JP2009300035A - Refrigeration cold insulation device for game machine - Google Patents
Refrigeration cold insulation device for game machine Download PDFInfo
- Publication number
- JP2009300035A JP2009300035A JP2008156796A JP2008156796A JP2009300035A JP 2009300035 A JP2009300035 A JP 2009300035A JP 2008156796 A JP2008156796 A JP 2008156796A JP 2008156796 A JP2008156796 A JP 2008156796A JP 2009300035 A JP2009300035 A JP 2009300035A
- Authority
- JP
- Japan
- Prior art keywords
- inner box
- refrigerant
- refrigerant pipe
- partition
- piped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、一般的には、庫内を低温かつ均一に保つ冷凍保冷装置に関し、特に、ゲームセンター等の遊戯施設に設置され、プレーヤーがシャベルやクレーン等の景品把持手段を操作して中に積まれた景品を取得する景品取得遊戯装置等に使用される冷凍保冷装置に関する。 The present invention generally relates to a freezing and cooling apparatus that keeps the inside of a warehouse at a low temperature and uniform, and in particular, it is installed in a game facility such as a game center, and a player operates a prize gripping means such as a shovel or a crane. The present invention relates to a refrigeration / cooling apparatus used in a prize acquisition game apparatus or the like for acquiring stacked prizes.
従来、ゲームセンター等の遊戯施設に設置されている遊戯装置として景品取得遊戯装置がある。この装置の一般的な遊戯方法は、側面をアクリル板等の透明な板で囲われた装置内に山積みされた景品を、プレーヤーが装置内部のシャベルやクレーン等の景品把持手段をボタンやレバーなどの操作手段を介して操作して上手に掴み取り、掴んだ景品を装置の中央又は隅に設定された投入口まで移動及び落下させ、景品取り出し口より景品を取り出すというものである。 Conventionally, there is a prize acquisition game device as a game device installed in a game facility such as a game center. A general play method of this device is that a player piles up a prize piled in a device whose side is surrounded by a transparent board such as an acrylic board, and a player holds a prize gripping means such as a shovel or a crane inside the apparatus, such as a button or a lever. It is operated through the operation means, and is grabbed well, and the grabbed prize is moved and dropped to the insertion port set at the center or corner of the apparatus, and the prize is taken out from the prize taking-out port.
この景品取得遊戯装置の中には景品取得手段であるシャベルやクレーンに改良を加え、エアー吸着によって景品を取得するもの、あるいは強弱調整可能な磁力を発生する磁力発生部を備えて磁性体を係着させた景品を吸着させるものがある(特許文献1)。 In this prize acquisition game device, the shovel and crane, which are the prize acquisition means, have been improved to obtain prizes by air adsorption, or equipped with a magnetic force generator that generates a magnetic force that can be adjusted in strength. There is one that adsorbs a prize that is put on (Patent Document 1).
また、景品の種類についても従来、ぬいぐるみや常温保存菓子などが使われていたが、ラクトアイスなどの冷菓景品も使用されるようになった。この場合、装置内の空間を低温に保つため装置内の天井部に低音風を発生させる低音風発生機を設ける、冷気層を形成保持するための保冷手段を用いる、生成された冷気を装置内で循環させる循環路を形成するといった改善も見られた(特許文献2) Traditionally, stuffed animals and room-temperature preserved confectionery have been used for the types of prizes, but cold confectionery such as lacto ice has come to be used. In this case, in order to keep the space in the device at a low temperature, a low sound wind generator for generating a low sound wind is provided on the ceiling in the device, and the generated cold air is used in the device by using a cold insulation means for forming and maintaining a cold air layer. Improvements such as the formation of a circulation path that circulates at the same time were also seen (Patent Document 2).
しかしながら、出願人が調査したところによると、従来の装置は、内部をマイナス18度程度にまで冷却及び保冷することが性能上の限界であり、乳性分が少ないラクトアイスなどの保冷には問題はなかったが、乳性分の多いアイスクリーム(乳固形分15.0%以上、うち乳脂肪分8.0%以上)の場合には溶けてしまうという問題があり、遊戯場等の営業時間中に長時間安全にアイスクリーム景品を保冷するための温度としては略マイナス25度が望まれるところであった。 However, according to the applicant's investigation, the conventional apparatus is limited in performance to cool and keep the inside down to about minus 18 degrees, and there is no problem in keeping cold such as lactice with a low milk content. There was a problem that it melts in the case of ice cream with a high milk content (milk solid content 15.0% or more, of which milk fat content 8.0% or more). In addition, a temperature of approximately minus 25 degrees is desired as a temperature for keeping the ice cream premium safely for a long time.
さらには、例え従来の冷却装置の性能によりマイナス25度以下の冷気を装置内に供給できたとしても、装置内の広い保冷庫を均一に保冷することが難しく、例えば保冷庫の側面に保冷パイプを通した場合には庫内中央部の温度が上昇する傾向があるという課題を有していた。したがって、一定の電圧環境下で動作可能な高性能の冷却装置を用いたとしても、保冷の性能限界はマイナス18度程度であり、かつ庫内を均一に低温に保つことも困難であった。 Furthermore, even if cold air of minus 25 degrees or less can be supplied into the device due to the performance of the conventional cooling device, it is difficult to keep the wide cold storage in the device uniformly, for example, a cold pipe on the side of the cold storage In the case of passing through, there was a problem that the temperature in the central part of the warehouse tends to rise. Therefore, even if a high-performance cooling device that can operate under a constant voltage environment is used, the performance limit of the cold insulation is about minus 18 degrees, and it is difficult to keep the inside of the refrigerator uniformly at a low temperature.
一般的には、乳性分の多いアイスクリームは味が良い代わりに1gあたりに含まれる細菌数も多いため、従来技術による景品取得遊戯装置において乳性分の多いアイスクリームを冷菓景品として使用しようとすると、溶けやすいばかりか細菌が繁殖しやすくなるという品質管理上重大な問題をも引き起こしかねず、こうした冷菓景品の保冷にはより厳密な低温管理及び保冷庫内温度をより均一に保つための保冷管理が必要とされる。 In general, ice cream with a high milk content has a good number of bacteria per gram instead of a good taste. Therefore, use ice cream with a high milk content as a frozen dessert in a prize-playing game device according to the prior art. Then, it may cause a serious problem in quality control that it is easy to dissolve and bacteria are easy to propagate, and in order to keep these frozen desserts cold, more strict low-temperature control and keeping the temperature in the cold storage room more uniform. Cold storage management is required.
そのため、上記のような厳しい低温管理及び保冷管理を行うことができない従来技術による景品取得遊戯装置においては、景品として扱えるアイスクリーム類及び乳製品の種別は自ずと制約され、味が良好で品質も良い景品をプレーヤーに提供することにより遊戯としての嗜好性を高めるという点でも課題を有していた。 Therefore, in the prize acquisition game device according to the prior art that cannot perform the strict low temperature management and cold preservation management as described above, the types of ice creams and dairy products that can be handled as prizes are naturally restricted, and the taste is good and the quality is good. There was also a problem in terms of enhancing the palatability as a game by providing the player with a free gift.
本発明は、かかる課題を解決すべく、景品取得遊戯装置において従来よりも優れた冷却及び保冷手段を提供し、遊戯装置としての嗜好性の向上をも図ることを目的とする。 In order to solve such problems, an object of the present invention is to provide cooling and cooling means that are superior to those of conventional prize acquisition game apparatuses, and to improve palatability as a game apparatus.
本発明は、側面部と底部とからなる内箱に冷媒管を配管して構成される冷凍保冷装置であって、前記冷媒管は、前記内箱を2以上の領域に仕切るように配管されたことを特徴とする。また、この内箱を2以上の領域に仕切るように配管された冷媒管には、それぞれの仕切りとなる部分に熱伝導板が取り付けられたことを特徴とする。 The present invention is a refrigeration / cooling device configured by piping a refrigerant pipe to an inner box composed of a side part and a bottom part, and the refrigerant pipe is piped so as to partition the inner box into two or more regions. It is characterized by that. In addition, the refrigerant pipes that are piped so as to partition the inner box into two or more regions are characterized in that a heat conduction plate is attached to each partitioning portion.
さらに、この冷媒管は、底部の中央部から第1の高さをもって底部と略並行かつ側面部に対して垂直方向に延び、側面部付近で180度曲げられて側面部から第2の高さをもって底部と略並行かつ中央部に向かって延び、中央部付近で底部と略並行に所定の角度を曲げられて再び側面部に延びることを2以上繰り返すことにより、例えば、内箱内に3以上の仕切り領域を設けることを特徴とするものである。 Further, the refrigerant pipe extends from the central portion of the bottom portion at a first height substantially parallel to the bottom portion and in a direction perpendicular to the side surface portion, and is bent by 180 degrees near the side surface portion to be second height from the side surface portion. And extending in parallel to the bottom part and extending toward the center part, bending a predetermined angle substantially in parallel with the bottom part in the vicinity of the center part, and extending again to the side part two or more times, for example, three or more in the inner box The partition region is provided.
本発明の実施形態における景品取得遊戯装置を以下に図面を参照して詳細に説明する。 A premium acquisition game apparatus according to an embodiment of the present invention will be described below in detail with reference to the drawings.
図1に、本発明の実施形態における冷凍保冷装置を搭載した景品取得遊戯装置の外観斜視図を示す。景品遊戯装置1は、操作レバー6及び操作ボタン7を上部に備え、下部には景品取出口8を備えた操作台5が各側面に付設された基台部2と、基台部2の上部四隅から突設された支柱部3と、各支柱部3を覆うように付設された天井部9とで装置枠体が構成され、天井部9の縁部と基台部2の上部周縁と支柱部3とで囲まれた四面の領域には、アクリル板等の透明板4がそれぞれ開放可能に取り付けられており、透明板4を閉じた状態では景品遊戯装置1の内部に略密閉空間が構成されるようになっている。 FIG. 1 shows an external perspective view of a prize acquisition game apparatus equipped with a refrigeration / cooling apparatus according to an embodiment of the present invention. The prize game device 1 includes an operation lever 6 and an operation button 7 in the upper part, a base part 2 having an operation table 5 having a prize take-out port 8 in the lower part, and an upper part of the base part 2. An apparatus frame is constituted by the column portions 3 projecting from the four corners and the ceiling portion 9 attached so as to cover each column portion 3, and the edge of the ceiling portion 9, the upper peripheral edge of the base portion 2, and the columns Transparent plates 4 such as acrylic plates are releasably attached to the four areas surrounded by the section 3, and a substantially sealed space is formed inside the prize game device 1 when the transparent plates 4 are closed. It has come to be.
このように、透明板4を閉じた状態では景品遊戯装置1の内部には略密閉空間が構成されることとなるので、例えば内部に冷菓景品を山積みし、冷菓景品を低温に保持するための低温風又は冷気を冷凍保冷装置によって供給したとしても外部には漏れにくい構造となっている。さらに密閉性を高めるために、開閉可能な透明板4、あるいは基台部2や天井部9の周縁部にパッキン等を付設又は付着するようにしてもよい。 In this way, when the transparent plate 4 is closed, a substantially sealed space is formed inside the prize game device 1, so that, for example, a pile of cold confectionery prizes is stored therein, and the cold confectionery prizes are kept at a low temperature. Even if low-temperature air or cold air is supplied by a refrigerated cooler, the structure is difficult to leak to the outside. In order to further improve the sealing performance, packing or the like may be attached or attached to the transparent plate 4 that can be opened and closed, or the peripheral portion of the base portion 2 or the ceiling portion 9.
次に、図2に従って、本発明にかかる冷凍保冷装置を搭載した景品取得遊戯装置1における景品取得経路を説明する。図示しない把持手段がアイス冷凍保冷庫(景品格納部)10に置かれた冷菓景品を把持し、開閉式景品スロープ206上でリリースすると(201の位置)、景品は、事前に開状態となった開閉式景品スロープ206に受け止められ(202の位置)、一定時間後にこのスロープ206が緩やかに閉じることにより、景品自体が傷められることなく(203の位置)取出口8へ送り出される。なお、図2において、景品は位置203において垂直に落下しているように見えるが、シューター経路に適宜スロープを設けるなどして冷菓景品の送り出しを緩やかなものとすることができる。 Next, according to FIG. 2, the prize acquisition route in the prize acquisition game apparatus 1 equipped with the refrigeration / cooling apparatus according to the present invention will be described. When the gripping means (not shown) grips the frozen dessert placed in the ice freezer (freebie storage unit) 10 and releases it on the openable premium slope 206 (position 201), the premium is opened in advance. It is received by the open / close-type premium slope 206 (position 202), and the slope 206 is gently closed after a certain time, so that the prize itself is sent to the outlet 8 without being damaged (position 203). In FIG. 2, the prize seems to fall vertically at the position 203, but the frozen dessert can be sent out slowly by providing an appropriate slope in the shooter path.
図3に、本発明にかかる冷凍保冷装置30の外観斜視図を示す。冷凍保冷装置30は、基部31の上部四隅に立設された4本の脚部38に支えられた冷凍保冷庫(景品格納部)10を備えている。そうして、冷凍保冷庫10の内部底面中央部分には孔部が設けられてそこから支柱部36が立設されている。そして、この支柱部36を仕切りの目安としてちょうど4つの網かご35が配置され、この網かご35の各々にアイスクリーム等の冷菓(不図示)を配置する。なお、網かご35は、必ずしもこの形態に限定されるものではなく、他の収納ケースを用いることもできる。 In FIG. 3, the external appearance perspective view of the freezing and cooling apparatus 30 concerning this invention is shown. The refrigerated cooler 30 includes a refrigerated cooler (premium storage unit) 10 supported by four legs 38 erected at the upper four corners of the base 31. Thus, a hole is provided in the central portion of the inner bottom surface of the refrigerator / freezer 10, and the column portion 36 is erected therefrom. Then, just four mesh baskets 35 are arranged using the support column 36 as a guide for partitioning, and a frozen dessert such as ice cream (not shown) is arranged in each mesh basket 35. The net cage 35 is not necessarily limited to this form, and other storage cases can be used.
また、各々の網かご35同士の側部境界面には、支柱部36の内部空間を介して仕切り冷媒管(仕切りエバパイプ)37が連通されている。この仕切り冷媒管37が網かご35の各々の側部境界面を連通するよう配管されているので、冷凍保冷庫10の側面部に配管されたエバパイプによる冷凍・保冷効果を一層促進させるよう作用する。 In addition, a partition refrigerant pipe (partition EVA pipe) 37 is communicated with the side boundary surface between the mesh cages 35 via the internal space of the support column 36. Since the partition refrigerant pipe 37 is piped so as to communicate with each side boundary surface of the mesh basket 35, the refrigerant refrigerant pipe 37 acts to further promote the freezing / cooling effect by the evaporating pipe piped to the side surface portion of the freezing and cold storage 10. .
