JP2009299593A - Engine - Google Patents

Engine Download PDF

Info

Publication number
JP2009299593A
JP2009299593A JP2008155410A JP2008155410A JP2009299593A JP 2009299593 A JP2009299593 A JP 2009299593A JP 2008155410 A JP2008155410 A JP 2008155410A JP 2008155410 A JP2008155410 A JP 2008155410A JP 2009299593 A JP2009299593 A JP 2009299593A
Authority
JP
Japan
Prior art keywords
chamber
sub
check valve
gas
sub chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008155410A
Other languages
Japanese (ja)
Other versions
JP5065168B2 (en
Inventor
Hironori Sato
裕紀 佐藤
Shunsaku Nakai
俊作 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008155410A priority Critical patent/JP5065168B2/en
Publication of JP2009299593A publication Critical patent/JP2009299593A/en
Application granted granted Critical
Publication of JP5065168B2 publication Critical patent/JP5065168B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the exhaust of unburned hydrocarbon, and to improve an engine efficiency. <P>SOLUTION: A main chamber 9 facing a piston 6 and a sub chamber 11 communicated with the main chamber 9 through an injection hole 10 are provided as a combustion chamber N; a first check valve 18 opened by reduction of pressure of the sub chamber 11 and permitting supply of fuel gas to the sub chamber is disposed in a sub fuel supply passage 17 for supplying the fuel gas to the sub chamber 11; the sub fuel supply passage 17 is equipped with an upstream flow passage part 17b having a downstream end in which the first check valve 18 is arranged and a downstream flow passage part 17a having an upstream end in which the first check valve 18 is arranged and a downstream end communicated with the sub chamber 11; and a second check valve 20 opened by increase of the pressure of the sub chamber 11 and permitting flow of the gas from the downstream side flow passage part 17a to a branch passage 19 is provided in the branch passage 19 branching from the downstream flow passage part 17a in the sub fuel supply passage 17. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃焼室として、ピストンに面する主室と、その主室に噴孔を介して連通する副室とを備え、前記副室に燃料ガスを供給する副燃料供給路には、前記副室の圧力低下により開弁して前記副室への燃料ガスの供給を許容する第1逆止弁が設けられているエンジンに関する。   The present invention includes, as a combustion chamber, a main chamber facing the piston, and a sub chamber communicating with the main chamber via an injection hole, and a sub fuel supply path for supplying fuel gas to the sub chamber includes The present invention relates to an engine provided with a first check valve that opens due to a pressure drop in a sub chamber and allows fuel gas to be supplied to the sub chamber.

近年、環境性・経済性から天然ガスを燃料としたガスエンジンを用いたコージェネレーションシステムの導入が進められている。そして、ガスエンジンを用いたシステムは発電効率が高いことから天然ガスコージェネレーションシステムの主流となってきている。コージェネレーションシステムにおいて、ガスエンジンは1kWクラスの小型から数MWクラスの大型まで実用化されており、エンジンのサイズにより異なったエンジン形式・燃焼方式が採用されている。
例えば、1〜2MWクラスの中型コージェネレーションにおいては、高効率を実現できることから副室式火花点火希薄ミラーサイクルエンジンが主流となってきている。副室式のエンジンは、主室と呼ばれる通常の燃焼室に加え、主室に噴孔を介して連通する副室と呼ばれる燃焼室を備えている。そして、吸気行程にて吸気弁を開いて主室に希薄混合気を、副室に燃焼ガスを導入し、圧縮行程にて噴孔を通して主室から副室に流入した希薄混合気等と吸気行程中に副室に供給された燃料ガスとを混合させて混合気を形成する。そして、副室にて形成した混合気を点火プラグにより火花点火して燃焼させ、噴孔を介して副室から主室に火炎ジェットを噴射して、主室に形成された希薄混合気を燃焼させるように構成されている。よって、通常の燃焼室だけを備えた単室式エンジンと比較して、燃焼室全体として空気に対して燃料ガスが希薄な状態で燃焼させる希薄燃焼を実現することができ、高効率化を図ることができる。
In recent years, the introduction of a cogeneration system using a gas engine using natural gas as fuel has been promoted from the viewpoint of environment and economy. And since the system using a gas engine has high power generation efficiency, it has become the mainstream of a natural gas cogeneration system. In the cogeneration system, gas engines have been put into practical use from a small size of 1 kW class to a large size of several MW class, and different engine types and combustion methods are adopted depending on the size of the engine.
For example, in a medium-sized cogeneration system of 1-2 MW class, a high efficiency can be realized, so that a sub-chamber type spark ignition lean mirror cycle engine has become mainstream. The sub-chamber type engine includes a combustion chamber called a sub chamber communicating with the main chamber via an injection hole in addition to a normal combustion chamber called a main chamber. Then, the intake valve is opened in the intake stroke, the lean mixture is introduced into the main chamber, the combustion gas is introduced into the sub chamber, and the intake stroke and the lean mixture that has flowed from the main chamber into the sub chamber through the nozzle holes in the compression stroke. An air-fuel mixture is formed by mixing the fuel gas supplied to the sub chamber. Then, the air-fuel mixture formed in the sub chamber is spark-ignited by an ignition plug and burned, and a flame jet is injected from the sub chamber to the main chamber through the nozzle hole, and the lean air-fuel mixture formed in the main chamber is combusted. It is configured to let you. Therefore, as compared with a single-chamber engine having only a normal combustion chamber, it is possible to realize lean combustion in which the fuel gas is burned in a lean state with respect to air as a whole combustion chamber, and high efficiency is achieved. be able to.

このような副室式のエンジンとして、副室に燃料ガスを供給する副燃料供給路に機械式開閉弁を設け、その機械式開閉弁の開閉作動を制御する制御装置を備えたものがあった(例えば、特許文献1参照。)。従来の副室式エンジンでは、機械式開閉弁を設けるものが主流であったが、近年では、機械式開閉弁に代えて、逆止弁が設けられているものが実用化されつつある(例えば、特許文献2参照。)。というのも、逆止弁を設けるものでは、外部からの駆動力で開閉作動させる機械式開閉弁と比較して、構成が簡単になるので、製造が容易になり、小型化及びコストの低減を図ることができるからである。
この逆止弁は、副室から副燃料供給路への逆方向には燃料ガスが流動せず、副燃料供給路から副室への順方向には燃料ガスの流動を許容可能な構造となっている。逆止弁は、バネの付勢力によりボール等の弁体を弁座に当接させて閉弁状態となっている。そして、吸気行程中におけるピストンの下降に伴い副室の圧力が低下して逆止弁の上流側と下流側との圧力差が一定値以上になると、バネの付勢力に抗する方向に圧力が作用して弁体が弁座から離間して開弁状態となり、副室へ燃料ガスを供給するように構成されている。
As such a sub-chamber engine, there has been provided a mechanical on-off valve in a sub-fuel supply path for supplying fuel gas to the sub-chamber and a control device for controlling the opening / closing operation of the mechanical on-off valve. (For example, refer to Patent Document 1). Conventional sub-chamber engines have been mainly provided with mechanical on-off valves, but in recent years, those with check valves instead of mechanical on-off valves are being put into practical use (for example, , See Patent Document 2). This is because the configuration with a check valve is simpler than the mechanical on-off valve that opens and closes with an external driving force, making it easier to manufacture, reducing size and reducing costs. It is because it can plan.
This check valve has a structure in which the fuel gas does not flow in the reverse direction from the sub chamber to the sub fuel supply passage, and the fuel gas can be allowed to flow in the forward direction from the sub fuel supply passage to the sub chamber. ing. The check valve is in a closed state by bringing a valve body such as a ball into contact with the valve seat by the biasing force of the spring. When the pressure in the sub chamber decreases as the piston moves down during the intake stroke and the pressure difference between the upstream side and the downstream side of the check valve becomes a certain value or more, the pressure is increased in a direction against the biasing force of the spring. By acting, the valve body is separated from the valve seat to be opened, and the fuel gas is supplied to the sub chamber.

特開2003−278548号公報JP 2003-278548 A 特開2001−3753号公報JP 2001-3753 A

副燃料供給路に逆止弁を設けるエンジンでは、点火プラグとの干渉等により副室周辺に逆止弁を設けるスペースが無いので、通常、副室から少し離れた位置に逆止弁を設置している。このような場合には、副燃料供給路が、下流側端部に逆止弁が配設された上流側流路部分と上流側端部に逆止弁が配設されて下流側端部が副室に連通された下流側流路部分とを備え、下流側流路部分を細い連通路にて構成している。吸気行程中には副室の圧力低下により逆止弁が開弁状態となり副室に燃料ガスが供給され、下流側流路部分内はガスで満たされる。圧縮行程中は逆止弁が閉じ、下流側流路部分内は圧縮による燃焼室内の圧力上昇に伴いガスが圧縮される。このとき、下流側流路部分は細い連通路であるので、下流側流路部分内のガスは、主室から副室に流入した希薄混合気とほとんど混合せず、希釈されないまま圧縮されることになる。その結果、その濃度が可燃範囲に入らなくなる。また、その後副室内で点火され混合気が燃焼するが、下流側流路部分は細い連通路であるので、消炎してしまい下流側流路部分内まで到達せず、下流側流路部分内のガスは燃焼しない。膨張行程においてはピストンの下降に伴い燃焼室内の圧力が低下し、下流側流路部分内で圧縮されている燃料ガスの濃度が高いガスが徐々に燃焼室内に流出してくる。しかし膨張行程後半では燃焼室内の温度も低下しているため、流出したガスは燃焼せずに滞留し、排気行程において排出させることになる。よって、未燃炭化水素の排出量が増加することになり、エンジン効率の低下を招いてしまう。   In an engine that has a check valve in the auxiliary fuel supply path, there is no space to provide a check valve around the auxiliary chamber due to interference with the spark plug, etc. ing. In such a case, the auxiliary fuel supply path is divided into an upstream flow path portion in which a check valve is disposed at the downstream end portion, and a check valve is disposed in the upstream end portion so that the downstream end portion is And a downstream flow passage portion communicating with the sub chamber, and the downstream flow passage portion is constituted by a narrow communication passage. During the intake stroke, the check valve is opened due to the pressure drop in the sub chamber, fuel gas is supplied to the sub chamber, and the downstream flow path portion is filled with gas. During the compression stroke, the check valve is closed, and the gas in the downstream flow path is compressed as the pressure in the combustion chamber increases due to compression. At this time, since the downstream flow path portion is a narrow communication path, the gas in the downstream flow path portion is hardly mixed with the lean air-fuel mixture flowing from the main chamber into the sub chamber and is compressed without being diluted. become. As a result, the concentration does not enter the flammable range. Further, after that, the air-fuel mixture is ignited in the sub chamber and the air-fuel mixture burns. However, since the downstream flow passage portion is a narrow communication passage, the flame is extinguished and does not reach the downstream flow passage portion. Gas does not burn. In the expansion stroke, the pressure in the combustion chamber decreases as the piston moves down, and the gas having a high concentration of the fuel gas compressed in the downstream flow path portion gradually flows out into the combustion chamber. However, since the temperature in the combustion chamber is also lowered in the latter half of the expansion stroke, the outflowed gas stays without burning and is discharged in the exhaust stroke. As a result, the amount of unburned hydrocarbons increases, leading to a decrease in engine efficiency.

本発明は、かかる点に着目してなされたものであり、その目的は、未燃炭化水素の排出量の低減を図り、エンジン効率の向上を図ることができるエンジンを提供する点にある。   The present invention has been made paying attention to such a point, and an object thereof is to provide an engine capable of reducing the amount of unburned hydrocarbons and improving the engine efficiency.

この目的を達成するために、本発明に係るエンジンの特徴構成は、燃焼室として、ピストンに面する主室と、その主室に噴孔を介して連通する副室とを備え、前記副室に燃料ガスを供給する副燃料供給路には、前記副室の圧力低下により開弁して前記副室への燃料ガスの供給を許容する第1逆止弁が設けられているエンジンにおいて、
前記副燃料供給路は、下流側端部に前記第1逆止弁が配設された上流側流路部分と上流側端部に前記第1逆止弁が配設されて下流側端部が前記副室に連通された下流側流路部分とを備え、前記副燃料供給路における前記下流側流路部分から分岐された分岐路には、前記副室の圧力上昇により開弁して前記下流側流路部分から前記分岐路へのガスの流動を許容する第2逆止弁が設けられている点にある。
In order to achieve this object, a characteristic configuration of an engine according to the present invention includes, as a combustion chamber, a main chamber facing a piston, and a sub chamber communicating with the main chamber via an injection hole, the sub chamber In the engine provided with a first check valve that opens the sub-fuel supply path to supply fuel gas to the sub-chamber and allows the supply of the fuel gas to the sub-chamber,
The auxiliary fuel supply passage has an upstream flow path portion in which the first check valve is disposed at the downstream end portion, and the first check valve is disposed in the upstream end portion and the downstream end portion is A downstream flow passage portion communicating with the sub chamber, and the branch passage branched from the downstream flow passage portion in the sub fuel supply passage is opened by the pressure increase of the sub chamber and the downstream The second check valve is provided to allow the gas flow from the side flow path portion to the branch path.

本特徴構成によれば、副室の圧力が低下すると、第2逆止弁は閉弁状態のままであるが、第1逆止弁が開弁するので、燃料ガスが上流側流路部分から下流側流路部分に流入し、下流側流路部分から副室に流入して、副室に燃料ガスを供給することができる。逆に、副室の圧力が上昇すると、第1逆止弁は閉弁状態のままであるが、第2逆止弁が開弁するので、副室内のガスが下流側流路部分に流入し、下流側流路部分内を満たしていたガスが下流側流路部分から分岐路に流入することになる。これにより、下流側流路部分内のガスについて、吸気行程や圧縮行程では、従来のエンジンと同様に、副室内に燃料ガスが供給され、下流側流路部分内に燃料ガスの濃度が高いガスが圧縮されるが、膨張行程において従来のエンジンと異なるものとなる。
つまり、副室内で点火され混合気が燃焼すると、副室の圧力が上昇して第2逆止弁が開弁することになる。これにより、副室内の既燃焼ガスが下流側流路部分に流入し、下流側流路部分内で圧縮されていた未燃焼ガスが分岐路に流入することになる。よって、下流側流路部分内は既燃焼ガスで満たされることになる。膨張行程においては、ピストンの下降により副室の圧力が低下して第2逆止弁が閉弁状態となり、下流側流路部分内のガスが徐々に燃焼室内に流出してくるが、下流側流路部分内のガスは既燃焼ガスが満たされており、未燃焼ガスが燃焼室内に流出することを防止できる。
以上のことから、未燃炭化水素の排出量の低減を図り、エンジン効率の向上を図るエンジンを実現できるに至った。
According to this characteristic configuration, when the pressure in the sub chamber decreases, the second check valve remains closed, but the first check valve opens, so that the fuel gas flows from the upstream flow path portion. The fuel gas can be supplied to the sub chamber by flowing into the downstream channel portion and flowing into the sub chamber from the downstream channel portion. Conversely, when the pressure in the sub chamber rises, the first check valve remains closed, but the second check valve opens, so that the gas in the sub chamber flows into the downstream flow path portion. The gas that has filled the downstream channel portion flows into the branch channel from the downstream channel portion. As a result, for the gas in the downstream flow path portion, in the intake stroke and compression stroke, as in the conventional engine, fuel gas is supplied into the sub chamber, and the gas having a high concentration of fuel gas in the downstream flow path portion. Is compressed, but differs from the conventional engine in the expansion stroke.
In other words, when the air-fuel mixture is ignited in the sub chamber, the pressure in the sub chamber rises and the second check valve is opened. As a result, the burned gas in the sub chamber flows into the downstream flow path portion, and the unburned gas compressed in the downstream flow path portion flows into the branch path. Therefore, the downstream flow path portion is filled with the already burned gas. In the expansion stroke, the pressure in the sub chamber decreases due to the lowering of the piston, the second check valve is closed, and the gas in the downstream flow passage portion gradually flows out into the combustion chamber. The gas in the flow path portion is filled with the already burned gas, and the unburned gas can be prevented from flowing into the combustion chamber.
From the above, it has become possible to realize an engine that improves the engine efficiency by reducing the amount of unburned hydrocarbon emissions.

本発明に係るエンジンの更なる特徴構成は、前記分岐路は、前記第2逆止弁よりも下流側を前記主室に新気を吸気する吸気路に接続するように構成されている点にある。   A further characteristic configuration of the engine according to the present invention is that the branch passage is configured to connect a downstream side of the second check valve to an intake passage for sucking fresh air into the main chamber. is there.

