JP2009299985A - Heat pump type heating device - Google Patents

Heat pump type heating device Download PDF

Info

Publication number
JP2009299985A
JP2009299985A JP2008154443A JP2008154443A JP2009299985A JP 2009299985 A JP2009299985 A JP 2009299985A JP 2008154443 A JP2008154443 A JP 2008154443A JP 2008154443 A JP2008154443 A JP 2008154443A JP 2009299985 A JP2009299985 A JP 2009299985A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
heat pump
compressor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008154443A
Other languages
Japanese (ja)
Inventor
Koji Ota
孝二 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008154443A priority Critical patent/JP2009299985A/en
Publication of JP2009299985A publication Critical patent/JP2009299985A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type heating device capable of accurately obtaining a refrigerant temperature in refrigerant piping without forming a separating part between the refrigerant piping and water piping in a water heat exchanger. <P>SOLUTION: In a heat exchanger of this heat pump type heating device, in which the refrigerant piping in which a refrigerant circulated in a heat pump cycle is circulated, and a heated fluid piping in which heated fluid heated by heat exchange with the refrigerant is circulated are spirally stacked while being thermally joined, a temperature of the refrigerant detected by a refrigerant temperature detecting means disposed while being externally kept into contact with the refrigerant piping, is corrected on the basis of, at least, a rotational frequency of a compressor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,ヒートポンプサイクルに循環される冷媒によって水やブライン(不凍液)などの流体を加熱する熱交換器を備えたヒートポンプ式給湯機などのヒートポンプ式加熱装置に関し,特に,前記熱交換器において冷媒が循環される冷媒配管の冷媒の温度を検出するための技術に関するものである。   The present invention relates to a heat pump type heating device such as a heat pump type hot water heater provided with a heat exchanger that heats a fluid such as water or brine (antifreeze) by a refrigerant circulated in a heat pump cycle, and in particular, the refrigerant in the heat exchanger. The present invention relates to a technique for detecting the temperature of the refrigerant in the refrigerant pipe through which the refrigerant is circulated.

従来から,圧縮機や膨張弁,水熱交換器,室外空気熱交換器などが接続されたヒートポンプサイクルを備え,該ヒートポンプサイクルに循環される冷媒との熱交換によって水を加熱して給湯するヒートポンプ式給湯機が知られている(例えば,特許文献1参照)。前記水熱交換器では,ヒートポンプサイクルに循環される冷媒が流通する冷媒配管と,その冷媒との熱交換によって加熱される水が流通する水配管とが渦巻状に積層されている。
ここで,ヒートポンプ式給湯機では,ヒートポンプサイクルを形成する圧縮機や膨張弁,室外空気熱交換器のファンなどを制御するための指標として,前記水熱交換器に流通する冷媒の温度(凝縮温度)を検出する必要がある。
具体的に,特許文献1に開示されたヒートポンプ式給湯機では,冷媒配管及び水配管を渦巻き状に積層した同形状の二つのコイル体を有する水熱交換器が開示されている。この水熱交換器では,その二つのコイル体の間を連結する冷媒配管及び水配管が離間されており,その離間された冷媒配管に温度センサを設置することで冷媒の凝縮温度を検出している。このような構成では,冷媒配管内の冷媒の凝縮温度を水配管内の水による影響を受けずに検出することができる。
特許第3949589号公報
Conventionally, a heat pump that has a heat pump cycle connected to a compressor, an expansion valve, a water heat exchanger, an outdoor air heat exchanger, etc., and heats the water by heat exchange with the refrigerant circulated in the heat pump cycle. A hot water heater is known (see, for example, Patent Document 1). In the water heat exchanger, a refrigerant pipe through which the refrigerant circulated through the heat pump cycle and a water pipe through which water heated by heat exchange with the refrigerant circulates are spirally stacked.
Here, in the heat pump type water heater, as an index for controlling a compressor, an expansion valve, a fan of an outdoor air heat exchanger, etc. that form a heat pump cycle, the temperature of the refrigerant flowing through the water heat exchanger (condensation temperature) ) Must be detected.
Specifically, in the heat pump type water heater disclosed in Patent Document 1, a water heat exchanger having two coil bodies having the same shape in which a refrigerant pipe and a water pipe are laminated in a spiral shape is disclosed. In this water heat exchanger, the refrigerant pipe and the water pipe connecting the two coil bodies are separated, and a temperature sensor is installed in the separated refrigerant pipe to detect the refrigerant condensation temperature. Yes. In such a configuration, the condensation temperature of the refrigerant in the refrigerant pipe can be detected without being affected by the water in the water pipe.
Japanese Patent No. 3949589

しかしながら,特許文献1のように二つのコイル体を形成してそれらを連結するような構成では,その二つのコイル体を冷媒配管及び水配管で連結することが生産工程で手間となり,コストアップにつながるという問題がある。また,温度センサの設置位置では冷媒配管と水配管を離間させる必要があるため,その部分で冷媒と水との熱交換を行うことができない。
そのため,本来は,冷媒配管及び水配管の離間部を設けることなく冷媒の凝縮温度を検出し得る構成が望ましい。しかし,冷媒配管及び水配管が接触する箇所で該冷媒配管に温度センサを設けると,その温度センサによる検出温度が水配管内の水からの熱影響を受け,該冷媒配管内の冷媒の温度を正確に検出することができないという問題がある。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,水熱交換器において冷媒配管及び水配管の離間部分を設けることなく,該冷媒配管内の冷媒温度を正確に取得することのできるヒートポンプ式加熱装置を提供することにある。
However, in a configuration in which two coil bodies are formed and connected as in Patent Document 1, it is troublesome in the production process to connect the two coil bodies with a refrigerant pipe and a water pipe, which increases costs. There is a problem of being connected. Further, since it is necessary to separate the refrigerant pipe and the water pipe at the position where the temperature sensor is installed, heat exchange between the refrigerant and water cannot be performed at that portion.
For this reason, it is originally desirable to have a configuration that can detect the condensation temperature of the refrigerant without providing a separation portion between the refrigerant pipe and the water pipe. However, if a temperature sensor is provided on the refrigerant pipe at a location where the refrigerant pipe and the water pipe are in contact, the temperature detected by the temperature sensor is affected by the heat from the water in the water pipe, and the temperature of the refrigerant in the refrigerant pipe is reduced. There is a problem that it cannot be detected accurately.
Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to accurately set the refrigerant temperature in the refrigerant pipe without providing the refrigerant pipe and the separated portion of the water pipe in the water heat exchanger. An object of the present invention is to provide a heat pump type heating device that can be obtained.