なお、脚部38によって生じた基部31と冷凍保冷庫10との間の空間内には、電源部32とコンプレッサ部33と凝縮器34とが配置されて機械室を構成している。これらの装置は、冷凍保冷装置30の冷凍機能及び保冷機能を実現するための必要装置であり、この他にも図示しないファンモーター、漏電遮断機、トランス、排水タンク、キャピラリー、チェックバルブ、液溜り、ドライヤー、サーミスタ、各種フィルタ等が適宜組み込まれている。 In the space between the base 31 generated by the legs 38 and the refrigerator / freezer 10, a power supply unit 32, a compressor unit 33, and a condenser 34 are arranged to constitute a machine room. These devices are necessary devices for realizing the refrigeration function and the refrigeration function of the refrigeration / reservoir 30. In addition to these, a fan motor, an earth leakage breaker, a transformer, a drain tank, a capillary, a check valve, a liquid reservoir (not shown) In addition, a dryer, a thermistor, various filters and the like are appropriately incorporated.
図4は、本発明にかかる冷凍保冷装置30の構成をより詳細に示すための分解斜視図である。基部31下部の四隅には、冷凍保冷装置30ないし冷凍保冷装置30を組み込んだ景品取得遊戯装置1の搬送が容易になるよう、単輪キャスタ41(及び調節脚42)がそれぞれ取り付けられている。 FIG. 4 is an exploded perspective view for showing the configuration of the refrigerated cooler 30 according to the present invention in more detail. Single wheel casters 41 (and adjustment legs 42) are attached to the four corners below the base 31 so that the freezing / cooling device 30 or the freezing / preserving game device 1 incorporating the frozen / cooling device 30 can be easily transported.
また、電源部32とコンプレッサ部33と凝縮器34等が配置された、基部31と冷凍保冷庫10との間の空間(機械室空間)を遮蔽するために、機械室カバー43、46、及び機械室ガード44、45が、機械室空間側面にビス等の係止手段を用いて付設されている。 In addition, in order to shield the space (machine room space) between the base 31 and the refrigerator / freezer 10 where the power supply unit 32, the compressor unit 33, the condenser 34, and the like are arranged, machine room covers 43, 46, and Machine room guards 44 and 45 are attached to the side surfaces of the machine room space using locking means such as screws.
さらに、支柱部36の内部空間を介して網かご35同士の側部境界面を連通するよう配管された仕切り冷媒管(仕切りエバパイプ)37は、それぞれ2枚の仕切り熱伝導板47によって挟み込まれている。これらの仕切り熱伝導板47は、仕切り冷媒管37の冷却効果を効率よく冷凍保冷庫10内に伝導するとともに、網かご35の位置決めを容易なものとする効果を奏している。 Furthermore, partition refrigerant pipes (partition EVA pipes) 37 that are connected to communicate with the side boundary surfaces of the mesh cages 35 through the internal space of the support column 36 are sandwiched between two partition heat conduction plates 47. Yes. These partition heat conduction plates 47 efficiently transmit the cooling effect of the partition refrigerant pipe 37 into the refrigerator / freezer 10 and facilitate the positioning of the net cage 35.
なお、支柱部36の上部にはトップカバー361が取り付けられ、冷凍保冷庫10の内部側面には、庫内の温度を管理するために使用されるサーミスタ49が取り付けられ、温度計カバー48によって保護されている。また、冷凍保冷庫10の内部底面には排水機能を実現するための排水栓499が備わっている。 A top cover 361 is attached to the upper part of the support column 36, and a thermistor 49 used for managing the temperature inside the refrigerator is attached to the inner side surface of the freezer 10 and protected by a thermometer cover 48. Has been. Further, a drain plug 499 for realizing a drain function is provided on the inner bottom surface of the freezer 10.
図5は、冷凍保冷庫10の内部を構成する内箱の構造及び冷媒管54の連通の様子を説明する説明図である。この内箱は、内箱側面を構成する2枚の内箱側板51及び52と、内箱底部を構成する1枚の内箱底板53との張り合わせによって製造されたものである。内箱を構成する各部材の構成及び張り合わせ方には板金等の従来の技術を適用することができ、種々のバリエーションが考えられるが、いずれの技術を用いたとしても本発明の趣旨に影響を与えるものではない。 FIG. 5 is an explanatory view for explaining the structure of the inner box constituting the inside of the refrigerator / freezer 10 and the state of communication of the refrigerant pipe 54. This inner box is manufactured by bonding together two inner box side plates 51 and 52 constituting the inner box side surface and one inner box bottom plate 53 constituting the inner box bottom. Conventional techniques such as sheet metal can be applied to the structure and bonding method of each member constituting the inner box, and various variations are conceivable, but any technique will affect the spirit of the present invention. Not give.
そうして、内箱側板51、52、及び内箱底板53で構成された内箱の側面部に、図のように内箱側部冷媒管54を螺旋状に巡回させている。このような構成によって、冷媒入口541から略鉛直方向に流入した冷媒は、内箱側面上部まで到達して90度進路を変え、内箱側面部沿って螺旋状に徐々に内箱底部へ向かって巡回し、冷媒出口542に到達することとなる。なお、このような冷媒の巡回のさせ方はあくまでも一例であって、内箱側面に均一に冷媒が連通するような配管の仕方であれば、内箱側面部沿って螺旋状に徐々に内箱上部へ向かって巡回させるようにしてもよいし、内箱側面部上下に対してメアンダ状に冷媒を進行させて内箱側面部を周回させるように連通させることとしてもよい。 Then, the inner box side refrigerant pipe 54 is spirally circulated on the side surface portion of the inner box constituted by the inner box side plates 51 and 52 and the inner box bottom plate 53 as shown in the figure. With such a configuration, the refrigerant that flows in the substantially vertical direction from the refrigerant inlet 541 reaches the upper portion of the inner box side surface, changes its course by 90 degrees, and gradually spirals along the inner box side surface portion toward the inner box bottom portion. It goes around and reaches the refrigerant outlet 542. This way of circulating the refrigerant is merely an example, and if the piping is such that the refrigerant communicates uniformly with the side surface of the inner box, the inner box gradually gradually spirals along the side surface of the inner box. You may make it circulate toward upper part, and it is good also as making it communicate so that a refrigerant | coolant may advance in a meander shape with respect to upper and lower sides of an inner box side part, and an inner box side part may circulate.
図6は、冷凍保冷庫10の内部を構成する内箱の構造及び仕切り冷媒管37の連通の様子をより詳細に説明する説明図である。内箱底板53の中央部には孔部601が設けられており、この孔部から冷媒の流入路及び流出路が通るように仕切り冷媒管37を配置している。 FIG. 6 is an explanatory diagram for explaining in more detail the structure of the inner box constituting the inside of the refrigerator / freezer 10 and the communication state of the partition refrigerant pipe 37. A hole 601 is provided at the center of the inner box bottom plate 53, and the partition refrigerant pipe 37 is arranged so that the refrigerant inflow path and the outflow path pass through the hole 601.
冷凍保冷庫10内部における仕切り冷媒管37の配管によって冷媒は次の通りの流路を辿ることになる。すなわち、冷媒は冷媒入口371から略鉛直方向に流入し、冷媒孔部601を通って内箱底板53の上面に出た後、前記底板53と略並行になるように90度進路を変えて内箱底板53の上面と高さH1を保つように内箱底板53の上面と略並行、かつ内箱内部の側面(F1)に対して垂直方向に進行する(経路P)。 The refrigerant follows the following flow path by the piping of the partition refrigerant pipe 37 inside the freezer 10. That is, the refrigerant flows from the refrigerant inlet 371 in a substantially vertical direction, passes through the refrigerant hole portion 601, exits the upper surface of the inner box bottom plate 53, and then changes the course by 90 degrees so as to be substantially parallel to the bottom plate 53. It travels in a direction substantially parallel to the upper surface of the inner box bottom plate 53 and perpendicular to the side surface (F1) inside the inner box so as to maintain the height H1 of the upper surface of the box bottom plate 53 (path P).
次に、内箱内部の側面(F1)付近まで到達したら、その進路を180度反転させて、今度は内箱底板53の上面と高さH1+H2を保つように内箱底板53の上面と略並行、かつ内箱内部の支柱部36(図6においては不図示)に向かうように進行する(経路Q)。続いて支柱部36付近まで到達したら、その進路を90度変えて内箱底板53の上面と高さH1+H2を保つように内箱底板53の上面と略並行、かつ内箱内部の側面(F2)に対して垂直方向に進行する(経路R)。 Next, when the vicinity of the side surface (F1) inside the inner box is reached, the course is reversed by 180 degrees, and this time, the upper surface of the inner box bottom plate 53 is maintained substantially parallel to the upper surface of the inner box bottom plate 53 so as to maintain the height H1 + H2. And it advances so that it may go to the support | pillar part 36 (not shown in FIG. 6) inside an inner box (path | route Q). Subsequently, when reaching the vicinity of the column portion 36, the course is changed by 90 degrees so that the upper surface of the inner box bottom plate 53 and the upper surface of the inner box bottom plate 53 are kept substantially parallel to the upper surface of the inner box bottom plate 53 and the side surface (F2) inside the inner box. (Path R).
そして、内箱内部の側面(F2)付近まで到達したら、その進路を180度反転させて、今度は内箱底板53の上面と高さH1を保つように内箱底板53の上面と略並行、かつ内箱内部の支柱部36に向かうように進行する(経路S)。支柱部36付近まで到達したら、その進路を90度変えて内箱底板53の上面と高さH1を保つように内箱底板53の上面と略並行、かつ内箱内部の側面(F3)に対して垂直方向に進行する(経路T)。 Then, when the vicinity of the side surface (F2) inside the inner box is reached, the course is reversed by 180 degrees, and this time, substantially parallel to the upper surface of the inner box bottom plate 53 so as to maintain the height H1 with the upper surface of the inner box bottom plate 53, And it progresses toward the support | pillar part 36 inside an inner box (path | route S). When it reaches the vicinity of the column portion 36, its path is changed by 90 degrees so as to keep the upper surface of the inner box bottom plate 53 and the height H1 substantially parallel to the upper surface of the inner box bottom plate 53 and with respect to the side surface (F3) inside the inner box. In the vertical direction (path T).
次に、内箱内部の側面(F3)付近まで到達したら、その進路を180度反転させて、今度は内箱底板53の上面と高さH1+H2を保つように内箱底板53の上面と略並行、かつ内箱内部の支柱部36に向かうように進行する(経路U)。続いて支柱部36付近まで到達したら、その進路を90度変えて内箱底板53の上面と高さH1+H2を保つように内箱底板53の上面と略並行、かつ内箱内部の側面(F4)に対して垂直方向に進行する(経路V)。 Next, when the vicinity of the side surface (F3) inside the inner box is reached, the course is reversed by 180 degrees, and this time, the upper surface of the inner box bottom plate 53 is maintained substantially parallel to the upper surface of the inner box bottom plate 53 so as to maintain the height H1 + H2. And it progresses so that it may go to the support | pillar part 36 inside an inner box (path | route U). Subsequently, when reaching the vicinity of the column portion 36, the course is changed by 90 degrees so that the upper surface of the inner box bottom plate 53 and the upper surface of the inner box bottom plate 53 are kept substantially parallel to the upper surface of the inner box bottom plate 53 and the side surface (F4) inside the inner box. (Path V).
最後に、内箱内部の側面(F4)付近まで到達したら、その進路を180度反転させて、今度は内箱底板53の上面と高さH1を保つように内箱底板53の上面と略並行、かつ内箱内部の支柱部36に向かうように進行し(経路W)、再び孔部601を通って冷媒出口372へ流出する。 Finally, when the vicinity of the side surface (F4) inside the inner box is reached, the course is reversed by 180 degrees, and this time, the upper surface of the inner box bottom plate 53 is kept substantially parallel to the upper surface of the inner box bottom plate 53 so as to keep the height H1. And it progresses toward the support | pillar part 36 inside an inner box (path | route W), and flows out into the refrigerant | coolant exit 372 through the hole 601 again.
なお、図6においては、支柱部36から内箱内部の側面の各々に対して垂直方向になるように仕切り冷媒管37を配管したが、本発明はこれに限定されるものではなく、例えば、側面縁部(側面と側面の接合部分。図6においては側面部の4隅に相当)に向かって、ちょうど対角に延びるように配管することとしてもよい。以下の実施形態のおいても同様である。 In FIG. 6, the partition refrigerant pipe 37 is piped from the support column 36 so as to be perpendicular to each of the side surfaces inside the inner box, but the present invention is not limited to this. It is good also as piping so that it may extend diagonally toward the side edge part (a junction part of a side surface and a side surface. The same applies to the following embodiments.
図7に、図5〜6に示した冷媒管の配置に加え、内箱底板53に沿っても冷媒管を配管する実施態様についてより詳細に説明する。図7においては、冷媒管54及び仕切り冷媒管37に加え、内箱底板53に沿った冷媒流路が内箱底部冷媒管71によって実現されている。まず、冷凍保冷庫10の内箱側面部は、図5に示したように、冷媒入口541から冷媒出口542に至る螺旋状の冷媒流路が確保されているが、仕切り冷媒管37と内箱底板53に沿った冷媒流路である内箱底部冷媒管71とは直列に配管されている。すなわち、冷媒入口371から流入する冷媒は、図6に示した順路を通って仕切り冷媒管37を進行した後、冷媒出口372に連結された冷媒入口711へとさらに進入し、内箱底板53の下面を進んで経路Yを経て再び内箱底板53近傍まで上昇し、こんどは内箱底板53全体を覆う(走査する)ようにメアンダ状に進行する。そうして、冷媒出口712へと流出して次の巡回流路へと向かう。 In FIG. 7, in addition to the arrangement of the refrigerant pipes shown in FIGS. 5 to 6, an embodiment in which the refrigerant pipes are arranged along the inner box bottom plate 53 will be described in more detail. In FIG. 7, in addition to the refrigerant pipe 54 and the partition refrigerant pipe 37, a refrigerant flow path along the inner box bottom plate 53 is realized by the inner box bottom refrigerant pipe 71. First, as shown in FIG. 5, a spiral refrigerant flow path from the refrigerant inlet 541 to the refrigerant outlet 542 is secured on the side surface of the inner box of the refrigerator / freezer 10. An inner box bottom refrigerant pipe 71 which is a refrigerant flow path along the bottom plate 53 is connected in series. That is, the refrigerant flowing in from the refrigerant inlet 371 proceeds through the partition refrigerant pipe 37 through the route shown in FIG. 6 and then further enters the refrigerant inlet 711 connected to the refrigerant outlet 372, Advancing the lower surface, it passes through the path Y and rises again to the vicinity of the inner box bottom plate 53, and this time it advances in a meander shape so as to cover (scan) the entire inner box bottom plate 53. Then, the refrigerant flows out to the refrigerant outlet 712 and proceeds to the next circulation channel.