本特徴構成によれば、分岐路は吸気路に接続しているので、第2逆止弁が開弁することにより分岐路に流入した未燃焼ガスは、吸気路に流入することになる。よって、次の吸気行程において、吸気路に流入した未燃焼ガスが主室に吸気されることになる。その結果、主室内で燃焼するため効率の低下や未燃炭化水素の排出は生じず、未燃炭化水素の排出量の低減を的確に図り、エンジン効率の向上を的確に図ることができる。   According to this feature configuration, since the branch path is connected to the intake path, the unburned gas that has flowed into the branch path when the second check valve is opened flows into the intake path. Therefore, in the next intake stroke, unburned gas flowing into the intake passage is sucked into the main chamber. As a result, since combustion occurs in the main chamber, efficiency is not reduced and unburned hydrocarbons are not discharged. The amount of unburned hydrocarbons is accurately reduced, and engine efficiency can be improved accurately.

本発明に係るエンジンの更なる特徴構成は、前記第2逆止弁は、前記燃焼室での燃焼時の最大筒内圧力よりも設定圧力低い圧力で開弁するように構成されている点にある。   A further characteristic configuration of the engine according to the present invention is that the second check valve is configured to open at a pressure lower than a maximum in-cylinder pressure during combustion in the combustion chamber. is there.

本特徴構成によれば、副室内で点火され混合気が燃焼した後、燃焼室での圧力が最大筒内圧力に到達する以前に第2逆止弁が開弁することになる。よって、第2逆止弁を的確なタイミングで開弁させることができ、副室内の既燃焼ガスが下流側流路部分に流入し、下流側流路部分内を既燃焼ガスにて的確に満たすことができる。   According to this feature configuration, after the air-fuel mixture is ignited in the auxiliary chamber and the air-fuel mixture is combusted, the second check valve is opened before the pressure in the combustion chamber reaches the maximum in-cylinder pressure. Therefore, the second check valve can be opened at an accurate timing, and the burned gas in the sub chamber flows into the downstream flow path portion, and the downstream flow path portion is accurately filled with the burned gas. be able to.

本発明に係るエンジンの実施形態について、図面に基づいて説明する。
〔第1実施形態〕
図1に示すように、エンジン1は、シリンダヘッド2、シリンダブロック3、クランクケース(図示は省略)、オイルパン(図示は省略)を上下に重ね合わせて連結して構成され、シリンダヘッド2に開閉自在な吸気弁4と排気弁5とを備えている。ピストン6をシリンダブロック3内に摺動自在に収納し、ピストン6の往復作動力をクランク機構7からクランク軸8に伝えて回転動力として出力するように構成されている。図示は省略するが、クランク軸8からの動力を吸気弁4及び排気弁5を開閉動作させるカムシャフト等に伝えるように構成されている。
An embodiment of an engine according to the present invention will be described with reference to the drawings.
[First Embodiment]
As shown in FIG. 1, the engine 1 is configured by connecting a cylinder head 2, a cylinder block 3, a crankcase (not shown), and an oil pan (not shown) so as to overlap each other. An intake valve 4 and an exhaust valve 5 that can be freely opened and closed are provided. The piston 6 is slidably accommodated in the cylinder block 3, and the reciprocating operation force of the piston 6 is transmitted from the crank mechanism 7 to the crankshaft 8 and output as rotational power. Although not shown, the power from the crankshaft 8 is transmitted to a camshaft or the like that opens and closes the intake valve 4 and the exhaust valve 5.

燃焼室Nとして、シリンダヘッド2の下面側でピストン6の上面に面する主室9と、その主室9に噴孔10を介して連通する副室11とを備えている。このエンジン1は、気体燃料ガスあるいは都市ガス等の燃料ガスを使用するものであり、吸気行程にて燃料ガスと空気との希薄混合気(空気と少量の燃料ガスとの混合気)を主室9に供給するとともに、副室11に燃料ガスを供給し、圧縮行程にて噴孔10を通して主室9から副室11に希薄混合気を流入させ副室11内に混合気を形成し、副室11の点火プラグ12での点火によって副室11内で燃焼させた混合気を、噴孔10を介して主室9に火炎ジェットFとして噴射するように構成されている。   As the combustion chamber N, a main chamber 9 facing the upper surface of the piston 6 on the lower surface side of the cylinder head 2 and a sub chamber 11 communicating with the main chamber 9 through the injection hole 10 are provided. The engine 1 uses a fuel gas such as a gaseous fuel gas or a city gas, and in the main chamber a lean mixture of fuel gas and air (a mixture of air and a small amount of fuel gas) is taken in the intake stroke. 9, fuel gas is supplied to the sub chamber 11, and a lean air-fuel mixture is flowed from the main chamber 9 into the sub chamber 11 through the nozzle hole 10 in the compression stroke to form a gas mixture in the sub chamber 11. The air-fuel mixture combusted in the sub chamber 11 by ignition with the ignition plug 12 of the chamber 11 is configured to be injected as a flame jet F into the main chamber 9 through the nozzle hole 10.

図1では、1つの燃焼室Nを示しているが、このエンジン1は、複数のピストン6を備え複数の燃焼室Nを有する多気筒式のエンジンにて構成されている。そして、エンジン1は、クランク軸8からの駆動力を発電機(図示は省略)に伝えて発電を行い、エンジンの排熱を熱媒体を介して回収して熱消費端末等に供給可能とするコージェネレーションシステムに用いられている。   Although one combustion chamber N is shown in FIG. 1, the engine 1 is composed of a multi-cylinder engine having a plurality of pistons 6 and a plurality of combustion chambers N. Then, the engine 1 transmits the driving force from the crankshaft 8 to a generator (not shown) to generate electric power, and recovers exhaust heat from the engine via a heat medium so that it can be supplied to a heat consuming terminal or the like. Used in cogeneration systems.

主室9に希薄混合気である新気を吸気する吸気路13が設けられており、その吸気路13に燃料ガスを供給する主燃料供給路14が設けられている。図示は省略するが、吸気路13には、主燃料供給路14との接続箇所よりも上流側に、スロットルバルブや空気を過給する過給機等が配置されている。   The main chamber 9 is provided with an intake passage 13 for taking in fresh air that is a lean mixture, and a main fuel supply passage 14 for supplying fuel gas to the intake passage 13 is provided. Although not shown in the drawing, the intake passage 13 is provided with a throttle valve, a supercharger that supercharges air, and the like on the upstream side of the connection point with the main fuel supply passage 14.

副室11は、下端に噴孔10が形成された口金15の内部に形成されており、口金15は下端部を主室9に突出させる状態でシリンダヘッド2に支持されている。口金15の上部には点火プラグ12を有する点火ユニット16が設けられており、点火プラグ12は、その点火点12aが副室11内に位置するように設けられている。   The sub chamber 11 is formed inside a base 15 having a nozzle hole 10 formed at the lower end, and the base 15 is supported by the cylinder head 2 with the lower end protruding into the main chamber 9. An ignition unit 16 having an ignition plug 12 is provided above the base 15, and the ignition plug 12 is provided so that its ignition point 12 a is located in the sub chamber 11.

副燃料供給路17の途中部分には、副室11の圧力低下により開弁して副室11への燃料ガスの供給を許容する第1逆止弁18が配設されている。第1逆止弁18は、バネの付勢力によりボール等の弁体を弁座に当接させて閉弁状態としており、副室11の圧力低下により上流側と下流側との圧力差が一定値以上になると、バネの付勢力に抗する方向に圧力が作用して弁体が弁座から離間して開弁状態となり、副室11への燃料ガスの供給を許容するように構成されている。   A first check valve 18 that opens due to a pressure drop in the sub chamber 11 and allows the supply of fuel gas to the sub chamber 11 is disposed in the middle portion of the sub fuel supply passage 17. The first check valve 18 is closed by bringing a valve body such as a ball into contact with the valve seat by the biasing force of the spring, and the pressure difference between the upstream side and the downstream side is constant due to the pressure drop in the sub chamber 11. When the value exceeds the value, the pressure acts in the direction against the urging force of the spring, the valve body is separated from the valve seat and is opened, and the supply of the fuel gas to the sub chamber 11 is allowed. Yes.

副燃料供給路17は、下流側端部に第1逆止弁18が配設された上流側流路部分17bと上流側端部に第1逆止弁18が配設されて下流側端部が副室11に連通された下流側流路部分17aとを備えている。下流側流路部分17aは、点火ユニット16の外方からその内部に延びて副室11に連通するように構成されている。下流側流路部分17a及び上流側流路部分17bは、流路幅の狭い細い連通路にて構成されている。   The auxiliary fuel supply path 17 includes an upstream flow path portion 17b in which a first check valve 18 is disposed at a downstream end portion, and a downstream end portion in which a first check valve 18 is disposed at an upstream end portion. Is provided with a downstream flow passage portion 17 a communicated with the sub chamber 11. The downstream flow path portion 17 a is configured to extend from the outside of the ignition unit 16 to the inside thereof and communicate with the sub chamber 11. The downstream-side channel portion 17a and the upstream-side channel portion 17b are configured by narrow communication passages having a narrow channel width.

下流側流路部分17aから分岐されて吸気路13に接続された分岐路19が設けられ、分岐路19の途中部分には、副室11の圧力上昇により開弁して副燃料供給路17から分岐路19へのガスの流動を許容する第2逆止弁20が配設されている。この第2逆止弁20は、第1逆止弁18とガスの流動を許容する方向が逆方向になるようにしているだけであり、基本的には第1逆止弁18と同様の構成をしている。そして、第2逆止弁20は、例えば、副室11内の圧力が燃焼室Nでの燃焼時の最大筒内圧力よりも設定圧力の低い圧力となると、開弁するようにバネの付勢力等が調整されている。   A branch passage 19 branched from the downstream flow passage portion 17 a and connected to the intake passage 13 is provided. A middle portion of the branch passage 19 is opened by the pressure increase of the sub chamber 11 and from the sub fuel supply passage 17. A second check valve 20 that allows gas flow to the branch path 19 is provided. The second check valve 20 is configured such that the direction allowing the gas flow is opposite to that of the first check valve 18, and basically has the same configuration as the first check valve 18. I am doing. For example, when the pressure in the sub chamber 11 becomes lower than the maximum in-cylinder pressure at the time of combustion in the combustion chamber N, the second check valve 20 has a spring biasing force so as to open. Etc. have been adjusted.

このエンジン1は、通常の4ストローク内燃機関と同様に、吸気弁4及び排気弁5を開閉動作させて、吸気、圧縮、膨張、排気の諸行程を順次行うように構成されている。
吸気行程では、吸気弁4を開状態としてピストン6が下降することにより、吸気路13から希薄混合気である新気を主室9に吸引する。このとき、主室9の圧力低下に伴い副室11も圧力低下することから、第2逆止弁20については閉弁状態のままとなり、第1逆止弁18の上流側と下流側との圧力差が一定値以上となって第1逆止弁18が開弁状態となり、副燃料供給路17の上流側流路部分17b及び下流側流路部分17aを介して副室11へ燃料ガスが供給され、下流側流路部分17a内がガスで満たされる。
The engine 1 is configured to sequentially perform intake, compression, expansion, and exhaust strokes by opening and closing the intake valve 4 and the exhaust valve 5 as in a normal four-stroke internal combustion engine.
In the intake stroke, the intake valve 4 is opened and the piston 6 descends, so that fresh air that is a lean air-fuel mixture is sucked into the main chamber 9 from the intake passage 13. At this time, as the pressure in the main chamber 9 decreases, the sub chamber 11 also decreases in pressure. Therefore, the second check valve 20 remains closed, and the upstream side and the downstream side of the first check valve 18 are kept closed. When the pressure difference becomes equal to or greater than a certain value, the first check valve 18 is opened, and the fuel gas flows into the sub chamber 11 via the upstream flow path portion 17b and the downstream flow path portion 17a of the sub fuel supply path 17. Supplied and the downstream flow path portion 17a is filled with gas.

圧縮行程では、吸気弁4を閉状態としてピストン6が上昇することにより主室9の希薄混合気を圧縮する。このとき、噴孔10を介して主室9から副室11にも希薄混合気が流入することになり、吸気行程中に副燃料供給路17にて供給された燃料ガスと希薄混合気とが混合されて、副室11には燃料ガスの濃度が濃い混合気が形成される。また、副室11の圧力上昇に伴い第1逆止弁18が閉弁状態となり、下流側流路部分17a内では満たされていたガスが圧縮される。
そして、点火タイミング(上死点又は上死点近くの設定タイミング)になると点火プラグ12が作動されて副室11に火花点火を行う。副室11内で燃焼させた燃焼ガスを、噴孔10を介して主室9に火炎ジェットFとして噴射することにより、主室9の希薄混合気を燃焼させる。このとき、副室11内の圧力が燃焼室Nでの燃焼時の最大筒内圧力よりも設定圧力の低い圧力となると、第2逆止弁20が開弁状態となる。第1逆止弁18については閉弁状態のままとなる。これにより、副室11内の既燃焼ガスが下流側流路部分17aに流入し、下流側流路部分17a内で圧縮されていた未燃焼ガスが分岐路19に流入することになり、下流側流路部分17a内は既燃焼ガスで満たされることになる。また、分岐路19に流入した未燃焼ガスは、吸気路13に流入することになる。
In the compression stroke, the lean air-fuel mixture in the main chamber 9 is compressed by raising the piston 6 with the intake valve 4 closed. At this time, the lean air-fuel mixture flows from the main chamber 9 to the sub-chamber 11 through the nozzle hole 10, and the fuel gas and the lean air-fuel mixture supplied in the auxiliary fuel supply path 17 during the intake stroke are generated. As a result of the mixing, an air-fuel mixture having a high concentration of fuel gas is formed in the sub chamber 11. Moreover, the 1st check valve 18 will be in a valve closing state with the pressure rise of the subchamber 11, and the gas with which it filled in the downstream flow-path part 17a will be compressed.
At the ignition timing (set timing near or near top dead center), the spark plug 12 is actuated to ignite the sub chamber 11 with spark ignition. By injecting the combustion gas combusted in the sub chamber 11 into the main chamber 9 as the flame jet F through the nozzle hole 10, the lean air-fuel mixture in the main chamber 9 is combusted. At this time, when the pressure in the sub chamber 11 becomes lower than the maximum in-cylinder pressure during combustion in the combustion chamber N, the second check valve 20 is opened. The first check valve 18 remains closed. As a result, the burned gas in the sub chamber 11 flows into the downstream flow path portion 17a, and the unburned gas compressed in the downstream flow path portion 17a flows into the branch path 19, and the downstream side The flow path portion 17a is filled with the already burned gas. Further, the unburned gas that has flowed into the branch path 19 flows into the intake path 13.

膨張行程では、ピストン6が下降するが、このピストン6の下降により副室11の圧力が低下して第2逆止弁20が閉弁状態となり、下流側流路部分17a内のガスが徐々に燃焼室内に流出してくる。このとき、下流側流路部分17a内を満たしているガスは既燃焼ガスであるので、未燃焼ガスが燃焼室N内に流出することを防止できる。よって、未燃炭化水素の排出量の低減を図り、エンジン効率の向上を図ることができる。また、分岐路19に流入した未燃焼ガスは、次の吸気行程において主室9に吸気されることになり、主室9内で燃焼するため効率の低下や未燃炭化水素の排出は生じない。
排気行程では、排気弁5を開状態としてピストン6が上昇することにより、燃焼排ガスが排気路21に排気される。
In the expansion stroke, the piston 6 is lowered, but the pressure in the sub chamber 11 is lowered by the lowering of the piston 6 so that the second check valve 20 is closed, and the gas in the downstream flow path portion 17a is gradually increased. It flows out into the combustion chamber. At this time, since the gas filling the downstream flow path portion 17a is already burned gas, the unburned gas can be prevented from flowing into the combustion chamber N. Therefore, the amount of unburned hydrocarbon emissions can be reduced, and engine efficiency can be improved. Further, the unburned gas that has flowed into the branch path 19 is sucked into the main chamber 9 in the next intake stroke, and is burned in the main chamber 9 so that the efficiency is not reduced and the unburned hydrocarbon is not discharged. .
In the exhaust stroke, the exhaust valve 5 is opened and the piston 6 is raised, so that the combustion exhaust gas is exhausted to the exhaust passage 21.

以上の如く、本発明に係るエンジンは、未燃炭化水素の排出量の低減を図り、エンジン効率の向上を図ることができる。本発明に係るエンジンは、単に副燃料供給路17に第1逆止弁18を設けただけの従来のエンジンと比較して、排気ガス中の未燃炭化水素排出量が10%低減し、効率が0.2ポイント向上したことを実験により確認している。この実験は、ボア径を180mm、ピストンのストロークを230mm、気筒数を12個、第2逆止弁の開弁圧力を15MPaとし、分岐路において第2逆止弁のすぐ下流にガスの流量を制限するための直径0.2mmのオリフィスを設けたエンジンを用いて行った。
ここで、膨張行程において第2逆止弁20が開弁状態となることにより圧力が低下して取り出させる仕事の量が減少することになるが、副燃料供給路17における下流側流路部分17a及び上流側流路部分17bを十分に細い連通路とし、第2逆止弁20が開弁状態となる圧力を十分に高くすることにより、圧力低下を小さく抑えることができ、圧力低下による効率の低下をわずかに抑えることができる。よって、エンジン効率の向上を図ることができる。
As described above, the engine according to the present invention can reduce the amount of unburned hydrocarbons and improve the engine efficiency. The engine according to the present invention has a 10% reduction in the amount of unburned hydrocarbons in the exhaust gas compared to a conventional engine in which the first check valve 18 is simply provided in the auxiliary fuel supply path 17, and the efficiency It has been confirmed by experiment that is improved by 0.2 points. In this experiment, the bore diameter was 180 mm, the piston stroke was 230 mm, the number of cylinders was 12, the valve opening pressure of the second check valve was 15 MPa, and the gas flow rate was just downstream of the second check valve in the branch path. This was done using an engine with a 0.2 mm diameter orifice to limit.
Here, in the expansion stroke, when the second check valve 20 is opened, the pressure is reduced and the amount of work to be taken out is reduced, but the downstream side flow passage portion 17a in the auxiliary fuel supply passage 17 is reduced. In addition, by making the upstream flow passage portion 17b a sufficiently narrow communication passage and sufficiently increasing the pressure at which the second check valve 20 is opened, the pressure drop can be suppressed to a small level, and the efficiency due to the pressure drop can be reduced. The decrease can be suppressed slightly. Therefore, engine efficiency can be improved.

〔別実施形態〕
(1)上記実施形態では、分岐路19を吸気路13に接続しているが、排気路以外の流路であれば、吸気路13に限るものではなく、各種の流路に接続することができる。
[Another embodiment]
(1) In the above embodiment, the branch path 19 is connected to the intake path 13. However, the flow path is not limited to the intake path 13 as long as it is a flow path other than the exhaust path, and may be connected to various flow paths. it can.

(2)上記実施形態では、第2逆止弁20が開弁状態となる圧力は適宜変更することができ、燃焼室Nでの燃焼時の最大筒内圧力よりも設定圧力低い圧力に限るものではない。 (2) In the above embodiment, the pressure at which the second check valve 20 is opened can be changed as appropriate, and is limited to a pressure lower than the maximum in-cylinder pressure during combustion in the combustion chamber N. is not.

本発明は、燃焼室として、ピストンに面する主室と、その主室に噴孔を介して連通する副室とを備え、前記副室に燃料ガスを供給する副燃料供給路には、前記副室の圧力低下により開弁して前記副室への燃料ガスの供給を許容する第1逆止弁を設け、未燃炭化水素の排出量の低減を図り、エンジン効率の向上を図ることができる各種のエンジンに適応することができる。   The present invention includes, as a combustion chamber, a main chamber facing the piston, and a sub chamber communicating with the main chamber via an injection hole, and a sub fuel supply path for supplying fuel gas to the sub chamber includes A first check valve that opens due to a pressure drop in the sub chamber and allows fuel gas to be supplied to the sub chamber is provided to reduce unburned hydrocarbon emissions and improve engine efficiency. It can be adapted to various types of engines.

エンジンの概略図Schematic diagram of the engine

符号の説明Explanation of symbols

6 ピストン
9 主室
10 噴孔
11 副室
13 吸気路
17 副燃料供給路
17a 下流側流路部分
17b 上流側流路部分
18 第1逆止弁
19 分岐路
20 第2逆止弁
N 燃焼室
6 piston 9 main chamber 10 nozzle hole 11 sub chamber 13 intake passage 17 sub fuel supply passage 17a downstream flow passage portion 17b upstream flow passage portion 18 first check valve 19 branch passage 20 second check valve N combustion chamber

Claims (3)

燃焼室として、ピストンに面する主室と、その主室に噴孔を介して連通する副室とを備え、
前記副室に燃料ガスを供給する副燃料供給路には、前記副室の圧力低下により開弁して前記副室への燃料ガスの供給を許容する第1逆止弁が設けられているエンジンであって、
前記副燃料供給路は、下流側端部に前記第1逆止弁が配設された上流側流路部分と上流側端部に前記第1逆止弁が配設されて下流側端部が前記副室に連通された下流側流路部分とを備え、
前記副燃料供給路における前記下流側流路部分から分岐された分岐路には、前記副室の圧力上昇により開弁して前記下流側流路部分から前記分岐路へのガスの流動を許容する第2逆止弁が設けられているエンジン。
As a combustion chamber, it comprises a main chamber facing the piston, and a sub chamber communicating with the main chamber via a nozzle hole,
An engine provided with a first check valve that opens due to a pressure drop in the sub chamber and allows supply of the fuel gas to the sub chamber is provided in the sub fuel supply passage that supplies fuel gas to the sub chamber. Because
The auxiliary fuel supply passage has an upstream flow path portion in which the first check valve is disposed at the downstream end portion, and the first check valve is disposed in the upstream end portion and the downstream end portion is A downstream flow path portion communicating with the sub chamber,
A branch path branched from the downstream flow path portion in the sub fuel supply path is opened by the pressure increase in the sub chamber to allow gas flow from the downstream flow path portion to the branch path. An engine provided with a second check valve.
前記分岐路は、前記第2逆止弁よりも下流側を前記主室に新気を吸気する吸気路に接続するように構成されている請求項1に記載のエンジン。   2. The engine according to claim 1, wherein the branch passage is configured to connect a downstream side of the second check valve to an intake passage that sucks fresh air into the main chamber. 前記第2逆止弁は、前記燃焼室での燃焼時の最大筒内圧力よりも設定圧力低い圧力で開弁するように構成されている請求項1又は2に記載のエンジン。   The engine according to claim 1 or 2, wherein the second check valve is configured to open at a pressure lower than a maximum in-cylinder pressure during combustion in the combustion chamber.
JP2008155410A 2008-06-13 2008-06-13 engine Expired - Fee Related JP5065168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008155410A JP5065168B2 (en) 2008-06-13 2008-06-13 engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155410A JP5065168B2 (en) 2008-06-13 2008-06-13 engine