上記目的を達成するために本発明は,圧縮機,室外空気熱交換器及び膨張機構を有するヒートポンプサイクルに接続され,該ヒートポンプサイクルに循環される冷媒が流通する冷媒配管と,前記冷媒との熱交換によって加熱される被加熱流体が流通する一又は複数の被加熱流体配管とが熱的に結合するように渦巻状に積層された熱交換器を備えたヒートポンプ式加熱装置に適用されるものであって,前記熱交換器の冷媒配管に外接して設けられ,該冷媒配管内の冷媒の温度を検出する冷媒温度検出手段と,前記冷媒温度検出手段によって検出された冷媒の温度を少なくとも前記圧縮機の回転数に基づいて補正する冷媒温度補正手段とを備えてなることを特徴とするヒートポンプ式加熱装置として構成される。なお,冷媒の凝縮温度をできるだけ正確に検出するため,前記冷媒温度検出手段は前記熱交換器における冷媒配管の配管長の略中央部に設けておくことが望ましい。
このように構成されたヒートポンプ式加熱装置では,前記冷媒温度検出手段によって検出された冷媒温度を前記圧縮機の回転数に基づいて補正することで温度誤差を除外することができ,高い精度で前記冷媒配管内の冷媒温度を取得することが可能である。従って,前記ヒートポンプ式加熱装置では,前記冷媒配管及び前記被加熱流体配管の離間部分を設けることなく,前記熱交換器の構造の簡素化を図ることができる。ここに,本発明は,ヒートポンプ式加熱装置の熱交換器において,前記冷媒温度検出手段による検出温度が前記被加熱流体配管から受ける熱影響の程度が,前記圧縮機の回転数に大きく依存することを見出したことにより実現されたものである。
In order to achieve the above object, the present invention is connected to a heat pump cycle having a compressor, an outdoor air heat exchanger and an expansion mechanism, and a refrigerant pipe through which a refrigerant circulated in the heat pump cycle flows, and heat of the refrigerant. It is applied to a heat pump type heating device provided with a heat exchanger stacked in a spiral shape so as to be thermally coupled to one or a plurality of heated fluid pipes through which the heated fluid heated by exchange flows. A refrigerant temperature detecting means for circumscribing the refrigerant pipe of the heat exchanger and detecting the temperature of the refrigerant in the refrigerant pipe; and at least the temperature of the refrigerant detected by the refrigerant temperature detecting means. It is comprised as a heat pump type heating apparatus characterized by including the refrigerant | coolant temperature correction | amendment means correct | amended based on the rotation speed of a machine. In order to detect the condensing temperature of the refrigerant as accurately as possible, it is desirable that the refrigerant temperature detecting means is provided at substantially the center of the pipe length of the refrigerant pipe in the heat exchanger.
In the heat pump type heating apparatus configured as described above, the temperature error can be excluded by correcting the refrigerant temperature detected by the refrigerant temperature detecting means based on the rotation speed of the compressor, and the temperature error can be eliminated with high accuracy. It is possible to acquire the refrigerant temperature in the refrigerant pipe. Therefore, in the heat pump type heating device, the structure of the heat exchanger can be simplified without providing a separation portion between the refrigerant pipe and the heated fluid pipe. Here, in the present invention, in the heat exchanger of the heat pump type heating device, the degree of the thermal influence that the temperature detected by the refrigerant temperature detecting means receives from the heated fluid piping greatly depends on the rotational speed of the compressor. This is realized by finding

ところで,前記ヒートポンプ式加熱装置では,前記圧縮機の回転数だけではなく,前記熱交換器における被加熱流体配管への流体の流入温度や,前記熱交換器における被加熱流体配管からの流体の流出温度などによっても,前記冷媒温度検出手段によって検出される冷媒の温度誤差が変動する。
従って,前記冷媒温度補正手段が,前記圧縮機の回転数と前記流入温度や前記流出温度とに基づいて,前記冷媒温度検出手段によって検出された冷媒の温度を補正するように構成することがより望ましい。これにより,前記流入温度や前記流出温度の変化による温度誤差の変動に対応することができ,前記冷媒配管内の冷媒温度をより高い精度で検出することができる。
By the way, in the heat pump type heating device, not only the rotation speed of the compressor but also the inflow temperature of the fluid into the heated fluid piping in the heat exchanger and the outflow of the fluid from the heated fluid piping in the heat exchanger. The temperature error of the refrigerant detected by the refrigerant temperature detecting means also varies depending on the temperature.
Therefore, the refrigerant temperature correcting means may be configured to correct the refrigerant temperature detected by the refrigerant temperature detecting means based on the rotation speed of the compressor and the inflow temperature or the outflow temperature. desirable. As a result, it is possible to cope with variations in temperature error due to changes in the inflow temperature and the outflow temperature, and the refrigerant temperature in the refrigerant pipe can be detected with higher accuracy.

前記圧縮機の回転数に基づく検出温度の補正手法としては,例えば前記圧縮機の回転数と,前記冷媒温度検出手段による検出温度及び前記熱交換器の冷媒配管内の冷媒温度の温度誤差との対応関係を示す誤差対応情報が記憶された誤差対応情報記憶手段を設けておき,前記冷媒温度補正手段が,前記冷媒温度検出手段によって検出された冷媒の温度を,前記圧縮機の回転数と前記誤差対応情報とに基づいて補正するように構成することが考えられる。これにより,前記圧縮機の回転数に基づく検出温度の補正が可能となる。
また,前記冷媒温度補正手段が,前記流入温度や前記流出温度をも考慮して補正を行う場合の補正手法としては,前記誤差対応情報記憶手段に記憶された前記誤差対応情報を,前記流入温度や前記流出温度の値に応じて変更し,その変更後の誤差対応情報と前記圧縮機の回転数とに基づいて,前記冷媒温度検出手段によって検出された冷媒の温度を補正することが考えられる。これにより,前記圧縮機の回転数と前記流入温度や前記流出温度とに基づく検出温度の補正が可能となる。
ところで,前記冷媒温度補正手段によって補正された後の冷媒温度は,該冷媒温度に基づいて前記圧縮機の駆動制御を行う圧縮機制御手段に用いられる。これにより,前記圧縮機制御手段では,前記冷媒温度補正手段によって補正された後の精度高い冷媒の凝縮温度に基づいて前記圧縮機の高圧制御などを適切に行うことができる。
As a method for correcting the detected temperature based on the rotational speed of the compressor, for example, the rotational speed of the compressor, the temperature detected by the refrigerant temperature detecting means, and the temperature error of the refrigerant temperature in the refrigerant pipe of the heat exchanger are calculated. Error correspondence information storage means for storing error correspondence information indicating a correspondence relationship is provided, and the refrigerant temperature correction means determines the refrigerant temperature detected by the refrigerant temperature detection means as the rotation speed of the compressor and the It is conceivable to make a correction based on the error correspondence information. This makes it possible to correct the detected temperature based on the rotation speed of the compressor.
Further, as a correction method when the refrigerant temperature correction means performs correction in consideration of the inflow temperature and the outflow temperature, the error correspondence information stored in the error correspondence information storage means is used as the inflow temperature. It is conceivable that the refrigerant temperature is changed according to the value of the outflow temperature and the refrigerant temperature detected by the refrigerant temperature detecting means is corrected based on the error correspondence information after the change and the rotation speed of the compressor. . Thereby, it is possible to correct the detected temperature based on the rotation speed of the compressor and the inflow temperature or the outflow temperature.
By the way, the refrigerant temperature corrected by the refrigerant temperature correction means is used for a compressor control means for performing drive control of the compressor based on the refrigerant temperature. Thus, the compressor control means can appropriately perform high-pressure control of the compressor based on the refrigerant condensation temperature with high accuracy after being corrected by the refrigerant temperature correction means.

本発明によれば,前記冷媒温度検出手段によって検出された冷媒温度を前記圧縮機の回転数に基づいて補正することで温度誤差を除外することができ,高い精度で前記冷媒配管内の冷媒温度を取得することが可能である。従って,前記ヒートポンプ式加熱装置では,前記冷媒配管及び前記被加熱流体配管の離間部分を設けることなく,前記熱交換器の構造の簡素化を図ることができる。   According to the present invention, the temperature error can be excluded by correcting the refrigerant temperature detected by the refrigerant temperature detection means based on the rotation speed of the compressor, and the refrigerant temperature in the refrigerant pipe can be accurately detected. Is possible to get. Therefore, in the heat pump type heating device, the structure of the heat exchanger can be simplified without providing a separation portion between the refrigerant pipe and the heated fluid pipe.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成を示すブロック図,図2はヒートポンプ式給湯機Xに設けられた水熱交換器14の外観模式図,図3は水熱交換器14に設けられた温度センサ31を説明するための図,図4は誤差対応情報の一例を説明するための図である。
まず,図1を用いて,本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成について説明する。なお,本実施の形態では,本発明に係るヒートポンプ式加熱装置の一例として,温水を給湯するヒートポンプ式給湯機Xを例に挙げて説明するが,本発明は,例えば温水やブライン(不凍液)を用いて床暖房を行うヒートポンプ式床暖房装置,浴槽の水を沸き上げる追い焚き装置,これらの機能を併せ持つシステムなどに適用することが可能である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a block diagram showing a schematic configuration of a heat pump type hot water heater X according to an embodiment of the present invention, and FIG. 2 is a schematic external view of a water heat exchanger 14 provided in the heat pump type hot water heater X. 3 is a diagram for explaining a temperature sensor 31 provided in the water heat exchanger 14, and FIG. 4 is a diagram for explaining an example of error correspondence information.
First, the schematic configuration of the heat pump type hot water heater X according to the embodiment of the present invention will be described with reference to FIG. In the present embodiment, as an example of the heat pump type heating device according to the present invention, a heat pump type hot water heater X that supplies hot water will be described as an example. However, the present invention uses, for example, hot water or brine (antifreeze). It can be applied to a heat pump floor heating device that uses floor heating, a reheating device that boils water in a bathtub, and a system that has these functions.

図1に示すように,ヒートポンプ式給湯Xは,冷媒が循環されるヒートポンプサイクル(冷凍サイクル)1と,温水を貯留又は給湯するための給湯回路2と,各々の配置位置において冷媒又は水の温度を検出する温度センサ31〜33と,当該ヒートポンプ式給湯機Xを統括的に制御する制御部4とを備えて構成されている。ここに,ヒートポンプサイクル1に循環される冷媒には,例えばCO2冷媒などの炭酸ガス冷媒(自然冷媒の一種)や,R410AなどのHFC冷媒が用いられる。
ヒートポンプサイクル1は,冷媒を圧縮する圧縮機11と,圧縮機11から流出した冷媒と給湯回路2の水(被加熱流体の一例)との間で熱交換を行う水熱交換器14(熱交換器の一例)と,水熱交換器14から流出した冷媒を状態変化(膨張)させる膨張弁13と,冷媒と室外空気との間で熱交換を行う室外空気熱交換器12とを備えている。なお,膨張弁13は,冷媒を状態変化させる膨張機構の一例に過ぎず,キャピラリーチューブなどの他の膨張機構を採用してもよい。
温度センサ31(冷媒温度検出手段の一例)は,このヒートポンプサイクル1の冷媒の凝縮温度を検出するために用いられるものであって,水熱交換器14に配置されている。温度センサ31による検出温度は制御部4に入力される。なお,温度センサ31による温度検出については後段で詳述する。
As shown in FIG. 1, the heat pump hot water supply X includes a heat pump cycle (refrigeration cycle) 1 in which refrigerant is circulated, a hot water supply circuit 2 for storing or supplying hot water, and the temperature of the refrigerant or water at each arrangement position. Temperature sensors 31 to 33, and a control unit 4 that comprehensively controls the heat pump type water heater X. Here, as the refrigerant circulated in the heat pump cycle 1, for example, a carbon dioxide refrigerant such as CO 2 refrigerant (a kind of natural refrigerant) or an HFC refrigerant such as R410A is used.
The heat pump cycle 1 includes a compressor 11 that compresses refrigerant, a water heat exchanger 14 that performs heat exchange between the refrigerant flowing out of the compressor 11 and water in the hot water supply circuit 2 (an example of a fluid to be heated) (heat exchange). One example), an expansion valve 13 that changes (expands) the refrigerant flowing out of the water heat exchanger 14, and an outdoor air heat exchanger 12 that exchanges heat between the refrigerant and outdoor air. . The expansion valve 13 is merely an example of an expansion mechanism that changes the state of the refrigerant, and another expansion mechanism such as a capillary tube may be employed.
The temperature sensor 31 (an example of the refrigerant temperature detection means) is used to detect the condensation temperature of the refrigerant in the heat pump cycle 1 and is disposed in the water heat exchanger 14. The temperature detected by the temperature sensor 31 is input to the control unit 4. The temperature detection by the temperature sensor 31 will be described in detail later.

一方,給湯回路2は,水熱交換器14において冷媒との熱交換によって加熱された後の温水(例えば45〜90℃程度)を貯留するための貯湯タンク21と,貯湯タンク21の下層から水熱交換器14を経て貯湯タンク21の上層に水を循環させるための循環ポンプ22と,給水口23からの水と貯湯タンク21の上層から供給される湯とを混合して給湯口24から給湯する温水の温度を調節するための電磁三方弁25とを備えている。
温度センサ32は,水熱交換器14からの温水の流出温度(以下「出湯温度」という),温度センサ33は,該水熱交換器14への水の流入温度(以下「入水温度」という),温度センサ34は,外気温度をそれぞれ検出するものであって,その検出結果を制御部4に入力する。温度センサ32や温度センサ33,温度センサ34は熱電対やサーミスタなどであり,これらについては一般的なヒートポンプ式給湯機と同様である。また,温度センサ34は,室外空気熱交換器12の空気吸い込み側に配置されている。
On the other hand, the hot water supply circuit 2 includes a hot water storage tank 21 for storing hot water (for example, about 45 to 90 ° C.) heated by heat exchange with the refrigerant in the water heat exchanger 14, and water from a lower layer of the hot water storage tank 21. A circulation pump 22 for circulating water to the upper layer of the hot water storage tank 21 through the heat exchanger 14, water from the water supply port 23 and hot water supplied from the upper layer of the hot water storage tank 21 are mixed to supply hot water from the hot water supply port 24. And an electromagnetic three-way valve 25 for adjusting the temperature of the hot water to be used.
The temperature sensor 32 is an outflow temperature of warm water from the water heat exchanger 14 (hereinafter referred to as “hot water temperature”), and the temperature sensor 33 is an inflow temperature of water to the water heat exchanger 14 (hereinafter referred to as “water temperature”). The temperature sensor 34 detects the outside air temperature, and inputs the detection result to the control unit 4. The temperature sensor 32, the temperature sensor 33, and the temperature sensor 34 are a thermocouple, a thermistor, etc., and these are the same as those of a general heat pump type hot water heater. The temperature sensor 34 is disposed on the air suction side of the outdoor air heat exchanger 12.

制御部4は,CPU,RAM,ROMなどの制御機器を有しており,該CPUがROMに記憶された制御プログラムに従って各種の処理を実行することにより,当該ヒートポンプ式給湯機Xの各構成要素の動作を制御する。例えば,制御部4は,温度センサ33,34によって検出された入水温度や外気温度などに基づいて,圧縮機11の回転数(以下「コンプ回転数」という)や,室外空気熱交換器12の送風ファンの回転数などを制御することにより,該ヒートポンプサイクル1による加熱能力を調整する。具体的に,ヒートポンプ式給湯機Xでは,外気温度や入水温度,目標出湯温度などによってコンプ回転数を設定するための設定条件が制御部4のROMなどに予め記憶されており,該制御部4は,その設定条件に従ってコンプ回転数を制御する。
また,制御部4は,循環ポンプ22の駆動を制御することによって給湯回路2に流通する水流量(給湯量)を調整し,出湯温度を目標出湯温度に制御する。例えば,制御部4は,目標出湯温度と出湯温度との偏差,その積分,その微分の3つの要素によってフィードバック制御を行うPID制御(P(比例制御),I(積分制御),D(微分制御))などを実行することにより,循環ポンプ22のポンプ回転数を変更して水流量を調整することで,出湯温度を目標出湯温度に制御する。
なお,その他,ヒートポンプ式給湯機Xにおけるコンプ回転数と循環ポンプ22の水流量(又はポンプ回転数)との関係を下記の表1に示すように設定しておき,制御部4が,下記表1の設定条件に基づいて,要求される水流量[l/min]に応じてコンプ回転数[rpm]を変更するように構成することも考えられる。

Figure 2009299985
The control unit 4 includes control devices such as a CPU, a RAM, and a ROM, and the CPU executes various processes in accordance with a control program stored in the ROM, so that each component of the heat pump type water heater X is performed. To control the operation. For example, the control unit 4 determines the rotation speed of the compressor 11 (hereinafter referred to as “comp rotation speed”) or the outdoor air heat exchanger 12 based on the incoming water temperature or the outside air temperature detected by the temperature sensors 33 and 34. The heating capacity of the heat pump cycle 1 is adjusted by controlling the rotational speed of the blower fan. Specifically, in the heat pump type water heater X, setting conditions for setting the compressor rotation speed according to the outside air temperature, the incoming water temperature, the target hot water temperature, and the like are stored in advance in the ROM or the like of the control unit 4. Controls the rotational speed of the compressor according to the set conditions.
Moreover, the control part 4 adjusts the water flow volume (hot-water supply amount) distribute | circulating the hot-water supply circuit 2 by controlling the drive of the circulation pump 22, and controls the hot water temperature to target hot-water temperature. For example, the control unit 4 performs PID control (P (proportional control), I (integral control), D (differential control), which performs feedback control based on three factors of deviation between the target hot water temperature and the hot water temperature, its integration, and its differentiation. )) And the like to change the pump flow rate of the circulation pump 22 and adjust the water flow rate, thereby controlling the tapping temperature to the target tapping temperature.
In addition, the relationship between the rotational speed of the compressor in the heat pump type hot water heater X and the water flow rate (or the rotational speed of the pump) of the circulation pump 22 is set as shown in Table 1 below. Based on the set condition of 1, it is also conceivable to configure the compressor rotational speed [rpm] to be changed according to the required water flow rate [l / min].
Figure 2009299985

ここで,図2及び図3を用いて,水熱交換器14の構造について説明する。
図2に示すように,水熱交換器14は,ヒートポンプサイクル1の冷媒が流通する冷媒配管141と,給湯回路2の水(被加熱流体の一例)が流通する水配管142(被加熱流体配管の一例)とを有している。冷媒配管141及び水配管142は,交互に積層されるように渦巻状(コイル状,螺旋状など)に曲成されている。例えば,水熱交換器14は平面視で略矩形状,略円形状,略扁平形状,略トラック形状などに形成されており,渦巻状という表現はこれらの形状で巻かれた状態を含む概念である。ここに,水熱交換器14では,冷媒配管141及び水配管142が全長に亘って接触しており,離間部分が設けられていない。
そして,冷媒配管141及び水配管142は,その接触部がろう付けされており,熱的に結合されている(図3(a)参照)。これにより,ヒートポンプ式給湯機Xでは,水熱交換器14の冷媒配管141に冷媒が流通され,水配管142に水が流通されることにより,冷媒及び水の間で熱交換が行われ,その水が加熱される。なお,このとき冷媒配管141内の冷媒は,水配管142内の水との熱交換によって凝縮されて液化される。
本実施の形態では,ヒートポンプ式給湯機Xを例に挙げて説明するため,水熱交換器14において水と冷媒との間で熱交換が行われるが,本発明を例えば被加熱流体としてブライン(不凍液)を用いるヒートポンプ式床暖房装置に適用する場合には,該ブラインが冷媒との熱交換によって加熱されることになる。さらに,ヒートポンプ式給湯機Xが,給湯機能の他に,例えば床暖房機能や浴槽の追い焚き機能などの機能を有する場合,冷媒配管141に対して複数の配管(被加熱流体配管)が熱的に結合されることも考えられるが,この場合にも本発明は適用可能である。
Here, the structure of the water heat exchanger 14 is demonstrated using FIG.2 and FIG.3.
As shown in FIG. 2, the water heat exchanger 14 includes a refrigerant pipe 141 through which the refrigerant of the heat pump cycle 1 flows, and a water pipe 142 (heated fluid pipe) through which water (an example of a heated fluid) flows from the hot water supply circuit 2. Example). The refrigerant pipe 141 and the water pipe 142 are formed in a spiral shape (coil shape, spiral shape, etc.) so as to be alternately stacked. For example, the water heat exchanger 14 is formed in a substantially rectangular shape, a substantially circular shape, a substantially flat shape, a substantially track shape, etc. in a plan view, and the expression “spiral shape” is a concept including a state wound in these shapes. is there. Here, in the water heat exchanger 14, the refrigerant pipe 141 and the water pipe 142 are in contact with each other over the entire length, and no separation portion is provided.
And the refrigerant | coolant piping 141 and the water piping 142 are brazed and the thermal connection is carried out (refer Fig.3 (a)). As a result, in the heat pump type water heater X, the refrigerant is circulated through the refrigerant pipe 141 of the water heat exchanger 14 and the water is circulated through the water pipe 142, whereby heat is exchanged between the refrigerant and water. Water is heated. At this time, the refrigerant in the refrigerant pipe 141 is condensed and liquefied by heat exchange with water in the water pipe 142.
In the present embodiment, since the heat pump type hot water heater X is described as an example, the water heat exchanger 14 performs heat exchange between water and the refrigerant. When applied to a heat pump type floor heating apparatus using an antifreeze liquid, the brine is heated by heat exchange with the refrigerant. Furthermore, when the heat pump type water heater X has functions such as a floor heating function and a bathtub reheating function in addition to the hot water supply function, a plurality of pipes (heated fluid pipes) are thermally connected to the refrigerant pipe 141. However, the present invention is also applicable to this case.

前述したように,ヒートポンプ式給湯機Xでは,ヒートポンプサイクル1における圧縮機11のコンプ回転数などを制御するため,水熱交換器14の冷媒配管141に流通する冷媒温度を検出する必要がある。
そのため,水熱交換器14における冷媒配管141の配管長の略中央部には,該冷媒配管141内の冷媒温度を検出する温度センサ31が設けられている。なお,温度センサ31の配置位置は,冷媒配管141の配管長の中央部と同等の温度を検出することができる位置であれば,該中央部からずれた位置であってもよい。
ここに,図3(a)は図2におけるA−A矢視断面の要部を示す図,図3(b)は温度センサ31の構造を示す図である。
図3(b)に示すように,温度センサ31は,伝熱管312内に収納された熱電対311を用いるものである。この温度センサ31は,図3(a)に示すように,伝熱管312が冷媒配管141の外周に密着するように該冷媒配管141に外接した状態でろう付けされており,冷媒配管141に熱的に結合されている。なお,温度センサ31は,サーミスタなどの温度センサであってもよい。
このように構成された水熱交換器14では,冷媒配管141及び水配管142の接触部分に温度センサ31が設けられているため,該温度センサ31によって検出される冷媒配管141内の冷媒の温度は,水配管142内の水からの熱影響を受けることになる。
そこで,当該ヒートポンプ式給湯機Xでは,温度センサ31で検出された冷媒温度を補正するための処理が制御部4によって実行される。以下,具体的に説明する。
As described above, in the heat pump type hot water heater X, it is necessary to detect the temperature of the refrigerant flowing through the refrigerant pipe 141 of the water heat exchanger 14 in order to control the rotational speed of the compressor 11 of the compressor 11 in the heat pump cycle 1.
Therefore, a temperature sensor 31 that detects the refrigerant temperature in the refrigerant pipe 141 is provided at a substantially central portion of the pipe length of the refrigerant pipe 141 in the water heat exchanger 14. The temperature sensor 31 may be disposed at a position shifted from the central portion as long as the temperature sensor 31 can detect a temperature equivalent to the central portion of the pipe length of the refrigerant pipe 141.
Here, FIG. 3A is a diagram showing the main part of the cross section taken along the line AA in FIG. 2, and FIG. 3B is a diagram showing the structure of the temperature sensor 31.
As shown in FIG. 3B, the temperature sensor 31 uses a thermocouple 311 accommodated in a heat transfer tube 312. As shown in FIG. 3A, the temperature sensor 31 is brazed in a state of being circumscribed to the refrigerant pipe 141 so that the heat transfer pipe 312 is in close contact with the outer periphery of the refrigerant pipe 141, and heat is applied to the refrigerant pipe 141. Combined. The temperature sensor 31 may be a temperature sensor such as a thermistor.
In the water heat exchanger 14 configured as described above, the temperature sensor 31 is provided at the contact portion between the refrigerant pipe 141 and the water pipe 142, and thus the temperature of the refrigerant in the refrigerant pipe 141 detected by the temperature sensor 31. Is affected by heat from the water in the water pipe 142.
Therefore, in the heat pump type water heater X, a process for correcting the refrigerant temperature detected by the temperature sensor 31 is executed by the control unit 4. This will be specifically described below.

以下,ヒートポンプ式給湯機Xにおいて制御部4によって実行される検出温度の補正処理について説明する。
ここに,図4は,ヒートポンプ式給湯機Xにおけるコンプ回転数,温度センサ31による検出温度,その検出温度と実際の冷媒温度との温度差(以下「温度誤差」という)の関係を示している。なお,図4は,外気温度DB/WB(乾球温度/湿球温度)が16/12℃,入水温度35℃,出湯温度60℃の条件において,コンプ回転数を変化させた場合の実験結果である。
図4を参照すると,温度センサ31による検出温度の温度誤差は,コンプ回転数によって変化することがわかる。従って,例えば温度センサ31の検出温度に予め設定された一定の値を加算するだけでは,該検出温度を正確に補正することができない。具体的に,コンプ回転数1800[rpm]の場合には,温度センサ31による検出温度が54.3℃,実際の冷媒温度が56.8℃,温度誤差が2.5℃となっており,コンプ回転数6000[rpm]の場合には,温度センサ31による検出温度が51.8℃,実際の冷媒温度が60.0℃,温度誤差が8.2℃となっている。
Hereinafter, the detected temperature correction process executed by the control unit 4 in the heat pump type hot water heater X will be described.
FIG. 4 shows the relationship between the rotational speed of the compressor in the heat pump type water heater X, the temperature detected by the temperature sensor 31, and the temperature difference between the detected temperature and the actual refrigerant temperature (hereinafter referred to as “temperature error”). . FIG. 4 shows the experimental results when the rotational speed of the compressor is changed under the conditions that the outside air temperature DB / WB (dry bulb temperature / wet bulb temperature) is 16/12 ° C., the incoming water temperature is 35 ° C., and the outgoing hot water temperature is 60 ° C. It is.
Referring to FIG. 4, it can be seen that the temperature error of the temperature detected by the temperature sensor 31 varies depending on the rotational speed of the compressor. Therefore, for example, the detected temperature cannot be accurately corrected only by adding a predetermined value to the detected temperature of the temperature sensor 31. Specifically, when the compressor speed is 1800 [rpm], the temperature detected by the temperature sensor 31 is 54.3 ° C., the actual refrigerant temperature is 56.8 ° C., and the temperature error is 2.5 ° C. When the compressor speed is 6000 [rpm], the temperature detected by the temperature sensor 31 is 51.8 ° C., the actual refrigerant temperature is 60.0 ° C., and the temperature error is 8.2 ° C.

そこで,当該ヒートポンプ式給湯機Xでは,コンプ回転数と温度誤差との対応関係(図4参照)を示す誤差対応情報が,制御部4のROMなど(誤差対応情報記憶手段に相当)に予め記憶されており,該制御部4は,その誤差対応情報とコンプ回転数とに基づいて温度センサ31による検出温度を補正するように構成されている。ここに,係る補正処理を実行するときの制御部4が冷媒温度補正手段に相当する。
具体的に,制御部4は,コンプ回転数が1800[rpm]であれば,温度センサ31による検出温度にそのコンプ回転数に対応する温度誤差2.5℃を加算し,コンプ回転数が6000[rpm]であれば,温度センサ31による検出温度にそのコンプ回転数に対応する温度誤差8.2℃を加算することで,その検出温度を正しい冷媒温度に補正する。なお,制御部4は,例えば圧縮機11への制御指示の設定内容に基づいて,或いは圧縮機11からの応答信号に基づいて該圧縮機11のコンプ回転数を取得する。
このように,ヒートポンプ式給湯機Xでは,水熱交換器14における冷媒配管141及び水配管142の接触部において該冷媒配管141に接触配置された温度センサ31による検出温度が,コンプ回転数に基づいて補正されることで,正しい凝縮温度を得ることが可能である。そのため,水熱交換器14において冷媒配管141及び水配管142を離間させる離間部を設ける必要がなく,該水熱交換器14の製造工程の負担を軽減してコストダウンを図ることができる。
そして,ヒートポンプ式給湯機Xでは,制御部4により,その補正後の冷媒温度に基づいてヒートポンプサイクル1上に設けられた圧縮機11のコンプ回転数や膨張弁13の開閉度,室外空気熱交換器12のファン回転数などを適切に制御することができ,例えば圧縮機11の高圧異常などの発生を防止する高圧制御を高い精度で実行することができる。なお,補正された後の冷媒温度に基づいて圧縮機11の駆動制御を行うときの制御部4が圧縮機制御手段に相当する。
Therefore, in the heat pump type water heater X, error correspondence information indicating the correspondence relationship between the compressor rotation speed and the temperature error (see FIG. 4) is stored in advance in the ROM of the control unit 4 (corresponding to error correspondence information storage means). The control unit 4 is configured to correct the temperature detected by the temperature sensor 31 based on the error correspondence information and the compressor rotation speed. Here, the control unit 4 when executing such correction processing corresponds to the refrigerant temperature correction means.
Specifically, if the compression speed is 1800 [rpm], the control unit 4 adds a temperature error of 2.5 ° C. corresponding to the compression speed to the temperature detected by the temperature sensor 31, and the compression speed is 6000. If it is [rpm], the detected temperature is corrected to the correct refrigerant temperature by adding a temperature error of 8.2 ° C. corresponding to the rotational speed of the compressor to the temperature detected by the temperature sensor 31. The control unit 4 acquires the compressor rotation speed of the compressor 11 based on, for example, the setting contents of the control instruction to the compressor 11 or based on the response signal from the compressor 11.
As described above, in the heat pump type water heater X, the temperature detected by the temperature sensor 31 arranged in contact with the refrigerant pipe 141 at the contact portion between the refrigerant pipe 141 and the water pipe 142 in the water heat exchanger 14 is based on the compression speed. It is possible to obtain the correct condensing temperature. Therefore, it is not necessary to provide a separation portion for separating the refrigerant pipe 141 and the water pipe 142 in the water heat exchanger 14, and the burden on the manufacturing process of the water heat exchanger 14 can be reduced and the cost can be reduced.
In the heat pump type hot water heater X, the controller 4 controls the compressor rotation speed of the compressor 11 provided on the heat pump cycle 1, the opening / closing degree of the expansion valve 13, and the outdoor air heat exchange by the control unit 4 based on the corrected refrigerant temperature. The fan rotation speed of the compressor 12 can be appropriately controlled, and for example, high-pressure control for preventing occurrence of a high-pressure abnormality of the compressor 11 can be executed with high accuracy. In addition, the control part 4 when performing drive control of the compressor 11 based on the refrigerant | coolant temperature after correction | amendment corresponds to a compressor control means.

なお,本実施形態では,図4に示すように6段階のコンプ回転数に対応する温度誤差を示す誤差対応情報について説明したが,ヒートポンプ式給湯機Xでは,それ以外のコンプ回転数に設定される場合も考えられる。
そこで,制御部4が,図4に示すような実験結果から得られたコンプ回転数及び温度誤差の関係に基づいて定まる関係式を用いて補正を行うように構成することが望ましい。前記関係式は,誤差対応情報として予め制御部4のROMに記憶しておくことや,該制御部4において演算することによってその都度得ることが考えられる。
これにより,制御部4のROMに多量のデータを記憶することなく任意のコンプ回転数に対応する補正を行うことが可能である。もちろん,図4に示す誤差対応情報よりも分解能の高いデータテーブルを制御部4のROMに記憶させておく構成を除外するものではない。
In the present embodiment, the error correspondence information indicating the temperature error corresponding to the six stages of the rotational speed of the compressor as shown in FIG. 4 has been described. However, in the heat pump type water heater X, other rotational speeds are set. It may be possible.
Therefore, it is desirable that the control unit 4 is configured to perform correction using a relational expression determined based on the relationship between the rotational speed of the compressor and the temperature error obtained from the experimental result as shown in FIG. It is conceivable that the relational expression is stored in advance in the ROM of the control unit 4 as error correspondence information, or obtained by calculation in the control unit 4 each time.
Thereby, it is possible to perform correction corresponding to an arbitrary compression speed without storing a large amount of data in the ROM of the control unit 4. Of course, this does not exclude the configuration in which the data table having higher resolution than the error correspondence information shown in FIG. 4 is stored in the ROM of the control unit 4.

ところで,前記実施の形態では,圧縮機11のコンプ回転数に基づいて温度センサ31による検出温度を補正する場合を例に挙げて説明した。一方,ヒートポンプ式給湯機Xでは,水熱交換器14の入水温度や出湯温度によっても,温度センサ31による検出温度の温度誤差が変動する。
ここに,図5は,ヒートポンプ式給湯機Xにおいて水熱交換器14の入水温度が異なる場合のコンプ回転数と温度誤差との関係,図6はヒートポンプ式給湯機Xにおいて水熱交換器14の出湯温度が異なる場合のコンプ回転数と温度誤差との関係を示している。
具体的に,図5は,ヒートポンプ式給湯機Xにおいて,外気温度DB/WB(乾球温度/湿球温度)が16/12℃,出湯温度45℃の条件で,入水温度を5℃,17℃の各々としたときのコンプ回転数と温度誤差との関係を示している。
また,図6は,ヒートポンプ式給湯機Xにおいて,外気温度DB/WB(乾球温度/湿球温度)が16/12℃,入水温度17℃の条件で,出湯温度を45℃,60℃の各々としたときのコンプ回転数と温度誤差との関係を示している。
図5及び図6に示すように,ヒートポンプ式給湯機Xでは,水熱交換器14の入水温度や出湯温度によって,コンプ回転数に対応する温度誤差の大きさが変化する。
By the way, in the said embodiment, the case where the detection temperature by the temperature sensor 31 was correct | amended based on the compression rotation speed of the compressor 11 was mentioned as an example, and was demonstrated. On the other hand, in the heat pump type water heater X, the temperature error of the temperature detected by the temperature sensor 31 also varies depending on the incoming water temperature and the outgoing hot water temperature of the water heat exchanger 14.
Here, FIG. 5 shows the relationship between the rotational speed of the compressor and the temperature error when the incoming water temperature of the water heat exchanger 14 is different in the heat pump type water heater X, and FIG. 6 shows the water heat exchanger 14 in the heat pump type water heater X. The relationship between the compressor rotation speed and temperature error when the tapping temperature is different is shown.
Specifically, FIG. 5 shows that in the heat pump type water heater X, the incoming water temperature is 5 ° C., 17 ° C. under the condition that the outside air temperature DB / WB (dry bulb temperature / wet bulb temperature) is 16/12 ° C. and the tapping temperature 45 ° C. The relationship between the rotational speed of the compressor and the temperature error is shown for each ° C.
FIG. 6 shows that in the heat pump type water heater X, the outside air temperature DB / WB (dry bulb temperature / wet bulb temperature) is 16/12 ° C., the incoming water temperature is 17 ° C., and the hot water temperature is 45 ° C. and 60 ° C. The relationship between the rotational speed of the compressor and the temperature error in each case is shown.
As shown in FIGS. 5 and 6, in the heat pump type water heater X, the magnitude of the temperature error corresponding to the compressor rotation speed varies depending on the incoming water temperature and the outgoing hot water temperature of the water heat exchanger 14.

そこで,ヒートポンプ式給湯機Xでは,制御部4によって温度センサ31による検出温度をコンプ回転数に基づいて補正する際,さらに水熱交換器14の入水温度や出湯温度による温度誤差の変化をも考慮することが望ましい。即ち,制御部4が,コンプ回転数と入水温度や出湯温度とに基づいて温度センサ31による検出温度を補正することが望ましい。
例えば,予め,コンプ回転数と温度誤差との対応関係を示すデータテーブル(例えば図5のグラフ参照,誤差対応情報の一例)を,水熱交換器14の入水温度の値ごとに対応して複数設定しておき,そのデータテーブルを制御部4のROMなど(誤差対応情報記憶手段に相当)に記憶させておくことが考えられる。この場合,制御部4は,温度センサ33によって検出された入水温度に対応するデータテーブルを抽出し,そのデータテーブルで定められたコンプ回転数に対応する温度誤差を用いることで,温度センサ31による検出温度を適切に補正することができる。即ち,制御部4は,入水温度に応じて用いるデータテーブルを変更し,該変更後のデータテーブルとコンプ回転数とに基づいて補正を行う。
また,入水温度の変化と温度誤差の変化との間に所定の関係が成立するのであれば,該入水温度に対応する複数のデータテーブルを用意しておくのではなく,その関係によって,その都度,データテーブルにおけるコンプ回転数に対する温度誤差の補正の程度を変更するように構成することが望ましい。例えば,コンプ回転数が同じときに入水温度が±1℃変化すると,それに伴って温度誤差が±0.1℃だけ変化するという関係がわかっている場合には,その関係式を記憶しておくだけで入水温度の変化を考慮した適切な補正を行うことが可能である。
Therefore, in the heat pump type water heater X, when the temperature detected by the temperature sensor 31 is corrected by the control unit 4 based on the rotational speed of the compressor, a change in temperature error due to the incoming water temperature and the outgoing water temperature of the water heat exchanger 14 is also taken into consideration. It is desirable to do. That is, it is desirable that the control unit 4 corrects the temperature detected by the temperature sensor 31 based on the compressor rotation speed and the incoming water temperature or the outgoing water temperature.
For example, a plurality of data tables (for example, see the graph in FIG. 5, an example of error correspondence information) indicating the correspondence between the compressor rotation speed and the temperature error are previously provided in correspondence with each water temperature value of the water heat exchanger 14. It is conceivable that the data table is set and stored in a ROM or the like of the control unit 4 (corresponding to error correspondence information storage means). In this case, the control unit 4 extracts a data table corresponding to the incoming water temperature detected by the temperature sensor 33, and uses the temperature error corresponding to the compressor rotation speed determined in the data table, so that the temperature sensor 31 The detected temperature can be appropriately corrected. That is, the control unit 4 changes the data table used in accordance with the incoming water temperature, and performs correction based on the changed data table and the compressor rotation speed.
Further, if a predetermined relationship is established between the change in the incoming water temperature and the change in the temperature error, a plurality of data tables corresponding to the incoming water temperature are not prepared, but depending on the relationship, each time. It is desirable that the degree of correction of the temperature error with respect to the rotational speed of the compressor in the data table is changed. For example, if it is known that the temperature error changes by ± 0.1 ° C. when the incoming water temperature changes by ± 1 ° C. when the compressor speed is the same, the relational expression is stored. It is possible to make an appropriate correction that takes into account changes in the incoming water temperature.

また,水熱交換器14の出湯温度についても同様である。即ち,予め,コンプ回転数と温度誤差との対応関係を示すデータテーブル(例えば図6のグラフ参照,誤差対応情報の一例)を,水熱交換器14の出湯温度の値ごとに対応して複数設定しておき,そのデータテーブルを制御部4のROMなど(誤差対応情報記憶手段に相当)に記憶させておきくことが考えられる。これにより,制御部4は,出湯温度に応じて用いるデータテーブルを変更し,その変更後のデータテーブルで定められたコンプ回転数に対応する温度誤差を用いることで,温度センサ31による検出温度を適切に補正することができる。なお,もちろん出湯温度の変化と温度誤差の変化との間に所定の関係が成立するのであれば,その関係によって,その都度,温度誤差の補正の程度を変更するように構成してもよい。
さらにまた,コンプ回転数と水熱交換器14の入水温度及び出湯温度の両方とに基づいて補正を行うことや,入水温度と出湯温度との温度差に基づいて補正を行うことなど,温度センサ31による検出温度の温度誤差に影響するより多くの要素によって補正を行えば,より高い精度で冷媒の凝縮温度を検出することができる。なお,この場合には,例えばコンプ回転数,入水温度,出湯温度の値を代入することで温度誤差を算出し得る関係式(誤差対応情報の一例)を予め定義しておくことが考えられる。
The same applies to the tapping temperature of the water heat exchanger 14. That is, a plurality of data tables (for example, see the graph in FIG. 6, an example of error correspondence information) indicating the correspondence relationship between the compressor rotation speed and the temperature error in advance corresponding to each tapping temperature value of the water heat exchanger 14. It is conceivable to set the data table and store the data table in the ROM of the control unit 4 (corresponding to the error correspondence information storage means). Thereby, the control part 4 changes the data table used according to the tapping temperature, and uses the temperature error corresponding to the rotational speed of the compressor determined in the changed data table, so that the temperature detected by the temperature sensor 31 is changed. It can be corrected appropriately. Of course, if a predetermined relationship is established between the change in tapping temperature and the change in temperature error, the degree of correction of the temperature error may be changed each time depending on the relationship.
Furthermore, a temperature sensor such as performing correction based on both the rotational speed of the compressor and the incoming water temperature and the outgoing hot water temperature of the water heat exchanger 14, and correcting based on the temperature difference between the incoming water temperature and the outgoing hot water temperature. If correction is performed using more factors that affect the temperature error of the detected temperature by 31, the refrigerant condensing temperature can be detected with higher accuracy. In this case, for example, a relational expression (an example of error correspondence information) that can calculate a temperature error by substituting values of the compressor rotation speed, the incoming water temperature, and the outgoing hot water temperature may be defined in advance.

本発明の実施の形態に係るヒートポンプ式給湯機の概略構成を示すブロック図。The block diagram which shows schematic structure of the heat pump type water heater which concerns on embodiment of this invention. 本発明の実施の形態に係るヒートポンプ式給湯機に設けられた水熱交換器の外観模式図。The external appearance schematic diagram of the water heat exchanger provided in the heat pump type water heater which concerns on embodiment of this invention. 本発明の実施の形態に係るヒートポンプ式給湯機に設けられた水熱交換器に設けられた温度センサを説明するための図。The figure for demonstrating the temperature sensor provided in the water heat exchanger provided in the heat pump type hot water heater which concerns on embodiment of this invention. 誤差対応情報の一例を説明するための図。The figure for demonstrating an example of error corresponding | compatible information. ヒートポンプ式給湯機において水熱交換器の入水温度が異なる場合のコンプ回転数と温度誤差との関係を示す図。The figure which shows the relationship between the compression rotation speed and temperature error in case the incoming temperature of a water heat exchanger differs in a heat pump type water heater. ヒートポンプ式給湯機において水熱交換器の出湯温度が異なる場合のコンプ回転数と温度誤差との関係を示す図。The figure which shows the relationship between the compression rotation speed and temperature error when the tapping temperature of a water heat exchanger differs in a heat pump type water heater.

符号の説明Explanation of symbols

1…ヒートポンプサイクル
11…圧縮機
12…室外空気熱交換器
13…膨張弁
14…水熱交換器(熱交換器の一例)
141…冷媒配管
142…水配管(被加熱流体配管の一例)
2…給湯回路
21…貯湯タンク
22…循環ポンプ
23…給水口
24…給湯口
25…電磁三方弁
31…温度センサ(冷媒温度検出手段の一例)
32,33,34…温度センサ
4…制御部
X…ヒートポンプ式給湯機(ヒートポンプ式加熱装置の一例)
DESCRIPTION OF SYMBOLS 1 ... Heat pump cycle 11 ... Compressor 12 ... Outdoor air heat exchanger 13 ... Expansion valve 14 ... Water heat exchanger (an example of a heat exchanger)
141 ... Refrigerant piping 142 ... Water piping (an example of heated fluid piping)
2 ... Hot water supply circuit 21 ... Hot water storage tank 22 ... Circulation pump 23 ... Water supply port 24 ... Hot water supply port 25 ... Electromagnetic three-way valve 31 ... Temperature sensor (an example of refrigerant temperature detection means)
32, 33, 34 ... temperature sensor 4 ... control unit X ... heat pump type hot water heater (an example of a heat pump type heating device)

Claims (6)

圧縮機,室外空気熱交換器及び膨張機構を有するヒートポンプサイクルに接続され,該ヒートポンプサイクルに循環される冷媒が流通する冷媒配管と,前記冷媒との熱交換によって加熱される被加熱流体が流通する一又は複数の被加熱流体配管とが熱的に結合するように渦巻状に積層された熱交換器を備えたヒートポンプ式加熱装置であって,
前記熱交換器の冷媒配管に外接して設けられ,該冷媒配管内の冷媒の温度を検出する冷媒温度検出手段と,
前記冷媒温度検出手段によって検出された冷媒の温度を少なくとも前記圧縮機の回転数に基づいて補正する冷媒温度補正手段と,
を備えてなることを特徴とするヒートポンプ式加熱装置。
Connected to a heat pump cycle having a compressor, an outdoor air heat exchanger and an expansion mechanism, a refrigerant pipe through which the refrigerant circulated in the heat pump cycle flows, and a heated fluid heated by heat exchange with the refrigerant circulates A heat pump type heating device including a heat exchanger stacked in a spiral shape so as to be thermally coupled to one or a plurality of heated fluid pipes,
A refrigerant temperature detecting means provided externally to the refrigerant pipe of the heat exchanger and detecting the temperature of the refrigerant in the refrigerant pipe;
Refrigerant temperature correction means for correcting the temperature of the refrigerant detected by the refrigerant temperature detection means based on at least the rotational speed of the compressor;
A heat pump type heating device comprising:
前記冷媒温度補正手段が,前記圧縮機の回転数と,前記熱交換器における被加熱流体配管への流体の流入温度及び/又は前記熱交換器における被加熱流体配管からの流体の流出温度とに基づいて,前記冷媒温度検出手段によって検出された冷媒の温度を補正してなる請求項1に記載のヒートポンプ式加熱装置。   The refrigerant temperature correction means is configured to adjust the rotational speed of the compressor and the inflow temperature of the fluid to the heated fluid pipe in the heat exchanger and / or the outflow temperature of the fluid from the heated fluid pipe in the heat exchanger. The heat pump heating device according to claim 1, wherein the temperature of the refrigerant detected by the refrigerant temperature detecting means is corrected based on the temperature. 前記圧縮機の回転数と,前記冷媒温度検出手段による検出温度及び前記熱交換器の冷媒配管内の冷媒温度の温度誤差との対応関係を示す誤差対応情報が記憶された誤差対応情報記憶手段を備えてなり,
前記冷媒温度補正手段が,前記冷媒温度検出手段によって検出された冷媒の温度を,前記圧縮機の回転数と前記誤差対応情報とに基づいて補正するものである請求項1に記載のヒートポンプ式加熱装置。
Error correspondence information storage means for storing error correspondence information indicating a correspondence relationship between the rotational speed of the compressor, the temperature detected by the refrigerant temperature detection means, and the temperature error of the refrigerant temperature in the refrigerant pipe of the heat exchanger. Prepared,
2. The heat pump heating according to claim 1, wherein the refrigerant temperature correcting means corrects the refrigerant temperature detected by the refrigerant temperature detecting means based on the rotation speed of the compressor and the error correspondence information. apparatus.
前記圧縮機の回転数と,前記冷媒温度検出手段による検出温度及び前記熱交換器の冷媒配管内の冷媒温度の温度誤差との対応関係を示す誤差対応情報が記憶された誤差対応情報記憶手段を備えてなり,
前記冷媒温度補正手段が,前記誤差対応情報記憶手段に記憶された前記誤差対応情報を前記流入温度及び/又は前記流出温度の値に応じて変更し,該変更後の誤差対応情報と前記圧縮機の回転数とに基づいて,前記冷媒温度検出手段によって検出された冷媒の温度を補正するものである請求項2に記載のヒートポンプ式加熱装置。
Error correspondence information storage means for storing error correspondence information indicating a correspondence relationship between the rotational speed of the compressor, the temperature detected by the refrigerant temperature detection means, and the temperature error of the refrigerant temperature in the refrigerant pipe of the heat exchanger. Prepared,
The refrigerant temperature correction means changes the error correspondence information stored in the error correspondence information storage means according to the value of the inflow temperature and / or the outflow temperature, and the error correspondence information after the change and the compressor The heat pump heating device according to claim 2, wherein the temperature of the refrigerant detected by the refrigerant temperature detecting means is corrected based on the rotation speed of the refrigerant.
前記冷媒温度補正手段によって補正された後の冷媒温度に基づいて前記圧縮機の駆動制御を行う圧縮機制御手段を更に備えてなる請求項1〜4のいずれかに記載のヒートポンプ式加熱装置。   The heat pump heating device according to any one of claims 1 to 4, further comprising compressor control means for performing drive control of the compressor based on the refrigerant temperature corrected by the refrigerant temperature correction means. 前記冷媒温度検出手段が,前記熱交換器における冷媒配管の配管長の略中央部に設けられてなる請求項1〜5のいずれかに記載のヒートポンプ式加熱装置。   The heat pump heating device according to any one of claims 1 to 5, wherein the refrigerant temperature detection means is provided at a substantially central part of a pipe length of a refrigerant pipe in the heat exchanger.
JP2008154443A 2008-06-12 2008-06-12 Heat pump type heating device Ceased JP2009299985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154443A JP2009299985A (en) 2008-06-12 2008-06-12 Heat pump type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154443A JP2009299985A (en) 2008-06-12 2008-06-12 Heat pump type heating device

Publications (1)

Publication Number Publication Date
JP2009299985A true JP2009299985A (en) 2009-12-24

Family

ID=41547072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154443A Ceased JP2009299985A (en) 2008-06-12 2008-06-12 Heat pump type heating device

Country Status (1)

Country Link
JP (1) JP2009299985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153040A (en) * 2013-02-14 2014-08-25 Fujitsu General Ltd Heat pump cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139257A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Heat pump hot water supplier
JP2004053190A (en) * 2002-07-23 2004-02-19 Daikin Ind Ltd Heat pump-type water heater
JP2007187376A (en) * 2006-01-12 2007-07-26 Sharp Corp Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139257A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Heat pump hot water supplier
JP2004053190A (en) * 2002-07-23 2004-02-19 Daikin Ind Ltd Heat pump-type water heater
JP2007187376A (en) * 2006-01-12 2007-07-26 Sharp Corp Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153040A (en) * 2013-02-14 2014-08-25 Fujitsu General Ltd Heat pump cycle device

Similar Documents

Publication Publication Date Title
JP5216368B2 (en) Heat pump water heater
JP5524571B2 (en) Heat pump equipment
EP1777471A1 (en) Heat pump-type hot-water supply device
US10429086B2 (en) Heat-pump equipment
JP2007085582A (en) Operating method of electric water heater
EP2857761B1 (en) Water heater
JP6703468B2 (en) Air conditioner with hot water supply function
TWI681159B (en) System and method for thermally conditioning a fluid, control system and machine readable medium
JP2007205658A (en) Heat pump type water heater, and control device for heat pump-type water heater
JP6415701B2 (en) Refrigeration cycle equipment
JP3737414B2 (en) Water heater
JP5117873B2 (en) Heat exchanger, heat pump water heater
WO2010131516A1 (en) Hot-water supply system
JP2017044446A (en) Heat pump device and water heater including the same
JP2009299985A (en) Heat pump type heating device
JP5152211B2 (en) Water heater
JP2008224067A (en) Heat pump hot water supply device
JP2005337550A (en) Heat pump water heater
JP6679461B2 (en) Heat pump water heater with heating function
JP5898506B2 (en) Heat pump equipment
JP2005140439A (en) Heat pump water heater
JP2009287794A (en) Heat pump type water heater
JP4950004B2 (en) Heat pump type water heater
JP2007057148A (en) Heat pump water heater
JP6248393B2 (en) Temperature control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130226