図8は、図7において説明した仕切り冷媒管37から内箱底部冷媒管71への流路をより明りょうに示す説明図である。仕切り冷媒管37及び内箱底部冷媒管71は、冷媒出口372と冷媒入口711とが連結されることによって、直列に冷媒が進行するように構成されている。 FIG. 8 is an explanatory diagram showing the flow path from the partition refrigerant pipe 37 described in FIG. 7 to the inner box bottom refrigerant pipe 71 more clearly. The partition refrigerant pipe 37 and the inner box bottom refrigerant pipe 71 are configured such that the refrigerant proceeds in series by connecting the refrigerant outlet 372 and the refrigerant inlet 711.
図9は、図5〜7において説明した仕切り冷媒管37の各々に仕切り熱伝導板47を取り付けた様子を説明する説明図である。ちょうど支柱部36が立設されている垂直軸から、冷凍保冷庫10の内箱側面4方向に対してそれぞれ垂直に伸びた仕切り冷媒管37に対し、仕切り熱伝導板47が2枚合わせとなるように各々取り付けられている。仕切り熱伝導板47は、銅、セラミックス、金属アルミニウム等の熱伝導率の高い素材で構成されている。そして、ちょうど内箱を4等分するように配管された仕切り冷媒管37の仕切り部分のそれぞれに対して仕切り熱伝導板47が2枚合わせで取り付けられることにより、冷媒管37を通る冷媒の温度を効率よく各仕切り部分に伝導することができるので、冷凍保冷庫内の温度をより均一にすることができるとともに、仕切り板としての熱伝導板47が網かご35の位置決めをより良好なものとする。 FIG. 9 is an explanatory diagram for explaining a state in which the partition heat conduction plate 47 is attached to each of the partition refrigerant tubes 37 described in FIGS. Two partition heat conduction plates 47 are aligned with respect to the partition refrigerant pipe 37 that extends vertically from the vertical axis on which the support column 36 is erected, respectively, in the direction of the inner box side surface 4 of the freezer 10. Are attached to each other. The partition heat conductive plate 47 is made of a material having high thermal conductivity such as copper, ceramics, or metal aluminum. The temperature of the refrigerant passing through the refrigerant pipe 37 is obtained by attaching two partition heat conduction plates 47 to each of the partition portions of the partition refrigerant pipe 37 piped so as to divide the inner box into four equal parts. Can be efficiently conducted to each partition portion, so that the temperature in the freezer can be made more uniform, and the heat conduction plate 47 as the partition plate can position the mesh cage 35 better. To do.
図10は、支柱部36、仕切り冷媒管37、トップカバー361、内箱側部冷媒管54、内箱底部冷媒管71、及び仕切り熱伝導板47が設置された冷凍保冷庫10の断面図である。仕切り冷媒管37を通る冷媒の経路として、冷媒が冷媒入口371から略鉛直方向に流入し、孔部を通って内箱底板53の上面に出た後、90度進路を変えて内箱底板53の上面と高さH1を保つように内箱底板53の上面と略並行、かつ内箱内部の側面(F1)に対して垂直方向に進行し、次に、内箱内部の側面(F1)付近まで到達したら、その進路を180度反転させて、今度は内箱底板53の上面と高さH1+H2を保つように内箱底板53の上面と略並行、かつ内箱内部の支柱部36に向かうように進行する様子が明確に図示されている。 FIG. 10 is a cross-sectional view of the refrigerator / freezer 10 in which the support column 36, the partition refrigerant pipe 37, the top cover 361, the inner box side refrigerant pipe 54, the inner box bottom refrigerant pipe 71, and the partition heat conduction plate 47 are installed. is there. As a refrigerant path passing through the partition refrigerant pipe 37, the refrigerant flows in the substantially vertical direction from the refrigerant inlet 371, passes through the hole and exits to the upper surface of the inner box bottom plate 53, and then changes the course by 90 degrees to change the inner box bottom plate 53. So as to keep the height H1 and the upper surface of the inner box 53 substantially parallel to the upper surface of the inner box bottom plate 53 and proceed in a direction perpendicular to the side surface (F1) inside the inner box, and then near the side surface (F1) inside the inner box When it reaches, the course is reversed by 180 degrees, and this time, the upper surface of the inner box bottom plate 53 is kept substantially parallel to the upper surface of the inner box bottom plate 53 so as to maintain the height H1 + H2, and is directed to the column portion 36 inside the inner box. The state of progress is clearly illustrated.
図11は、仕切り冷媒管37の構造及び概略寸法を説明する説明図である。寸法の単位はミリメールである。仕切り冷媒管37は、その構造上、3つの部材からなり、第1エバパイプ37aと第2エバパイプ37bとが、L字型継手37cによって連結されている。これは製作上のコスト及び便宜を図って上記2つの部材(37a、37b)に分けたものであるが、製造上のコストを考慮しなければつなぎ目なしの仕切り冷媒管を用いることもできるし、3以上の部材を2以上の継手等で連結する構成としてもよい。 FIG. 11 is an explanatory diagram for explaining the structure and schematic dimensions of the partition refrigerant pipe 37. The unit of dimension is millimail. The partition refrigerant pipe 37 is composed of three members because of its structure, and the first EVA pipe 37a and the second EVA pipe 37b are connected by an L-shaped joint 37c. This is divided into the above two members (37a, 37b) for the purpose of manufacturing cost and convenience, but if the manufacturing cost is not taken into account, a seamless partition refrigerant pipe can be used, It is good also as a structure which connects 3 or more members with 2 or more couplings.
図12は、仕切り熱伝導板47の構造及び概略寸法を説明する説明図である。寸法の単位はミリメールである。仕切り熱伝導板47は、仕切り冷媒管37を挟み込むための溝部471及び472と、2枚合わせの仕切り熱伝導板47をビス留めするためのネジ孔部473とを備えている。なお、図示されるように本実施形態においては、H1=55mm,H2=60mmである。 FIG. 12 is an explanatory diagram for explaining the structure and schematic dimensions of the partition heat conduction plate 47. The unit of dimension is millimail. The partition heat conduction plate 47 includes grooves 471 and 472 for sandwiching the partition refrigerant pipe 37 and screw holes 473 for screwing the two partition heat conduction plates 47 together. As shown in the figure, in the present embodiment, H1 = 55 mm and H2 = 60 mm.
図13に、仕切り熱伝導板47を2枚合わせにして取り付ける様子を図示する。2枚の仕切り熱伝導板47a及び47bは互いに溝部471a及び472aと、溝部471b及び472bとを向かい合わせてそれぞれ仕切り冷媒管37を挟み込むよう取り付けられ、ネジ、ビス等の係止手段によって係止される。このようにして設けられた仕切り熱伝導板47により、仕切り冷媒管37の冷却効果を効率よく冷凍保冷庫10内に伝導するとともに、網かご35の位置決めを容易なものとする効果を奏する。 FIG. 13 illustrates a state in which two partition heat conduction plates 47 are attached together. The two partition heat conduction plates 47a and 47b are attached so that the groove portions 471a and 472a and the groove portions 471b and 472b face each other and sandwich the partition refrigerant pipe 37, and are locked by locking means such as screws and screws. The The partition heat conduction plate 47 thus provided provides an effect of efficiently conducting the cooling effect of the partition refrigerant pipe 37 into the freezer refrigerator 10 and facilitating the positioning of the net cage 35.
図14に、本発明の実施形態における冷凍保冷装置の冷媒回路を示す。この冷媒回路は、圧縮器1401、凝縮器1402、ドライヤー1403、キャピラリ1404、1405、液溜り1406、及びチェックバルブ1407等を備えた、いわゆる冷凍サイクルを構成する冷凍保冷装置である。 FIG. 14 shows a refrigerant circuit of the refrigeration / cooling apparatus in the embodiment of the present invention. This refrigerant circuit is a refrigeration / cooling device that constitutes a so-called refrigeration cycle, which includes a compressor 1401, a condenser 1402, a dryer 1403, capillaries 1404 and 1405, a liquid reservoir 1406, a check valve 1407, and the like.
本発明の実施形態に沿って冷媒の流れを説明すると、まず、図14(A)において、圧縮器1401に吸入された冷媒は、断熱圧縮され高圧ガスとなって凝縮器1402へと流れていく。凝縮器1402に入った高圧ガスは、冷却されて等圧のまま凝縮替熱で飽和液となり、ドライヤー1403、キャピラリ1404及び1405を経て、内箱側部冷媒管54と、仕切り冷媒管37及び内箱底部冷媒管71とに分岐し、冷凍保冷庫10を冷凍保冷する。その後、冷媒は液溜り1406及びチェックバルブ1407を経て、再び圧縮器1401に流入する。 The flow of the refrigerant will be described along the embodiment of the present invention. First, in FIG. 14A, the refrigerant sucked into the compressor 1401 is adiabatically compressed and flows into the condenser 1402 as high-pressure gas. . The high-pressure gas entering the condenser 1402 is cooled and becomes a saturated liquid by condensation heat while maintaining an equal pressure, passes through the dryer 1403, capillaries 1404 and 1405, passes through the inner box side refrigerant pipe 54, the partition refrigerant pipe 37 and the inner refrigerant. Branches to the box bottom refrigerant pipe 71, and the refrigerated cooler 10 is refrigerated. Thereafter, the refrigerant flows into the compressor 1401 again through the liquid reservoir 1406 and the check valve 1407.
図14(B)は、図14(A)の冷媒回路に電磁弁1408、1409を設置した他の実施例である。ちょうど内箱側部冷媒管54と、仕切り冷媒管37及び内箱底部冷媒管71とに分岐する並列流路のそれぞれに電磁弁1408、1409を設置することにより、内箱側部冷媒管54と仕切り冷媒管37及び内箱底部冷媒管71とに流入する冷媒の量を調節することができるようになっている。さらに、電磁弁1409は、仕切り冷媒管37及び内箱底部冷媒管71に流入する冷媒量を調節できるほか、仕切り冷媒管37をバイパスする流路(Z)への冷媒流量を調節することもでき、冷凍保冷庫10の低温管理をより細やかに制御して冷却保冷コストを軽減することができるという特段の効果を奏する。なお、電磁弁1408、1409は、オン/オフ型のものの他に、その弁開度を無段階に調節可能な電子膨張弁(抵抗器)を使用することもできる。また、図14(B)においては電磁弁を2つ設けたが(1408及び1409)、内箱側部冷媒管54と、仕切り冷媒管37及び内箱底部冷媒管71との分岐位置に1つのみ設けることとしてもよい。 FIG. 14B shows another embodiment in which electromagnetic valves 1408 and 1409 are installed in the refrigerant circuit of FIG. By installing electromagnetic valves 1408 and 1409 in the parallel flow paths branched into the inner box side refrigerant pipe 54 and the partition refrigerant pipe 37 and the inner box bottom refrigerant pipe 71, the inner box side refrigerant pipe 54 and The amount of refrigerant flowing into the partition refrigerant pipe 37 and the inner box bottom refrigerant pipe 71 can be adjusted. Further, the electromagnetic valve 1409 can adjust the refrigerant flow rate to the flow path (Z) that bypasses the partition refrigerant pipe 37 as well as the refrigerant quantity flowing into the partition refrigerant pipe 37 and the inner box bottom refrigerant pipe 71. Further, there is a special effect that the low-temperature management of the freezer 10 can be controlled more finely to reduce the cooling / cooling cost. The electromagnetic valves 1408 and 1409 may be electronic expansion valves (resistors) that can adjust the valve opening steplessly in addition to the on / off type. In FIG. 14B, two solenoid valves are provided (1408 and 1409), one at the branching position of the inner box side refrigerant pipe 54, the partition refrigerant pipe 37 and the inner box bottom refrigerant pipe 71. It is good also as providing only.
図15に、多様な仕切り冷媒管37の配管の仕方を例示する。図15(A)〜(F)は、冷凍保冷庫10の内箱を上からみた図であり、図15(A)〜(C)、及び(F)における内箱は略円形形状をしており、図15(D)及び(E)は矩形状である。そうして、支柱部36から流入した冷媒は、仕切り冷媒管37の配管の仕方によって異なった流路を辿る。それぞれの配管によって仕切られた領域が異なるので、以下にそのバリエーションについて説明する。 FIG. 15 illustrates various ways of piping the partition refrigerant pipe 37. 15 (A) to 15 (F) are views of the inner box of the refrigerator / freezer 10 as viewed from above, and the inner boxes in FIGS. 15 (A) to (C) and (F) have a substantially circular shape. 15D and 15E are rectangular. Thus, the refrigerant flowing in from the column portion 36 follows different flow paths depending on the manner of piping of the partition refrigerant pipe 37. Since the area partitioned by each pipe is different, the variations will be described below.
図15(A)は、冷凍保冷庫内箱の平面を3分する。しかも内箱底面は略円形をしているので、網かご35はこの形状にあうよう、それぞれが中心角θ1=120度の扇状のものが3つ用意される。この場合の冷媒の流路は、次の通りとなる。冷媒は支柱部36の冷媒入口371から略鉛直方向に流入し、内箱底板の上面に出た後、90度進路を変えて内箱底板の上面と高さH1を保つように内箱底板53の上面と略並行、かつ内箱内部の側面に対して進行する(経路P)。次に、内箱内部の側面付近まで到達したら、その進路を180度反転させて、今度は内箱底板の上面と高さH1+H2を保つように内箱底板の上面と略並行、かつ内箱内部の支柱部36に向かうように進行する(経路Q)。続いて支柱部36付近まで到達したら、その進路を120度変えて内箱底板の上面と高さH1+H2を保つように内箱底板53の上面と略並行、かつ内箱内部の側面に対して垂直方向に進行する(経路R)。そして、内箱内部の側面付近まで到達したら、その進路を180度反転させて、今度は内箱底板の上面と高さH1を保つように内箱底板53の上面と略並行、かつ内箱内部の支柱部36に向かうように進行する(経路S)。支柱部36付近まで到達したら、その進路を120度変えて内箱底板の上面と高さH1を保つように内箱底板の上面と略並行、かつ内箱内部の側面に対して垂直方向に進行する(経路T)。最後に、内箱内部の側面付近まで到達したら、その進路を180度反転させて、今度は内箱底板の上面と高さH1+H2を保つように内箱底板の上面と略並行、かつ内箱内部の支柱部36に向かうように進行し(経路U)、支柱部36から冷媒出口372へ流出する。 FIG. 15 (A) divides the plane of the inner box of the freezer into 3 minutes. In addition, since the bottom surface of the inner box is substantially circular, three fan-shaped cages each having a central angle θ 1 = 120 degrees are prepared so that the mesh cage 35 matches this shape. In this case, the refrigerant flow path is as follows. The refrigerant flows in the substantially vertical direction from the refrigerant inlet 371 of the support column 36 and exits to the upper surface of the inner box bottom plate. Is substantially parallel to the upper surface of the inner box and proceeds to the side surface inside the inner box (path P). Next, when the vicinity of the side surface inside the inner box is reached, the course is reversed by 180 degrees, and this time, the upper surface of the inner box bottom plate is kept substantially parallel to the upper surface of the inner box bottom plate so as to maintain the height H1 + H2. It progresses so that it may go to the support | pillar part 36 (path | route Q). Subsequently, when reaching the vicinity of the column portion 36, the course is changed by 120 degrees so as to maintain the height H1 + H2 with the upper surface of the inner box bottom plate and substantially parallel to the upper surface of the inner box bottom plate 53 and perpendicular to the side surface inside the inner box. Travel in the direction (path R). Then, when it reaches the vicinity of the side surface inside the inner box, the course is reversed by 180 degrees, and this time, the upper surface of the inner box bottom plate 53 is kept substantially parallel to the upper surface of the inner box bottom plate 53 so as to maintain the height H1. It advances so that it may go to the support | pillar part 36 (route S). When it reaches the vicinity of the column portion 36, its course is changed by 120 degrees, and it is substantially parallel to the upper surface of the inner box bottom plate and perpendicular to the side surface inside the inner box so as to keep the height H1 of the upper surface of the inner box bottom plate. (Route T). Finally, when it reaches the vicinity of the side surface inside the inner box, the course is reversed by 180 degrees, and this time, the upper surface of the inner box bottom plate and the height of the inner box bottom plate are kept substantially parallel to the upper surface of the inner box bottom plate. It progresses toward the column part 36 (path U) and flows out from the column part 36 to the refrigerant outlet 372.
図15(B)は、冷凍保冷庫内箱の平面を6分する。しかも内箱底面は略円形をしているので、網かご35はこの形状にあうよう、それぞれが中心角θ2=60度の扇状のものが6つ用意される。この場合の冷媒の流路については、各々支柱部36付近まで到達したときの進路切り返し角度が60度となるように、順次6つの仕切り領域(中心角θ2=60度の扇形状)を分割するよう巡回するものである。 FIG. 15 (B) divides the plane of the inner box of the refrigerator compartment into 6 minutes. Moreover, since the bottom of the inner box has a substantially circular shape, six fan-shaped cages each having a central angle θ 2 = 60 degrees are prepared so that the mesh cage 35 can meet this shape. For the refrigerant flow path in this case, the six partition areas (sector shape with a central angle θ 2 = 60 degrees) are sequentially divided so that the path turning angle when reaching the vicinity of the support column 36 is 60 degrees. Circulate to do.
図15(C)は、冷凍保冷庫内箱の平面を3分するが、均等な分割ではない。この場合の網かご35はこれらの形状にあうよう、中心角θ3=60度の扇状のものと、中心角θ4=180度の扇状のもの(半径形)と、中心角θ5=180度の扇状のものとが用意される。冷媒の流路については、経路Sにおいて、支柱部36付近まで到達してもそのまま通過して反対の内箱内部側面へ進行して180度折り返す(経路Tとなる)ことが特異なだけで、要所の折り返しの手順は、図6、図15(A)及び(B)等と同様である。 FIG. 15C divides the plane of the inner box of the freezer into three parts, but it is not an equal division. In this case, the mesh basket 35 has a fan shape with a central angle θ 3 = 60 degrees, a fan shape with a central angle θ 4 = 180 degrees (radial shape), and a central angle θ 5 = 180 so as to meet these shapes. A fan-shaped one is prepared. As for the flow path of the refrigerant, it is only peculiar that in the path S, even if it reaches the vicinity of the column portion 36, it passes through as it is, proceeds to the inner side of the opposite inner box and turns back 180 degrees (becomes path T). The procedure for turning back the key points is the same as in FIGS. 6, 15A and 15B, and the like.
この他、図15(C)に示した網かご領域の不均等な区分けは、矩形状の内箱平面をもつ冷凍保冷庫に対しても適用可能であるし(図15(D))、あるいは単に網かご領域を2分するだけの構成(図15(E)及び(F))であっても本発明の技術的思想が適用可能であることは言うまでもない。 In addition, the unequal division of the net cage area shown in FIG. 15C can be applied to a refrigerator / freezer having a rectangular inner box plane (FIG. 15D), or Needless to say, the technical idea of the present invention can be applied to a configuration in which the net cage area is simply divided into two (FIGS. 15E and 15F).
なお、ここまでの説明において、H1は限りなくゼロに近づけることができる。この場合、内箱底面を這う冷媒管は、当該底面すれすれ(場合によっては底面と接触する場合もある)に配管される。さらに、本実施形態では、H1及びH2の大小関係に関し、説明の便宜上H1>H2としたが、H1<H2としてもよい。 In the description so far, H1 can be as close to zero as possible. In this case, the refrigerant pipe over the bottom surface of the inner box is piped to the bottom surface (in some cases, it may come into contact with the bottom surface). Furthermore, in this embodiment, regarding the magnitude relationship between H1 and H2, for convenience of explanation, H1> H2, but it may be H1 <H2.
以上述べた実施形態において、冷媒の流路を決定付けるための冷媒管の加工は、銅管やパイプ曲げ等の広く知られた曲げ加工技術によって加工されるものであり、冷媒の流路がそのまま冷媒管の構造と一致するものである。例えば、「冷媒が進路を90度変える」ことは、冷媒が90度曲げ加工された冷媒管を通ることを意味するものであり、その具体的形状については、特に図5〜11に示した通りである。従って、特に図5〜11に明示された冷媒管の要所要所を加工するための加工技術それ自体は、当業者にとって全て自明なものである。 In the embodiment described above, the processing of the refrigerant pipe for determining the refrigerant flow path is performed by a well-known bending technique such as a copper pipe or pipe bending, and the refrigerant flow path remains as it is. This is consistent with the structure of the refrigerant pipe. For example, “the refrigerant changes its path by 90 degrees” means that the refrigerant passes through the refrigerant pipe bent by 90 degrees, and its specific shape is particularly as shown in FIGS. It is. Accordingly, the processing technique itself for processing the essential parts of the refrigerant pipe particularly shown in FIGS. 5 to 11 is obvious to those skilled in the art.
また、以上述べた多様な実施形態から明らかなように、本発明にかかる仕切り冷媒管(仕切りエバパイプ)によれば、冷凍保冷庫内箱の仕切り領域を容易に変更することができる。例えば、図15(A)に示した仕切り領域から図15(B)に示した仕切り領域に変更する場合には、120度ずつ3つの仕切り領域を設ける仕切り冷媒管を60度ずつ6つの仕切り領域を設ける仕切り冷媒管に変更するとともに、中心角120度の3つの扇状網かごを中心角60度の6つの扇状網かごに変更するだけで足る。もし、仕切りが一体成型された内箱を用いた場合には、かかる設計変更に際しては金型から作り直さなければならないので、膨大な費用を要することになる。本発明は、このような設計変更に対しても柔軟に対応できるという効果をも奏する。 Moreover, as is clear from the various embodiments described above, according to the partition refrigerant pipe (partition EVA pipe) according to the present invention, the partition area of the inner box of the freezer can be easily changed. For example, in the case of changing from the partition region shown in FIG. 15A to the partition region shown in FIG. 15B, the partition refrigerant pipe provided with three partition regions every 120 degrees is divided into six partition regions every 60 degrees. It is only necessary to change the three refrigerant net cages having a central angle of 120 degrees to six fan net cages having a central angle of 60 degrees. If an inner box in which partitions are integrally formed is used, such a design change must be made again from a mold, which entails enormous costs. The present invention also has an effect that it can flexibly cope with such a design change.
1 景品遊戯装置
2 基台部
3 支柱部
4 透明板
5 操作台
6 操作レバー
7 操作ボタン
8 景品取出口
9 天井部
10 冷凍保冷庫(景品格納部)
206 開閉式景品スロープ
30 冷凍保冷装置
31 基部
35 網かご
36 支柱部
37 仕切り冷媒管(仕切りエバパイプ)
38 脚部
47 仕切り熱伝導板
51、52 内箱側板
53 内箱底板
54 内箱側部冷媒管
71 内箱底部冷媒管
1408、1409 電磁弁(ないし電子膨張弁)
DESCRIPTION OF SYMBOLS 1 Premium amusement apparatus 2 Base part 3 Support | pillar part 4 Transparent board 5 Operation board 6 Operation lever 7 Operation button 8 Premium outlet 9 Ceiling part 10 Refrigerated cold storage (premium storage part)
206 Opening and Closing Type Slope 30 Refrigerated Cold Incubator 31 Base 35 Net Cage 36 Supporting Column 37 Partition Refrigerant Pipe (Partition Eva Pipe)
38 Leg 47 Partition heat conduction plate 51, 52 Inner box side plate 53 Inner box bottom plate 54 Inner box side refrigerant pipe 71 Inner box bottom refrigerant pipe 1408, 1409 Electromagnetic valve (or electronic expansion valve)
Claims (16)
前記冷媒管は、前記内箱を2以上の領域に仕切るように配管されたことを特徴とする冷凍保冷装置。 A refrigeration / cooling apparatus configured by piping a refrigerant pipe to an inner box composed of a side surface and a bottom,
The refrigeration / cooling apparatus, wherein the refrigerant pipe is piped so as to partition the inner box into two or more regions.
前記冷媒管は、前記底部の中央部と前記側面部との間を2以上往復するように曲げ加工されることによって前記内箱内に2以上の仕切り領域を設けることを特徴とする冷凍保冷装置。 A refrigeration / cooling apparatus configured by piping a refrigerant pipe to an inner box composed of a side surface and a bottom,
The refrigerant pipe is bent so as to reciprocate two or more times between a central portion of the bottom portion and the side surface portion, thereby providing two or more partition regions in the inner box. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008156796A JP2009300035A (en) | 2008-06-16 | 2008-06-16 | Refrigeration cold insulation device for game machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008156796A JP2009300035A (en) | 2008-06-16 | 2008-06-16 | Refrigeration cold insulation device for game machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009300035A true JP2009300035A (en) | 2009-12-24 |
Family
ID=41547119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008156796A Pending JP2009300035A (en) | 2008-06-16 | 2008-06-16 | Refrigeration cold insulation device for game machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009300035A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103471292A (en) * | 2013-09-27 | 2013-12-25 | 南京金典制冷实业有限公司 | Shell-and-tube heat exchanger with variable flow path at shell side and operation method of shell-and-tube heat exchanger |
JP2014064863A (en) * | 2012-09-25 | 2014-04-17 | Kokado Co Ltd | Crane game machine capable of using cake and confectionery as prize |
JP2020018701A (en) * | 2018-08-02 | 2020-02-06 | 株式会社コナミアミューズメント | Game machine |
CN111780460A (en) * | 2020-06-11 | 2020-10-16 | 珠海格力电器股份有限公司 | Combined heat exchanger and refrigerator |
JPWO2022172773A1 (en) * | 2021-02-09 | 2022-08-18 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6484074A (en) * | 1987-09-25 | 1989-03-29 | Matsushita Refrigeration | Refrigerator |
JPH06253960A (en) * | 1993-03-03 | 1994-09-13 | Sanyo Electric Co Ltd | Cryogenic showcase |
JPH0926261A (en) * | 1995-07-11 | 1997-01-28 | Sharp Corp | Deep freezer |
JPH11101563A (en) * | 1997-09-29 | 1999-04-13 | Sanyo Electric Co Ltd | Ice water cooler |
JP2001190831A (en) * | 2000-01-11 | 2001-07-17 | Snk Corp | Prize acquiring game machine |
JP2002301261A (en) * | 2001-04-06 | 2002-10-15 | Konami Co Ltd | Gift acquiring game machine |
-
2008
- 2008-06-16 JP JP2008156796A patent/JP2009300035A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6484074A (en) * | 1987-09-25 | 1989-03-29 | Matsushita Refrigeration | Refrigerator |
JPH06253960A (en) * | 1993-03-03 | 1994-09-13 | Sanyo Electric Co Ltd | Cryogenic showcase |
JPH0926261A (en) * | 1995-07-11 | 1997-01-28 | Sharp Corp | Deep freezer |
JPH11101563A (en) * | 1997-09-29 | 1999-04-13 | Sanyo Electric Co Ltd | Ice water cooler |
JP2001190831A (en) * | 2000-01-11 | 2001-07-17 | Snk Corp | Prize acquiring game machine |
JP2002301261A (en) * | 2001-04-06 | 2002-10-15 | Konami Co Ltd | Gift acquiring game machine |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014064863A (en) * | 2012-09-25 | 2014-04-17 | Kokado Co Ltd | Crane game machine capable of using cake and confectionery as prize |
CN103471292A (en) * | 2013-09-27 | 2013-12-25 | 南京金典制冷实业有限公司 | Shell-and-tube heat exchanger with variable flow path at shell side and operation method of shell-and-tube heat exchanger |
JP2020018701A (en) * | 2018-08-02 | 2020-02-06 | 株式会社コナミアミューズメント | Game machine |
CN111780460A (en) * | 2020-06-11 | 2020-10-16 | 珠海格力电器股份有限公司 | Combined heat exchanger and refrigerator |
JPWO2022172773A1 (en) * | 2021-02-09 | 2022-08-18 | ||
WO2022172773A1 (en) * | 2021-02-09 | 2022-08-18 | 工機ホールディングス株式会社 | Electric device |
JP7405284B2 (en) | 2021-02-09 | 2023-12-26 | 工機ホールディングス株式会社 | electrical equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6254404B2 (en) | Shielding device and refrigerator having the same | |
US6901767B2 (en) | Use of heat in cold storage appliances | |
US9353983B2 (en) | Refrigerator appliance with variable temperature compartment | |
JP2009300035A (en) | Refrigeration cold insulation device for game machine | |
US20090165491A1 (en) | Icemaker for a refrigerator | |
CN208170823U (en) | Refrigerator | |
JP2006242463A (en) | Refrigerator | |
EP3321609A1 (en) | Branching air supply device and refrigerator with branching air supply device | |
US10168089B2 (en) | Refrigerator | |
JP2009133504A (en) | Refrigerator freezer | |
CN106257164A (en) | The ice machine of refrigerator and the method for manufacture ice machine | |
JP5450462B2 (en) | refrigerator | |
JP2003269830A (en) | Refrigerator | |
JP2011099645A (en) | Refrigerator | |
US2047249A (en) | Apparatus for cooling food storage spaces | |
KR101323251B1 (en) | Vegitable and fruit cooling system | |
JP2007271241A (en) | Storage | |
JP3807518B2 (en) | Refrigerated warehouse | |
JP2008202882A (en) | Refrigerator | |
CN210220351U (en) | Single system refrigerator | |
JP2007113800A (en) | Refrigerator | |
EP2397797A1 (en) | Refrigerator | |
CN219713730U (en) | Refrigerating apparatus | |
CN219390182U (en) | Refrigerating apparatus | |
JPH02300101A (en) | Ice inoculation and ice inoculator in freeze storage apparatus for biological sample |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Effective date: 20110415 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
A621 | Written request for application examination |
Effective date: 20110613 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Effective date: 20121126 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130401 |