JPH08262064A (en) Current sensor
JP5173768B2 (en) Current detector
JP2007183221A (en) Electric current sensor
JP2009270910A (en) Electrical current detector
JP2013120177A (en) Current detector
JP5026944B2 (en) Current sensor
JP7225420B2 (en) Current transducer with magnetic field detector module
JP2005321206A (en) Current detection device
JP2016145821A (en) Current sensor
JP6064117B2 (en) Current sensor
JP2009150654A (en) Current sensor
JP5074461B2 (en) Core grounding member and current sensor
JP2014066589A (en) Current detection device
JP2012047564A (en) Current detection apparatus
JP2010236980A (en) Shunt resistor device
JP2005201898A (en) Displacement detector
CN214539763U (en) Current detection device
JP5704352B2 (en) Current sensor
JP2011169843A (en) Current sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4814283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees