JP2009299910A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009299910A
JP2009299910A JP2008151202A JP2008151202A JP2009299910A JP 2009299910 A JP2009299910 A JP 2009299910A JP 2008151202 A JP2008151202 A JP 2008151202A JP 2008151202 A JP2008151202 A JP 2008151202A JP 2009299910 A JP2009299910 A JP 2009299910A
Authority
JP
Japan
Prior art keywords
connection pipe
indoor
refrigerant
pipe
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008151202A
Other languages
Japanese (ja)
Inventor
Koji Naito
宏治 内藤
Susumu Nakayama
進 中山
Yasutaka Yoshida
康孝 吉田
Atsuhiko Yokozeki
敦彦 横関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008151202A priority Critical patent/JP2009299910A/en
Publication of JP2009299910A publication Critical patent/JP2009299910A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of improving cooling operation performance and preventing leakage of refrigerant on an indoor unit side when renewing the refrigerant to such refrigerant having smaller specific volume of gas sucked by a compressor. <P>SOLUTION: This air conditioner is provided with an indoor unit 40 for renewal having an indoor heat exchanger 41 and an indoor expansion valve 42, an outdoor unit 10 for renewal having the compressor 11, an outdoor heat exchanger 14, and an outdoor expansion valve 15, and a liquid connection pipe and a gas connection pipe for connecting the indoor unit to the outdoor unit. The existing liquid connection pipe 30 used in the air conditioner before renewal is reused as the liquid connection pipe, and the existing gas connection pipe 34 is reused as the gas connection pipe. One or a plurality of new gas connection pipes 37 are additionally installed in parallel in a partial section or the whole section of the existing gas connection pipe to divide flow of the gas refrigerant and let respective flow of it flow into the existing gas connection pipe and the new gas connection pipe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガス比体積が大きい冷媒を使用する空気調和機に関し、特に可燃性冷媒を使用する冷暖同時マルチ型空気調和機の、冷媒漏洩遮断に関するものである。   The present invention relates to an air conditioner that uses a refrigerant having a large gas specific volume, and more particularly to refrigerant leakage blocking in a simultaneous heating and cooling multi-type air conditioner that uses a combustible refrigerant.

空気調和機の冷媒は、現在フロン系冷媒のR410Aが主流である。R410Aの特徴として、第一に、以前に使われていたR22やR407Cに比べ、圧縮機吸込み点でのガス比体積が小さいことがある。ガス比体積が小さいと、ガス比体積が大きい冷媒と同等の質量流量を確保する場合に、圧縮機吸込み体積流量は少なくてすむ。室内機と室外機をつなぐガス接続配管で考えると、ガス比体積が小さいことにより、配管内での冷媒流速は小さくなり、ガス接続配管での圧力損失も小さくでき性能向上できる。特に冷房運転では、ガス配管圧力が低く同一冷媒でも比体積が大きくなる特性があるため、性能向上効果が高い。R410Aの冷媒物性のおかげで、従来のR22やR407Cを使用する空調機を更新する場合、既設接続配管を再利用しても性能を落とすことがない。第二に、毒性もなく、不燃性の冷媒として知られており、室内機側から冷媒漏洩しても冷媒が燃える心配は無い。仮に冷媒が漏れても、冷媒漏れ検知装置と閉路弁を使い、室内機側への冷媒漏洩を停止することが知られている。例えば特開平1−225849号公報に記載されている。   Currently, the refrigerant of air conditioners is mainly CFC-based refrigerant R410A. As a feature of R410A, first, there is a small gas specific volume at the compressor suction point compared to R22 and R407C used before. If the gas specific volume is small, the compressor suction volume flow rate can be reduced when a mass flow rate equivalent to that of the refrigerant having a large gas specific volume is ensured. Considering a gas connection pipe that connects an indoor unit and an outdoor unit, the gas specific volume is small, so that the refrigerant flow rate in the pipe is reduced, the pressure loss in the gas connection pipe is reduced, and the performance can be improved. Especially in the cooling operation, since the gas pipe pressure is low and the specific volume increases even with the same refrigerant, the performance improvement effect is high. Thanks to the refrigerant physical properties of R410A, when renewing an existing air conditioner using R22 or R407C, the performance is not degraded even if the existing connection pipe is reused. Second, it is known as a non-flammable refrigerant without toxicity, and there is no concern that the refrigerant will burn even if the refrigerant leaks from the indoor unit side. Even if the refrigerant leaks, it is known to stop the refrigerant leak to the indoor unit by using a refrigerant leak detection device and a closing valve. For example, it is described in JP-A-1-225849.

また、マルチ型空気調和機において、室内機個別に冷房,暖房運転が切替えられる点や排熱回収できる点等から、冷暖同時機種が増加傾向にある。ここで冷暖同時機種の例として、接続配管を、液管,高圧ガス管,低圧ガス管の三本必要とする機種があり、室内機ガス管側に、高圧ガス管と低圧ガス管の接続を切替える切替ユニットを設置し、暖房運転と冷房運転を切替えることが知られている。更に、全冷房運転時には、高圧ガス管を低圧ガス流路として使用する例も知られている。この場合、高低圧配管と呼ぶこともある。   In the multi-type air conditioner, the number of simultaneous cooling and heating models is increasing due to the point that the cooling and heating operation can be switched individually for each indoor unit and the point that exhaust heat can be recovered. As an example of simultaneous cooling and heating models, there are models that require three connection pipes, a liquid pipe, a high-pressure gas pipe, and a low-pressure gas pipe. Connect the high-pressure gas pipe and the low-pressure gas pipe to the indoor unit gas pipe side. It is known to install a switching unit for switching and switch between heating operation and cooling operation. Furthermore, an example is also known in which a high-pressure gas pipe is used as a low-pressure gas flow path during a cooling only operation. In this case, it may be called high-low pressure piping.

特開平1−225849号公報Japanese Patent Laid-Open No. 1-225849

しかし、上記特許文献1に対し、R410Aは地球温暖化係数(GWP)が高いため、ガス比体積が大きい冷媒や、微燃性或いは可燃性の冷媒が代替冷媒として検討されている。ガス比体積が大きい冷媒を使用した空調機に更新し、既設接続配管を再利用する場合、冷房運転時のガス接続配管での圧力損失増大は避けられず、性能低下する。   However, since R410A has a high global warming potential (GWP) with respect to Patent Document 1, a refrigerant with a large gas specific volume, a slightly flammable refrigerant, or a flammable refrigerant has been studied as an alternative refrigerant. When renewing to an air conditioner using a refrigerant with a large gas specific volume and reusing the existing connection pipe, an increase in pressure loss in the gas connection pipe during cooling operation is inevitable, and the performance deteriorates.

次に、微燃性或いは可燃性の冷媒を使用した空調機で、室内側で冷媒が漏洩した場合、漏れ量が多いと火災の危険性がある。しかし、空調機室内機側に新規部品として閉路弁を設置する必要がある。   Next, in an air conditioner using a slightly flammable or flammable refrigerant, if the refrigerant leaks indoors, there is a risk of fire if the amount of leakage is large. However, it is necessary to install a closed valve as a new part on the air conditioner indoor unit side.

本発明の目的は、ガス比体積が大きい冷媒を使用する空調機に更新しても性能向上する空気調和機を得ることにある。本発明の他の目的は、可燃性冷媒を使用する空調機の室内機側で冷媒漏洩が発生した時に、既存製品を使用して冷媒漏洩を遮断する空気調和機を得ることにある。   The objective of this invention is obtaining the air conditioner which improves a performance even if it replaces with the air conditioner which uses a refrigerant | coolant with a large gas specific volume. Another object of the present invention is to obtain an air conditioner that uses existing products to block refrigerant leakage when refrigerant leakage occurs on the indoor unit side of an air conditioner that uses a combustible refrigerant.

上記目的を達成するために本発明は、室内熱交換器と室内膨張弁とを有する更新用の室内機と、圧縮機と室外熱交換器と室外膨張弁とを有する更新用の室外機と、前記室内機と前記室外機とをつなぐ液接続配管とガス接続配管とを備え、更新前の空気調和機に使用されていた既設液接続配管を前記液接続配管として再利用し、既設ガス接続配管を前記ガス接続配管として再利用する空気調和機において、前記既設ガス接続配管の一部区間もしくは全区間にて、並列に新規ガス接続配管を1本または複数本追加設置し、ガス冷媒を前記既設ガス接続配管と前記新規ガス接続配管のそれぞれに分けて流すことを特徴とする。   To achieve the above object, the present invention provides an update indoor unit having an indoor heat exchanger and an indoor expansion valve, an update outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor expansion valve, A liquid connection pipe and a gas connection pipe connecting the indoor unit and the outdoor unit, and the existing liquid connection pipe used in the air conditioner before renewal is reused as the liquid connection pipe. In the air conditioner that reuses as the gas connection pipe, one or more new gas connection pipes are installed in parallel in a part or all of the existing gas connection pipe, and a gas refrigerant is installed in the existing gas connection pipe. The gas flow is divided into a gas connection pipe and the new gas connection pipe.

本発明の他の特徴は、室内熱交換器と室内膨張弁とを有する更新用の室内機と、圧縮機と室外熱交換器と室外膨張弁とを有し、圧縮機吐出側と吸入側への接続を切替可能な高低圧配管と、前記圧縮機吸入側につながる低圧配管とを有する更新用室外機と、前記室内機のガス配管に前記室外機から引き出される高低圧ガス接続配管と低圧ガス接続配管とをつなぐ冷暖切替ユニットと、前記室内機と前記室外機をつなぐ液接続配管と、前記室内機と冷暖切替ユニットをつなぐ室内側ガス接続配管と、前記冷暖切替ユニットと前記室外機の高低圧配管をつなぐ高低圧ガス接続配管と、前記冷暖切替ユニットと前記室外機の低圧配管をつなぐ低圧ガス接続配管とを備えた冷暖同時マルチ型空気調和機において、更新前の空気調和機に使用された既設液接続配管を前記液接続配管として再利用し、既設ガス接続配管を高低圧ガス接続配管もしくは低圧ガス接続配管のいずれかとして再利用し、未施工の高低圧ガス接続配管もしくは未施工の低圧ガス接続配管を新規に施工することにある。   Another feature of the present invention includes an indoor unit for update having an indoor heat exchanger and an indoor expansion valve, a compressor, an outdoor heat exchanger, and an outdoor expansion valve, which are connected to the compressor discharge side and the suction side. An outdoor unit for renewal having a high-low pressure pipe that can be switched between, a low-pressure pipe connected to the compressor suction side, a high-low pressure gas connection pipe and a low-pressure gas drawn from the outdoor unit to the gas pipe of the indoor unit A cooling / heating switching unit that connects a connection pipe, a liquid connection piping that connects the indoor unit and the outdoor unit, an indoor gas connection piping that connects the indoor unit and the cooling / heating switching unit, and a cooling / heating switching unit and a height of the outdoor unit. In a cooling / heating simultaneous multi-type air conditioner comprising a high / low pressure gas connection pipe connecting low pressure pipes and a low pressure gas connection pipe connecting the cooling / heating switching unit and the low pressure piping of the outdoor unit, it is used for an air conditioner before renewal. Existing liquid The secondary pipe is reused as the liquid connection pipe, the existing gas connection pipe is reused as either the high / low pressure gas connection pipe or the low pressure gas connection pipe, and the undeveloped high / low pressure gas connection pipe or the undeveloped low pressure gas connection It is to construct a new pipe.

上記の空気調和機は、冷媒漏洩検知機構を備え、室内機ガス配管側に開閉機構を備え、冷媒漏洩が検知された場合、前記該当する室内機の室内膨張弁,前記開閉機構を閉止し、全冷媒漏洩を防止するものでもよい。   The air conditioner includes a refrigerant leakage detection mechanism, and includes an opening / closing mechanism on the indoor unit gas pipe side, and when refrigerant leakage is detected, closes the indoor expansion valve and the opening / closing mechanism of the corresponding indoor unit, It may be one that prevents all refrigerant leakage.

上記の空気調和機は、冷媒漏洩検知機構を備え、室内機ガス配管側の接続配管が既設ガス枝管と新規ガス枝管に分かれる場合、前記既設ガス枝管と前記新規ガス枝管のそれぞれに開閉機構を備え、冷媒漏洩が検知された場合、前記該当する室内機の室内膨張弁,既設ガス枝管の開閉機構,新規ガス枝管の開閉機構を閉止し、全冷媒漏洩を防止するものでもよい。   The air conditioner includes a refrigerant leakage detection mechanism, and when the connection pipe on the indoor unit gas pipe side is divided into an existing gas branch pipe and a new gas branch pipe, the existing gas branch pipe and the new gas branch pipe are respectively provided. An open / close mechanism is provided, and when a refrigerant leak is detected, the indoor expansion valve of the corresponding indoor unit, the open / close mechanism of the existing gas branch pipe, and the open / close mechanism of the new gas branch pipe are closed to prevent all refrigerant leaks. Good.

上記の冷暖同時マルチ型空気調和機は、冷媒漏洩時に、室内機の運転状態に応じて、室内機内の冷媒が流れる順番に室内膨張弁と開閉機構を閉止するものでもよい。   The cooling / heating simultaneous multi-type air conditioner may close the indoor expansion valve and the opening / closing mechanism in the order in which the refrigerant in the indoor unit flows in accordance with the operation state of the indoor unit when the refrigerant leaks.

上記の空気調和機は、更新前後で使用される冷媒が異なり、更新後の冷媒の方が、同一能力を確保する運転状態において、圧縮機吸込みガスの比体積が大きくなるものでもよい。   The air conditioner may be different in refrigerant used before and after the renewal, and the renewed refrigerant may have a larger specific volume of the compressor suction gas in an operation state in which the same capacity is ensured.

本発明の他の特徴は、室内熱交換器と室内膨張弁とを有する少なくとも1台の室内機と、圧縮機と室外熱交換器と室外膨張弁とを有し、前記圧縮機吐出側と吸入側への接続を切替可能な高低圧配管と、前記圧縮機吸入側につながる低圧配管とを有する少なくとも1台の室外機と、前記室内機のガス配管に前記室外機から引き出される高低圧ガス接続配管と低圧ガス接続配管をつなぐ冷暖切替ユニットと、前記室内機と前記室外機とをつなぐ液接続配管と、前記室内機と冷暖切替ユニットとをつなぐ室内側ガス接続配管と、前記冷暖切替ユニットと前記室外機の高低圧配管とをつなぐ高低圧ガス接続配管と、前記冷暖切替ユニットと前記室外ユニットの低圧配管とをつなぐ低圧ガス接続配管とを備え、前記冷暖切替ユニットの高低圧配管側と低圧配管側に開閉機構を有し、冷媒漏洩検知機構を備えた冷暖同時マルチ型空気調和機において、冷媒漏洩が検知された場合、前記該当する室内機の室内膨張弁,冷暖切替ユニットの開閉機構を閉止し、全冷媒漏洩を防止することにある。   Another feature of the present invention includes at least one indoor unit having an indoor heat exchanger and an indoor expansion valve, a compressor, an outdoor heat exchanger, and an outdoor expansion valve. At least one outdoor unit having a high / low pressure pipe that can be switched to the side of the compressor and a low pressure pipe connected to the compressor suction side, and a high / low pressure gas connection that is drawn from the outdoor unit to the gas pipe of the indoor unit A cooling / heating switching unit that connects a pipe and a low-pressure gas connection pipe, a liquid connection piping that connects the indoor unit and the outdoor unit, an indoor side gas connection pipe that connects the indoor unit and the cooling / heating switching unit, and the cooling / heating switching unit. A high and low pressure gas connection pipe connecting the high and low pressure pipes of the outdoor unit, and a low pressure gas connection pipe connecting the cooling / heating switching unit and the low pressure pipe of the outdoor unit. In a cooling / heating simultaneous multi-type air conditioner having an opening / closing mechanism on the pipe side and having a refrigerant leakage detection mechanism, when refrigerant leakage is detected, the indoor expansion valve of the corresponding indoor unit and the opening / closing mechanism of the cooling / heating switching unit The purpose is to prevent all refrigerant leakage.

上記の冷暖同時マルチ型空気調和機において、室内機および室外機が更新用であり、更新前の空気調和機に使用されていた既設液接続配管を前記液接続配管に再利用し、既設ガス接続配管を高低圧ガス接続配管もしくは低圧ガス接続配管のいずれかに再利用し、未施工の高低圧ガス接続配管もしくは未施工の低圧ガス接続配管を新規に施工するものでもよい。   In the cooling and heating simultaneous multi-type air conditioner, the indoor unit and the outdoor unit are for renewal, and the existing liquid connection pipe used in the air conditioner before renewal is reused for the liquid connection pipe, and the existing gas connection The pipe may be reused as either a high-low pressure gas connection pipe or a low-pressure gas connection pipe, and a non-constructed high-low pressure gas connection pipe or a non-constructed low-pressure gas connection pipe may be newly constructed.

上記の冷暖同時マルチ型空気調和機において、冷媒漏洩時に、室内機の運転状態に応じて室内機内の冷媒の一部を低圧ガス配管を介し室外機に回収するものでもよい。   In the cooling / heating simultaneous multi-type air conditioner, when refrigerant leaks, a part of the refrigerant in the indoor unit may be collected in the outdoor unit via the low-pressure gas pipe according to the operation state of the indoor unit.

上記の冷暖同時マルチ型空気調和機において、使用する冷媒が微燃性,可燃性或いは毒性を有するものでもよい。   In the cooling / heating simultaneous multi-type air conditioner, the refrigerant to be used may be slightly flammable, flammable or toxic.

本発明によれば、ガス比体積が大きい冷媒を使用する空調機の更新でも性能向上できる。また、可燃性冷媒を使用する空調機の室内機側で冷媒漏洩が発生した時に、冷媒漏洩を遮断できる。   According to the present invention, the performance can be improved even by renewing an air conditioner using a refrigerant having a large gas specific volume. Moreover, when a refrigerant leak occurs on the indoor unit side of an air conditioner that uses a flammable refrigerant, the refrigerant leak can be blocked.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は冷凍サイクルの一例であり、1台の室外機10aと3台の室内機40a,40b,40cから構成される。ここで、室外機接続台数は1台より多くても良く、室内機接続台数も3台より多くても少なくても1台でも良い。   FIG. 1 shows an example of a refrigeration cycle, which includes one outdoor unit 10a and three indoor units 40a, 40b, and 40c. Here, the number of outdoor unit connections may be greater than one, and the number of indoor unit connections may be greater than or less than three.

ここで、既設液接続配管30,既設ガス接続配管34,既設室内ガス枝管35a,35b,35cは、更新以前の空調機の冷媒物性に合わせた接続配管径である。一方新規に導入する空調機10aの冷媒はガス比体積が大きいため、冷房運転時、既設ガス接続配管34,既設室内ガス枝管35a,35b,35cだけでは圧力損失が増大し性能低下する。これを防ぐために、新規ガス接続配管37,新規室内ガス枝管38a,38b,38cを既設ガス接続配管34,既設室内ガス枝管35a,35b,35cと並列に施工し、ガス側の流路断面積を増やし性能向上させる。ここで、新規ガス接続配管37,新規室内ガス枝管38a,38b,38cはそれぞれ1本でもよく、細い配管を使用して複数本としてもよい。また、既設ガス接続配管34と新規ガス接続配管37の連結部はティーズでもよく、Y型の分岐配管を使用しても良い。同様に既設室内ガス枝管35a,35b,35cと新規室内ガス枝管38a,38b,38cの連結部もそれぞれT型分岐管でもよく、Y型の分岐配管を使用しても良い。なお、液冷媒の物性は、更新以前の空調機の液冷媒物性と通常大差ないが、比体積が大きくなる場合には、ガス配管と同様に新規に追加しても良い。また、施工手順は、新規ガス接続配管37,新規室内ガス枝管38a,38b,38cの施工を先に終わらせて、空調機10a,室内機40a,40b,40cを設置しても良い。   Here, the existing liquid connection pipe 30, the existing gas connection pipe 34, and the existing indoor gas branch pipes 35a, 35b, and 35c have connection pipe diameters that match the refrigerant physical properties of the air conditioner before the update. On the other hand, since the refrigerant of the newly introduced air conditioner 10a has a large gas specific volume, only the existing gas connection pipe 34 and the existing indoor gas branch pipes 35a, 35b, and 35c increase the pressure loss and lower the performance during the cooling operation. In order to prevent this, the new gas connection pipe 37 and the new indoor gas branch pipes 38a, 38b, and 38c are installed in parallel with the existing gas connection pipe 34 and the existing indoor gas branch pipes 35a, 35b, and 35c, and the gas-side flow path is cut off. Increase area and improve performance. Here, each of the new gas connection pipe 37 and the new indoor gas branch pipes 38a, 38b, 38c may be one, or a plurality of pipes may be used by using thin pipes. Further, the connecting portion between the existing gas connection pipe 34 and the new gas connection pipe 37 may be a teeth, or a Y-type branch pipe may be used. Similarly, the connecting portions of the existing indoor gas branch pipes 35a, 35b, and 35c and the new indoor gas branch pipes 38a, 38b, and 38c may be T-type branch pipes or Y-type branch pipes. The physical properties of the liquid refrigerant are usually not significantly different from the properties of the liquid refrigerant of the air conditioner before the update, but when the specific volume is increased, it may be newly added in the same manner as the gas pipe. In the construction procedure, the air conditioner 10a and the indoor units 40a, 40b, and 40c may be installed by finishing the construction of the new gas connection pipe 37 and the new indoor gas branch pipes 38a, 38b, and 38c first.

次に、室外機10a,室内機40a,40b,40cが冷房運転時の冷媒循環を説明する。室外機10aについて、圧縮機11aと室外ファン19aを運転して、室外膨張弁15aを全開にして、四方弁13aは冷房運転側である。ここで四方弁13aの冷房運転側とは圧縮機吐出側が室外熱交換器14aとつながる向きを示す。逆に四方弁13aの暖房運転側とは圧縮機吐出側が四方弁阻止弁側配管22aとつながる向きを示す。以下この表現を用いることとする。圧縮機11aで圧縮された高圧ガス冷媒は、四方弁13aにより室外熱交換器14aへ送られ、室外空気と熱交換し凝縮して高圧液冷媒となり、室外膨張弁15a,液阻止弁31a,既設液接続配管30を通り室内機40a,40b,40cそれぞれに送られる。送られた液冷媒は室内膨張弁42a,42b,42cでそれぞれ絞られ、室内空気と熱交換し蒸発して低圧ガス冷媒となる。各室内機から出た低圧ガス冷媒は、一部は既設室内ガス枝管35a,35b,35cをそれぞれ通り合流し、既設ガス接続配管34を経てガス阻止弁32aへ送られ、残りは新規室内ガス枝管38a,38b,38cをそれぞれ通り合流し、新規ガス接続配管37を経てガス阻止弁32手前で既設ガス接続配管34に合流しガス阻止弁32aへ送られる。あるいは、新規ガス接続配管37をガス阻止弁32につなぎ、既設ガス接続配管34を新規ガス接続配管37に合流してもよい。送られた低圧ガス冷媒は四方弁阻止弁側配管22a,四方弁13a,四方弁吸入側配管23a,アキュムレータ20aを通り圧縮機11aへ送られ再び循環する。ここでアキュムレータ20aは有っても無くても良い。   Next, the refrigerant circulation during the cooling operation of the outdoor unit 10a and the indoor units 40a, 40b, and 40c will be described. For the outdoor unit 10a, the compressor 11a and the outdoor fan 19a are operated to fully open the outdoor expansion valve 15a, and the four-way valve 13a is on the cooling operation side. Here, the cooling operation side of the four-way valve 13a indicates a direction in which the compressor discharge side is connected to the outdoor heat exchanger 14a. Conversely, the heating operation side of the four-way valve 13a indicates a direction in which the compressor discharge side is connected to the four-way valve blocking valve side pipe 22a. Hereinafter, this expression will be used. The high-pressure gas refrigerant compressed by the compressor 11a is sent to the outdoor heat exchanger 14a by the four-way valve 13a, exchanges heat with the outdoor air and condenses to become a high-pressure liquid refrigerant, the outdoor expansion valve 15a, the liquid blocking valve 31a, and the existing It passes through the liquid connection pipe 30 and is sent to each of the indoor units 40a, 40b, and 40c. The sent liquid refrigerant is throttled by the indoor expansion valves 42a, 42b, and 42c, exchanges heat with room air, and evaporates to become a low-pressure gas refrigerant. A part of the low-pressure gas refrigerant discharged from each indoor unit passes through the existing indoor gas branch pipes 35a, 35b, and 35c, is sent to the gas blocking valve 32a through the existing gas connection pipe 34, and the rest is a new indoor gas. The branch pipes 38a, 38b, and 38c are joined together, joined through the new gas connection pipe 37, joined to the existing gas connection pipe 34 before the gas prevention valve 32, and sent to the gas prevention valve 32a. Alternatively, the new gas connection pipe 37 may be connected to the gas blocking valve 32 and the existing gas connection pipe 34 may be joined to the new gas connection pipe 37. The sent low-pressure gas refrigerant passes through the four-way valve blocking valve side pipe 22a, the four-way valve 13a, the four-way valve suction side pipe 23a, and the accumulator 20a and is circulated again to the compressor 11a. Here, the accumulator 20a may or may not be present.

次に、室外機10a,室内機40a,40b,40cが暖房運転時の冷媒循環を説明する。室外機10aについて、圧縮機11aは運転、室外膨張弁15aは開、室外ファン19aは運転、四方弁13aは暖房運転側である。圧縮機11aで圧縮された高圧ガス冷媒は、四方弁13aにより四方弁阻止弁側配管22a,ガス阻止弁32aへ送られる。送られた高圧ガス冷媒の一部は既設ガス接続配管34を通り既設室内ガス枝管35a,35b,35cへそれぞれ分流し室内機40a,40b,40cそれぞれに送られ、残りは新規ガス接続配管37を通り新規室内ガス枝管38a,38b,38cへそれぞれ分流し、室内機手前で既設室内ガス枝管35a,35b,35cに合流し室内機40a,40b,40cそれぞれに送られる。送られた高圧ガス冷媒は室内空気と熱交換し凝縮して高圧液冷媒となり、室内膨張弁42a,42b,42c,既設液接続配管30,液阻止弁31aを通り室外膨張弁15aへ送られる。送られた液冷媒は室外膨張弁15aで絞られ、室外熱交換器14aにて室外空気と熱交換し蒸発して低圧ガス冷媒となり、四方弁13a,四方弁吸入側配管23a,アキュムレータ20aを通り圧縮機11aへ送られ再び循環する。暖房運転側ではガス接続配管内の冷媒は高圧で比体積が小さい為圧力損失の影響も小さく、新規接続配管による性能向上の効果も僅かである。   Next, the refrigerant circulation during the heating operation of the outdoor unit 10a and the indoor units 40a, 40b, and 40c will be described. Regarding the outdoor unit 10a, the compressor 11a is operated, the outdoor expansion valve 15a is opened, the outdoor fan 19a is operated, and the four-way valve 13a is on the heating operation side. The high-pressure gas refrigerant compressed by the compressor 11a is sent to the four-way valve blocking valve side pipe 22a and the gas blocking valve 32a by the four-way valve 13a. Part of the high-pressure gas refrigerant sent passes through the existing gas connection pipe 34 to the existing indoor gas branch pipes 35a, 35b, and 35c and is sent to the indoor units 40a, 40b, and 40c, respectively, and the rest is a new gas connection pipe 37. And are branched to the new indoor gas branch pipes 38a, 38b, and 38c, joined to the existing indoor gas branch pipes 35a, 35b, and 35c before the indoor unit, and sent to the indoor units 40a, 40b, and 40c, respectively. The sent high-pressure gas refrigerant exchanges heat with room air and condenses to become high-pressure liquid refrigerant, and is sent to the outdoor expansion valve 15a through the indoor expansion valves 42a, 42b, 42c, the existing liquid connection pipe 30, and the liquid blocking valve 31a. The liquid refrigerant sent is throttled by the outdoor expansion valve 15a, exchanges heat with outdoor air in the outdoor heat exchanger 14a, evaporates and becomes low-pressure gas refrigerant, and passes through the four-way valve 13a, the four-way valve suction side pipe 23a, and the accumulator 20a. It is sent to the compressor 11a and circulates again. On the heating operation side, the refrigerant in the gas connection pipe has a high pressure and a small specific volume, so the influence of pressure loss is small, and the performance improvement effect by the new connection pipe is small.

図2は冷凍サイクルの一例であり、図1に対し新規室内ガス枝管38a,38b,38cが無く、新規ガス接続配管37のみを既設ガス接続配管34と並列に施工した例である。新規室内ガス枝管施工が建物の天井裏に相当し大幅な時間やコストがかかる場合や、室内ガス枝管の長さが短く性能への影響が小さい場合は、既設ガス接続配管34の区間のみを並列に施工することにより、圧力損失による性能低下を抑制することが可能となる。また、既設ガス接続配管34も一部天井裏に入り施工が困難な場合には、施工できる区間のみで新規ガス接続配管37を並列施工してもよい。同様に、天井裏での作業が一部区間で可能な場合には、既設室内ガス枝管35a,35b,35cと並列に、施工できる区間のみで新規室内ガス枝管38a,38b,38cを並列施工してもよい。   FIG. 2 shows an example of the refrigeration cycle. In FIG. 2, no new indoor gas branch pipes 38 a, 38 b, 38 c are provided, and only the new gas connection pipe 37 is constructed in parallel with the existing gas connection pipe 34. If the construction of a new indoor gas branch pipe is equivalent to the ceiling of the building and takes a lot of time and cost, or if the length of the indoor gas branch pipe is short and the effect on performance is small, only the section of the existing gas connection pipe 34 It is possible to suppress the performance degradation due to the pressure loss. In addition, when the existing gas connection pipe 34 partially enters the back of the ceiling and construction is difficult, the new gas connection pipe 37 may be installed in parallel only in a section where the construction is possible. Similarly, when the work behind the ceiling is possible in a part of the section, the new indoor gas branch pipes 38a, 38b, and 38c are arranged in parallel only in the section that can be constructed in parallel with the existing indoor gas branch pipes 35a, 35b, and 35c. You may construct.

図3は冷凍サイクルの一例であり、図1に対し室外機10bを追加した例である。室外機接続台数は2台より多くても良い。室外機10aが冷房運転の場合は、四方弁13a,13bともに冷房運転側である。また、室外機10aが暖房運転の場合は、四方弁13a,13bともに暖房運転側である。四方弁13a,13bは同じ運転側となるように切替える。室外機が停止していても同様である。四方弁の向きを揃えることにより、室外機10a,室外機10bの両方が運転時、冷媒の流れは同じとなる。例えば室外機10a,10bが共に冷房運転時の場合、低圧ガス冷媒の流れは、既設ガス接続配管34を経由するものは、一部は既設室外ガス分岐配管33aを通り室外機10aに送られ、残りは既設室外ガス分岐配管33bを通り室外機10bに送られる。新規ガス接続配管37を経由するものは、一部は新規室外ガス分岐配管36aを通り室外機10aに送られ、残りは新規室外ガス分岐配管36bを通り室外機10bに送られる。ここで図2と同様に、新規配管の一部の施工が困難な場合には、施工できる区間のみを並列施工してもよい。また、図3では既設室外ガス分岐配管33と新規室外ガス分岐配管36を室外機毎に2個あるガス阻止弁32にそれぞれ接続し、それぞれのガス阻止弁32は室外機内部で合流している。これにより、現地での配管施工工数を低減でき、作業を簡略化できる。但し室外機にガス阻止弁個数が増えるため、原価を考慮し図1,図2のように室外機外の配管で接続しても良い。   FIG. 3 is an example of a refrigeration cycle, and is an example in which an outdoor unit 10b is added to FIG. The number of outdoor units connected may be more than two. When the outdoor unit 10a is in the cooling operation, the four-way valves 13a and 13b are on the cooling operation side. When the outdoor unit 10a is in the heating operation, both the four-way valves 13a and 13b are on the heating operation side. The four-way valves 13a and 13b are switched so as to be on the same operation side. The same applies when the outdoor unit is stopped. By aligning the directions of the four-way valves, the refrigerant flow is the same when both the outdoor unit 10a and the outdoor unit 10b are in operation. For example, when both the outdoor units 10a and 10b are in the cooling operation, the flow of the low-pressure gas refrigerant is partly sent to the outdoor unit 10a through the existing outdoor gas branch pipe 33a through the existing gas connection pipe 34. The rest passes through the existing outdoor gas branch pipe 33b and is sent to the outdoor unit 10b. A part that passes through the new gas connection pipe 37 is sent to the outdoor unit 10a through the new outdoor gas branch pipe 36a, and the rest is sent to the outdoor unit 10b through the new outdoor gas branch pipe 36b. Here, similarly to FIG. 2, when it is difficult to construct a part of the new pipe, only the sections that can be constructed may be constructed in parallel. In FIG. 3, the existing outdoor gas branch pipe 33 and the new outdoor gas branch pipe 36 are connected to two gas blocking valves 32 for each outdoor unit, and the respective gas blocking valves 32 are merged inside the outdoor unit. . Thereby, the piping construction man-hour at a site can be reduced and work can be simplified. However, since the number of gas blocking valves increases in the outdoor unit, it may be connected by piping outside the outdoor unit as shown in FIGS.

図4は冷凍サイクルの一例であり、図1に対し室外機10aが冷暖同時運転可能とし、室内機のガス管にそれぞれ冷暖切替ユニットを設置した例である。なお、この冷暖同時マルチは、液管,低圧ガス管,高低圧ガス管の計3本で構成され、全冷房運転時には高低圧ガス管を低圧ガス流路として使用するのを特徴とする。更に室外機には、高低圧ガス管の高低圧を切替える機構、例えば四方弁,三方弁,電磁弁などを有することを特徴とする。図4では四方弁を使用した例を示すが、三方弁でも、電磁弁でも良い。   FIG. 4 shows an example of the refrigeration cycle, and is an example in which the outdoor unit 10a can be operated simultaneously with cooling and heating, and a cooling / heating switching unit is installed in each gas pipe of the indoor unit. The simultaneous cooling and heating multi is composed of a total of three liquid pipes, low pressure gas pipes, and high and low pressure gas pipes, and is characterized in that the high and low pressure gas pipes are used as low pressure gas flow paths during the cooling operation. Further, the outdoor unit has a mechanism for switching between high and low pressures of the high and low pressure gas pipe, for example, a four-way valve, a three-way valve, a solenoid valve, and the like. Although FIG. 4 shows an example using a four-way valve, a three-way valve or an electromagnetic valve may be used.

ここで、既設液接続配管30,既設ガス接続配管34,既設室内ガス枝管35a,35b,35cは、更新以前の空調機の冷媒物性に合わせた接続配管径であり、新規に導入する空調機10aの冷媒はガス比体積が大きいため、冷房運転時に既設ガス接続配管34だけでは圧力損失が増大し性能低下する。しかし、冷暖同時マルチ機の特徴として、全冷房時は高低圧ガス管も低圧ガス流路として利用する。つまり、新規ガス接続配管37を、低圧ガス阻止弁39aと冷暖切替ユニット50a,50b,50cの低圧側開閉機構52a,52b,52cの間に施工し、冷房時は低圧側開閉機構52a,52b,52cを開くことにより、新規ガス接続配管37も低圧ガス流路として使用できる。これによりガス管の流路断面積を増やし、冷房性能が向上できる。なお、図4では既設ガス接続配管34を高低圧ガス阻止弁32aに、新規ガス接続配管37を低圧ガス阻止弁39aに接続しているが、新規施工する配管径に応じて、既設ガス接続配管34を低圧ガス阻止弁39aに、新規ガス接続配管37を高低圧ガス阻止弁32aに接続してもよい。この場合、高低圧ガス管と低圧ガス管を冷暖切替ユニット50a,50b,50cにつなぎ間違えないように注意する必要がある。また、これまでの例と同様に、新規ガス接続配管37の本数は1本でもよく、細い配管を使用して複数本としてもよい。   Here, the existing liquid connection pipe 30, the existing gas connection pipe 34, and the existing indoor gas branch pipes 35a, 35b, and 35c have connection pipe diameters that match the refrigerant physical properties of the air conditioner before the update, and are newly introduced air conditioners. Since the refrigerant of 10a has a large gas specific volume, the pressure loss increases and performance deteriorates only with the existing gas connection pipe 34 during cooling operation. However, as a feature of the simultaneous cooling and heating multi-machine, the high and low pressure gas pipes are also used as the low pressure gas flow path during the entire cooling. That is, the new gas connection pipe 37 is constructed between the low pressure gas blocking valve 39a and the low pressure side opening / closing mechanisms 52a, 52b, 52c of the cooling / heating switching units 50a, 50b, 50c, and during the cooling, the low pressure side opening / closing mechanisms 52a, 52b, By opening 52c, the new gas connection pipe 37 can also be used as a low pressure gas flow path. Thereby, the flow-path cross-sectional area of a gas pipe can be increased and cooling performance can be improved. In FIG. 4, the existing gas connection pipe 34 is connected to the high / low pressure gas blocking valve 32a and the new gas connection pipe 37 is connected to the low pressure gas blocking valve 39a. 34 may be connected to the low pressure gas blocking valve 39a, and the new gas connection pipe 37 may be connected to the high and low pressure gas blocking valve 32a. In this case, it is necessary to be careful not to make a mistake in connecting the high / low pressure gas pipe and the low pressure gas pipe to the cooling / heating switching units 50a, 50b, 50c. As in the previous examples, the number of new gas connection pipes 37 may be one, or a plurality of thin gas pipes may be used.

次に、室外機10aが冷房運転、室内機40a,40b,40cが冷房運転の冷媒循環を説明する。室外機10aについて、圧縮機11aと室外ファン19aを運転して、室外膨張弁15a,18aは全開にして、四方弁13a,16aは冷房運転側、冷暖切替ユニット50a,50b,50cの高圧側開閉機構51a,51b,51c,低圧側開閉機構52a,52b,52cは共に開である。圧縮機11aで圧縮された高圧ガス冷媒は、四方弁13a,16aによりそれぞれ室外熱交換器14a,17aへ送られ、室外空気と熱交換し凝縮して高圧液冷媒となり、室外膨張弁15a,18aを通って合流し、液阻止弁31a,既設液接続配管30を通り室内機40a,40b,40cそれぞれに送られる。送られた液冷媒は室内膨張弁42a,42b,42cで絞られ、室内空気と熱交換し蒸発して低圧ガス冷媒となる。各室内機から出た低圧ガス冷媒は、冷暖切替ユニット50a,50b,50cへ送られる。ここで、それぞれの冷媒の一部は高圧側開閉機構51a,51b,51cを通り、既設ガス接続配管34を経て高低圧ガス阻止弁32aへ送られ、四方弁阻止弁側配管22a,四方弁13a,四方弁吸入側配管23a,アキュムレータ20aを通り圧縮機11aへ送られ再び循環する。また冷暖切替ユニット50a,50b,50cへ送られた冷媒の残りは低圧側開閉機構52a,52b,52cを通り、新規ガス接続配管37,低圧ガス阻止弁39a,アキュムレータ20aを通り圧縮機11aへ送られ再び循環する。   Next, refrigerant circulation in which the outdoor unit 10a is in the cooling operation and the indoor units 40a, 40b, and 40c are in the cooling operation will be described. For the outdoor unit 10a, the compressor 11a and the outdoor fan 19a are operated, the outdoor expansion valves 15a and 18a are fully opened, the four-way valves 13a and 16a are on the cooling operation side, and the high-pressure side opening and closing of the cooling / heating switching units 50a, 50b, and 50c. The mechanisms 51a, 51b, 51c and the low-pressure side opening / closing mechanisms 52a, 52b, 52c are all open. The high-pressure gas refrigerant compressed by the compressor 11a is sent to the outdoor heat exchangers 14a and 17a by the four-way valves 13a and 16a, respectively, exchanges heat with the outdoor air, condenses into high-pressure liquid refrigerant, and the outdoor expansion valves 15a and 18a. Then, the fluid flows through the liquid blocking valve 31a and the existing liquid connection pipe 30 and is sent to the indoor units 40a, 40b, and 40c. The sent liquid refrigerant is throttled by the indoor expansion valves 42a, 42b, and 42c, exchanges heat with room air and evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant discharged from each indoor unit is sent to the cooling / heating switching units 50a, 50b, 50c. Here, a part of each refrigerant passes through the high-pressure side opening / closing mechanisms 51a, 51b, 51c, is sent to the high / low pressure gas blocking valve 32a through the existing gas connection piping 34, and the four-way valve blocking valve side piping 22a, the four-way valve 13a. The four-way valve suction side pipe 23a and the accumulator 20a are sent to the compressor 11a and circulate again. The remainder of the refrigerant sent to the cooling / heating switching units 50a, 50b, 50c passes through the low pressure side opening / closing mechanisms 52a, 52b, 52c, and passes through the new gas connection pipe 37, the low pressure gas blocking valve 39a, and the accumulator 20a to the compressor 11a. Is circulated again.

次に、室外機10aが冷房運転または暖房運転、室内機40a,40b,40cが冷房運転と暖房運転が混在した場合の冷媒循環を説明する。室外機10aについて、四方弁13aは暖房運転に切り替わり、既設ガス接続配管34に高圧ガス冷媒を供給する。また、新規ガス接続配管37は圧縮機吸入側に直結し、低圧に引かれる。ここで、高圧ガス冷媒を室内機に供給する配管は、既設ガス接続配管34のみとなり、低圧ガス管を供給する配管は、新規ガス接続配管37のみとなる。しかし、高圧ガス冷媒は冷媒の物性により比体積は小さくなり圧力損失の影響を受けにくく、既設ガス接続配管34のみでも性能上問題はない。一方、低圧ガスは、更新される冷媒の物性を考慮した配管径を選択できる為、新規ガス接続配管37でも問題ない。また、室内機の冷房運転や暖房運転が混在する場合の冷房負荷は小さく、冷房能力も定格能力まで必要でないことが多く、既設ガス接続配管34の配管径でも冷暖混在期の冷房能力がまかなえる場合には、既設ガス接続配管34を低圧ガス阻止弁39aに、新規ガス接続配管37を高低圧ガス阻止弁32aに接続してもよい。   Next, refrigerant circulation when the outdoor unit 10a is in cooling operation or heating operation and the indoor units 40a, 40b, and 40c are mixed in cooling operation and heating operation will be described. For the outdoor unit 10a, the four-way valve 13a switches to the heating operation and supplies the high-pressure gas refrigerant to the existing gas connection pipe 34. Further, the new gas connection pipe 37 is directly connected to the compressor suction side and pulled to a low pressure. Here, the pipe for supplying the high-pressure gas refrigerant to the indoor unit is only the existing gas connection pipe 34, and the pipe for supplying the low-pressure gas pipe is only the new gas connection pipe 37. However, the specific volume of the high-pressure gas refrigerant is small due to the physical properties of the refrigerant and is not easily affected by pressure loss, and there is no problem in performance even with the existing gas connection pipe 34 alone. On the other hand, since the low-pressure gas can select a pipe diameter considering the physical properties of the refrigerant to be renewed, there is no problem even with the new gas connection pipe 37. Also, the cooling load when the cooling operation or heating operation of the indoor unit is mixed is small, the cooling capacity is often not required up to the rated capacity, and the cooling capacity in the cooling / heating mixed period can be provided even with the pipe diameter of the existing gas connection pipe 34 Alternatively, the existing gas connection pipe 34 may be connected to the low-pressure gas blocking valve 39a, and the new gas connection pipe 37 may be connected to the high-low pressure gas blocking valve 32a.

四方弁16aは室内冷暖負荷に応じて冷房運転または暖房運転に切り替わる。これにより、室外機及び液接続配管内の冷媒循環方向は変化するが、高低圧ガス配管,低圧ガス配管の冷媒循環方向は影響は変化しない。また、冷暖切替ユニットは室内が暖房運転か冷房運転か停止かによって高圧側開閉機構と低圧側開閉機構の動作が変化する。例えば、室内機40aが暖房運転する場合、高圧側開閉機構51aを開、低圧側開閉機構52aを閉とする。この電磁弁操作により、既設ガス接続配管34に送られた高圧ガス冷媒が、新規ガス接続配管37に漏れること無く室内機40aに送られ、暖房運転可能となる。また、室内機40bが冷房運転する場合は、高圧側開閉機構51bを閉、低圧側開閉機構52bを開とする。この電磁弁操作と、室内膨張弁42bを開くことにより液冷媒が減圧して蒸発し、室内空気と熱交換して低圧ガス冷媒となる。そして、低圧ガス冷媒は低圧側開閉機構52bを通り新規ガス接続配管37へ送られる。また、室内機40cが停止する場合は、冷媒を室内機に流さないために、高圧側開閉機構51cを閉、室内膨張弁42cを閉とする。低圧側開閉機構52cは閉でも開でもよい。   The four-way valve 16a is switched to a cooling operation or a heating operation according to the indoor cooling / heating load. Thereby, the refrigerant circulation direction in the outdoor unit and the liquid connection pipe changes, but the influence does not change in the refrigerant circulation direction of the high-low pressure gas pipe and the low-pressure gas pipe. In the cooling / heating switching unit, the operations of the high-pressure side opening / closing mechanism and the low-pressure side opening / closing mechanism vary depending on whether the room is in a heating operation, a cooling operation, or a stop. For example, when the indoor unit 40a performs a heating operation, the high-pressure side opening / closing mechanism 51a is opened and the low-pressure side opening / closing mechanism 52a is closed. By this solenoid valve operation, the high-pressure gas refrigerant sent to the existing gas connection pipe 34 is sent to the indoor unit 40a without leaking to the new gas connection pipe 37, and heating operation is possible. When the indoor unit 40b performs a cooling operation, the high-pressure side opening / closing mechanism 51b is closed and the low-pressure side opening / closing mechanism 52b is opened. By operating this solenoid valve and opening the indoor expansion valve 42b, the liquid refrigerant is depressurized and evaporated, and exchanges heat with room air to become a low-pressure gas refrigerant. Then, the low-pressure gas refrigerant is sent to the new gas connection pipe 37 through the low-pressure side opening / closing mechanism 52b. When the indoor unit 40c stops, the high-pressure side opening / closing mechanism 51c is closed and the indoor expansion valve 42c is closed so that the refrigerant does not flow to the indoor unit. The low-pressure side opening / closing mechanism 52c may be closed or open.

図5は冷凍サイクルの一例であり、図4に対し冷暖切替ユニット50a,50b,50cの高圧側開閉機構51a,51b,51cを取り外した例である。室内機を個別に冷暖同時運転させる必要がなく全冷房又は全暖房のみの場合、原価を安くするのに適している。全冷房の場合、低圧側開閉機構52a,52b,52cを開とすることにより、室内機を通過した低圧ガス冷媒の一部は新規ガス接続配管37を通り室外機に送られ、残りは既設ガス接続配管34を通り室外機に送られる。これにより、ガス配管の流路断面積を増やし、冷房性能が向上できる。全暖房の場合、低圧側開閉機構52a,52b,52cを閉とすることにより、新規ガス接続配管37は閉塞され、室外機から吐出された高圧ガス冷媒は既設ガス接続配管34を通り室内機に送られる。室外機は冷暖同時マルチを設置することにより、冷暖切替ユニット50a,50b,50cをそれぞれ認識でき、冷暖による低圧側開閉機構52a,52b,52cの切替えも実施可能となる。図1のような、標準機を設置すると、冷暖切替ユニットを認識できるように製品開発時に作りこまねばならず、製品開発のコストと時間がかかるため、好ましくない。   FIG. 5 shows an example of the refrigeration cycle, in which the high-pressure side opening / closing mechanisms 51a, 51b, 51c of the cooling / heating switching units 50a, 50b, 50c are removed from FIG. It is not necessary to operate the indoor units individually at the same time, and in the case of only cooling or heating only, it is suitable for reducing the cost. In the case of all cooling, by opening the low-pressure side opening / closing mechanisms 52a, 52b, 52c, a part of the low-pressure gas refrigerant that has passed through the indoor unit is sent to the outdoor unit through the new gas connection pipe 37, and the rest is the existing gas It passes through the connecting pipe 34 and is sent to the outdoor unit. Thereby, the flow-path cross-sectional area of gas piping can be increased, and cooling performance can be improved. In the case of all heating, by closing the low pressure side opening / closing mechanisms 52a, 52b, 52c, the new gas connection pipe 37 is closed, and the high pressure gas refrigerant discharged from the outdoor unit passes through the existing gas connection pipe 34 to the indoor unit. Sent. The outdoor unit can recognize the cooling / heating switching units 50a, 50b, and 50c by installing the simultaneous cooling and heating multi, and can switch the low-pressure side opening / closing mechanisms 52a, 52b, and 52c by cooling and heating. When a standard machine as shown in FIG. 1 is installed, it is not preferable because it must be made at the time of product development so that the cooling / heating switching unit can be recognized, and the cost and time of product development are required.

図6は冷凍サイクルの一例であり、図5に対し室外機10bを追加した例である。室外機接続台数は2台より多くても良い。室外機が全冷房運転の場合は、四方弁13a,13bともに冷房運転側である。また、室外機が冷暖同時運転,全暖房運転の場合は、四方弁13a,13bともに暖房運転側である。四方弁13a,13bは同じ運転側となるように切替える。室外機が停止していても同様である。例えば室外機10a,10bが共に冷房運転時の場合、低圧ガス冷媒の流れは、既設ガス接続配管34を経由するものは、一部は既設室外ガス分岐配管33aを通り室外機10aに送られ、残りは既設室外ガス分岐配管33bを通り室外機10bに送られる。新規ガス接続配管37を経由するものは、一部は新規室外ガス分岐配管36aを通り室外機10aに送られ、残りは新規室外ガス分岐配管36bを通り室外機10bに送られる。このように、冷暖同時マルチの室外機が複数台でも、全冷房運転時の性能を向上させる。また、室外機が冷暖同時運転,全暖房運転の場合は、室外機からの高圧ガス冷媒は新規室外ガス分岐配管36a,36bそれぞれから送られ新規ガス接続配管37を経由し室内機に送られる。室内機から室外機に戻る低圧ガス冷媒は、既設ガス接続配管34を経由し一部は既設室外ガス分岐配管33aを通り室外機10aに送られ、残りは既設室外ガス分岐配管33bを通り室外機10bに送られる。高圧ガス冷媒を室内機に供給する配管は、既設ガス接続配管34のみとなり、低圧ガス配管を供給する配管は、新規ガス接続配管37のみとなる。しかし、高圧ガスは冷媒の物性により比体積は小さくなり圧力損失の影響を受けにくく、既設ガス接続配管34のみでも性能上問題はない。一方、低圧ガスは、更新される冷媒の物性を考慮した配管径を選択できる為、新規ガス接続配管37でも問題ない。更に、冷暖同時室外機の四方弁13a,13bの熱交側配管はキャピラリチューブを介して四方弁吸入側配管23a,23bにつながり、擬似的に三方弁としている。これにより室外熱交換器14a,14bは分割されず、四方弁16a,16bにより高低圧に切替えられる。室外熱交換器を分割しないことにより、室外熱交換器のガスヘッダを分割する必要が無く、液側ディストリビュータ,室外膨張弁を1個に集約することが可能となり、製造原価が低減できる。   FIG. 6 is an example of a refrigeration cycle, and is an example in which an outdoor unit 10b is added to FIG. The number of outdoor units connected may be more than two. When the outdoor unit is in the cooling only operation, both the four-way valves 13a and 13b are on the cooling operation side. Further, when the outdoor unit is in the cooling / heating simultaneous operation and the heating only operation, both the four-way valves 13a and 13b are on the heating operation side. The four-way valves 13a and 13b are switched so as to be on the same operation side. The same applies when the outdoor unit is stopped. For example, when both the outdoor units 10a and 10b are in the cooling operation, the flow of the low-pressure gas refrigerant is partly sent to the outdoor unit 10a through the existing outdoor gas branch pipe 33a through the existing gas connection pipe 34. The rest passes through the existing outdoor gas branch pipe 33b and is sent to the outdoor unit 10b. A part that passes through the new gas connection pipe 37 is sent to the outdoor unit 10a through the new outdoor gas branch pipe 36a, and the rest is sent to the outdoor unit 10b through the new outdoor gas branch pipe 36b. In this way, even when there are a plurality of outdoor units with simultaneous cooling and heating, the performance during the cooling operation is improved. Further, when the outdoor unit is in the cooling / heating simultaneous operation and the full heating operation, the high-pressure gas refrigerant from the outdoor unit is sent from each of the new outdoor gas branch pipes 36 a and 36 b and sent to the indoor unit through the new gas connection pipe 37. A part of the low-pressure gas refrigerant returning from the indoor unit to the outdoor unit passes through the existing gas connection pipe 34 and is sent to the outdoor unit 10a through the existing outdoor gas branch pipe 33a, and the rest passes through the existing outdoor gas branch pipe 33b. 10b. The pipe for supplying the high-pressure gas refrigerant to the indoor unit is only the existing gas connection pipe 34, and the pipe for supplying the low-pressure gas pipe is only the new gas connection pipe 37. However, the specific volume of the high-pressure gas is small due to the physical properties of the refrigerant and is not easily affected by pressure loss, and there is no problem in performance even with the existing gas connection pipe 34 alone. On the other hand, since the low-pressure gas can select a pipe diameter considering the physical properties of the refrigerant to be renewed, there is no problem even with the new gas connection pipe 37. Further, the heat exchange side pipes of the four-way valves 13a and 13b of the simultaneous cooling and heating outdoor unit are connected to the four-way valve suction side pipes 23a and 23b via the capillary tubes, and are formed as pseudo three-way valves. As a result, the outdoor heat exchangers 14a and 14b are not divided and are switched to high and low pressure by the four-way valves 16a and 16b. By not dividing the outdoor heat exchanger, it is not necessary to divide the gas header of the outdoor heat exchanger, and it is possible to consolidate the liquid side distributor and the outdoor expansion valve into one, thereby reducing the manufacturing cost.

図7は冷凍サイクルの一例であり、図1に対し冷暖切替ユニット50a,50b,50cを設置し、居室61a,61b,61cそれぞれに冷媒漏洩検知器62a,62b,62cを設置した例である。ガス管側に切替ユニットを設置することにより、循環冷媒が全て、室内機が設置された居室に漏洩することを防ぎ、火災や窒息,毒性による疾患を未然に防ぐことができる。   FIG. 7 shows an example of the refrigeration cycle. In FIG. 7, cooling / heating switching units 50a, 50b, and 50c are installed, and refrigerant leakage detectors 62a, 62b, and 62c are installed in the living rooms 61a, 61b, and 61c, respectively. By installing the switching unit on the gas pipe side, it is possible to prevent all circulating refrigerant from leaking into the room where the indoor unit is installed, and to prevent diseases due to fire, suffocation, and toxicity.

なお、冷暖切替ユニット50a,50bのように、既設室内ガス枝管35a,35b,新規室内ガス枝管38a,38bの双方の流れを閉止するように開閉機構51a,51bをそれぞれ設置してもよく、冷暖切替ユニット50cのように、室内ガス枝管を閉止するように開閉機構51cを設置してもよい。   In addition, like the cooling / heating switching units 50a and 50b, the opening / closing mechanisms 51a and 51b may be respectively installed so as to close the flows of the existing indoor gas branch pipes 35a and 35b and the new indoor gas branch pipes 38a and 38b. The open / close mechanism 51c may be installed so as to close the indoor gas branch pipe as in the cooling / heating switching unit 50c.

冷媒漏洩が検知されない場合の例を居室61aで示す。開閉機構51aはそれぞれ開、室内膨張弁は運転状態に応じて開閉が変わる。次に冷媒漏洩が検知された場合の例を居室61b,61cで示す。冷媒漏洩が検知されたことにより、室内機40bの室内膨張弁42b,開閉機構51bは全て閉とする。同様に室内機40cの室内膨張弁42c,開閉機構51cは全て閉とする。なお、開閉機構は全閉とするために、双方向電磁弁を使用してもよい。また、開閉機構の冷媒漏洩量が少ない場合には膨張弁を使用してもよい。   An example of the case where refrigerant leakage is not detected is shown in the room 61a. Each of the opening / closing mechanisms 51a is opened, and the indoor expansion valve is opened / closed depending on the operating state. Next, an example in the case where refrigerant leakage is detected is shown by living rooms 61b and 61c. When the refrigerant leakage is detected, the indoor expansion valve 42b and the opening / closing mechanism 51b of the indoor unit 40b are all closed. Similarly, the indoor expansion valve 42c and the opening / closing mechanism 51c of the indoor unit 40c are all closed. In order to make the opening / closing mechanism fully closed, a bidirectional solenoid valve may be used. Further, an expansion valve may be used when the refrigerant leakage amount of the opening / closing mechanism is small.

また、居室が大空間で、例えば室内機40a,40b,40c全て含む場合は、室内機40a,40b,40cの室内膨張弁42a,42b,42c,開閉機構51a,51b,51cは全て閉とする。   When the living room is a large space and includes all of the indoor units 40a, 40b, 40c, for example, the indoor expansion valves 42a, 42b, 42c and the opening / closing mechanisms 51a, 51b, 51c of the indoor units 40a, 40b, 40c are all closed. .

更に、冷媒漏洩検知を冷凍サイクル運転状態より予測しても良い。運転中に冷凍サイクルが冷媒過少に陥り、原因が冷媒漏洩以外に考えられない場合は、全室内機の室内膨張弁及び冷暖切替ユニットの開閉弁を閉にし、室外機を運転停止としてもよい。   Furthermore, the refrigerant leakage detection may be predicted from the refrigeration cycle operation state. If the refrigeration cycle falls short during operation and the cause is not considered other than refrigerant leakage, the indoor expansion valves of all the indoor units and the open / close valves of the cooling / heating switching unit may be closed, and the outdoor unit may be shut down.

図8は室内機から冷媒が漏れたときの制御フローの一例である。なお、開閉機構を電磁弁と記載しているが、膨張弁でもよい。   FIG. 8 is an example of a control flow when refrigerant leaks from the indoor unit. Although the opening / closing mechanism is described as an electromagnetic valve, it may be an expansion valve.

居室にある冷媒検知器が作動した場合、まず室外機が運転中か、室内機が運転中かを判断する。ここで、室外機が停止中、或いは室内機が停止中の場合、室内膨張弁,電磁弁は全て閉止するように制御する。   When the refrigerant detector in the living room is activated, it is first determined whether the outdoor unit is in operation or the indoor unit is in operation. Here, when the outdoor unit is stopped or the indoor unit is stopped, the indoor expansion valve and the electromagnetic valve are all controlled to be closed.

次に、室内機が冷房運転中か暖房運転中かを判断する。冷房運転の場合、冷媒は室内膨張弁から室内熱交換器を介し電磁弁へ流れる。このため室内膨張弁を閉じて室内熱交換器や室内ガス枝管内に残留した液冷媒を電磁弁を介してガス管又は室外機に回収した後、電磁弁を閉める。回収にかける冷房時冷媒回収時間TsetCは予め回収できるように時間を決めておく必要がある。液冷媒回収終了後も開いていると電磁弁から冷媒が逆に漏洩するため注意が必要である。このため、冷媒の漏洩度合いや液圧力,ガス圧力によりTsetCが変化してもよい。暖房運転の場合、冷媒は電磁弁から室内熱交換器を介し室内膨張弁に流れる。このため電磁弁を閉じて、室内熱交換器に凝縮した液冷媒を液管に回収するまで室内膨張弁を開いたままにし、冷媒が液管から逆に漏洩する前に室内膨張弁を閉める。回収にかける暖房時冷媒回収時間TsetHは予め回収できるように時間を決めておく必要がある。ここで、冷媒の漏洩度合いや高圧ガス圧力と低圧ガス圧力、漏洩直前の室内熱交サブクール度により時間が変化してもよい。   Next, it is determined whether the indoor unit is in a cooling operation or a heating operation. In the cooling operation, the refrigerant flows from the indoor expansion valve to the electromagnetic valve via the indoor heat exchanger. Therefore, the indoor expansion valve is closed and the liquid refrigerant remaining in the indoor heat exchanger or the indoor gas branch pipe is collected in the gas pipe or the outdoor unit via the electromagnetic valve, and then the electromagnetic valve is closed. The cooling-time refrigerant recovery time TsetC to be recovered needs to be determined in advance so that it can be recovered. Care must be taken because the refrigerant leaks from the solenoid valve if it remains open after the liquid refrigerant is collected. For this reason, TsetC may change depending on the degree of refrigerant leakage, liquid pressure, and gas pressure. In the heating operation, the refrigerant flows from the electromagnetic valve to the indoor expansion valve through the indoor heat exchanger. For this reason, the solenoid valve is closed and the indoor expansion valve is kept open until the liquid refrigerant condensed in the indoor heat exchanger is collected in the liquid pipe, and the indoor expansion valve is closed before the refrigerant leaks from the liquid pipe. It is necessary to determine the heating refrigerant recovery time TsetH for recovery so that it can be recovered in advance. Here, the time may vary depending on the degree of refrigerant leakage, the high-pressure gas pressure and the low-pressure gas pressure, and the degree of indoor heat exchange subcooling immediately before the leakage.

次に、室内機が冷房運転中でも暖房運転中でもない場合は室内膨張弁,電磁弁は全て閉止するように制御する。   Next, when the indoor unit is not in the cooling operation or the heating operation, the indoor expansion valve and the electromagnetic valve are all controlled to be closed.

図9は室内機40aから冷媒が漏れた場合の室内膨張弁42a,高圧側開閉機構51a,低圧側開閉機構52aの動作を示す。ここで、室内機40aが設置されている居室61aに、冷媒漏洩検知器62aが設置されている。これにより、循環冷媒が全て、室内機40aが設置された居室61aに漏洩することを防ぎ、火災や窒息,毒性による疾患を未然に防ぐことができる。冷暖切替ユニット50aは居室61aより外に設置されることが多いが、居室内に設置されていても良い。   FIG. 9 shows operations of the indoor expansion valve 42a, the high-pressure side opening / closing mechanism 51a, and the low-pressure side opening / closing mechanism 52a when refrigerant leaks from the indoor unit 40a. Here, the refrigerant leak detector 62a is installed in the living room 61a in which the indoor unit 40a is installed. Thereby, it is possible to prevent all the circulating refrigerant from leaking into the living room 61a where the indoor unit 40a is installed, and to prevent diseases due to fire, suffocation, and toxicity. The cooling / heating switching unit 50a is often installed outside the living room 61a, but may be installed in the living room.

室内機40aから冷媒が漏れると、居室61aに冷媒が充満し、冷媒漏洩検知器62aが冷媒漏洩を検知する。この検知に連動し、室内機40aの室内膨張弁42a,高圧側開閉機構51a,低圧側開閉機構52aは全て閉とする。ここで、高圧側開閉機構,低圧側開閉機構は全閉とするために、双方向電磁弁を使用してもよい。また、開閉機構の冷媒漏洩量が少ない場合には膨張弁を使用してもよい。   When the refrigerant leaks from the indoor unit 40a, the living room 61a is filled with the refrigerant, and the refrigerant leak detector 62a detects the refrigerant leak. In conjunction with this detection, the indoor expansion valve 42a, the high-pressure side opening / closing mechanism 51a, and the low-pressure side opening / closing mechanism 52a of the indoor unit 40a are all closed. Here, in order to fully close the high pressure side opening / closing mechanism and the low pressure side opening / closing mechanism, a bidirectional solenoid valve may be used. Further, an expansion valve may be used when the refrigerant leakage amount of the opening / closing mechanism is small.

また、居室が大空間で、例えば室内機40b,40cも含む場合は、室内機40b,40cの室内膨張弁42b,42c,高圧側開閉機構51b,51c,低圧側開閉機構52b,52cも全て閉とする。   Further, when the living room is a large space and includes indoor units 40b and 40c, for example, the indoor expansion valves 42b and 42c, the high-pressure side opening / closing mechanisms 51b and 51c, and the low-pressure side opening / closing mechanisms 52b and 52c of the indoor units 40b and 40c are all closed. And

更に、冷媒漏洩検知を冷凍サイクル運転状態より予測しても良い。運転中に冷凍サイクルが冷媒過少に陥り、原因が冷媒漏洩以外に考えられない場合は、全室内機の室内膨張弁及び冷暖切替ユニットの開閉弁を閉にし、室外機を運転停止としてもよい。   Furthermore, the refrigerant leakage detection may be predicted from the refrigeration cycle operation state. If the refrigeration cycle falls short during operation and the cause is not considered other than refrigerant leakage, the indoor expansion valves of all the indoor units and the open / close valves of the cooling / heating switching unit may be closed, and the outdoor unit may be shut down.

図10は室内機から冷媒が漏れたときの制御フローの一例である。なお、高圧側開閉機構,低圧側開閉機構をそれぞれ電磁弁と記載しているが、膨張弁でもよい。   FIG. 10 is an example of a control flow when the refrigerant leaks from the indoor unit. The high-pressure side opening / closing mechanism and the low-pressure side opening / closing mechanism are described as electromagnetic valves, but may be expansion valves.

居室にある冷媒検知器が作動した場合、まず室外機が運転中か、室内機が運転中かを判断する。ここで、室外機が停止中、或いは室内機が停止中の場合、室内膨張弁,高圧電磁弁,低圧電磁弁は基本的に閉じていると考えられる。但し、室外機が運転中で室内機が停止している場合、低圧電磁弁が開いていることもあり、不測の事態で弁が開いていることも考えられる。このため室内膨張弁,高圧電磁弁,低圧電磁弁は全て閉止するように制御する。   When the refrigerant detector in the living room is activated, it is first determined whether the outdoor unit is in operation or the indoor unit is in operation. Here, when the outdoor unit is stopped or the indoor unit is stopped, it is considered that the indoor expansion valve, the high pressure solenoid valve, and the low pressure solenoid valve are basically closed. However, when the outdoor unit is in operation and the indoor unit is stopped, the low-pressure solenoid valve may be open, or the valve may be open due to an unexpected situation. Therefore, the indoor expansion valve, high pressure solenoid valve, and low pressure solenoid valve are all controlled to be closed.

次に、室内機が冷房運転中か暖房運転中かを判断する。冷房運転の場合、室内膨張弁は開、高圧電磁弁は閉、低圧電磁弁は開である。そこで室内膨張弁を閉じて室内熱交換器や室内ガス枝管内に残留した液冷媒を低圧電磁弁を介して室外機側に回収した後、低圧電磁弁を閉める。回収にかける冷房時冷媒回収時間TsetCは予め回収できるように時間を決めておく必要がある。液冷媒回収終了後も開いていると低圧電磁弁から冷媒が逆に漏洩するため注意が必要である。このため、冷媒の漏洩度合いや液圧力,低圧ガス圧力によりTsetCが変化してもよい。暖房運転の場合、室内膨張弁は開、高圧電磁弁は開、低圧電磁弁は閉である。そこで室内膨張弁と高圧電磁弁を閉じて低圧電磁弁を開いた後、室内熱交換器や室内ガス枝管内に残留した液冷媒を低圧電磁弁を介して室外機側に回収した後、低圧電磁弁を閉める。回収にかける暖房時冷媒回収時間TsetHは予め回収できるように時間を決めておく必要がある。液冷媒回収後も開いていると低圧電磁弁から冷媒が逆に漏洩するため注意が必要である。また、冷媒の漏洩度合いや高圧ガス圧力と低圧ガス圧力、漏洩直前の室内熱交サブクール度により時間が変化してもよい。   Next, it is determined whether the indoor unit is in a cooling operation or a heating operation. In the cooling operation, the indoor expansion valve is open, the high-pressure solenoid valve is closed, and the low-pressure solenoid valve is open. Therefore, after closing the indoor expansion valve and recovering the liquid refrigerant remaining in the indoor heat exchanger or the indoor gas branch pipe to the outdoor unit side via the low pressure solenoid valve, the low pressure solenoid valve is closed. The cooling-time refrigerant recovery time TsetC to be recovered needs to be determined in advance so that it can be recovered. Care must be taken because the refrigerant leaks from the low-pressure solenoid valve if it remains open after the liquid refrigerant is recovered. For this reason, TsetC may change depending on the degree of refrigerant leakage, liquid pressure, and low-pressure gas pressure. In the heating operation, the indoor expansion valve is open, the high-pressure solenoid valve is open, and the low-pressure solenoid valve is closed. Therefore, after closing the indoor expansion valve and the high-pressure solenoid valve and opening the low-pressure solenoid valve, the liquid refrigerant remaining in the indoor heat exchanger or the indoor gas branch pipe is recovered to the outdoor unit side via the low-pressure solenoid valve, and then the low-pressure solenoid valve is recovered. Close the valve. It is necessary to determine the heating refrigerant recovery time TsetH for recovery so that it can be recovered in advance. Care must be taken because the refrigerant leaks from the low-pressure solenoid valve if it remains open after recovery of the liquid refrigerant. The time may vary depending on the degree of refrigerant leakage, the high-pressure gas pressure and the low-pressure gas pressure, and the degree of indoor heat exchange subcooling immediately before the leakage.

次に、室内機が冷房運転中でも暖房運転中でもない場合は室内膨張弁,高圧電磁弁,低圧電磁弁は全て閉止するように制御する。   Next, when the indoor unit is not in the cooling operation or the heating operation, the indoor expansion valve, the high pressure solenoid valve, and the low pressure solenoid valve are all controlled to be closed.

本発明の実施例1を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows Example 1 of this invention. 本発明の実施例2を示す冷凍サイクル系統図。The refrigeration cycle system | strain diagram which shows Example 2 of this invention. 本発明の実施例3を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows Example 3 of this invention. 本発明の実施例4を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows Example 4 of this invention. 本発明の実施例5を示す冷凍サイクル系統図。The refrigerating-cycle system | strain diagram which shows Example 5 of this invention. 本発明の実施例6を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows Example 6 of this invention. 本発明の実施例7を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows Example 7 of this invention. 冷媒漏洩時の室内膨張弁及びガス側開閉機構の制御フローを示すフローチャート。The flowchart which shows the control flow of an indoor expansion valve and the gas side opening / closing mechanism at the time of a refrigerant | coolant leak. 本発明の実施例8を示す冷凍サイクル系統図。The refrigeration cycle system diagram which shows Example 8 of this invention. 冷媒漏洩時の室内膨張弁,高圧側開閉機構及び低圧側開閉機構の制御フローを示すフローチャート。The flowchart which shows the control flow of an indoor expansion valve at the time of a refrigerant | coolant leak, a high voltage | pressure side opening / closing mechanism, and a low voltage | pressure side opening / closing mechanism.

符号の説明Explanation of symbols

10a,10b 室外機
11a,11b 圧縮機
12a,12b 圧縮機吐出側逆止弁
13a,13b,16a,16b 四方弁
14a,14b,17a,17b 室外熱交換器
15a,15b,18a,18b 室外膨張弁
19a,19b 室外ファン
20a,20b アキュムレータ
22a,22b 四方弁阻止弁側配管
23a,23b 四方弁吸入側配管
30 既設液接続配管
31a,31b 液阻止弁
32a,32b (高低圧)ガス阻止弁
33a,33b 既設室外(低圧)ガス分岐配管
34 既設ガス接続配管
35a,35b,35c 既設室内ガス枝管
36a,36b 新規室外(高低圧)ガス分岐配管
37 新規ガス接続配管
38a,38b,38c 新規室内ガス枝管
39a,39b 低圧ガス阻止弁
40a,40b,40c 室内機
41a,41b,41c 室内熱交換器
42a,42b,42c 室内膨張弁
50a,50b,50c 冷暖切替ユニット
51a,51b,51c (高圧側)開閉機構
52a,52b,52c 低圧側開閉機構
61a,61b,61c 居室
62a,62b,62c 冷媒漏洩検知器
10a, 10b Outdoor unit 11a, 11b Compressor 12a, 12b Compressor discharge side check valve 13a, 13b, 16a, 16b Four-way valve 14a, 14b, 17a, 17b Outdoor heat exchanger 15a, 15b, 18a, 18b Outdoor expansion valve 19a, 19b Outdoor fans 20a, 20b Accumulators 22a, 22b Four-way valve blocking valve side piping 23a, 23b Four-way valve suction side piping 30 Existing liquid connection piping 31a, 31b Liquid blocking valves 32a, 32b (High / low pressure) Gas blocking valves 33a, 33b Existing outdoor (low pressure) gas branch pipe 34 Existing gas connection pipe 35a, 35b, 35c Existing indoor gas branch pipe 36a, 36b New outdoor (high / low pressure) gas branch pipe 37 New gas connection pipe 38a, 38b, 38c New indoor gas branch pipe 39a, 39b Low pressure gas blocking valves 40a, 40b, 40c indoor units 41a, 41b, 1c Indoor heat exchangers 42a, 42b, 42c Indoor expansion valves 50a, 50b, 50c Cooling / heating switching units 51a, 51b, 51c (high pressure side) opening / closing mechanisms 52a, 52b, 52c Low pressure side opening / closing mechanisms 61a, 61b, 61c Living rooms 62a, 62b 62c Refrigerant leak detector

Claims (10)

室内熱交換器と室内膨張弁とを有する更新用の室内機と、圧縮機と室外熱交換器と室外膨張弁とを有する更新用の室外機と、前記室内機と前記室外機とをつなぐ液接続配管とガス接続配管とを備え、更新前の空気調和機に使用されていた既設液接続配管と既設ガス接続配管を、それぞれ更新後の液接続配管とガス接続配管として再利用する空気調和機において、
前記既設ガス接続配管に並列に、新規のガス接続配管を追加設置し、ガス冷媒を前記既設ガス接続配管と前記新規追加のガス接続配管のそれぞれに分けて流すことを特徴とする空気調和機。
A renewal indoor unit having an indoor heat exchanger and an indoor expansion valve, a renewing outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor expansion valve, and a liquid connecting the indoor unit and the outdoor unit An air conditioner that has connection piping and gas connection piping, and reuses the existing liquid connection piping and existing gas connection piping that were used in the air conditioner before the update, as the updated liquid connection piping and gas connection piping, respectively. In
An air conditioner characterized in that a new gas connection pipe is additionally installed in parallel with the existing gas connection pipe, and a gas refrigerant is separately supplied to the existing gas connection pipe and the new additional gas connection pipe.
室内熱交換器と室内膨張弁とを有する更新用の室内機と、圧縮機と室外熱交換器と室外膨張弁とを有し、圧縮機吐出側と吸入側への接続を切替可能な高低圧配管と、前記圧縮機吸入側につながる低圧配管とを有する更新用室外機と、前記更新用室内機のガス配管に前記室外機から引き出される高低圧ガス接続配管と低圧ガス接続配管とをつなぐ冷暖切替ユニットと、前記室内機とこの室外機をつなぐ液接続配管と、前記室内機と前記冷暖切替ユニットをつなぐ室内側ガス接続配管と、前記冷暖切替ユニットと前記室外機の高低圧配管をつなぐ高低圧ガス接続配管と、前記冷暖切替ユニットと前記室外機の低圧配管をつなぐ低圧ガス接続配管とを備えた冷暖同時マルチ型空気調和機において、
更新前の空気調和機に使用された既設液接続配管を前記液接続配管として再利用し、既設ガス接続配管を前記高低圧ガス接続配管もしくは低圧ガス接続配管のいずれかとして再利用すると共に、前記高低圧ガス接続配管もしくは低圧ガス接続配管のうち再利用しない側の配管を追加配設することを特徴とする冷暖同時マルチ型空気調和機。
High and low pressure that has an indoor unit for renewal having an indoor heat exchanger and an indoor expansion valve, a compressor, an outdoor heat exchanger, and an outdoor expansion valve that can be switched between the discharge side and the suction side of the compressor A renewal outdoor unit having a pipe and a low-pressure pipe connected to the compressor suction side; A switching unit, a liquid connection pipe connecting the indoor unit and the outdoor unit, an indoor side gas connection pipe connecting the indoor unit and the cooling / heating switching unit, and a high level connecting the cooling / heating switching unit and the high / low pressure piping of the outdoor unit. In the simultaneous cooling and heating multi-type air conditioner including a low-pressure gas connection pipe, and a low-pressure gas connection pipe connecting the cooling / heating switching unit and the low-pressure pipe of the outdoor unit,
The existing liquid connection pipe used in the air conditioner before update is reused as the liquid connection pipe, and the existing gas connection pipe is reused as either the high-low pressure gas connection pipe or the low-pressure gas connection pipe. A cooling / heating simultaneous multi-type air conditioner characterized in that a high-low pressure gas connection pipe or a low-pressure gas connection pipe that is not reused is additionally provided.
請求項1において、冷媒漏洩検知機構を備え、室内機ガス配管側に開閉機構を備え、冷媒漏洩が検知された場合、前記該当する室内機の室内膨張弁及び前記開閉機構を閉止することで全冷媒が漏洩するのを防止することを特徴とする空気調和機。   The refrigerant leakage detection mechanism according to claim 1, further comprising an opening / closing mechanism on the indoor unit gas piping side, and when refrigerant leakage is detected, the indoor expansion valve and the opening / closing mechanism of the corresponding indoor unit are closed to An air conditioner characterized by preventing refrigerant from leaking. 請求項1において、冷媒漏洩検知機構を備え、室内機ガス配管側の接続配管が既設ガス枝管と新規ガス枝管に分かれる場合、前記既設ガス枝管と前記新規ガス枝管のそれぞれに開閉機構を備え、冷媒漏洩が検知された場合、前記該当する室内機の室内膨張弁,既設ガス枝管の前記開閉機構及び新規ガス枝管の前記開閉機構をそれぞれ閉止することで全冷媒の漏洩を防止することを特徴とする空気調和機。   2. The refrigerant leakage detection mechanism according to claim 1, wherein when the connection pipe on the indoor unit gas pipe side is divided into an existing gas branch pipe and a new gas branch pipe, an opening / closing mechanism is provided for each of the existing gas branch pipe and the new gas branch pipe. When the refrigerant leakage is detected, the indoor expansion valve of the corresponding indoor unit, the open / close mechanism of the existing gas branch pipe, and the open / close mechanism of the new gas branch pipe are closed to prevent leakage of all the refrigerant. An air conditioner characterized by 請求項3又は4において、冷媒漏洩が検知された場合、室内機の運転状態に応じて、室内機内の冷媒が流れる順番に、室内膨張弁と開閉機構を閉止することを特徴とする空気調和機。   5. The air conditioner according to claim 3, wherein when refrigerant leakage is detected, the indoor expansion valve and the opening / closing mechanism are closed in the order in which the refrigerant in the indoor unit flows in accordance with the operating state of the indoor unit. . 請求項1〜5の何れかにおいて、更新前後では使用される冷媒が異なるものであって、同一能力を確保する運転状態において、更新後に使用される冷媒の方が、圧縮機吸込みガスの比体積が大きくなるものであることを特徴とする空気調和機。   In any one of Claims 1-5, the refrigerant | coolant used before and behind an update differs, Comprising: In the driving | running state which ensures the same capability, the refrigerant | coolant used after an update is the specific volume of compressor suction gas. An air conditioner characterized by the fact that it becomes larger. 室内熱交換器と室内膨張弁とを有する少なくとも1台の室内機と、圧縮機と室外熱交換器と室外膨張弁とを有し、前記圧縮機の吐出側又は吸入側への接続を切替可能な高低圧配管と、前記圧縮機吸入側につながる低圧配管とを有する少なくとも1台の室外機と、前記室内機のガス配管に前記室外機から引き出される高低圧ガス接続配管と低圧ガス接続配管をつなぐ少なくとも1台の冷暖切替ユニットと、前記室内機と前記室外機とをつなぐ液接続配管と、前記室内機と冷暖切替ユニットとをつなぐ室内側ガス接続配管と、前記冷暖切替ユニットと前記室外機の高低圧配管とをつなぐ高低圧ガス接続配管と、前記冷暖切替ユニットと前記室外ユニットの低圧配管とをつなぐ低圧ガス接続配管とを備え、前記冷暖切替ユニットの高低圧配管側と低圧配管側に開閉機構を有し、冷媒漏洩検知機構を備えた冷暖同時マルチ型の空気調和機において、
冷媒漏洩が検知された場合、その漏洩が検知された室内機の室内膨張弁及び冷暖切替ユニットの開閉機構を閉止することで全冷媒の漏洩を防止することを特徴とする空気調和機。
It has at least one indoor unit having an indoor heat exchanger and an indoor expansion valve, a compressor, an outdoor heat exchanger, and an outdoor expansion valve, and the connection to the discharge side or suction side of the compressor can be switched. At least one outdoor unit having a high and low pressure pipe, a low pressure pipe connected to the compressor suction side, and a high and low pressure gas connection pipe and a low pressure gas connection pipe drawn from the outdoor unit to the gas pipe of the indoor unit At least one cooling / heating switching unit connected, a liquid connection pipe connecting the indoor unit and the outdoor unit, an indoor gas connection pipe connecting the indoor unit and the cooling / heating switching unit, the cooling / heating switching unit and the outdoor unit A high / low pressure gas connection pipe connecting the high / low pressure pipe and a low pressure gas connection pipe connecting the cooling / heating switching unit and the low pressure pipe of the outdoor unit. Has a closing mechanism on the pipe side, the simultaneous cooling and heating multi-type air conditioner having a refrigerant leakage detection mechanism,
An air conditioner that prevents leakage of all refrigerants by closing an indoor expansion valve and an opening / closing mechanism of a cooling / heating switching unit of an indoor unit in which leakage is detected when refrigerant leakage is detected.
請求項7において、室内機および室外機が更新用であり、更新前の空気調和機に使用されていた既設液接続配管を液接続配管として再利用し、既設ガス接続配管を高低圧ガス接続配管もしくは低圧ガス接続配管のいずれかとして再利用すると共に、前記高低圧ガス接続配管もしくは低圧ガス接続配管のうち再利用しない側の配管を追加配設することを特徴とする空気調和機。   In Claim 7, the indoor unit and the outdoor unit are for renewal, the existing liquid connection pipe used in the air conditioner before renewal is reused as the liquid connection pipe, and the existing gas connection pipe is used as the high and low pressure gas connection pipe. Alternatively, the air conditioner is reused as one of the low-pressure gas connection pipes, and additionally provided on the high-low pressure gas connection pipe or the low-pressure gas connection pipe on the non-reuse side. 請求項7又は8において、冷媒漏洩時に、室内機の運転状態に応じて室内機内の冷媒の一部を、低圧ガス配管を介して室外機に回収することを特徴とする空気調和機。   9. The air conditioner according to claim 7, wherein a part of the refrigerant in the indoor unit is collected in the outdoor unit through the low-pressure gas pipe according to the operation state of the indoor unit when the refrigerant leaks. 請求項7〜9の何れかにおいて、使用する冷媒が、微燃性,可燃性或いは毒性を有する冷媒であることを特徴とする空気調和機。   The air conditioner according to any one of claims 7 to 9, wherein the refrigerant used is a refrigerant having slight flammability, flammability, or toxicity.
JP2008151202A 2008-06-10 2008-06-10 Air conditioner Pending JP2009299910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151202A JP2009299910A (en) 2008-06-10 2008-06-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151202A JP2009299910A (en) 2008-06-10 2008-06-10 Air conditioner

Publications (1)

Publication Number Publication Date
JP2009299910A true JP2009299910A (en) 2009-12-24

Family

ID=41546998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151202A Pending JP2009299910A (en) 2008-06-10 2008-06-10 Air conditioner

Country Status (1)

Country Link
JP (1) JP2009299910A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002092A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device renewing method
JP2011237119A (en) * 2010-05-11 2011-11-24 Hitachi Appliances Inc Refrigerating cycle device
JP2011257020A (en) * 2010-06-07 2011-12-22 Mitsubishi Electric Corp Air conditioner
WO2012073293A1 (en) * 2010-12-03 2012-06-07 三菱電機株式会社 Air-conditioning apparatus
JP2012159217A (en) * 2011-01-31 2012-08-23 Mitsubishi Electric Corp Heat pump type hot water supply system
JP2013178073A (en) * 2012-02-06 2013-09-09 Daikin Industries Ltd Refrigeration device
WO2014034099A1 (en) * 2012-08-27 2014-03-06 ダイキン工業株式会社 Refrigeration system
JP2015206517A (en) * 2014-04-18 2015-11-19 ダイキン工業株式会社 Refrigeration device
JP2015206518A (en) * 2014-04-18 2015-11-19 ダイキン工業株式会社 Refrigeration device
JP2016011782A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type
JP2016011780A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type air conditioner
JP2016011781A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type air conditioner
JP2016011783A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type air conditioner
WO2016017643A1 (en) * 2014-07-28 2016-02-04 三菱電機株式会社 Air conditioner
JP2016090178A (en) * 2014-11-07 2016-05-23 日立アプライアンス株式会社 Air conditioner and its renewal method
JP2016151395A (en) * 2015-02-18 2016-08-22 ダイキン工業株式会社 Air conditioner
JP2016223640A (en) * 2015-05-27 2016-12-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigerating air conditioner
JP6278094B1 (en) * 2016-10-28 2018-02-14 ダイキン工業株式会社 Air conditioner
US9933205B2 (en) 2011-05-23 2018-04-03 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2018071968A (en) * 2016-10-28 2018-05-10 ダイキン工業株式会社 Air-conditioning device
JP2018077040A (en) * 2016-10-28 2018-05-17 ダイキン工業株式会社 Air conditioner
WO2019064566A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Refrigeration device
WO2021065213A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Refrigeration cycle device
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
WO2022019007A1 (en) * 2020-07-20 2022-01-27 パナソニックIpマネジメント株式会社 Air conditioner
CN114251719A (en) * 2020-09-23 2022-03-29 Lg电子株式会社 Multi-split air conditioner for refrigerating and heating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177765U (en) * 1982-05-21 1983-11-28 三菱電機株式会社 Separate air conditioner
JPH01225849A (en) * 1988-03-04 1989-09-08 Matsushita Refrig Co Ltd Multiple-room cooler-heater
JPH02140573A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Air conditioning apparatus
JP2004309088A (en) * 2003-04-10 2004-11-04 Mitsubishi Electric Corp Refrigerating or air-conditioning system and its replacement method
JP2010002092A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device renewing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177765U (en) * 1982-05-21 1983-11-28 三菱電機株式会社 Separate air conditioner
JPH01225849A (en) * 1988-03-04 1989-09-08 Matsushita Refrig Co Ltd Multiple-room cooler-heater
JPH02140573A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Air conditioning apparatus
JP2004309088A (en) * 2003-04-10 2004-11-04 Mitsubishi Electric Corp Refrigerating or air-conditioning system and its replacement method
JP2010002092A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device renewing method

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002092A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device renewing method
JP2011237119A (en) * 2010-05-11 2011-11-24 Hitachi Appliances Inc Refrigerating cycle device
JP2011257020A (en) * 2010-06-07 2011-12-22 Mitsubishi Electric Corp Air conditioner
CN103221751B (en) * 2010-12-03 2016-04-06 三菱电机株式会社 Conditioner
WO2012073293A1 (en) * 2010-12-03 2012-06-07 三菱電機株式会社 Air-conditioning apparatus
CN103221751A (en) * 2010-12-03 2013-07-24 三菱电机株式会社 Air-conditioning apparatus
JP5465338B2 (en) * 2010-12-03 2014-04-09 三菱電機株式会社 Air conditioner
AU2010364873B2 (en) * 2010-12-03 2014-10-02 Mitsubishi Electric Corporation Air-conditioning apparatus
US9459013B2 (en) 2010-12-03 2016-10-04 Mitsubishi Electric Corporation Air-conditioning apparatus with safety measure for ventilation of inflammable refrigerant from heat exchanger
JP2012159217A (en) * 2011-01-31 2012-08-23 Mitsubishi Electric Corp Heat pump type hot water supply system
US9933205B2 (en) 2011-05-23 2018-04-03 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2013178073A (en) * 2012-02-06 2013-09-09 Daikin Industries Ltd Refrigeration device
WO2014034099A1 (en) * 2012-08-27 2014-03-06 ダイキン工業株式会社 Refrigeration system
CN104603557A (en) * 2012-08-27 2015-05-06 大金工业株式会社 Refrigeration system
US10508847B2 (en) 2012-08-27 2019-12-17 Daikin Industries, Ltd. Refrigeration apparatus
EP2905563A4 (en) * 2012-08-27 2016-10-05 Daikin Ind Ltd Refrigeration system
CN104603557B (en) * 2012-08-27 2016-10-12 大金工业株式会社 Refrigerating plant
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
JP2015206518A (en) * 2014-04-18 2015-11-19 ダイキン工業株式会社 Refrigeration device
JP2015206517A (en) * 2014-04-18 2015-11-19 ダイキン工業株式会社 Refrigeration device
JP2016011780A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type air conditioner
JP2016011781A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type air conditioner
JP2016011783A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type air conditioner
JP2016011782A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type
WO2016017643A1 (en) * 2014-07-28 2016-02-04 三菱電機株式会社 Air conditioner
JPWO2016017643A1 (en) * 2014-07-28 2017-04-27 三菱電機株式会社 Air conditioner
US10451306B2 (en) 2014-07-28 2019-10-22 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2016090178A (en) * 2014-11-07 2016-05-23 日立アプライアンス株式会社 Air conditioner and its renewal method
JP2016151395A (en) * 2015-02-18 2016-08-22 ダイキン工業株式会社 Air conditioner
JP2016223640A (en) * 2015-05-27 2016-12-28 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigerating air conditioner
JP6278094B1 (en) * 2016-10-28 2018-02-14 ダイキン工業株式会社 Air conditioner
JP2018077040A (en) * 2016-10-28 2018-05-17 ダイキン工業株式会社 Air conditioner
JP2018071878A (en) * 2016-10-28 2018-05-10 ダイキン工業株式会社 Air-conditioning device
JP2018071968A (en) * 2016-10-28 2018-05-10 ダイキン工業株式会社 Air-conditioning device
WO2018079472A1 (en) * 2016-10-28 2018-05-03 ダイキン工業株式会社 Air conditioning device
US10533764B2 (en) 2016-10-28 2020-01-14 Daikin Industries, Ltd. Air conditioner
US10712035B2 (en) 2016-10-28 2020-07-14 Daikin Industries, Ltd. Air conditioner with refrigerant leakage control
JP7152648B2 (en) 2016-10-28 2022-10-13 ダイキン工業株式会社 air conditioner
WO2019064566A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Refrigeration device
CN114450541A (en) * 2019-09-30 2022-05-06 大金工业株式会社 Refrigeration cycle device
JP2021156570A (en) * 2019-09-30 2021-10-07 ダイキン工業株式会社 Refrigeration cycle device
JP7096513B2 (en) 2019-09-30 2022-07-06 ダイキン工業株式会社 Refrigeration cycle device
WO2021065213A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Refrigeration cycle device
CN114450541B (en) * 2019-09-30 2023-08-11 大金工业株式会社 Refrigeration cycle device
US11739995B2 (en) 2019-09-30 2023-08-29 Daikin Industries, Ltd. Refrigeration cycle device
JP2021156564A (en) * 2019-09-30 2021-10-07 ダイキン工業株式会社 Refrigeration cycle device
WO2022019007A1 (en) * 2020-07-20 2022-01-27 パナソニックIpマネジメント株式会社 Air conditioner
CN114251719A (en) * 2020-09-23 2022-03-29 Lg电子株式会社 Multi-split air conditioner for refrigerating and heating
US11898782B2 (en) 2020-09-23 2024-02-13 Lg Electronics Inc. Multi-air conditioner for heating and cooling operations

Similar Documents

Publication Publication Date Title
JP2009299910A (en) Air conditioner
KR101678324B1 (en) Refrigeration system
JP6899896B2 (en) Air conditioning system
JP6079055B2 (en) Refrigeration equipment
JP6079061B2 (en) Refrigeration equipment
JP3109500B2 (en) Refrigeration equipment
EP2787297B1 (en) Method for selecting heat medium of use-side heat exchanger during construction of air conditioning system
US20110146339A1 (en) Air-conditioning apparatus
JP6701337B2 (en) Air conditioner
EP2924360B1 (en) Air conditioner and air conditioner construction method
CN113366270B (en) Refrigerant cycle device
JP2008128498A (en) Multi-type air conditioner
EP2963359A1 (en) Air conditioning device
EP3543624B1 (en) Air conditioner
JP2014119221A (en) Refrigeration device
KR100791930B1 (en) Outdoor unit for multi-type air conditioner
JP5794279B2 (en) Air conditioner
JP6391825B2 (en) Refrigeration cycle equipment
JP2014119220A (en) Refrigeration device
JP6906708B2 (en) Water-cooled air conditioner
EP4317836A1 (en) Air conditioner
EP4148344A1 (en) Refrigeration cycle system
WO2016129027A1 (en) Air conditioning device
JP7445140B2 (en) Air conditioner, installation method of air conditioner, and outdoor unit
JP7442741B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703