Publications (2)

Publication Number Publication Date
JP2009299593A true JP2009299593A (en) 2009-12-24
JP5065168B2 JP5065168B2 (en) 2012-10-31

Family

ID=41546732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155410A Expired - Fee Related JP5065168B2 (en) 2008-06-13 2008-06-13 engine

Country Status (1)

Country Link
JP (1) JP5065168B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148177A1 (en) 2013-03-19 2014-09-25 三菱重工業株式会社 Sub-chamber fuel supply device for gas internal combustion engine
WO2016021735A1 (en) * 2014-08-08 2016-02-11 イマジニアリング株式会社 Internal combustion engine
AT516257A4 (en) * 2015-01-23 2016-04-15 Ge Jenbacher Gmbh & Co Og internal combustion engine
CH715114A1 (en) * 2018-06-19 2019-12-30 Liebherr Machines Bulle Sa Pre-chamber ignition device for igniting a fuel-air mixture.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177471A (en) * 1994-12-28 1996-07-09 Yamaha Motor Co Ltd Two-cycle engine
JP2001003753A (en) * 1999-06-21 2001-01-09 Mitsubishi Heavy Ind Ltd Auxiliary chamber system of gas engine
JP2001132559A (en) * 1999-11-04 2001-05-15 Aisan Ind Co Ltd Evaporation fuel processing device for internal combustion engine
JP2003278548A (en) * 2002-03-25 2003-10-02 Osaka Gas Co Ltd Prechamber type lean-combustion gas engine
JP2005344584A (en) * 2004-06-02 2005-12-15 Aisan Ind Co Ltd Fuel supply device in liquefied petroleum gas internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177471A (en) * 1994-12-28 1996-07-09 Yamaha Motor Co Ltd Two-cycle engine
JP2001003753A (en) * 1999-06-21 2001-01-09 Mitsubishi Heavy Ind Ltd Auxiliary chamber system of gas engine
JP2001132559A (en) * 1999-11-04 2001-05-15 Aisan Ind Co Ltd Evaporation fuel processing device for internal combustion engine
JP2003278548A (en) * 2002-03-25 2003-10-02 Osaka Gas Co Ltd Prechamber type lean-combustion gas engine
JP2005344584A (en) * 2004-06-02 2005-12-15 Aisan Ind Co Ltd Fuel supply device in liquefied petroleum gas internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148177A1 (en) 2013-03-19 2014-09-25 三菱重工業株式会社 Sub-chamber fuel supply device for gas internal combustion engine
KR20150119383A (en) 2013-03-19 2015-10-23 미츠비시 쥬고교 가부시키가이샤 Sub-chamber fuel supply device for gas internal combustion engine
US10072560B2 (en) 2013-03-19 2018-09-11 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Precombustion-chamber fuel supply device for gas internal combustion engine
WO2016021735A1 (en) * 2014-08-08 2016-02-11 イマジニアリング株式会社 Internal combustion engine
AT516257A4 (en) * 2015-01-23 2016-04-15 Ge Jenbacher Gmbh & Co Og internal combustion engine
AT516257B1 (en) * 2015-01-23 2016-04-15 Ge Jenbacher Gmbh & Co Og internal combustion engine
EP3048279A1 (en) * 2015-01-23 2016-07-27 GE Jenbacher GmbH & Co. OG Combustion engine with prechambre
JP2016136020A (en) * 2015-01-23 2016-07-28 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー Internal combustion engine
US9850807B2 (en) 2015-01-23 2017-12-26 Ge Jenbacher Gmbh & Co Og Internal combustion engine
KR101862281B1 (en) * 2015-01-23 2018-07-05 게 옌바허 게엠베하 운트 콤파니 오게 Internal Combustion Engine
CH715114A1 (en) * 2018-06-19 2019-12-30 Liebherr Machines Bulle Sa Pre-chamber ignition device for igniting a fuel-air mixture.

Also Published As

Publication number Publication date
JP5065168B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP2009108778A (en) Fuel injection device of compression ignition internal combustion engine
WO2013153842A1 (en) 2-cycle gas engine
JP4698471B2 (en) engine
JP4934106B2 (en) engine
US20140158083A1 (en) Spark ignition engine
JP5060353B2 (en) Sub-chamber engine
JP4871141B2 (en) Sub-chamber engine
JP5065168B2 (en) engine
JP5325019B2 (en) Sub-chamber engine
JP5325020B2 (en) Sub-chamber engine
JP2002266645A (en) Engine, its operating method and auxiliary combustion chamber mechanism
JP5192177B2 (en) Sub-chamber engine
JP5486645B2 (en) Sub-chamber engine
JP5072765B2 (en) Spark ignition gas fuel internal combustion engine
JP3930639B2 (en) Pre-combustion chamber type gas engine
JP2005232988A (en) Subsidiary chamber type engine
JP4073315B2 (en) Sub-chamber engine
JP2002266643A (en) Engine, its operating method and auxiliary combustion chamber mechanism
JP2002266644A (en) Engine and auxiliary combustion chamber mechanism
JP2007315357A (en) Multiple-fuel internal combustion engine
JP4386781B2 (en) engine
JP2004278428A (en) Diesel engine and its operation method
JP4145177B2 (en) Engine and operation method thereof
JP4007729B2 (en) Engine and operation method thereof
JP2004251194A (en) Gas engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5065168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees